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Abstract

Inspired by classical results in integrable boundary quantum field theory, we propose a definition of 
integrable initial states for quantum quenches in lattice models. They are defined as the states which are 
annihilated by all local conserved charges that are odd under space reflection. We show that this class 
includes the states which can be related to integrable boundary conditions in an appropriate rotated channel, 
in loose analogy with the picture in quantum field theory. Furthermore, we provide an efficient method to 
test integrability of given initial states. We revisit the recent literature of global quenches in several models 
and show that, in all of the cases where closed-form analytical results could be obtained, the initial state 
is integrable according to our definition. In the prototypical example of the XXZ spin-s chains we show 
that integrable states include two-site product states but also larger families of matrix product states with 
arbitrary bond dimension. We argue that our results could be practically useful for the study of quantum 
quenches in generic integrable models.
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1. Introduction

The notion of solvability associated to integrable models usually refers to the possibility of 
diagonalizing analytically the corresponding Hamiltonian [1]. Although this is a remarkable 
property, comparison with experiments often requires to go beyond the simple computation of 
the system’s eigenspectrum and to provide predictions for more general physical observables. 
Indeed, a tremendous effort has been made in the past decade to compute several non-trivial 
ground-state and thermal properties in different models, significantly improving our understand-
ing of the underlying mathematical structures [2–16].

More recently, integrable models offered new challenges to the community, as an increasing 
attention was devoted to the study of quantum quenches [17]. In this framework, one is interested 
in the unitary time evolution from an assigned initial state. It is evident that this problem is gener-
ally more complicated than those arising at thermal equilibrium, mainly because the initial state 
itself might be chosen arbitrarily, with an exponentially large number of degrees of freedom. This 
freedom hardly combines with the intrinsic rigidity of integrability, and one might legitimately 
wonder whether quench problems are within the reach of integrability-based techniques at all 
[18]. On the other hand, nearly ideal, out-of-equilibrium integrable models can now be realized 
experimentally in cold-atomic laboratories [19–22], elevating the relevance of these questions 
beyond a purely academic curiosity (see also [23] for a volume of reviews on integrable models 
out of equilibrium).

Among the most elementary quantities appearing in the study of quantum quenches are the 
overlaps between the initial state and the eigenstates of the model. These are needed as inter-
mediate building blocks for several calculations both at finite and infinite times. Ever since the 
early stages of the literature on quantum quenches, several works tackled the problem of their 
computation, with the first studies dating back to almost ten years ago [24,25]. However, un-
til recently the problem appeared too hard to be attacked, strongly limiting our possibility of 
analytical calculations.

A breakthrough has come with the works [26–29], where non-trivial overlap formulas were 
obtained in the XXZ Heisenberg chain and in the Lieb–Liniger model. These formulas involve 
Gaudin-like determinants, and are reminiscent of the one for the norm of Bethe states [30]. After 
the seminal works [26–29], a large number of studies on the subject have appeared [31–43], and 
overlaps were computed for several initial states and models. In turn, these achievements finally 
allowed for the derivation of important analytical results by means of integrability-based methods 
such as the Quench Action approach [44,45], which has already been applied to a large number of 
problems [29,36,46–58]. Quite remarkably, for all the known cases the overlap formulas display 
the same form, seemingly indicating the presence of a structure common to different models. 
However, so far it was not clear for which states the existence of such formulas could be expected.

Paralleling these studies, analytical results for the post-quench time evolution were also ob-
tained in cases where the overlaps are not known. In the works [59,60] an exact computation of 
the Loschmidt echo was performed in the XXZ chain, starting from arbitrary families of two-
site product states. These results could be derived by means of a construction relating the initial 
state to an integrable boundary condition in an appropriate rotated channel, where the space and 
time directions are exchanged. In fact, the connection between quantum quenches in one spatial 
dimension and boundary integrable quantum field theory (QFT) in the rotated channel has been 
known and exploited for a long time both in the conformal [17,61–64] and massive cases [48,
65–69].
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This connection was in particular beautifully illustrated in the classical work of Ghoshal and 
Zamolodchikov [65]. Here, integrability of the boundary field theory was defined by the existence 
of an infinite number of conserved operators (or charges) which persist after the addition of 
a boundary term to the bulk Hamiltonian. Remarkably, the conditions on this boundary term 
to preserve integrability were explicitly translated into a constraint for the boundary state in the 
corresponding rotated picture: the latter has to be annihilated by an appropriately chosen (infinite) 
subset of the bulk conserved charges.

Inspired by these classical works, we propose a definition of integrable states for quantum 
quenches in lattice integrable systems. We identify integrable states as those which are annihi-
lated by all local conserved charges of the Hamiltonian that are odd under space reflection. This 
definition naturally extends to those models defined on the continuum that are scaling limit of lat-
tice ones. We introduce an efficient method to test integrability of given initial states. By means 
of the latter, we show that in all of the cases recently considered where closed-form analytical 
results could be obtained, the initial state is integrable according to our definition.

Going further, we prove that integrable states include the ones which can be related to inte-
grable boundaries in the rotated channel, where the space and time directions are exchanged [60]. 
This result, which completes the analogy with the picture in QFT, is highly non-trivial, as the lat-
tice model does not display Lorentz invariance. We devote a detailed analysis to the prototypical 
case of XXZ spin-s chains and show that integrable states include two-site product states but also 
larger families of matrix product states (MPSs) with arbitrary bond-dimension. A particular case 
of the latter are the states studied in [35,39,40].

It is important to stress that our findings should not be interpreted as a no-go theorem for 
obtaining exact results for non-integrable initial states. For example, an exact overlap formula 
was computed in [25] for the special case of the domain-wall state, which strictly speaking is 
not integrable. Further analytical results were obtained recently for quenches from the same 
state, for example regarding the computation of the return probability [70], and in the context of 
spin transport [71]. However, these problems are inherently inhomogeneous in space, and in the 
present work we focus on the homogeneous global quenches.

Regarding global problems, relevant examples concern the computation of the post-quench 
rapidity distribution functions of the quasi-particles in XXZ spin-s chains. Indeed, the latter 
can be computed exactly in many (non-integrable) cases [72]. This has been a recent important 
achievement, based on a mature understanding of the physical relevance of quasi-local charges in 
integrable models [73–82] and mainly motivated by studies regarding the validity of the so-called 
Generalized Gibbs Ensemble [83–97]. However, even in this problem further simplifications oc-
cur for integrable states, allowing one to reach closed-form analytical formulas, via the so-called 
Y -system [72,94]. In any case, our work provides a unified point of view for the many exact 
results that appeared in the past years. Furthermore, it also provides a useful starting point for 
the study of models where quench problems have not been investigated: if exact results are to be 
derived, one should first look at the integrable initial states, for which they are expected.

The organization of this article is as follows. In Sec. 2 we review the classical work of Ghoshal 
and Zamolodchikov and present the general setting. Integrable states are defined in Sec. 3, where 
we also discuss some of their properties. In Sec. 4 we show that states related to integrable 
boundaries in the rotated channel are integrable according to our definition, while in Sec. 5 we 
present a general construction of integrable matrix product states with arbitrary bond dimension. 
Sec. 6 is devoted to a critical review of several models considered in the recent literature. Finally, 
our conclusions are reported in Sec. 7.
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Fig. 1. Pictorial representation of a 2D Euclidean field theory in the presence of boundaries. There are two natural ways 
to introduce the Hamiltonian picture. In the first one, displayed in the sub-figure (a), the Euclidean time direction is 
chosen to be parallel to the boundary. The physical Hilbert space is associated with a semi-infinite spatial line at fixed 
time (dashed black line). In the second way, displayed in the sub-figure (b), the time direction is chosen to be orthogonal 
to the boundary. The latter plays the role of an initial condition, and is identified with a boundary initial state |B〉.

2. General setting

2.1. Boundary states in integrable quantum field theory

A source of inspiration for the present paper is the classical work of Ghoshal and Zamolod-
chikov [65], where integrable QFTs in the presence of boundaries are studied. It is natural to 
start our discussion by briefly reviewing the aspects of that work that are directly relevant for 
us. Although our focus will be on lattice integrable models, this will allow us to introduce some 
constructions by analogy with the picture in boundary QFT.

We start with an Euclidean field theory defined on a semi-infinite plane x ∈ (−∞, 0), 
y ∈ (−∞, +∞). In the so-called Lagrangian approach it can be defined by introducing the cor-
responding action, which generally reads as

AB =
+∞∫

−∞
dy

0∫
−∞

dx a(ϕ, ∂μϕ) +
+∞∫

−∞
dy b

(
ϕB,

d

dy
ϕB

)
. (1)

Here ϕ(x, y) represent a set of local bulk fields, while ϕB(y) = ϕB(x, y)|x=0 are the boundary
fields. Analogously, a(ϕ, ∂μϕ) and b (ϕB, dϕB/dy) are respectively the bulk and boundary action 
densities.

We recall that from the action (1) one can introduce a Hamiltonian picture in Euclidean time, 
which is closely related to a 1 + 1 Lorentzian QFT through the Wick rotation. This procedure 
of analytic continuation between real and imaginary times is routinely performed in order to 
apply QFT results to equilibrium statistical mechanics [98]. As pointed out in [65], there are two 
natural ways to introduce the Hamiltonian picture. This is pictorially illustrated in Fig. 1. First, 
one can identify the coordinate y in (1) to be the Euclidean time direction. At each time, one 
can associate a physical Hilbert space to the semi-infinite line x ∈ (−∞, 0). The Hamiltonian is 
written as

HB =
0∫

−∞
dx ĥ(x) + θB , (2)

where ĥ(x) is the bulk Hamiltonian density, while θB is an additional boundary term.
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Alternatively, one can introduce an Hamiltonian picture in the rotated channel, by identifying 
the time direction with the coordinate x. In this case, the Hilbert space at fixed time corresponds 
to the infinite line y ∈ (−∞, ∞) and the Hamiltonian coincides with the bulk one without bound-
ary terms

H =
+∞∫

−∞
dy ĥ(y) . (3)

The boundary at x = 0 now plays the role of an initial condition in Euclidean time, and can 
be identified with an initial boundary state |B〉, in analogy with the classical constructions in 
conformal field theory [99].

Consider now the bulk action density obtained from (1) by removing the boundary. If the latter 
is integrable, there exist an infinite set of integrals of motions

Ps =
+∞∫

−∞
dx
[
Ts+1 + �s−1

]
, P̄s =

+∞∫
−∞

dx
[
T̄s+1 + �̄s−1

]
, (4)

where Ts+1, �s−1 (T̄s+1, �̄s−1) are local field of positive (negative) spin s + 1 and s − 1, satis-
fying appropriate continuity equations [100]. The spin index s takes value in an infinite subset S
of the positive integer numbers and it describes the transformation properties under the Lorentz 
boosts. Following [65], a boundary field theory is defined to be integrable if infinitely many 
conservation laws survive the addition of the boundary term. More precisely, in this case the 
boundary Hamiltonian (2) has an infinite number of integral of motions of the form

H
(s)
B =

0∫
−∞

dx
[
Ts+1 + T̄s+1 + �s−1 + �̄s−1

]+ θ
(s)
B . (5)

The index s now takes value in an infinite subset SB ⊂ S : the boundary integral of motions are 
obtained by selecting a subset of the bulk ones, and adding an appropriate boundary term to them. 
This is completely analogous to the situation encountered in lattice models with open boundary 
conditions [101,102].

Remarkably, the existence of an infinite number of conservation laws for (2) can be related to 
a condition on the boundary state |B〉 in the rotated picture. If the Hamiltonian (2) is integrable 
then [65](

Ps − P̄s

) |B〉 = 0 , s ∈ SB . (6)

The relevance of (6) for our purposes is that it represents a condition of integrability which 
can be tested by relying uniquely on the knowledge of the initial boundary state and the bulk 
conservation laws of the theory. This provides the main source of inspiration for our work.

The application of the ideas of [65] to lattice models is not evident. A one dimensional quan-
tum model is always equivalent to a two-dimensional one of classical statistical physics, and 
similar to the QFT setting it is always possible to define a “rotated channel”. However, typically 
there is no Euclidean invariance on the 2D lattice, and the Hamiltonians (or transfer matrices) 
of the rotated channel differ from the original physical ones. Moreover, even if the identification 
of the initial states with the integrable boundary conditions of the rotated channel can be carried 
out, this construction is non-trivial and in any case model dependent.



L. Piroli et al. / Nuclear Physics B 925 (2017) 362–402 367
On the other hand, a definition analogous to (6) can be straightforwardly introduced in a gen-
eral way in lattice models, where conservation laws are well known in terms of explicit operators 
on the physical Hilbert space. In the next subsection we review some basic facts on lattice inte-
grable models which are necessary in order to introduce and discuss our definition of integrable 
states. The latter will be finally presented in Sec. 3.

2.2. Lattice integrable models

We consider a generic one-dimensional model defined on the Hilbert space H= h1 ⊗ . . .⊗hL. 
Here hj is a local d-dimensional Hilbert space associated with the site j , while L is the spatial 
length of the system. The Hamiltonian is indicated as

HL =
L∑

j=1

ĥj , (7)

where ĥj is a local operator. In the following, we will always assume periodic boundary condi-
tions. In an integrable model there exists an infinite number of conserved operators commuting 
with the Hamiltonian (7). Furthermore, these can be written as a sum over the chain of local den-
sities, and are therefore called local charges. The latter can be obtained by a standard construction 
within the so-called algebraic Bethe ansatz [2,103], which we now briefly sketch.

One of the main objects of this formalism is the R-matrix R1,2(u). The latter is an operator 
acting on the tensor product of two local spaces h1 ⊗h2 (possibly of different dimension), where 
u is an arbitrary complex number, the spectral parameter. The R-matrix has to satisfy a set of 
non-linear relations known as Yang–Baxter equations

R1,2(u)R1,3(u + v)R2,3(v) = R2,3(v)R1,3(u + v)R1,2(u) . (8)

From the R-matrix, another fundamental object can be constructed, namely the transfer matrix

τ(u) = tr0 {T0(u)} , (9)

where the trace is over an auxiliary space h0 and where we introduced the monodromy matrix

T0(u) = R0,L(u)R0,L−1(u) . . .R0,1(u) . (10)

By means of (8), one can show that transfer matrices with different spectral parameters commute

[τ(λ), τ (μ)] = 0 . (11)

Using (11), an infinite set of commuting operators is readily obtained as

Qn+1 ∝ ∂n

∂λn
ln τ(λ)

∣∣∣
λ=λ∗ n ≥ 1. (12)

Importantly, λ∗ can be chosen in such a way that the operators Qn are written as a sum over the 
chain of local operators (or densities). For example, within our conventions, the charges Qn are 
such that in the Heisenberg chains the corresponding densities span n sites. Then, one can define 
an integrable Hamiltonian as

HL ∝ Q2 . (13)

By construction, HL is of the form (7), and has an infinite number of local charges Qn.
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For the lattice models considered in this work, local conserved charges can be divided into 
two subsets: the even ones, Q2n, and odd ones, Q2n+1 with n ≥ 1. These sets display different 
behavior under spatial reflection, namely1

�Qk� = (−1)kQk , k ≥ 2 , (14)

where � is the reflection operator

�|i1, i2, . . . , iL〉 = |iL, iL−1, . . . , i2, i1〉 . (15)

Here we introduced the notation

|i1, i2, . . . , iL〉 = |i1〉1 ⊗ |i2〉2 . . . ⊗ |iL〉L , (16)

where |k〉j are the basis vectors of the local space hj , with k = 1, . . . d .
We are interested in global quantum quenches where the Hamiltonian driving the time evolu-

tion is integrable. For each model, we will consider several families of initial states and in order 
to allow for a general discussion, we will represent them as matrix product states (MPSs) [105]. 
They are a class of states which display a number of important properties: they have exponentially 
decaying correlations and finite entanglement between two semi-infinite subsystems. Further-
more, it is known that MPSs can approximate ground states of gapped local Hamiltonians with 
arbitrary precision [106]. This provides a physical motivation to consider them as initial states.

We recall that a generic (periodic) MPS can be defined as

|	0〉 =
d∑

i1,...,iL=1

tr0

[
A

(i1)
1 A

(i2)
2 . . .A

(iL)
L

]
|i1, i2, . . . , iL〉 . (17)

Here d is the dimension of the physical spaces hj , while A
(ij )

j are dj−1 × dj matrices, where dj

are arbitrary positive integer numbers, called bond dimensions. The trace is over the Hilbert space 
h0 with dimension d0. In a finite chain, every vector of the Hilbert space H can be represented 
in the form (17) [107]. It is common practice, however, to refer to a state as MPS if the bond 
dimensions in the corresponding representation (17) do not grow with the system size L.

Finally, it is useful to introduce the following definition: we say that a state |	0〉 is p-periodic 
if p is the smallest positive integer such that

Up|	0〉 = |	0〉 , (18)

where U is the shift operator along the chain

U |i1, i2, . . . , iL〉 = |iL, i1, . . . , iL−1〉 . (19)

In order to ensure a proper thermodynamic limit, we will restrict to initial states that are 
p-periodic, with p arbitrary but finite (and not increasing with L). The constraints imposed 
so far (namely, finite bond dimensions and p-periodicity) are extremely loose, and allow one to 
consider a very large family of initial states. Integrable states will be defined in the following as 
a small subset of the latter.

1 One of the simplest ways to prove the reflection properties is by using the so-called boost operator B , which con-
nects the charges through the formal relation Qk+1 = [B, Qk] [104]. The boost operator is manifestly odd under space 
reflection, and this guarantees the alternating signs appearing in (14). Note that the overall normalization of the transfer 
matrix affects the parity properties of the charges: a rapidity dependent overall factor introduces constant additive terms. 
However, in the models considered in this work there is always a natural normalization in which the reflection properties 
(14) hold.
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3. Integrable states in lattice models

3.1. Defining integrable states

We can now introduce our definition of integrable states, guided by the analogy with the pic-
ture in QFT outlined in Sec. 2.1. As we already stressed, identification of initial states and bound-
ary conditions in an appropriate rotated channel requires preliminary work in lattice models, and 
the construction can be model dependent. However, it is possible to introduce an immediate and 
general definition of integrable states in terms of annihilation of a subset of the local conserved 
charges {Qn}∞n=1, similarly to Eq. (6).

We propose the following definition: an initial state is integrable if it is annihilated by all local 
charges of the model that are odd under space reflection. In the lattice models that we consider 
these coincide with the set {Q2n+1}, with n ≥ 1, cf. Eq. (14). Therefore we require

Q2k+1|	0〉 = 0 , k ≥ 1 , (20)

in any finite volume L where the charge Q2k+1 is well defined. Typically Qn is a sum along the 
chain of local operators spanning n sites, so that (20) is meaningful if (2k + 1) ≤ L.

We stress that, even though the definition (20) is inspired directly by [65], the analogy with 
QFT is a loose one and its usefulness should therefore be appreciated a posteriori. In particular, 
Eq. (20) seems to hold for all the initial states for which closed-form analytical results could 
be obtained, at least in the models considered in this work. Furthermore, we will see in Sec. 4
that the class of states satisfying (20) include all of those which can be related to integrable 
boundaries in the rotated channel. These facts, together with additional considerations presented 
in the following, constitute strong evidence that (20) provides a meaningful and useful definition.

Based on the experience with the known cases we expect that in new models and new quench 
situations analytic solutions can be found in the integrable cases. Therefore, it is important to 
develop tools to efficiently test the integrability of an initial state. In the following we provide 
such methods, which are connected directly to the definition (20), and are independent of the 
knowledge of the overlaps or other composite objects such as the Loschmidt echo.

We consider a model defined by a transfer matrix τ(u), with the so-called regularity condition

τ(0) = U , (21)

where U is the translation operator (19). Furthermore, we introduce the constants of proportion-
ality in (12) as

Qn+1 = αn

∂n

∂un
ln τ(u)

∣∣∣
u=0

, n ≥ 1 , (22)

where αn are chosen such that the charges Qn+1 are Hermitian. From this definition, one can 
write down the following formal representation

τ(u) = U exp

{ ∞∑
n=1

αn

un

n! Qn+1

}
. (23)

Integrability of a p-periodic MPS |	0〉 with finite bond dimension is equivalent to requiring

〈	0|Q2n+1Q2n+1|	0〉 = 0 , n ≥ 1 , (24)

where we used that the charges are Hermitian operators.
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In order to test (24), we introduce the quantities

G(u) = 〈	0|Up−2τ(u)τ(−u)|	0〉
〈	0|	0〉 , (25)

G̃(u) = 〈	0|�Up−2τ(u)τ(−u)�|	0〉
〈	0|	0〉 , (26)

where p is the periodicity of |	0〉. The motivation to introduce a product of two transfer matrices 
is to cancel those parts of the transfer matrix which are even and therefore irrelevant to the 
integrability condition.

Our statement is that (24) holds if and only if in a neighborhood of u = 0

G(u) = G̃(u) = 1 + O(uL) . (27)

In the thermodynamic limit this leads to the condition

G(u) = G̃(u) = 1 , |u| < K , (28)

for some K > 0. Indeed, if the initial state is annihilated by all the odd charges in a given fi-
nite volume L, then the action of τ(u)τ(−u) reduces to U2 + O(uL) and we obtain (27) and 
hence (28). The proof of the other direction of the statement is also easy, but for the sake of 
clarity it is reported in Appendix A.

Both functions G(u) and G̃(u) can be efficiently computed on MPSs of finite bond dimension 
by standard techniques, as we will also show explicitly in Sec. 3.2. As a consequence, Eqs. (27)
and (28) provide an efficient test for integrability of given initial states.

An alternative definition of integrability can be given by requiring

τ(u)|	0〉 = �τ(u)�|	0〉 , (29)

where � is the reflection operator (15). First, note that (29) directly implies two-site shift invari-
ance:

U |	0〉 = τ(0)|	0〉 = �τ(0)�|	0〉 = U−1|	0〉 , (30)

where we used τ(0) = U . Next, the annihilation by the odd charges follows from (29) simply 
by Taylor expanding τ(u) at u = 0. Since (29) implies two-site shift invariance, it is a stronger 
condition than (20). In fact, based on the analytic properties of the transfer matrix it can be ar-
gued that (29) follows from (20) and two-site invariance. However, the question whether the 
latter property is actually a consequence of the annihilation by all odd charges is an open prob-
lem.

3.2. Transfer matrix evaluation of the integrability condition

We consider a translational invariant MPS defined as

|	0〉 =
d∑

i1,...,iL=1

tr
[
A(i1)A(i2) . . .A(iL)

]
|i1, i2, . . . , iL〉 , (31)

and address the computation of the functions G(u) and G̃(u) introduced in the previous section. 
It is convenient to employ a graphical notation close to the one routinely used in the literature of 
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Fig. 2. Graphical representation of Eq. (34). Filled boxes represent the matrices appearing in the MPS (31), whereas 
the internal lines stand for the insertion of two transfer matrices τ(u) and τ(−u), cf. (33). The partition function of the 
resulting 2D lattice model can be seen as generated by subsequent application of the matrix T̃ (u) in the rotated channel.

tensor networks. This will help us to reduce the level of technicality of our discussions. First, we 
represent the R-matrix as

R0,1(u) = (32)

so that for the transfer matrix (9) one has the graphical representation

τ(u) = . (33)

The horizontal line denotes the auxiliary space h0. Trace over h0 is denoted with dashes, while 
vertical lines are in 1-to-1 correspondence with the sites along the chain.

Using this notation the functions G(u) and G̃(u) in Eqs. (25) and (26) can be represented as 
partition functions of appropriate 2D statistical physical models. This is pictorially depicted in 
Fig. 2, where filled boxes represent the matrices appearing in the MPS, whereas the internal lines 
stand for the insertion of the transfer matrices τ(u) and τ(−u).

The partition function of the model displayed in Fig. 2 can be evaluated by building an 
alternative transfer matrix (generally called the Quantum Transfer Matrix) which acts in the hor-
izontal direction. The calculations are standard, and analogous to those reported, for example, in 
Ref. [60]. In particular, it is easy to obtain

G(u) = 1

N trA1⊗h2⊗h3⊗A2

[
T̃ (u)L

]
, (34)

where N = 〈	0|	0〉 while

T̃ (u) =
d∑

i=1

d∑
j=1

Ā(i) ⊗ 1〈i|R2,1(u)R3,1(−u)|j〉1 ⊗ A(j) , (35)

and where A1 and A2 are d-dimensional spaces on which the matrices A(j) act. Here Ā(i) in-
dicates the complex conjugated of A(i). An analogous computation can be carried out for G̃(u)

and also for MPSs that are p-periodic.
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The integrability conditions (27) translate into a constraint for the eigenvalues {�j(u)}j of 
T̃ (u), namely

1

N

⎡
⎣∑

j

(
�j(u)

)L⎤⎦≡ 1 + O(uL) . (36)

Comparing with the special point u = 0 we obtain the norm as

N =
∑
j

(
�j(0)
)L

It can be seen that (36) is satisfied when for |u| < K with some K ∈ R
+

�j(u) ≡ �j(0) for those j for which |�j(0)| > 0. (37)

Condition (37) implies strict annihilation in finite volume. If we only require asymptotic anni-
hilation in the thermodynamic limit then it is enough for (37) to hold for the eigenvalues with 
maximal magnitude. However, we suggest to use exact annihilation for the definition of integra-
bility, and we will show that all the previous cases studied in the literature fit this definition.

It is important that for a given MPS the matrix (35) has finite dimension (the latter growing 
with the bond dimension of the MPS). Accordingly its eigenvalues can be investigated either 
analytically or numerically. Therefore, it is immediate to test integrability of given MPSs. In Ap-
pendix B we report two examples where the integrability condition is tested both for an integrable 
and a non-integrable initial state.

It is a relevant question to find all integrable MPSs for a given model. One strategy would be 
to write down a set of conditions for the matrices A(j) appearing in (31) such that the eigenvalues 
of the Quantum Transfer Matrix (35) have the necessary properties. However, this approach ap-
pears to be extremely complicated and not viable. In general, we have not succeeded in solving 
this problem. Nevertheless, in the following section we present a general method to construct in-
tegrable MPSs of arbitrary bond dimension. We will show later that the integrable MPSs studied 
in the recent literature all fit into our framework. The question whether all integrable MPSs can 
be generated by our method is left for future work.

3.3. The pair structure

The integrability condition (20) has immediate consequences for the overlaps between inte-
grable states and the eigenstates of the Hamiltonian (which in the following will be also called 
Bethe states). For a generic model, it is well known that the latter can be parametrized by sets of 
quasi-momenta or rapidities {λj }Nj=1, where N is the number of quasi-particles associated to the 
eigenstate. Any initial state can be written as

|ψ0〉 =
∑
{λj }j

c{λj }j |{λj }j 〉 , (38)

where the sum is over all the sets of rapidities, and where c{λj }j are the corresponding overlaps 
with the initial state.

Given a local charge Qr , its action on Bethe states is

Qr |{λj }Nj=1〉 =
⎡
⎣ N∑

qr(λj )

⎤
⎦ |{λj }Nj=1〉 , (39)
j=1
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where qr(λ) is some known function. As a consequence, an integrable state can have a non-
vanishing overlap c{λj }j only with the Bethe states |{λj }j 〉 such that

N∑
j=1

q2n+1(λj ) = 0 , (40)

for all n such that Q2n+1 exists in the chain of length L. In an interacting model this is a very 
strong constraint for the rapidities, because they have to satisfy a set of additional quantization 
conditions known as Bethe equations. Accordingly, only special configurations are consistent 
with (40).

It follows from the space-reflection properties that the functions q2n+1(λ) are odd with respect 
to λ. Depending on the specific model chosen, there can be a finite set Sλ of rapidity values such 
that q2n+1(λ) = 0 if λ ∈ Sλ. Accordingly, the constraint (40) is obviously satisfied by states 
corresponding to a set

{λj }Nj=1 = {μj }Rj=1 ∪ {−μj }Rj=1 ∪ C , C ⊂ Sλ , (41)

where R is some positive integer number. Eq. (41) encodes the so-called pair structure. More 
precisely, we say that an initial state has the pair structure if it has non-vanishing overlap only 
with Bethe states corresponding to sets of rapidities of the form (41).

The presence of the pair structure was already observed in the seminal works [28,29,34,46,47]
in the Lieb–Liniger and XXZ models, and has been repeatedly encountered in the recent literature 
for different initial states and systems. In the context of boundary QFT, it leads to the specific 
“squeezed” form of the boundary states [65], see also [31,38,42,67,108–113]. Furthermore, the 
pair structure has immediate consequences for the entropy of the steady state arising after a 
quench [57,58,114], in particular for its relation with the so-called diagonal entropy [114–120]. 
Therefore, it is an important question whether the pair structure follows in general from (40). In 
passing, we note that in the context of QFT it has been argued that for interaction quenches near 
criticality the pair structure does not occur. Namely the initial state (the ground state of a critical 
Hamiltonian) does not consist uniquely of pairs of particles with opposite momenta [18], see also 
the related work [121].

In a generic interacting model the Bethe equations are algebraically independent of (40) and 
a fine tuning of the couplings and/or an interplay with the volume parameter is needed to find 
exceptions to the pair structure. Such fine tuned examples can be found in the XXZ model at the 
special points  = cos(pπ/q), including the free fermionic point  = 0, which will be treated 
in more detail in section 6.2. In the case of the isotropic Heisenberg chain a rigorous proof of the 
pair structure can be given using a result of [122]. Since the argument is very simple, we present 
it here for completeness.

For an arbitrary Bethe state we have the relation �|{λ}N 〉 ∼ |{−λ}N 〉. Taking scalar product 
of the two sides of the equation (29) with the Bethe state |{λ}N 〉 we see that the overlaps can be 
non-zero only if

τ(u, {λ}N) = τ(u, {−λ}N) , (42)

for all u, where τ(u, {λ}N) is the eigenvalue of the transfer matrix corresponding to |{λ}N 〉. It was 
proven in [122] that the spectrum of the transfer matrix τ(u) is simple: if two different eigenstates 
share the same eigenvalue then they belong to the same SU(2) multiplet. This implies that |{λ}N 〉, 
and �|{λ}N 〉 are related by an SU(2) rotation. Since � does not change the Sz eigenvalues, we 
conclude that �|{λ}N 〉 ∼ |{λ}N 〉, and the pair structure holds.
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To conclude this section, we stress that while the pair structure might or might not hold for a 
specific model (and has to be investigated separately), the conditions (20) and (40) are general 
unifying properties of integrable initial states.

4. Relation with integrable boundaries

In the previous sections we have introduced the definition of integrable states in terms of the 
bulk conserved charges of the Hamiltonian. This definition was inspired by the picture in QFT, 
where integrable boundaries are directly related to integrable initial states. It is then a natural 
question to ask, whether such a relation holds also in lattice models, and whether our definition 
(20) is compatible with it.

In this section we prove one direction of this relation: we present a method to relate integrable 
boundary conditions to initial states, and show that states obtained in this way indeed satisfy 
the condition (20). This construction naturally produces local two-site product states, which are 
presented in Sec 4.1. In Section 5 we show how integrable MPSs can also be taken into account 
in this framework.

4.1. The general construction

The construction to relate integrable initial states to integrable boundaries relies on the path 
integral evaluation of the partition function

Z(w) = 〈	0|e−wH |	0〉 . (43)

In QFT the exchange of time and space directions is straightforward due to the Euclidean in-
variance of the path integral. However, this is less immediate in lattice models, where space is 
discrete and time is continuous. The standard method to circumvent this problem is to introduce 
a discretization in the time direction and then to develop a lattice path integral for the resulting 
partition function. This is achieved by employing a Trotter decomposition

e−wH ∼
(

1 − w

N
H
)N

. (44)

In integrable models the Hamiltonian H can be related to the transfer matrices, and this makes it 
possible to introduce the lattice path integrals.

For the sake of clarity here we focus on the XXZ spin-1/2 model, defined by the Hamiltonian

HL = 1

4

L∑
j=1

[
σx

j σ x
j+1 + σ

y
j σ

y
j+1 + 

(
σz

j σ z
j+1 − 1

)]
, (45)

where σα
j are the Pauli matrices, and periodic boundary conditions are assumed, σα

L+1 = σα
1 . In 

this case, the R-matrix is

R(u) = 1

sinh (u + η)

⎛
⎜⎜⎝

sinh(u + η)

sinhu sinhη

sinhη sinhu

sinh(u + η)

⎞
⎟⎟⎠ , (46)
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where η = arccosh(). The normalization of the R-matrix is such that the corresponding transfer 
matrix both satisfies the regularity condition (21) and has charges Qn with the correct even/odd 
behavior (14). Moreover, it satisfies the so-called crossing relation

R
t0
0,1(u) = γ (u)V −1

0 R0,1(−u − η)V0 . (47)

Here Rt0
0,1(u) denotes partial transposition in the space h0, V0 is a gauge matrix acting on h0

while γ (u) is a function. In particular, for the R-matrix (46) one has γ (u) = sinh(u)/ sinh(u +η)

and V0 = σy . While here we focus on the XXZ spin-1/2 chain, the construction described in this 
section can be carried out straightforwardly for all the integrable models whose R-matrix satisfies 
a crossing relation, and is thus very general. An example is given by higher spin versions of 
the Hamiltonian (45), as we will see in the following. On the other hand, generalization of this 
construction to models for which there is no relation of the type (47) (such as the SU(3)-invariant 
spin chain) is not evident and needs further research.

We follow the derivation of [60], to which we refer for all the necessary technical details, 
providing here only the main ideas. For simplicity, we start by considering an initial state of the 
form

|	0〉 = |ψ0〉1,2 ⊗ . . . |ψ0〉L−1,L , (48)

while MPSs with arbitrary bond dimension will be considered in the next section. It is important 
to recall that, similarly to (2), one can consider the Hamiltonian (45) with open boundary condi-
tions preserving integrability. In this case the open Hamiltonian can still be obtained by means 
of an algebraic construction similar to the one described in Sec. 2.2. In the boundary case the 
relevant object is a two-row transfer matrix, which reads

τB(u) = tr0

{
K+

0 (u)T0(u)K−
0 (u)T̂0(u)

}
, (49)

where

T0(u) = RL,0(u − ξL) . . .R1,0(u − ξ1) , (50)

T̂0(u) = R1,0(u + ξ1 − η) . . .RL,0(u + ξL − η) , (51)

and where ξj are arbitrary inhomogeneities. The 2 × 2 matrices K±
0 (u) are boundary operators 

acting on the auxiliary space h0, which in this case read K±(u) = K(u ± η/2, ξ±, κ±, τ±), with

K(u, ξ, κ, τ ) =
(

k11(u) k12(u)

k21(u) k22(u)

)
=
(

sinh (ξ + u) κeτ sinh (2u)

κe−τ sinh (2u) sinh(ξ − u)

)
. (52)

Here ξ , κ and τ are arbitrary parameters. The K-matrix has to satisfy the so-called reflection (or 
boundary Yang–Baxter) equations

R1,2(u − w)K1(u)R1,2(u + w)K2(w) =
K2(w)R1,2(u + w)K1(u)R1,2(u − w) , (53)

which guarantee the commutativity of the two-row transfer matrices (49).
We have now all the elements to evaluate the partition function (43) from the Trotter decom-

position (44). In the particular case of the XXZ Heisenberg chain, one can write [123,124](
1 − w

H
)N ∼ [τ(w∗/2N)τ(η − w∗/2N)

]N
, (54)
N



376 L. Piroli et al. / Nuclear Physics B 925 (2017) 362–402
Fig. 3. Pictorial representation of the quench dynamics from an integrable state, after discretization of the Euclidean 
time direction. Parallel rows indicate the action of product of transfer matrices, which implement the unit-step along the 
Euclidean time direction.

where τ(λ) is the usual periodic transfer matrix and w∗ = (w sinhη)/2. Eqs. (44) and (54) can 
be interpreted as follows: the continuous time evolution can be approximated by a discrete one 
where the elementary time step is obtained from the application of a two-row transfer matrix. In 
order to parallel the discussion of Sec. 2.1, we consider Euclidean time.

From the Trotter–Suzuki decomposition (44) and (54) it is evident that the computation of 
(43) reduces to a classical partition function in two dimensions. This is illustrated in Fig. 3, 
where we made use of the graphical notation introduced in Sec. 3.2. From Fig. 3 the analogy 
with the field theory case displayed in Fig. 1 becomes evident. Indeed, in the two-dimensional 
lattice the Euclidean time direction can now be chosen parallel to the boundaries, as shown in 
Fig. 4. Accordingly, the partition function can be thought of as generated by iterative application 
of an open transfer matrix in the rotated channel, which implements the discrete time evolution.

The question now is: for which initial states the open transfer matrix generating the time 
evolution in the rotated channel is integrable? (cf. Fig. 4). The answer to this question can be 
found as follows. By working out the algebraic steps encoded in Figs. 3 and 4 (see Ref. [60]), 
the computation of (43) reduces to the problem of finding the leading eigenvalue of the operator

T (u) ∼ 1,2〈ψ0|T QTM
1 (u) ⊗ T

QTM
2 (−u)|ψ0〉1,2 , (55)

in u = 0. Here we have defined

T
QTM
j (u) = R2N,j (u − w∗/2N)R2N−1,j (u + w∗/2N − η)

· · · R2,j (u − w∗/2N)R1,j (u + w∗/2N − η) . (56)

A pictorial representation of the operator (55) is given as follows:

T (u) ∼

Then, we find that the initial state is related to integrable boundaries if T (u) is proportional 
to an appropriate integrable open transfer matrix τB(u). Going further, one can easily infer that 
this can happen only if the initial state is written in terms of the matrix elements of K(u) in 
Eq. (52). Indeed, following the steps sketched above (and reported in full detail in Ref. [60]), 
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one can explicitly write down a parametrization of the family of initial states related to integrable 
boundaries. For example, in the XXZ spin-1/2 chain, this reads

|ψ0(ξ, κ, τ )〉 = −k12(−η/2)|1,1〉 + k11(−η/2)|1,2〉
− k22(−η/2)|2,1〉 + k21(−η/2)|2,2〉 , (57)

where the functions kij (u) are defined in (52). Explicitly

|ψ0(ξ, κ, τ )〉 = −κeτ sinhη|1,1〉 + sinh(ξ − η/2)|1,2〉
− sinh(ξ + η/2)|2,1〉 − κe−τ sinhη|2,2〉 . (58)

Eq. (58) is the final result of this construction. Namely, we have identified a family of initial 
states which play the role of the boundary states in QFT, cf. Sec. 2.1. In the following, we will 
sometimes refer to them as lattice boundary states. Once again, the derivation presented in this 
section is completely general, provided that the R-matrix satisfies the crossing relation (47) for 
an appropriate matrix V . Repeating the steps above, one can write down an expression for the 
boundary states in a generic model, which reads, up to a global numerical factor,

|ψ〉1,2 =
d∑

i,j=1

[K(−η/2)V ]i,j |i〉1 ⊗ |j〉2 , (59)

where we employed the notation (16) for the basis vectors of the local Hilbert spaces hj . Here 
[K(−η/2)V ]i,j are the matrix elements of the product K(−η/2)V , while d is the dimension of 
the spaces hj . It is straightforward to check that (59) reduces to (57) for the spin-1/2 chain (where 
V = σy ), while an explicit expression for the spin-1 case will be provided in the following.

In the next section we will prove that boundary states are integrable according to our defini-
tion, as they satisfy (20). Incidentally, we note that in the special case of the spin-1/2 chain any 
two-site state can be parametrized as in (58) (where one also allows for the parameters to go to 
infinity). We will see that this is not usually the case for arbitrary models, where only a subset of 
two-site product states are integrable.

4.2. Integrability from reflection equations

In the previous section we have seen that a two-site product state (48) is related to integrable 
boundaries in the rotated channel if its building block |ψ0〉 is written in terms of the elements 
of the reflection matrix K(u), see Eq. (57). In this section we show that for these states the 
condition (20) follows from general properties of integrability. As a consequence, we establish a 
direct connection between integrable boundaries in the rotated picture and integrability in terms 
of annihilation by bulk conserved charges. In turn, this unveils a direct connection with the pair 
structure discussed in Sec. 3.3.

For the sake of clarity we once again detail the case of the XXZ spin-1/2 chain. However, it 
will be clear from our discussion that our treatment is in fact much more general, and it holds 
straightforwardly in all the cases where the R-matrix satisfies the crossing relation (47) (see, for 
instance, Sec. 6.3 where the case of spin-s chains is worked out).

Consider the initial state |	0〉 defined in (48), where the building block |ψ0〉 is related to 
integrable boundaries as in (57). We will now prove that this state satisfies the stronger condi-
tion (29), from which (20) follows directly. We begin by defining the parameter-dependent state

|�0(u)〉 = |φ0(u)〉1,2 ⊗ . . . ⊗ |φ0(u)〉L−1,L , (60)
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Fig. 4. Pictorial representation of the quench from an integrable state in the rotated channel. By choosing the Euclidean 
time direction along the boundary, in analogy with Fig. 1, the initial state is interpreted as a boundary in space. The 
Euclidean time evolution can be thought of as generated by an open transfer matrix in which the reflection matrix is 
specified by the initial state. For particular choices of the latter the open transfer matrix becomes integrable.

Fig. 5. Pictorial representation of the reflection equations (62).The orientation of the arrows reflects the fact that (62) is 
written in terms of boundary states, rather than boundary K-matrices.

where

|φ0(u)〉 = −k12(u)|1,1〉 + k11(u)|1,2〉 − k22(u)|2,1〉 + k21(u)|2,2〉 . (61)

From the above definition it is clear that |�0(−η/2)〉 = |	0〉. Furthermore, it follows from the 
reflection equations (53) that

Ř3,4(v − u)Ř2,3(−u − v)|φ0(−η/2 + u)〉1,2 ⊗ |φ0(−η/2 + v)〉3,4

= Ř1,2(v − u)Ř2,3(−u − v)|φ0(−η/2 + v)〉1,2 ⊗ |φ0(−η/2 + u)〉3,4 , (62)

where Ř1,2(u) = P1,2R1,2(u) = R1,2(u)P1,2, while P1,2 is the permutation operator

P1,2|v〉1 ⊗ |w〉2 = |w〉1 ⊗ |v〉2 . (63)

The validity of Eq. (62) can be established by checking each component and making use of (47)
and (53). This is detailed for completeness in Appendix C.

Eq. (62) is a crucial relation, which is pictorially represented in Fig. 5. Even though we are 
now focusing on the spin-1/2 chain, it is in fact quite general: it is simply a rewriting of the 
boundary reflection equations in terms of states, rather than boundary K-matrices. As one should 
expect, for a generic model the state (61) will be replaced by a different one, related to the 



L. Piroli et al. / Nuclear Physics B 925 (2017) 362–402 379
Fig. 6. Graphical derivation of Eq. (64). The picture represents the subsequent application of the reflection equations (62).

corresponding K-matrix. An explicit example will be given in Sec. 6.3 for the case of higher 
spin chains.

Consider now a chain of length L with two auxiliary spaces h0 and hL+1, where L is an even 
number. From repeated use of Eq. (62), as pictorially represented in Fig. 6, one can prove

ŘL+1,L(v − u)ŘL,L−1(−v − u) . . . Ř3,2(v − u)Ř2,1(−v − u)|φ(u − η/2)〉0,1

⊗ |φ(v − η/2)〉2,3 ⊗ . . . ⊗ |φ(v − η/2)〉L,L+1

= Ř0,1(v − u)Ř1,2(−v − u) . . . ŘL−2,L−1(v − u)ŘL−1,L(−v − u)|φ(−η/2 + v)〉0,1

⊗ . . . ⊗ |φ(−η/2 + v)〉L−2,L−1 ⊗ |φ(−η/2 + u)〉L,L+1 . (64)

Setting v = 0 we get

ŘL+1,L(−u) . . . Ř2,1(−u)|φ(−η/2 + u)〉0,1 ⊗ |φ(−η/2)〉2,3 ⊗ . . . ⊗ |φ(−η/2)〉L,L+1

= Ř0,1(−u) . . . ŘL−1,L(−u)|φ(−η/2)〉0,1 ⊗ . . . ⊗ |φ(−η/2)〉L−2,L−1

⊗ |φ(−η/2 + u)〉L,L+1 . (65)

From the definition of Ři,j , the l.h.s. of (65) can be rewritten as

RL+1,L(−u)RL+1,L−1(−u) . . .RL+1,1(−u)PL+1,L . . . P1,2|φ(−η/2 + u)〉0,1

⊗ |φ(−η/2)〉2,3 ⊗ . . . ⊗ |φ(−η/2)〉L,L+1

= RL+1,L(−u)RL+1,L−1(−u) . . .RL+1,1(−u)PL+1,L . . . P1,2P0,1|W 〉0,1 ⊗ |ψ0〉⊗L/2 ,

(66)

where we introduced |W 〉i,j = Pi,j |φ(−η/2 + u)〉i,j . Analogously, the r.h.s. of (65) yields

R0,1(−u)R0,2(−u) . . .R0,L(−u)P0,1P1,2 . . . PL,L+1|ψ0〉⊗L/2 ⊗ |W 〉L,L+1 . (67)
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Fig. 7. Pictorial representation of the relation (29) for a generic integrable initial state |	0〉. It is proven in the main text 
that for states generated from boundary integrability this relation is an immediate consequence of (64), which is depicted 
in Fig. 6.

We now make use of the identities

PL+1,L . . . P1,2P0,1 = U−1 , (68)

P0,1P1,2 . . . PL,L+1 = U , (69)

where U is the shift operator (19). Plugging these into (66) and (67) we finally obtain

RL+1,L(−u)RL+1,L−1(−u) . . .RL+1,1(−u)|ψ0〉⊗L/2 ⊗ |W 〉0,L+1

= R0,1(−u)R0,2(−u) . . .R0,L(−u)|ψ0〉⊗L/2 ⊗ |W 〉0,L+1 . (70)

From this equation it is now easy to conclude the proof, by writing down its components. In 
particular, it is shown in Appendix C that (70) implies

tr0
{
RL,0(−u)RL−1,0(−u) . . .R1,0(−u)

} |ψ0〉⊗L/2

= tr0
{
R0,1(−u)R0,2(−u) . . .R0,L(−u)

} |ψ0〉⊗L/2 , (71)

which is exactly (29), a pictorial representation of which is given on Fig. 7.
The proof presented in this section has far reaching consequences. Most prominently, it di-

rectly relates boundary states on the lattice with the pair structure frequently encountered in the 
recent literature of quantum quenches. In particular, this also provides us with a direct relation 
between the presence of latter and the validity of the so-called Y -system. Since this is a rather 
technical point, we consign its discussion to Appendix D.

Our proof relied on a direct application of the boundary Yang–Baxter relations, which leads 
to the annihilation by the odd charges. However, it is possible to formulate an alternative proof 
which derives the eigenvalue condition (37). The idea is to introduce the Quantum Transfer 
Matrices for the inhomogeneous states (60), and to use their commutativity and certain simple 
properties at degenerate points. For the sake of brevity we omit the details of this second proof.

5. Constructing integrable matrix product states

In this section we address a systematic construction of integrable MPSs of arbitrary bond 
dimension. The main idea is to obtain new integrable MPSs starting from the known boundary 
two-site product states. Once again, for the sake of clarity we focus on the XXZ spin-1/2 chain, 
but it will be apparent that our construction is in fact more general.

As a first example consider the state

|χ(u1, . . . un)〉 = τ(u1) . . . τ (un)|	0〉 , (72)

where |	0〉 is a boundary two-site product state of the form (48) and τ(u) is the fundamental 
transfer matrix (9). By the proof presented in the previous section |	0〉 is integrable. Then, 
it follows straightforwardly from the commutativity of the transfer matrices that (72) is also 
integrable, as it is annihilated by all the odd charges.



L. Piroli et al. / Nuclear Physics B 925 (2017) 362–402 381
This simple observation is at the basis of our construction. More generally, further integrable 
states can be constructed using the so-called fused (higher-spin) transfer matrices {τ (d)(u)}∞d=1, 
where we used the convention τ (1)(u) = τ(u). These operators have a similar matrix product 
form and can be written as

τ (d)(u) = tr0

[
L(1,d)

L,0 (u) . . .L(1,d)
1,0 (u)

]
. (73)

Here L(1,d)
j,0 (u) are the fused Lax operators, which are matrices acting on the tensor product of 

the local spaces hj �C2 and the auxiliary space h0 �Cd+1. The trace is taken over h(d)
0 , which 

has dimension d + 1. In the isotropic case,  = 1, the expression for L(1,d)
1,2 (u) is very simple 

and reads [103]

L(1,d)
1,2 (u) = u1 +

3∑
α=1

σα
1 ⊗ Sα

2 , (74)

where 1 is the identity operator on the space h1 ⊗ h2, σα are the Pauli matrices while Sα are 
the operators corresponding to the standard (d + 1)-dimensional representation of SU(2). In 
the anisotropic case,  �= 1, Eq. (74) has to be replaced by an appropriate deformed expres-
sion, involving the generators of the quantum group Uq(sl2) [125]. The operators (73) are called 
fused transfer matrices, as they can be obtained from (9) by an appropriate procedure named 
fusion [126].

Importantly, all the transfer matrices (73) commute,[
τ (d1)(u), τ (d2)(v)

]
= 0 , (75)

so that we can immediately construct an infinite family of integrable MPSs. Consider

|χd1,...,dn(u1, . . . un)〉 = τ (d1)(u1) . . . τ (dn)(un)|	0〉 , (76)

where |	0〉 is an arbitrary boundary two-site product state of the form (48). It follows immedi-
ately, that (76) is integrable, as

Q2r+1|χd1,...,dn(u1, . . . uj )〉 = τ (d1)(u1) . . . τ (dj )(uj )Q2r+1|	0〉 = 0 , (77)

where we used that the fused transfer matrices commute with the local charges (which follows 
from (22) and (75)). The state (76) can be cast into the canonical MPS form

|χd1,...,dn(u1, . . . un)〉 =
D∑

i1,...,iL=1

trHD

[
A(i1)(u1, . . . un)B

(i2)(u1, . . . un)A
(i3)(u1, . . . un)

B(i4)(u1, . . . un) . . .A(iL−1)(u1, . . . un)B
(iL)(u1, . . . un)

]
|i1, . . . , iL〉 , (78)

where HD is an auxiliary space of dimension D = ∏n
j=1(dj + 1). Here A

(i)
j (u1, . . . un), 

B
(i)
j (u1, . . . un) are such that the product A(i)

j (u1, . . . un)B
(i)
j (u1, . . . un) is a D × D dimensional 

matrix and their explicit form can be derived from the knowledge of the operators L(1,dj )(uj ). 
Note that |χ〉 in (78) is in general two-site invariant, analogously to the state |	0〉.

We note that the MPSs (76) could be interpreted as lattice versions of the “smeared boundary 
states” introduced in the study of quantum quenches in the context of conformal field theories 
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Fig. 8. Pictorial representation of the quench from an integrable MPS in the rotated channel. By choosing the Euclidean 
time direction along the boundary, in analogy with Fig. 1, the initial state is interpreted as a boundary in space. The 
Euclidean time evolution can then be thought of as generated by an open transfer matrix in which the reflection matrix is 
specified by the initial state. If the latter is of the form (76), the corresponding open transfer matrix is integrable.

[17,63,64]. Importantly, the MPSs (76) can also be related to integrable boundaries in the rotated 
channel. Consider for example the state

|χd(w)〉 = τ (d)(w)|	0〉 , (79)

where |	0〉 is defined in (48), with its building block |ψ0〉 satisfying (57). Then, in analogy with 
(33) one has the following pictorial representation

|χd〉 = (80)

Here we indicated the auxiliary row (corresponding to a Hilbert space of dimension d + 1) with 
a thick red line, to distinguish it from the 2-dimensional representation appearing in the usual 
transfer matrix (9). One can consequently repeat the steps outlined in Sec. 4: in this case the 
time evolution in the rotated channel is represented pictorially in Fig. 8. We see that application 
of τ (d)(w) only results in the insertion of a line in the two-dimensional partition function with 
respect to the situation displayed in Fig. 4. In particular, using the properties of fused transfer 
matrices one can see that the open transfer matrix appearing in this construction is still inte-
grable. Finally, it is clear that the same happens by applying a finite number of transfer matrices 
τ (dj )(wj ), as this amounts to the insertion of a finite number of legs in the corresponding open 
transfer matrix.

From (76), we see that the set of integrable states is infinite, and their construction involves 
a large number of free parameters. Even fixing the number n of transfer matrices, their bond 
dimensions dj and spectral parameters can still be chosen arbitrarily. It is an important question 
whether this family exhausts all possibilities of integrable MPSs with finite bond dimension. 
While we can not give a definite answer to this question, it is remarkable that all known cases 
indeed fit into this framework, including the MPSs studied in [35,39]. This will be detailed in the 
following section.
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An alternative way to understand our construction is to interpret the MPSs as non-scalar solu-
tions to the boundary Yang–Baxter equations. Then the task of finding all integrable MPSs can 
be split into two parts: determining whether the boundary Yang–Baxter equations are necessary 
for the integrability condition to hold, and finding all finite dimensional solutions in terms of 
local Lax operators acting on local K-matrices. We leave this problem for future research.

To conclude this section we note that the overlaps between integrable MPSs of the form (76)
and the eigenstates of the Hamiltonian are immediately obtained if the overlaps with the state 
|	0〉 are known. This follows from the fact that the transfer matrices act diagonally on the Bethe 
states and the eigenvalues are known from the algebraic Bethe ansatz, see for example [127] for 
explicit formulas. Employing the same notation of Sec. 3.3, we have

〈{λj }|
k∏

r=1

τ (dr )(wr)|	0〉 =
[

k∏
r=1

τ (dr )(wr |{λj })
]

〈{λj }|	0〉 , (81)

where τ (dr )(wr |{λj }) is the eigenvalue of τ (dr )(wr) corresponding to the eigenstate |{λj }〉.

6. Integrable quenches: analysis of specific models

In this last section we review several recent studies of quantum quenches in different models, 
where closed-form analytical results could be obtained. We show that in all of these cases the 
initial states are integrable according to our definition. These include the MPSs constructed in 
the works [35,39], which are shown to fit into the framework of the previous sections. We also 
present new results by producing concrete formulas for the integrable two-site states of the spin-1 
XXZ chain.

6.1. The XXZ spin-1/2 chain

We begin our analysis with the prototypical case of the XXZ spin-1/2 chain (45), where 
quench problems have been extensively investigated in the past few years [46,47,59,60,80,86,89,
92,94,114,128–131]. In particular, a large number of analytical results have been obtained. Exact 
overlap formulas between assigned initial states and the eigenstates of (45) have been derived for 
special classes of two-site states [26–28,32–34] and, in the isotropic case, for more general matrix 
product states[35,39,40]. Closed-form results for the long-time limit of local observables were 
derived in [46,47], by means of the Quench Action method [44,45], while exact computations for 
the Loschmidt echo have been reported in [59,60] for arbitrary two-site product states. Finally, 
an exact result for the time evolution of entanglement entropies has been obtained in [132].

From the previous section, it is now clear that all two-site states considered in these works are 
integrable, as they are boundary states. These include, as a special case, the Néel and the so-called 
dimer states studied in [46,47], but also the tilted Néel and ferromagnet states considered in [94]. 
Note that even though these states are very simple, the computation of their overlaps is extremely 
difficult: in fact, the latter are still unknown in the case of tilted Néel and ferromagnet states. 
Nevertheless, it follows from our derivation that for generic  the pair structure holds for all 
local two-site states.

Among the most interesting recent developments was the discovery of exact overlap formulas 
for MPSs in the isotropic case  = 1 [35,39,40]. The overlaps were shown to have the same 
structure as in the case of the Néel state: they included the same Gaudin-like determinants, and 
only the pre-factors were different. Here we show how these MPSs can be embedded into our 
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framework of integrable initial states. In particular, we argue that they can be obtained by the 
action of (fundamental or fused) transfer matrices on simple two-site states; in the first few ex-
amples we explicitly calculate the corresponding dimensions and spectral parameters.

In [39] the following family of states was considered

|χ(k)
0 〉 = tr

[
L∏

l=1

(
S(k)

x |1〉l + S(k)
y |2〉l
)]

=
d∑

i1,...,iL=1

tr
[
Z(i1) . . .Z(iL)

]
|i1, . . . , iL〉 , (82)

where

Z(1) = S(k)
x , (83)

Z(2) = S(k)
y . (84)

Here S(k)
α are the (k + 1) × (k + 1) matrices corresponding to the standard representation of 

SU(2) generators, and the trace in (82) is over the associated (k + 1)-dimensional space.
In order to test integrability of these MPSs we numerically constructed the corresponding 

QTMs (35) in the first few cases. By evaluating the eigenvalue condition (37) we confirmed 
integrability of these states. In fact, this also directly follows from the corresponding overlap 
formulas which were computed in [39], explicitly displaying the pair structure.

The question of how these states fit into our framework of boundary integrability is not imme-
diately clear from their MPS representation. Below we show by explicit calculations that the two 
simplest vectors |χ(1)

0 〉 and |χ(2)
0 〉 are the translationally invariant components of simple two-site 

product states; we believe that this is a new result. Going further, the structure of the next few 
states could be investigated using a recursion relation derived in [39], which expresses |χ(k)

0 〉 in 

terms of |χ(k−2)
0 〉 and |χ(k−4)

0 〉. This relation explicitly involves fundamental transfer matrices of 
the form (9) with an auxiliary space of dimension 2 and is such that higher MPSs are expressed 
as sums of lower ones. Our goal is to relate these to integrable boundaries, namely we intend to 
express higher MPSs in the product form (76). This could be achieved by a careful analysis of 
the recursion formulas of [39] and by the so-called T -system, a set of functional relations for dif-
ferent fused transfer matrices [127]. However, the full implementation of this program is beyond 
the scope of this paper, and we content ourselves with deriving explicit formulas for |χ(k)

0 〉 for 
the first few values of k.

The model is invariant under the global action of SU(2), so we are allowed to perform global 
rotations of the physical space (if necessary, this rotation can easily be restored at the end of our 
calculations). We consider the operator

W = W1 ⊗ . . . ⊗ WL , (85)

where Wj is a local rotation at the site j , described by the matrix

W = eiπ/4

√
2

(
1 i

1 −i

)
. (86)

After applying the operator (85), the state (82) is rewritten, up to an irrelevant global numerical 
phase, as
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|χ(k)
0 〉 =

d∑
i1,...,iL=1

tr
[
Z̃(i1) . . . Z̃(iL)

]
|i1, . . . , iL〉 , (87)

where now

Z̃(1) = S
(k)
+ ≡ 1√

2

[
S(k)

x + iS(k)
y

]
, (88)

Z̃(2) = S
(k)
− ≡ 1√

2

[
S(k)

x − iS(k)
y

]
. (89)

For k = 1, it is immediate to simplify this expression. In this case (S±)2 = 0, and we get 
immediately

|χ(1)
0 〉 ∝ |N〉 + U |N〉 , (90)

where U is the shift operator (19), while |N〉 is the Néel state,

|N〉 = |1〉1 ⊗ |2〉2 ⊗ . . . ⊗ |1〉L−1 ⊗ |2〉L . (91)

We see that, for k = 1, (87) is nothing but the zero-momentum component of the Néel state. 
Restoring the rotation by (85) we see that in this simplest case the MPS (82) is the zero-
momentum component of the tilted Néel state in the y-direction:

|χ(1)
0 〉 ∝ (1 + U)|Ny〉, |Ny〉 ≡

[
1

2
(|1,1〉 + |2,2〉 + i|1,2〉 − i|2,1〉)

]⊗L/2

. (92)

A decomposition similar to (90) can be performed for generic k, using standard techniques 
in the literature of MPSs. In particular, one can prove that (87) is always the zero-momentum 
component of a 2-periodic MPS. The proof of this statement is reported in Appendix E, where 
we derive the following decomposition

|χ(k)
0 〉 = |�(k)

0 〉 + U |�(k)
0 〉 , (93)

where

|�(k)
0 〉 =

d∑
i1,...,iL=1

tr
{
A(i1)B(i2)A(i3)B(i4) . . .A(iN−1)B(iN )

}
|i1, . . . , iN 〉 . (94)

Here we have defined

A(1) =P1S
+P2 , (95)

A(2) =P1S
−P2 , (96)

B(1) =P2S
+P1 , (97)

B(2) =P2S
−P1 , (98)

where we introduced the projectors P1 and P2, which are diagonal matrices with elements

(P1)j,j = 1 + (−1)j

2
, (P2)j,j = 1 − (−1)j

2
. (99)

One can now check for each value of k that |�(k)〉 is of the form (76) for an appropriate choice 
of the two-site state |ψ0〉. We have done this explicitly up to k = 5. In particular, we obtained
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|�(2)
0 〉 ∝ (|1,2〉 + |2,1〉)⊗L/2 , (100)

|�(3)
0 〉 ∝ τ (1)(1)U |N〉 , (101)

|�(4)
0 〉 ∝ τ (1)(3/2) (|1,2〉 + |2,1〉)⊗L/2 , (102)

|�(5)
0 〉 ∝ τ (2)(3/2)U |N〉 , (103)

where |N〉 is the Néel state (91) while U is the shift operator. After rotating back with the inverse 
of (85), we obtain the following list for the original MPSs:

|χ(2)
0 〉 ∝ (1 + U) (|1,1〉 + |2,2〉)⊗L/2 , (104)

|χ(3)
0 〉 ∝ (1 + U)τ (1)(1)|Ny〉 , (105)

|χ(4)
0 〉 ∝ (1 + U)τ (1)(3/2) (|1,1〉 + |2,2〉)⊗L/2 , (106)

|χ(5)
0 〉 ∝ (1 + U)τ (2)(3/2)|Ny〉 . (107)

This representation is a new result of our work. We conjecture that all |χ(k)
0 〉 can be written in a 

similar product form using higher spin fused transfer matrices. The proof of this conjecture and 
the derivation of explicit formulas is beyond the scope of this work.

As a final remark on the spin-1/2 XXZ model, we note that additional integrable MPSs can 
be constructed for special values of the anisotropy , in the regime  < 1. These correspond to 
the so-called “root of unity points”, where additional representations of the underlying quantum 
group, and hence of transfer matrices, exist [125]. MPSs obtained using these additional transfer 
matrices can be incorporated into our discussion, because they still commute with the transfer 
matrix (9).

6.2. The XX model

At the non-interacting point  = 0 the XXZ Hamiltonian (45) deserves special attention. In 
this case, one recovers the so-called XX chain, which has served as a prototypical benchmark 
for countless studies on non-equilibrium dynamics in isolated many-body systems. In particular, 
analytic results for global quantum quenches have been presented in [37,128,129], where the 
dynamics arising from the Néel state was mainly addressed. This model presents an important 
example where integrable states do not display the pair structure discussed in Sec 3.3. In partic-
ular, the special structure of conserved charges lead to a different constraint for the rapidities of 
the eigenstates annihilated by the odd ones. This is briefly discussed in the following, while we 
refer to [37] for a systematic treatment of quantum quenches from the Néel state.

We recall that the XX model can be studied by introducing fermionic operators through the 
Jordan–Wigner transformation

c
†
j = eiπ

∑j−1
k=1 σ+

k σ−
k σ+

j cj = e−iπ
∑j−1

k=1 σ+
k σ−

k σ−
j ,

which satisfy the relations:

{cj , ck} = {c†
j , c

†
k} = 0, {c†

j , ck} = δj,k . (108)

The Hamiltonian is then written as H =∑p εpc̃
†
pc̃p , where

c̃†
p = 1√

L

L∑
j=1

eipj c†
p , c̃p = 1√

L

L∑
j=1

e−ipj cj ,

and εp = cos(p).
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Alternatively, the model can be studied by considering the limit  → 0 (namely, η → iπ/2) 
of the Bethe ansatz solution of (45) for generic . In the latter language the quasi-particles are 
associated to the rapidities λ, which are related to the lattice momentum through

eip = sinh(λ + iπ/4)

sinh(λ − iπ/4)
. (109)

It follows from the Bethe equations that the Bethe rapidities are either real or they have imaginary 
part equal to π/2, and the corresponding one-particle energy eigenvalues are

e(λ) = − 1

cosh(2λ)
. (110)

As in the case of generic , a set of conserved charges Qj can be generated via the trans-
fer matrix construction explained in Sec. 2.2. Alternatively, a set of charges can be constructed 
using the fermionic operators, such that their commutativity follows from (108). The relation 
between the two sets of charges is non-trivial and has been studied in detail in [104], see also 
[78,133]. From the fermionic point of view, one possible choice for the charges is simply the set 
of occupation numbers ñk for the Fourier modes. These operators are inherently non-local, but 
they form a complete commuting family. An alternative choice is to consider the local opera-
tors

Ij =
∑

k

eijkñk =
L∑

l=1

c
†
l cl+j−1 ,

and the Hermitian combinations

I+
j = Ij + I−j , I−

j = (Ij − I−j )

i
. (111)

It follows directly from the commutation relations (108) that every Ij is conserved. The charges 
I+
j are even and the I−

j are odd under space reflection.
On the other hand, it was shown in [104] that in the XX model all charges can be expressed 

using the operators

eαβ
n =

L∑
j=1

e
αβ
n,j , e

αβ
n,j = σα

j σ z
j+1 . . . σ z

j+n−2σ
β
j+n−1 . (112)

In particular, there are two families of charges defined as

H+
n =
{

exx
n + e

yy
n , n even ,

e
xy
n − e

yx
n , n odd ,

(113)

and

H−
n =
{

e
xy
n − e

yx
n , n even ,

exx
n + e

yy
n , n odd .

(114)

The canonical charges Qj obtained from the transfer matrix are linear combinations of the first 
family. Explicit formulas can be found in [104]: in the simplest example Q3 = −H+

3 , for which 
the one-particle eigenvalues read

q3(λ) = 2 sinh(2λ)

2 . (115)

cosh (2λ)
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Using the Jordan–Wigner transformation it can be seen that the families {H±
n } and {I±

n } contain 
the same operators, but with alternating identification:

H+
n =
{

2I+
n , n even,

−2I−
n , n odd,

H−
n =
{−2I−

n , n even,

2I+
n , n odd.

(116)

In the present case, integrability of the initial state is equivalent to annihilation by the charges 
H+

n for all odd n. In the following, we show that this does not imply the pair structure.
Consider the rapidity transformation

λ → iπ/2 − λ . (117)

It is straightforward to verify that this implies

e(λ) → −e(λ) , q3(λ) → q3(λ) . (118)

Analogously, one can see that the eigenvalues of all odd charges are invariant under (117). Taking 
an arbitrary eigenstate, this transformation can be performed for every rapidity individually, so 
that a large number of states can be generated which share the same eigenvalues for all odd Qj . 
Eigenstates corresponding to sets of rapidities (41) are obviously annihilated by the odd charges, 
but so do all the other states obtained after repeated application of (117). The rapidities of these 
eigenstates do not uniquely display pairs of opposite rapidities. Since integrable states will in 
general overlap with all eigenstates annihilated by odd conserved charges, it follows from this 
discussion that they will not posses the pair structure. This is explicitly shown in the case of the 
Néel state in [37], to which we refer for further detail.

As a final remark, we note that the XX chain is closely related to the q → ∞ limit of the 
q-boson model studied in [134,135]. However, the two models are connected by a highly non-
local transformation, which alters the locality of the charges. A detailed analysis of the latter for 
the q-boson model is out of the scope of the present paper.

6.3. XXZ chains with higher spin

Analytic results for quantum quenches in higher-spin chains were presented in [94]. In par-
ticular, closed-form characterizations of post-quench steady states were obtained for the spin-1
chain known as the Zamolodchikov–Fateev model [136]. The Hamiltonian reads

H
(1)
ZF =

L∑
j=1

{[
Sx

j Sx
j+1 + S

y
j S

y

j+1 + cosh (2η)Sz
jS

z
j+1

]

+ 2
[
(Sx

j )2 + (S
y
j )2 + cosh (2η) (Sz

j )
2
]

−
∑
a,b

Aab(η)Sa
j Sb

j Sa
j+1S

b
j+1

}
, (119)

where the indices a, b in the second sum take the values x, y, z and where periodic boundary 
conditions are assumed, Sα

N+1 = Sα
1 . The coefficients Aab are defined by Aab(η) = Aba(η) and

Axx = Ayy = Axy = 1 , (120)

Azz = cosh (2η) , (121)

Axz = Ayz = 2 coshη − 1 , (122)
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while η plays the role of the anisotropy parameter along the z-direction. Finally the operators Sα
j

are given by the standard three-dimensional representation of the SU(2) generators

Sx = 1√
2

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ , Sy = 1√

2

⎛
⎝ 0 −i 0

i 0 −i

0 i 0

⎞
⎠ , Sz =

⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ . (123)

Two particular initial states were considered in [94], namely

|	1〉 = |1,3〉1,2 ⊗ . . . ⊗ |1,3〉L−1,L , (124)

|	2〉 = |2,2〉1,2 ⊗ . . . ⊗ |2,2〉L−1,L , (125)

where |j〉, j = 1, 2, 3 represent the basis vectors of the local Hilbert space h � C
3. For these 

states analytical formulas were obtained by means of a Y -system, cf. Appendix D. Not surpris-
ingly, one can show that these states are integrable according to our definition. In particular, they 
belong to the class of boundary states, as we detail in the following.

The R-matrix corresponding to the Hamiltonian (119) reads [137]

R12(u) = 1

sinh(u + 2η)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2 a3

a4 a5 a6
a3 a2

a5 a7 a5
a2 a3

a6 a5 a4
a3 a2

a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (126)

where

a1 = sinh(u + 2η) , a2 = sinhu , (127)

a3 = sinh 2η , a4 = sinhu sinh(u − η)

sinh(u + η)
, (128)

a5 = sinh 2η sinhu

sinh(u + η)
, a6 = sinhη sinh 2η

sinh(u + η)
, (129)

a7 = a6 + sinhu . (130)

As usual, the normalization of the R-matrix is chosen such that the corresponding transfer matrix 
both satisfies the regularity condition (21) and has charges Qn with the correct even/odd behavior 
(14). One can verify that the R-matrix satisfies (47) with

V =
⎛
⎝ 0 0 1

0 −1 0
1 0 0

⎞
⎠ , (131)

and γ (u) = sinh(−u) sinh(−u + η)/(sinh(u + η) sinh(u + 2η)). As a consequence, one can par-
allel the derivation outlined in Sec. 4 and identify a class of lattice boundary states, analogously 
to (58). In order to do this, one also needs to introduce the K-matrix [137]

K(u) =
⎛
⎝ x1(u) y1(u) z(u)

ỹ1(u) x2(u) y2(u)

z̃(u) ỹ (u) x (u)

⎞
⎠ , (132)
2 3
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where

y1(u) = μ sinh
(
ζ − η

2
+ u
)

sinh 2u , (133)

y2(u) = μ sinh
(
ζ + η

2
− u
)

sinh 2u , (134)

z(u) = μ2 sinh (η − 2u)

2 coshη
sinh 2u , (135)

x1(u) = sinh
(η

2
+ ζ + u

)
sinh
(η

2
− ζ − u

)
+ μμ̃

sinh(η − 2u)

2 coshη
sinhη , (136)

x2(u) = sinh
(η

2
+ ζ − u

)
sinh
(η

2
− ζ − u

)
,

+ μμ̃
sinh(η − 2u)

2 coshη
sinh(η + 2u) , (137)

x3(u) = sinh
(η

2
+ ζ − u

)
sinh
(η

2
− ζ + u

)
+ μμ̃

sinh (η − 2u)

2 coshη
sinhη . (138)

Here ζ, μ, μ̃, are arbitrary constants, while functions ỹ1(u), ỹ2(u) and z̃(u) are defined analo-
gously with the substitution μ → μ̃.

The calculations sketched in Sec. 4 can be repeated straightforwardly for the spin-1 case. 
Indeed, since the R-matrix satisfies the crossing relation, the general formula (59) applies. Then, 
plugging in (59) the explicit expression for the gauge matrix (131) and the reflection matrix 
(132), one obtains the following class of boundary states

|	(μ, μ̃, ζ )〉 = |ψ(μ, μ̃, ζ )〉1,2 ⊗ . . . |ψ(μ, μ̃, ζ )〉L−1,L , (139)

where

|ψ(μ, μ̃, ζ )〉 = −μ2 sinh2(η)|1,1〉 + μ sinh(η) sinh(ζ − η)|1,2〉
+
[
μμ̃ sinh2(η) − sinh(ζ ) sinh(ζ − η)

]
|1,3〉 − μ sinh(η) sinh(ζ + η)|2,1〉

+ sinh(ζ − η) sinh(ζ + η)|2,2〉 − μ̃ sinh(η) sinh(ζ − η)|2,3〉
+
[
μμ̃ sinh2(η) − sinh(ζ ) sinh(ζ + η)

]
|3,1〉 + μ̃ sinh(η) sinh(ζ + η)|3,2〉

− μ̃2 sinh2(η)|3,3〉 . (140)

It is easy to check that the states (124) and (125) belong to this class. Then, from the proof 
of Sec. 4, which also applies for the spin-1 case, we immediately obtain that they satisfy the 
condition (20), and hence they are integrable. Note that the integrability of the class (139) can 
also be verified by constructing the Quantum Transfer Matrix (35), and numerically evaluating 
the corresponding eigenvalues in a neighborhood of u = 0.

Contrary to the spin-1/2 formula (61), it is not true that all two-site states can be parametrized 
as in (140). In other words, boundary states for the spin-1 model are only a subset of the two-
site states: one can explicitly check that for arbitrary choices of the latter (28) does not hold. 
This is actually true for all the spin-s generalizations of the XXZ Hamiltonian (45) with s ≥ 1. 
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These models can be obtained by the well-known fusion procedure [126], from which also the 
corresponding K-matrices can be built [138]. As the spin s increases, the dimension of the local 
Hilbert spaces hj will also increase. On the other hand, there are always just 3 free parameters of 
the fused K-matrices, and they are not enough to parametrize all the states in the tensor product 
hj ⊗ hj+1.

6.4. The SU(3)-invariant chain

Finally, we touch upon higher rank generalization of the SU(2) chain, and focus on the 
SU(3)-invariant Lai–Sutherland Hamiltonian [139]

HL =
L∑

j=1

[
Sj · Sj+1 + (Sj · Sj+1

)2]
. (141)

Here the local Hilbert space is hj � C3, while Sα
j are given once again by the standard three-

dimensional representation of the SU(2) generators (123). The analytical description of this 
model is significantly more involved as it requires a nested Bethe ansatz treatment [5]. Neverthe-
less, many elements of the algebraic construction discussed in section 2.2 are also valid in this 
case. The R-matrix of the model is

R1,2(λ) = λ

λ + i
+ i

λ + i
P1,2, (142)

where P1,2 is the permutation matrix (63). The transfer matrix can be simply obtained by (9).
Recently, a remarkable overlap formula was conjectured in [41] for a particular matrix product 

state, with a form which is reminiscent of the one in SU(2) chains. The state is

|	0〉 = tr0

⎡
⎣ L∏

j=1

(
σx

0 |1〉j + σ
y

0 |2〉j + σz
0 |3〉j
)⎤⎦

=
∑
{αj }

tr0
[
σα1σα2 . . . σ αL

] |eα1 , eα2, . . . , eαL
〉 , (143)

where the trace is over the auxiliary space h0 � C
2, and where σα

0 are Pauli matrices acting 
on h0. Note that the auxiliary space has a different dimension from the physical spaces hj �C

3. 
This state is translational invariant, and the integrability conditions can easily be tested. We 
constructed the corresponding QTM and verified the eigenvalue condition (37) numerically, 
demonstrating that the state (143) is indeed integrable. Note that this also follows from the 
conjectured form of the overlap with the Bethe states [41], from which the pair structure is 
evident.

An important question is whether this state can be understood in terms of integrable boundary 
conditions in the rotated channel. On the one hand, in the SU(3) case the study of integrable 
boundary transfer matrices is more complicated [140]. On the other hand, in the argument of 
Sec. 4.2 we explicitly used the crossing relation (47) of the R-matrix, which is no longer true for 
the SU(3) model [141]. Accordingly, care has to be taken to generalize those constructions to 
this case. We hope to return to these topics in a future work.
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7. Conclusions

In this work we have proposed a definition of integrable states for quantum quenches in lattice 
integrable systems, which is directly inspired by the classical work on boundary quantum field 
theory of Ghoshal and Zamolodchikov [65]. We have identified integrable states as those which 
are annihilated by all the odd local conserved charges of the Hamiltonian. We have proven that 
these include the states which can be related to integrable boundaries in an appropriate rotated 
channel, in loose analogy with QFT. Furthermore, we have shown that in all of the known cases 
where closed-form analytical results could be obtained, the initial state is integrable according to 
our definition.

In the prototypical case of XXZ spin-s chains we have shown that integrable states include 
two-site product states together with larger families of MPSs. In the spin-1/2 chain all two-site 
states are integrable, whereas for higher spin this is true only for a subset of them. We have 
characterized this subset in terms of the fused K-matrices.

One of the properties of integrable quenches seemed to be the pair structure for the overlaps, 
because this was observed in simple cases in the spin-1/2 XXZ chain and also the Lieb–Liniger 
model [28,29,34,46,47]. The pair structure has important consequences for the entropy of the 
steady state arising after a quantum quench [57,58,114], therefore it is important to clarify its 
relation with the integrability of the initial state. We have argued that the pair structure indeed 
follows from integrability for generic values of the coupling constants (and could actually be 
proven for the isotropic Heisenberg chain). Together with our proof of integrability this consti-
tutes a general confirmation of the pair structure for a wide variety of states, including already 
known cases and new states where the actual overlaps are not yet known. On the other hand, we 
have also discussed possible exceptions to the pair structure, such as the XX model detailed in 
Sec. 6.2. Nevertheless, the integrability condition (20) can be always introduced without modifi-
cations.

Remarkably, in almost all of the cases encountered, MPSs annihilated by the odd charges 
could be understood as boundary states in the rotated channel. It is an important open ques-
tion whether this family exhausts all integrable MPSs with finite bond dimensions. In the 
SU(3)-invariant model the MPS introduced in [41] and studied here in 6.4 is integrable ac-
cording to our definition, but its interpretation in terms of boundary integrability is not known 
yet. We hope to return to this question in future work.

As a final remark, we stress that our results should not be interpreted as a no-go theorem for 
obtaining exact results for non-integrable initial states. However, our work provides a unified 
point of view for the many exact results that appeared in the past years. Furthermore, if exact 
results for time evolution are to be derived (be it results for correlators or the Loschmidt echo or 
other quantities), one should first look at the integrable initial states, regardless of the model con-
sidered. The test of integrability is straightforward, therefore our framework gives an extremely 
useful starting point for the study of models where quantum quenches have not yet been inves-
tigated. An example is the case of SU(N)-invariant spin chains, where only a small number of 
results are currently available [41,55].
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Appendix A. Integrability condition for p-periodic states

In this appendix we show that the validity of (27) implies the annihilation of all odd conserved 
charges, namely (20). For simplicity, we assume that the initial state is two-site shift invariant 
with 〈	0|	0〉 = 1, as an analogous derivation holds in the general case.

First, it follows from (23) that one can write down the following formal expansion

G(u) = 〈	0| exp

[
2

∞∑
k=1

α2k

u2k

(2k)!Q2k+1

]
|	0〉 . (A.1)

Note that here we used U2|	0〉 = |	0〉 and that for parity invariant states G(u) = G̃(u). At the 
first orders in u2 we have

G(u) = 1 + 2
u2

2
α2〈	0|Q3|	0〉 + 4

u4

4
α2

2〈	0|Q3Q3|	0〉 + 2
u4

4! α4〈	0|Q5|	0〉 + . . .

(A.2)

If G(u) ≡ 1 then we have immediately that 〈	0|Q3|	0〉 = 0. However, at the next order we have 
a sum of two terms. If the state is parity invariant, then 〈	0|Q5|	0〉 = 0 and we also have

〈	0|Q3Q3|	0〉 = 0 . (A.3)

If the state is not parity invariant, then we use the information coming from G̃(u). Using that the 
latter is also identically 1, we get the vanishing of the two terms separately.

If (A.3) holds then Q3|	0〉 = 0, namely this means that Q3 can be neglected from the Taylor 
series completely. Going to the next order, we get the vanishing of the mean value of Q7, and 
similarly we can prove Q5|	0〉 = 0. Proceeding iteratively, the annihilation by all odd charges is 
proven.

Appendix B. Numerical study of the quantum transfer matrix for integrable and 
non-integrable MPSs

In this appendix we numerically study the matrix T̃ (u) introduced in (35) and compute its 
eigenvalues for both an integrable and a non-integrable case.

For the integrable case, we consider the zero-momentum dimer state defined as

|	0〉 ∼ (1 + U) ×
[
⊗L/2

j=1
|1,2〉 − |2,1〉√

2

]
. (B.1)

It is easy to check that this state is generated by a translationally invariant MPS of the form (31), 
with

A(1) =
⎛
⎝ 0 1 0

0 0 0
1/

√
2 0 0

⎞
⎠ , A(2) =

⎛
⎝ 0 0 1

−1/
√

2 0 0
0 0 0

⎞
⎠ . (B.2)

As a non-integrable state, we choose the translationally invariant component of a four-site 
domain-wall state, namely

|	0〉 ∼
(

1 + U + U2 + U3
)

×
[
⊗L/4 |1,1,2,2〉

]
. (B.3)
j=1
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Fig. B1. Magnitude of the eigenvalues of the operator T̃ (u) corresponding to the (translationally invariant) dimer state 
(B.1). We see that the eigenvalues which are non-zero for u = 0 remain constant for a non-vanishing neighborhood of 
u = 0. In fact, they are completely u-independent, but level crossings can occur. The eigenvalues with the second largest 
magnitude describe the exponentially decaying overlap between the original and the one-site shifted dimer states.

Fig. B2. Magnitude of the eigenvalues of the operator T̃ (u) corresponding to the four-site state (B.3). One can see 
numerically that there is no finite neighborhood of u = 0 such that the eigenvalues which are non-zero for u = 0 remain 
constant.

This state was already considered in [94] (and mentioned in [72]), where it was shown that 
the corresponding rapidity distribution functions did not satisfy the Y -system, cf. Appendix D. 
Therefore it is natural to expect that this state is not integrable according to our definition. 
The state in (B.3) can still be written as a translational invariant MPS of the form (31), where 
now

A(1) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , A(2) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ . (B.4)
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We computed the eigenvalues of the QTM T̃ (u) for these two MPSs. For concreteness, we 
focused on the XXX chain, with the R-matrix normalization given by R(u) = (u + iP )/(u + i)

(here P is the permutation operator defined in (63)). The QTM is symmetric with respect to the 
sign of u and in the following we restricted to positive values of u. The numerical results for 
the magnitude of the eigenvalues are shown in Figs. B1 and B2. Note that a single curve here 
corresponds to at least two different eigenvalues due to the sign difference. Further degeneracies 
can be present, but we can omit to specify them as they are irrelevant to the test of integrabil-
ity.

In the case of the dimer state, we see from Fig. B1 that the eigenvalues of T̃ (u) which are 
non-zero for u = 0 remain constant for a non-vanishing neighborhood of u = 0. On the contrary, 
we see from Fig. B2 that this is not true for the case of the state (B.3). We conclude that the QTM 
method confirms integrability of the dimer state and its breaking for the four-site domain-wall 
state (B.3).

Appendix C. Integrability of boundary states: technical details

In this appendix we provide further technical details on the proof presented in Sec. 4.2. We 
start by showing that (62) is a simple rewriting of the reflection equations (53).

Given the operator V acting on h1, we use the following convention for its matrix elements

〈i|V |j〉 = Vi,j = V i
j , (C.1)

so that

V |j〉 = V i
j |i〉 . (C.2)

Analogously, given the operator R1,2(u) acting on h1 ⊗ h2, we use

1〈i|2〈j |R1,2(u)|l〉1|k〉2 = R
ij
lk(u) , (C.3)

so that

R1,2(u)|l, k〉 = R
ij
lk(u)|i, j 〉 . (C.4)

Using these conventions, the matrix elements of the partial transposed are easily written

1〈i|2〈j |Rt1
1,2(u)|l〉1|k〉2 = R

lj
ik(u) . (C.5)

Consider now the matrix �(u) = iK(u)V , where K(u) is the reflection matrix (52), while V
is introduced in (47). One can verify that the vector (61) can be written as

|φ(u)〉1,2 = �i,j (u)|i〉1 ⊗ |j〉2 = �i
j (u)|i〉1 ⊗ |j〉2 . (C.6)

Using the formula above it is a simple exercise to rewrite (62) as

�
j1
i4

(−η/2 + u)�
i2
i3
(−η/2 + v)R

j2i1
i2i4

(−u − v)R
j3j4
i3i1

(v − u)|j1, j2, j3, j4〉
= �

i1
i2
(−η/2 + v)�

i3
j4

(−η/2 + u)R
i4j3
i3i2

(−u − v)R
j1j2
i4i1

(v − u)|j1, j2, j3, j4〉 , (C.7)

from which it follows

�
j1
i4

(−η/2 + u)�
i2
i3
(−η/2 + v)R

j2i1
i2i4

(−u − v)R
j3j4
i3i1

(v − u)

= �
i1(−η/2 + v)�

i3 (−η/2 + u)R
i4j3(−u − v)R

j1j2(v − u) . (C.8)
i2 j4 i3i2 i4i1
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Using

R
αβ
γ δ (u) = R

βα
δγ (u) , (C.9)

it is now straightforward to verify that the above expression can be rewritten as

1〈j2|2〈j1|�2(−η/2 + u)R
t2
1,2(−u − v)�1(−η/2 + v)R

t1t2
1,2 (v − u)|j3〉1|j4〉2

= 1〈j2|2〈j1|R1,2(v − u)�1(−η/2 + v)R
t1
1,2(−u − v)�2(−η/2 + u)|j3〉1|j4〉2 . (C.10)

The two matrices above have the same matrix elements in the basis |i〉1 ⊗ |j〉2 of h1 ⊗ h2 and 
thus are equal. Using now the definition of � and the crossing relation (47) one finally obtains

K2 (−η/2 + u)R1,2(u + v − η)K1 (−η/2 + v)R1,2(v − u)

= R1,2(v − u)K1 (−η/2 + v)R1,2(u + v − η)K2 (−η/2 + u) , (C.11)

which is equivalent to the reflection equation (53).
Analogous algebraic manipulations can be done to derive (71) starting from (70) as we now 

detail. First we observe that

|W 〉0,L+1 = P0,L+1�
i
j (−η/2 + u)|i〉0|j〉L+1 = �

j
i (−η/2 + u)|i〉0|j〉L+1 . (C.12)

Next, we rewrite (70) in components as

�
i1
i2
(−η/2)�

i3
i4
(−η/2) . . .�

iL−1
iL

(−η/2)R
α1j1
iL+1i1

(−u)R
α2j2
α1i2

(−u)R
α3j3
α2i3

(−u) . . .

R
jL+1jL

αL−1,iL
(−u)�

iL+1
j0

(−η/2 + u)|j0, j1, . . . jL+1〉
= �

i1
i2
(−η/2)�

i3
i4
(−η/2) . . .�

iL−1
iL

(−η/2)R
α1jL

i0iL
(−u)R

α2jL−1
α1iL−1

(−u)R
α3jL−2
α2iL−2

(−u) . . .

R
j0j1
αL−1,i1

(−u)�
jL+1
i0

(−η/2 + u)|j0, j1, . . . jL+1〉 . (C.13)

Since this holds for every choice of j0 and jL+1, it implies

�
i1
i2
(−η/2)�

i3
i4
(−η/2) . . .�

iL−1
iL

(−η/2)R
α1j1
iL+1i1

(−u)R
α2j2
α1i2

(−u)R
α3j3
α2i3

(−u) . . .

R
jL+1jL

αL−1,iL
(−u)�

iL+1
j0

(−η/2 + u)|j1〉1 ⊗ . . . ⊗ |jL〉L
= �

i1
i2
(−η/2)�

i3
i4
(−η/2) . . .�

iL−1
iL

(−η/2)R
α1jL

i0iL
(−u)R

α2jL−1
α1iL−1

(−u)R
α3jL−2
α2iL−2

(−u) . . .

R
j0j1
αL−1,i1

(−u)�
jL+1
i0

(−η/2 + u)|j1〉1 ⊗ . . . ⊗ |jL〉L . (C.14)

Once again, it is straightforward to verify that the above expression can be rewritten as

0〈j0|�t0
0 (−η/2 + u)R

t0
0,1(−u)R

t0
0,2(−u) . . .R

t0
0,L(−u)|jL+1〉0|	0〉1,2,...L =

0〈j0|R0,1(−u)R0,2(−u) . . .R0,L(−u)�
t0
0 (−η/2 + u)|jL+1〉0|	0〉1,2,...L , (C.15)

where

|	0〉1,2,...L = |φ(−η/2)〉1,2 ⊗ |φ(−η/2)〉3,4 ⊗ . . . |φ(−η/2)〉L−1,L . (C.16)

Since the basis vectors |j0〉 and |jL+1〉 are arbitrary, we immediately get

�
t0
0 (−η/2 + u)R

t0
0,1(−u)R

t0
0,2(−u) . . .R

t0
0,L(−u)|	0〉1,2,...L =

R0,1(−u)R0,2(−u) . . .R0,L(−u)�
t0(−η/2 + u)|	0〉1,2,...L . (C.17)
0
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Let now the parameter u be such that �(−u + η/2) is invertible. Then, we can multiply on the 

left both sides of (C.17) by 
(
�

t0
0 (−η/2 + u)

)−1
and take the trace over the auxiliary space h0. 

Using the cyclic property of the trace we obtain

tr0

{
R

t0
0,1(−u)R

t0
0,2(−u) . . .R

t0
0,L(−u)

}
|	0〉1,2,...L

= tr0
{
R0,1(−u)R0,2(−u) . . .R0,L(−u)

} |	0〉1,2,...L . (C.18)

Since the matrix �(−u + η/2) is invertible except for a set of isolated points, Eq. (C.18) holds 
for all values of u by continuity. Finally, using

tr0

{
R

t0
0,1(−u)R

t0
0,2(−u) . . .R

t0
0,L(−u)

}
= tr0

{[
R0,L(−u)R0,L−1(−u) . . .R0,1(−u)

]t0}
= tr0
{
R0,L(−u)R0,L−1(−u) . . .R0,1(−u)

}
, (C.19)

we immediately obtain (71).

Appendix D. The Y -system

In this appendix we briefly touch upon another property of the boundary states, which is 
related to the so-called Y -system, an ubiquitous structure of integrability [142]. The latter is a 
system of equations for a set of functions in the complex plane. In the case of the XXZ model, 
the Y -system takes the form

[
1 + Yj+1(u)

] [
1 + Yj−1(u)

]= Yj (u + iη/2)Yj (u − iη/2) , (D.1)

where for generic values of , one has j = 1, 2, . . .∞. In the framework of quantum quenches, 
the Y -system first appeared in the study of quenches from the Néel state [46]. In this case the 
Y -functions are obtained starting from the Bethe ansatz rapidity distributions of the correspond-
ing long-time steady state. Subsequently, the same relations were found to hold more generally 
for all two-site product states in the XXZ spin-1/2 model [72,94,96,97], and for some initial 
states in the spin-1 chain [94].

An explanation for the Y -system in this context was found in Ref. [60]. Using the identifi-
cation of two-site states with boundary states reviewed in Sec. 4, the Y -system emerged from 
the fusion properties of the corresponding boundary transfer matrices. From the practical point 
of view, the existence of a Y -system represents a major computational advance, allowing for a 
closed-form analytical characterization of the rapidity distribution functions of the post-quench 
steady state [60,72,94].

So far, it was not clear why the existence of the Y -system should be expected to imply the 
presence of the pair structure discussed in Sec. 3.3. The results of Sec. 4 gives us further under-
standing of this point. Explicitly, we have proven that boundary states, which were shown to be 
characterized by a Y -system in [60], satisfy the condition (20). In turn, the latter implies the pair 
structure if no fine tuning of the couplings is made. Hence, in this case the Y -system and the pair 
structure are seen to have the same origin, rooted once again in integrability.
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We remark that if the initial state is such that the overlaps can be factorized algebraically, i.e. 
they can be written in the form of

∣∣∣〈{λj ,−λj }N/2
j=1|	0〉

∣∣∣2 = C({λj }N/2)

N/2∏
j=1

v(λj ) , (D.2)

such that v(λ) is a meromorphic function and C({λj }N/2) is O(L0) in the thermodynamic limit, 
then the resulting Y -functions (as obtained within the Quench Action formalism [44]) neces-
sarily satisfy the Y -system equations. This can be proven using a simple analytic manipulation 
of the resulting TBA equations, in analogy with the methods presented in an early work on 
Y -systems by Al.B. Zamolodchikov [143]. The same statement can be proven even for non-
integrable quenches, where the pair structure does not hold: the Y -system would still hold if the 
overlaps can be factorized as

∣∣∣〈{λj }Nj=1|	0

〉∣∣∣2 = C({λj }N/2)

N∏
j=1

v(λj ) (D.3)

It follows that if the Y -system does not hold, then algebraic factorization of the overlaps is not 
possible. This argument suggests that the specific form (D.2) is a further characteristic property 
of integrable initial states.

Appendix E. Generalities on matrix product states

In this appendix we provide some technical details on MPSs which are useful for our dis-
cussion in Sec. 6.1. In particular, we show that the MPS (87) can always be decomposed as in 
Eq. (93).

We start by noting a special property of the state (87). Consider the operator

N =
2∑

j=1

Z̃(j) ⊗ ¯̃
Z

(j)
, (E.1)

where ¯̃
Z

(j)
is the complex conjugate of Z̃(j), and where Z̃(1) and Z̃(2) are given in (88) and (89). 

The eigenvalues of N form pairs with the same magnitude and different sign. This can be seen 
by performing a similarity transformation using the matrix C(k), which represents a rotation of 
π/2 around the z-axis. We have

C(k)S
(k)
+ (C(k))−1 = iS

(k)
+ , C(k)S

(k)
− (C(k))−1 = −iS

(k)
− ,

and [
C(k) ⊗ C(k)

]
N
[
(C(k))−1 ⊗ (C(k))−1

]
= −N .

It can be checked that the leading eigenvalues have no further degeneracies. From general theo-
rems regarding MPSs [105], this implies that there exist two projectors P1,2 acting in auxiliary 
space such that P1 +P2 = 1 and

P1Z̃
(j) = Z̃(j)P2 , P2Z̃

(j) = Z̃(j)P1, j = 1,2 . (E.2)

In our case, the operators P1 and P2 are defined by the matrices in (99). Following [105], one 
can simply compute
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|χ0〉 =
2∑

i1,...,iL=1

tr
[
Z̃(i1)Z̃(i1) . . . Z̃(i1)

]
|i1, i2, . . . , iL〉

=
2∑

i1,...,iL=1

tr
[
P1Z̃

(i1)Z̃(i2) . . . Z̃(iL)P1

]
|i1, i2, . . . , iL〉 +

+
2∑

i1,...,iL=1

tr
[
P2Z̃

(i2)Z̃(i2) . . . Z̃(iL)P2

]
|i1, i2, . . . , iL〉 . (E.3)

Using now P1,2 =P2
1,2 and (E.2), it is straightforward to recover (93).
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