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HIGGS BUNDLES AND FUNDAMENTAL GROUP SCHEMES

INDRANIL BISWAS, UGO BRUZZO, AND SUDARSHAN GURJAR

Abstract. Relying on a notion of “numerical effectiveness” for Higgs bundles, we show

that the category of “numerically flat” Higgs vector bundles on a smooth projective

variety X is a Tannakian category. We introduce the associated group scheme, that we

call the “Higgs fundamental group scheme of X,” and show that its properties are related

to a conjecture about the vanishing of the Chern classes of numerically flat Higgs vector

bundles.

1. Introduction

Given a projective schemeX over a field k, a line bundle L onX is said to be numerically

effective (abbreviated as “nef”) if deg f ∗L ≥ 0 for every morphism f : C −→ X, where

C is an irreducible smooth projective curve. A notion of numerical effectiveness for a

vector bundle E can be given by asking that the relative hyperplane bundle OP(E)(1) on

the projective bundle P(E) is nef [12, 15, 16]. More generally, if rkE = r, one can consider

for every k, with 0 < k < r, the Grassmann bundle Grk(E) −→ X that parameterizes

the quotients of fibers of E of dimension k. The universal quotient bundle Qk,E of rank

k on Grk(E) satisfies the well-known property that for any morphism g : Y −→ X if F

is a rank k quotient of g∗E, then there is a morphism h : Y −→ Grk(E) which covers g

and satisfies the condition that F ' h∗Qk,E. It turns out that E is nef if and only if all

universal quotients Qk,E are nef.

One can consider vector bundles E such that both E and its dual E
∗

are nef. These are

called numerically flat bundles. The numerically flat bundles enjoy very special properties;

they have vanishing rational Chern classes [10], and they form a Tannakian category

NF(X). The associated group scheme G defined by the property that NF(X) is the

category of representations of G was introduced in [4, 13].

Building on ideas already contained in [7], in [5] a definition of “Higgs numerical effec-

tiveness” (“H-nef” for short) was given (however the basics of this theory in their final

form were presented subsequently in [6]). Given a Higgs vector bundle E = (E, φ), and

any 0 < k < r, the idea is to use the Higgs field φ to construct a closed subscheme

Grk(E) ⊂ Grk(E), with the property that a rank k quotient F of E is a Higgs quotient

of E (i.e., the kernel corresponding to it is φ–invariant) if and only if the image of the
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2 I. BISWAS, U. BRUZZO, AND S. GURJAR

associated section of Grk(E) is contained in Grk(E). The universal quotient bundle Qk,E

restricts to Grk(E) to yield a universal Higgs quotient bundle Qk,E. This opens the way to

define Higgs-numerically effective Higgs bundles, in terms of a recursive positivity prop-

erty of the bundles Qk,E (see Definition 2.3 for a precise statement). Higgs-numerically

flat bundles (H-nflat Higgs bundles) are then defined as H-nef Higgs bundles for which

the dual Higgs bundle is H-nef as well. It turns out that the H-nflat Higgs bundles on a

smooth projective variety X make up a Tannakian category HNF(X) (see section 4). We

denote by πH1 (X, x) the associated group scheme, where x ∈ X is the base point needed

to define the fiber functor, and call it the Higgs fundamental group scheme of X.

In Section 4 we study some basic properties of this group. It turns out that this group

is related to a conjectured property of Higgs bundles [7, 6]. For vector bundles E on a

projective manifold X, the following property is known to be true [17, 7, 3].

Theorem 1.1. The following conditions are equivalent:

• for every morphism f : C −→ X, where C is a smooth irreducible projective

curve, the bundle f ∗E is semistable;

• E is semistable with respect to some polarization, and the characteristic class

∆(E) = c2(E)− r − 1

2r
c1(E)2 ∈ H4(X,Q)

vanishes (here r = rkE).

For Higgs bundles, it is known that the second condition implies the first [7, 6], but the

fact that the first implies the second is an open conjecture (see [8] for the characterization

of a class of varieties for which this conjecture holds). It is equivalent to the fact that H-

nflat Higgs bundles have vanishing rational Chern classes (see Corollary 3.2). For future

convenience, we explicitly state this conjecture.

Conjecture 1.2. Let E = (E, φ) be a Higgs bundle on a smooth projective variety X,

such that for every morphism f : C −→ X, where C is a smooth irreducible projective

curve, the Higgs bundle f ∗E is semistable. Then ∆(E) = 0.

In [8] a characterization was given of some classes of varieties for which the conjecture

holds (basically, varieties with nef tangent bundle).

As we discuss in Section 4, the above conjecture is also related to the following product

formula for the Higgs fundamental group scheme: if X, Y are smooth projective varieties

over a field k, and x, y are points in X, Y , respectively, then

πH1 (X ×k Y, (x, y)) ' πH1 (X, x)× πH1 (Y, y) .
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2. Numerically effective Higgs bundles

Notation. Unless otherwise stated, X will denote a smooth projective variety of di-

mension n defined over an algebraically closed field k of characteristic zero. The cotangent

bundle of X will be denoted by Ω1
X . We shall usually denote by a Gothic letter, such as

E, a pair (E, φ), where E is a coherent sheaf and φ is a Higgs field on E (see Definition

2.1). So a roman letter will denote the underlying coherent sheaf of a Higgs sheaf.

We fix a very ample line bundle on X and denote by H its numerical class. The degree

of a torsion-free coherent OX–module F is defined as to be

degF := c1(F ) ·Hn−1 ,

and if rkF 6= 0, one defines the slope of F to be

µ(F ) :=
degF

rkF
.

Definition 2.1. A Higgs sheaf E on X is a pair (E, φ), where E is a torsion-free coherent

sheaf on X and

φ : E −→ E ⊗ Ω1
X

is a homomorphism of OX-modules such that φ ∧ φ = 0. A Higgs subsheaf of a Higgs

sheaf E = (E, φ) is a pair (G, φ′), where G is a subsheaf of E such that φ(G) ⊂ G⊗Ω1
X ,

and φ′ = φ|G. A Higgs bundle is a Higgs sheaf E such that E is a locally-free OX-

module. If E = (E, φ) and G = (G,ψ) are Higgs sheaves, a morphism f : E −→ G is

a homomorphism of OX-modules f : E −→ G such that the diagram

E
f

//

φ
��

G

ψ
��

E ⊗ Ω1
X

f⊗id
// G⊗ Ω1

X

commutes.
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Definition 2.2. A Higgs sheaf E = (E, φ) is semistable (respectively, stable) if µ(G) ≤
µ(E) (respectively, µ(G) < µ(E)) for every Higgs subsheaf (G, φ′) of E with 0 < rkG <

rkE.

From now on, unless otherwise stated, by semistability of a Higgs bundle we will mean

semistability in the Higgs sense (as in the above definition). Let us recall the definition of

numerical effective vector bundles on a projective variety X. A line bundle L on X is said

to be numerically effective (nef for short) if, for every pair (C , f), where C is a smooth

projective irreducible curve and f : C −→ X is a morphism, the line bundle f ∗L on C

has nonnegative degree. A vector bundle E is numerically effective if the hyperplane line

bundle OP(E)(1) on the projectivization P(E) of E is numerically effective. For the main

properties of numerically effective vector bundles see e.g. [12, 15, 16].

Let E be a vector bundle of rank r on X, and let s < r be a positive integer. We shall

denote by Grs(E) the Grassmann bundle on X parameterizing quotients of fibers of E

of dimension s. Let ps : Grs(E) −→ X be the natural projection. There is a universal

short exact sequence

0 −→ Sr−s,E
ψ−→ p∗sE

η−→ Qs,E −→ 0 (1)

of vector bundles on Grs(E), with Sr−s,E being a universal subbundle of rank r − s and

Qs,E a universal quotient of rank s. Given a Higgs bundle E = (E, φ), we have the

closed subschemes Grs(E) ⊂ Grs(E) parameterizing rank s locally-free Higgs quotients,

i.e., locally-free quotients of E whose corresponding kernels are φ-invariant. In other

words, Grs(E) (the Grassmannian of locally free rank s Higgs quotients of E) is the closed

subscheme of Grs(E) defined by the vanishing of the composed morphism

(η ⊗ Id) ◦ p∗s(φ) ◦ ψ : Sr−s,E −→ Qs,E ⊗ p∗sΩ1
X . (2)

Let ρs := ps|Grs(E) : Grs(E) −→ X be the restriction. The restriction of (1) to Grs(E)

provides the universal exact sequence

0 −→ Sr−s,E
ψ−→ ρ∗sE

η−→ Qs,E −→ 0 , (3)

with Qs,E := Qs|Grs(E) being equipped with the quotient Higgs field induced by the Higgs

field ρ∗sφ. The universal property satisfied by Grs(E) is that given any morphism of k-

varieties f : T → X, f factors through Grs(E) if and only if the pullback f ∗(E) admits

a Higgs quotient of rank s. In that case the pullback of the above universal sequence on

Grs(E) gives the desired quotient of f ∗(E).

Definition 2.3. A Higgs bundle E of rank one is said to be Higgs-numerically effective (H-

nef for short) if it is numerically effective in the usual sense. If rkE ≥ 2, we inductively

define H-nefness by requiring that

(1) all Higgs bundles Qs,E are Higgs-nef (see (3)) for all s, and
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(2) the determinant line bundle det(E) is nef.

If both E and E∗ are Higgs-numerically effective, E is said to be Higgs-numerically flat

(H-nflat).

Definition 2.3 immediately implies that the first Chern class of an H-numerically flat

Higgs bundle is numerically equivalent to zero. Note that if E = (E, φ), with E nef in the

usual sense, then E is H-nef. Moreover, if φ = 0, the Higgs bundle E = (E, 0) is H-nef if

and only if E is nef in the usual sense (as in this case the Higgs Grassmannian coincides

with the usual Grassmannian bundle, and the respective universal bundles coincide).

We recall that in the case of ordinary vector bundles, nefness is defined using only the

hyperplane bundle. Let us motivate why one should consider the behavior of the universal

Higgs quotients of all ranks, and therefore introduce Higgs Grassmannians corresponding

to quotients of all ranks. In the case of ordinary bundles, if the hyperplane bundle is nef,

then the universal quotients of all ranks are nef as well; indeed, if a vector bundle E is

nef, its pullback to the Grassmannian Grs(E) is nef, and the quotient Qs,E (see equation

(1)) is nef too. This is not the case for Higgs bundles, as the following example shows.

Let E = (E, φ) be a rank three nilpotent Higgs bundle on a smooth projective curve

C, having the form E = L1 ⊕ L2 ⊕ L3, where each Li is a line bundle, and φ(L1) ⊂
L2 ⊗ Ω1

C , φ(L2) ⊂ L3 ⊗ Ω1
C , φ(L3) = 0. Denote by di the degree of Li, and assume

that d1 + d2 + d3 = 0. The computations in Section 3.4 of [7] show that the hyperplane

bundle of E, restricted to the Higgs Grassmannian Gr1(E), is nef if 2d1 − d2 − d3 ≥ 0,

while the rank two universal quotient on Gr2(E) is nef if and only if d1 + d2 − 2d3 ≥ 0.

There exist values of the degrees for which the first inequality holds and the second does

not. For instance, if C has genus 3, one can take d1 = d3 = 1, d2 = −1. Note that by

Riemann-Roch theorem h0(C,KC) > 0 and hence an effective divisor exists in the linear

system |KC | (of degree 4). To ensure that there exists a nonzero Higgs morphism, write

KC = (x1 + x2 + x3 + x4), with xi points in C, and take L1 = (x1), L2 = −(x2 + x3),

L3 = (x4).

Moreover, one includes the condition that det(E) is nef in Definition 2.3 to prevent the

existence of H-nef Higgs bundles of negative degree. One such example is provided by a

Higgs bundle E = (E, φ) on a smooth projective curve, with E = L1 ⊕ L2 (where L1, L2

are line bundles), and φ : L1 −→ L2 ⊗ Ω1
X , φ(L2) = 0. As shown in [7], E has only two

Higgs quotients, i.e., L1 and

Q = coker(φ⊗ id) : E ⊗ TX −→ E

modulo torsion; the latter one will be denoted by Q. Note that deg(Q) ≥ deg(L1). If the

genus of X is at least 2, one can for instance take deg(L1) = 0 and deg(L2) = −2. Then
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E satisfies all the conditions in the definition of H-nefness except the one which says that

det(E) is nef.

3. Properties of H-nef Higgs bundles

We give a few properties of H-nef Higgs bundles.

Proposition 3.1.

(i) An H-numerically flat Higgs bundle is semistable.

(ii) Let E = (E, φ) be a Higgs bundle whose first Chern class is numerically equivalent

to zero. Assume that for all morphisms f : C −→ X, where C is a smooth

irreducible projective curve, the pullback f ∗E is semistable. Then E is H-nflat.

(iii) Let

0 −→ F −→ E −→ G −→ 0

be a short exact sequence of Higgs bundles. If F and G are H-nflat, so is E.

(iv) If E and G are H-nflat Higgs bundles, then the tensor product E⊗G is H-nflat.

Proof. (i) and (ii) are Proposition 8.8 and Lemma 8.7 in [6], respectively.

(iii) Let C be a smooth irreducible projective curve, and f : C −→ X a morphism.

Then the sequence

0 −→ f ∗F −→ f ∗E −→ f ∗G −→ 0

is exact. As f ∗F and f ∗G are H-nflat, their first Chern classes are numerically equivalent

to zero and they are semistable by part (i). It follows that f ∗E is semistable as well.

Hence E is H-nflat.

(iv) Again, let C be a smooth irreducible projective curve, and f : C −→ X a mor-

phism. By the same argument as in part (iii), f ∗E and f ∗G are semistable. Then, as

shown in [1], f ∗E⊗ f ∗G ' f ∗(E⊗G) is semistable as well. Moreover,

c1(E ⊗G) = rkE · c1(G) + rkG · c1(E) ≡ 0.

So by part (ii), E⊗G is H-nflat. �

A corollary to Proposition 3.1 is that Conjecture 1.2 is equivalent to the property that

all H-nflat Higgs bundles have vanishing rational Chern classes (the analogous fact for

vector bundles was proved in [7]).

Corollary 3.2. The following facts are equivalent.

(i) If E = (E, φ) is a Higgs bundle on X, and for all morphisms f : C −→ X, where

C is a smooth irreducible projective curve, the pullback f ∗E is semistable, then

∆(E) = 0.
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(ii) All rational Chern classes of an H-nflat Higgs bundle vanish.

Proof. Assume that (i) holds, and let E = (E, φ) be H-nflat. Then it follows easily that

f ∗(E) is also H-nflat. By Proposition 3.1 (i), every pullback f ∗E is semistable. Since

(i) holds, we have ∆(E) = c2(E) = 0. By Theorem 2 in [19], E has a filtration whose

quotients are flat, so that all Chern classes of E vanish.

Conversely, assume that (ii) holds, and let E be a Higgs bundle such that all pullbacks

f ∗E are semistable. We may assume that E has vanishing first Chern class by replacing

it with its endomorphism bundle. By Proposition 3.1 (ii), E is H-nflat. Since (ii) holds,

we have in particular ∆(E) = 0. �

Actually Proposition 3.1 (iv) can be generalized to H-nef Higgs bundles. We shall use

the Harder-Narasimhan filtration for Higgs bundles on curves [11]. Given a Higgs bundle

E on a smooth, projective curve Y defined over k, there exists a unique filtration of E by

Higgs subsheaves 0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Er = E such that the successive quotients Ei/Ei−1
are semistable as Higgs sheaves with their slopes satisfying the inequalities µ(Ei/Ei−1) >

µ(Ei+1/Ei) for all i. Set µmax(E) = µ(E1) and µmin(E) = µ(Er/Er−1).

In the rest of the paper, by the Harder-Narasimhan filtration of a Higgs bundle we will

mean a filtration as above.

The Harder-Narasimhan filtration for Higgs bundles on a curve has the following basic

properties, analogous to those of the Harder-Narasimhan filtration for torsion-free sheaves

(see [1]):

1. If E and F are two Higgs bundles, µmax(E⊗F) = µmax(E)+µmax(F) and µmin(E⊗F) =

µmin(E) + µmin(F).

2. If E• = {E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Es} is any filtration of E such that each filter

is preserved by the Higgs field, the Harder-Narasimhan polygon for E• lies under the

Harder-Narasimhan polygon for E. (See [13] for the definition of the Harder-Narasimhan

polygon.)

The following lemma generalizes a criterion holding for numerically effective bundles

[2].

Lemma 3.3. Let E be a Higgs bundle on X. Then E is H-nef if and only if for

any morphism f : C → X, where C is a smooth projective irreducible curve, one has

µmin(f ∗E) ≥ 0.

Proof. Suppose E is H-nef. Let f : C → X be any morphism from a smooth projective

irreducible curve C to X. Let

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Er = f ∗E
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be the Harder-Narasimhan filtration of the pullback of E to C. Since E is H-nef, it

follows that deg f ∗E ≥ 0. Let s = rk(Er/Er−1). By the universal property of the Higgs

Grassmannian Grs(f
∗E), from the natural quotient morphism φr : Er −→ Er/Er−1 we

get a morphism C −→ Grs(f
∗E) such that the pullback of the universal quotient on

Grs(f
∗E) coincides with φr. By the H-nefness of E, it follows that deg(Er/Er−1) ≥ 0.

Conversely, suppose E has the property that for any smooth projective irreducible curve

C and any morphism f : C −→ X, µmin(f ∗(E)) ≥ 0. We want to show that E is an H-

nef Higgs bundle on X. The assumption on E implies that the degree of E is non-negative

on every curve, so that det f ∗E is nef and hence H-nef.

To prove the other condition in the definition of H-nef bundles, we recall that, as

explained in [6], the H-nefness of E is equivalent to the nefness, in the usual sense, of

a collection of line bundles LS, each defined on a scheme S equipped with a projection

πS : S −→ X (these line bundles are obtained by successively taking the universal Higgs

quotient until one reaches the rank one quotient bundles). Let ψS : π∗SE −→ LS denote

the quotient morphism, and let g : C → S be any morphism, where C is a smooth curve.

The pullback of ψS to C produces a quotient f ∗E −→ F on C, where f = πS ◦ g. Let F′

denote the kernel of this quotient. By property (1) of the Harder-Narasimhan filtration

explained before, the polygon corresponding to the filtration 0 ⊂ F′ ⊂ f ∗E lies under the

Harder-Narasimhan polygon of f ∗E. Since µmin(f ∗E) ≥ 0, this immediately implies that

degF′ ≤ deg f ∗E and hence degF ≥ 0, so that LS is nef. This shows that E is H-nef,

thereby completing the proof of the lemma. �

Lemma 3.4. If f : Y −→ X is a surjective morphism of smooth projective varieties,

and E is a Higgs bundle on X, then E is H-nef if and only if f ∗E is.

Proof. Suppose E is H-nef. Consider f ∗(E). Let ψ : C → Y be any morphism from

a smooth projective curve C to Y . Then deg(ψ∗f ∗(E)) = deg((f ◦ ψ)∗(E)) ≥ 0 by H-

nefness of E. Hence det(f ∗(E)) is nef. Also µmin(ψ∗f ∗(E)) = µmin((f ◦ ψ)∗(E)) ≥ 0 by

H-nefness of E thereby showing that f ∗(E) is H-nef. Conversely suppose f ∗(E) is H-nef

on Y . Let φ : C → X be any morphism from a smooth projective curve to X. Then

there exists a surjective morphism from a smooth projective curve g : C̃ → C and a

morphism φ̃ : C̃ → Y lying over the morphism φ. Then deg(f ◦ φ̃)∗(E) ≥ 0 by H-

nefness of f ∗(E) and hence by the commutativity of the diagram, deg(φ ◦ g)∗E ≥ 0. Since

g is a finite morphism this shows that deg(φ∗(E)) ≥ 0 thus proving that det(E) is nef.

Similarly µmin(f ◦φ̃)∗(E) ≥ 0 by H-nefness of f ∗(E) and hence by the commutativity of the

diagram, µmin(φ◦g)∗(E) ≥ 0. Since g is a finite morphism, it follows that µmin(φ∗(E)) ≥ 0

as well. �

Lemma 3.5. Every quotient Higgs bundle of an H-nef Higgs bundle E on X is H-nef.



HIGGS BUNDLES AND FUNDAMENTAL GROUP SCHEMES 9

Proof. Let E � E′′ be a non-trivial Higgs quotient. Let E′ denote the kernel. Let

f : C → X be a morphism from a smooth curve C to X. By the property of the (Higgs)

Harder-Narasimhan filtration mentioned earlier, µmin(f ∗(E)) ≥ 0 and hence deg(f ∗(E′)) ≤
deg(f ∗(E)). Thus deg(f ∗(E′′)) ≥ 0 proving that det(E′′) is nef. To prove the second

condition, let f ∗(E′′) → F be a Higgs quotient. Then F is also a Higgs quotient of

f ∗(E) and hence by H-nefness of E, deg(F) ≥ 0. This shows that µmin(f ∗(E′′)) ≥ 0 thus

completing the proof that E′′ is H-nef as well. �

The remaining results in this section will be the key to prove that H-nflat Higgs bundles

make up a Tannakian category.

Theorem 3.6. Let X be a smooth projective variety. Let E and F be two H-nef bundles

on X. Then E⊗ F is also H-nef.

Proof. Let f : C → X be any smooth projective curve mapping to X. Since E and F

are both H-nef, µmin(f ∗E) and µmin(f ∗F) are both non-negative. By property 2 of the

Harder-Narasimhan-filtration explained earlier, µmin(f ∗(E ⊗ F)) ≥ 0. Hence by Lemma

3.3, the tensor product E⊗ F is also H-nef. �

Finally, we have the following property of morphisms between H-nflat Higgs bundles.

Proposition 3.7. Let β : E = (E, φ) −→ F = (F, ψ) be a morphism of H-nflat Higgs

bundles on a smooth projective variety X. The kernel and cokernel of β are both locally

free.

Proof. The proposition is equivalent to the statement that dim β(Ex) is independent of

x ∈ X. Therefore, it suffices to show the following: for every pair (C , f), where C is

a smooth projective curve and f : C → X is a morphism, the image (f ∗β)(f ∗E) is a

subbundle of f ∗F .

From Lemma 3.3 we know that E and F are Higgs semistable of degree zero. Therefore,

it is enough to prove the proposition for smooth projective curves.

So take X to be a smooth projective curve. Take semistable Higgs bundles E = (E, φ)

and F = (F, ψ) of degree zero on X, and let β : E −→ F be a nonzero homomorphism.

Since β(E) is a quotient of E (respectively, subsheaf of F ), we have deg β(E) ≥ 0 (re-

spectively, deg β(E) ≤ 0). Therefore, it follows that

deg β(E) = 0 . (4)

Next, we will show that the quotient F/β(E) is torsion-free. Let T be the torsion part

of F/β(E). Let F ′ be the inverse image of T in F . We have

degF ′ = deg β(E) + deg T = deg T .
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So if T 6= 0, then degF ′ = deg T > 0, and hence in this case F ′ contradict the

semistability condition for F. Consequently, we have T = 0. This implies that β(E) is a

subbundle of F . �

Proposition 3.8. Let β : E = (E, φ) −→ F = (F, ψ) be a morphism of H-nflat Higgs

bundles on a smooth projective variety X. The kernel and cokernel of β are H-nflat Higgs

bundles.

Proof. From Proposition 3.7 we know that both kernel and cokernel of β are locally free.

As in the proof of Proposition 3.7, take X to be a smooth projective curve. Then by

proposition 3.1, E and F are semistable of degree 0. Since degE = 0, from eq. (4) it

follows immediately that deg(ker β) = 0 if β 6= 0. Similarly, since degF = 0, from

eq. (4) it follows immediately that deg(coker β) = 0 if β 6= 0. Since E and F are

Higgs-semistable of degree zero, and ker β and coker β are of degree 0, it follows that

ker β and coker β are also Higgs-semistable of degree zero. Since the pullbacks of ker β

and coker β to any smooth curve are Higgs semistable of degree 0, by Proposition 3.1, it

follows that both kernel and cokernel of β are H-nflat Higgs bundles. �

4. Categories of numerically flat bundles

Definition 4.1. Given a smooth projective variety X over a field k of characteristic zero,

we consider the following categories.

(1) The category NF(X) whose objects are numerically flat vector bundles on X, and

morphisms are morphisms of OX-modules;

(2) The category HNF(X) whose objects are H-numerically flat Higgs bundles on X,

and morphisms are morphisms of Higgs sheaves.

Note that by Proposition 3.7 kernels and cokernels in these categories are locally free.

NF(X) and HNF(X) are Abelian categories (the case of HNF(X) follows as a conse-

quence of Proposition 3.8), and NF(X) is a proper subcategory of HNF(X). Both are

tensor categories (cf. in particular Proposition 3.1 (iv)). Moreover, they are rigid in the

sense of [9], Definition 1.7.

We remind the reader that a neutral Tannakian category over a field k is a rigid Abelian

k-linear tensor category C together with a faithful k-linear tensor functor ω : C −→
Vectk. Here Vectk is the category of k-vector spaces, and ω is called the fiber functor.

Then, there exists an affine group scheme G over k such that C is equivalent to the

category Repk(G) of k-linear representations of G (see [9]).
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HNF(X) is indeed a neutral Tannakian category (with ω the functor that associates

to an H-flat Higgs bundle E = (E, φ) its fiber Ex at a fixed point x ∈ X), so that the

following definition makes sense.

Definition 4.2. Let x ∈ X. The Higgs fundamental group scheme πH1 (X, x) is the affine

group scheme representing the category HNF(X) with the fiber functor E 7−→ Ex.

If πS1 (X, x) is the fundamental group scheme associated with the category NF(X)

[13], the inclusion NF(X) ↪→ HNF(X) induces a faithfully flat homomorphism of group

schemes πH1 (X, x) −→ πS1 (X, x).

We conclude this paper by giving a few properties of the Higgs fundamental group

scheme. A more thorough study of this group will form the object of a future paper.

Proposition 4.3. Let f : X ′ −→ X be a surjective, flat morphism of projective varieties

over k. If f∗OX′ ' OX and f(x′) = x, then the induced morphism πH1 (X ′, x′) −→
πH1 (X, x) is a surjective faithfully flat morphism.

Proof. By [9, Prop. 2.21(a)], it suffices to show that if E is an H-numerically flat bundle

on X and F ′ ⊂ f ∗E = E ′ (say) is an H-numerically flat subbundle of E ′ on X ′, then

there exists an H-numerically flat subbundle F ⊂ E on X such that f ∗F = F ′. Fix

y ∈ X. Let Ey (respectively, E ′y, F
′
y) denote the restrictions of E (respectively, E ′, F ′)

to y (respectively, X ′y). Consider the surjection E ′∗y � F ′∗y corresponding to the inclusion

F ′y ⊆ E ′y. Since E ′y is trivial and hence globally generated, it follows that F ′∗y is globally

generated as well. But since c1(F
′
y) is numerically equivalent to zero, it follows that any

section of F ′∗y has no zero’s and hence F ′∗ and therefore F ′ is trivial on the fibers of f .

Since by flatness of f , h0(F ′|X′y) is independent of y ∈ X, by Grauert’s theorem it follows

that f∗F
′ is locally free. This and the given condition that f∗OX′ ' OX together imply

that the natural map f ∗f∗F
′ −→ F ′ is an isomorphism of bundles. Taking F to be f∗F

′

thereby produces a subbundle F ⊆ E such that f ∗F is isomorphic to F ′. It is easy to see

that F is invariant under the Higgs field on E. The vector bundle F equipped with the

induced Higgs field is also H-nflat by Proposition 3.4 since its pullback under f is H-nflat,

thereby completing the proof of the proposition. �

We also mention the following facts.

• If πH1 (X, x) = {e}, the category HNF(X) is equivalent to the category Vectk of

finite-dimensional vector spaces. As a consequence, all H-nflat Higgs bundles are

trivial.

• If the natural morphism πH1 (X, x) → πS1 (X, x) is an isomorphism, the categories

HNF(X) and NF(X) are equivalent. This means that all H-nflat Higgs bundles

only have zero Higgs field, which also implies that the Conjecture 1.2 holds true.
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Let X, Y be projective varieties over k, and let x, y be points in X, Y , respectively.

Given Higgs bundles (E, θ) and (F, φ) on X and Y respectively, we have the Higgs bundle

(E � F, θ ⊗ Id + Id⊗ φ) on X × Y . This construction produces a homomorphism

πH1 (X ×k Y, (x, y)) −→ πH1 (X, x)× πH1 (Y, y) . (5)

At the moment we do not know whether the above homomorphism is an isomorphism.

This fact, via Corollary 3.2, is related to the conjecture that Theorem 1.1 also holds for

Higgs bundles. If indeed the morphism (5) is an isomorphism, then any numerically flat

Higgs bundle on C1 × . . .× Cd, where Ci are smooth projective curves, would arise from

numerically flat Higgs bundles on the curves Ci. A numerically flat Higgs bundles on a

curve is of degree zero. Therefore, all higher Chern classes of a numerically flat Higgs

bundle on C1 × . . . × Cd would be numerically equivalent to zero. On the other hand,

the numerical vanishing of higher Chern classes of a numerically flat Higgs bundle is the

key obstruction if one tries to generalize of proof of the product formula for the usual

numerically flat case (no Higgs field), as given in [14], to Higgs bundles.
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