
SISSA Preprint 40/2017/MATE

arXiv:1710.03671 [math.AG]

SEMISTABLE HIGGS BUNDLES ON CALABI-YAU MANIFOLDS

U. Bruzzo,§][ V. Lanza‡ and A. Lo Giudice¶

§ SISSA (Scuola Internazionale Superiore di Studi Avanzati),

Via Bonomea 265, 34136 Trieste, Italy

] Istituto Nazionale di Fisica Nucleare, Sezione di Trieste

[ Arnold-Regge Center, via P. Giuria 1, 10125 Torino, Italy

‡ IMECC - UNICAMP, Departamento de Matemática,
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Abstract. We provide a partial classification of semistable Higgs bundles over a

simply connected Calabi-Yau manifolds. Applications to a conjecture about a special

class of semistable Higgs bundles are given. In particular, the conjecture is proved for

K3 and Enriques surfaces, and some related classes of surfaces.

1. Introduction

In [2] it was shown that the Higgs field of a polystable Higgs bundle over a simply connected

Calabi-Yau manifold X necessarily vanishes. This result does not hold true in the semistable case,

as the following example shows: take E = OX ⊕ Ω1
X with Higgs field φ(f, ω) = (ω, 0). As the

cotangent bundle Ω1
X is polystable, E is polystable as well, hence semistable; so (E, φ) is a fortiori

Higgs-semistable, but the Higgs field is nonzero (note that (E, φ) is not polystable as a Higgs

bundle).

Nevertheless, possible Higgs fields for semistable Higgs bundles on Calabi-Yau manifolds are

strongly constrained. For rank 2, no nontrivial Higgs fields exist. The same is true for rank 3

when dimX ≥ 3. This will be shown in section 3. Section 4 treats the case of rank 3 semistable

Higgs bundles on K3 surfaces, offering a classification which depends on the rank of the kernel of

the Higgs field. In section 2 we extend the result of [2] to the torsion-free, non-locally-free case;

this will be needed later on, but it is also a result of some interest in itself.
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The existence of semistable Higgs bundles is related to a conjecture which was established in [5]

(see [10] for a review). The conjecture is about an extension of the following result, first proved in

[12], which generalizes to higher dimensions Miyaoka’s semistability criterion for bundles on curves

[11]. Let E be a vector bundle on a smooth polarized variety (X,H), and let ∆(E) ∈ H4(X,Q)

be its discriminant, i.e., the characteristic class

∆(E) = c2(E)− r − 1

2r
c1(E)2,

where r = rkE.

Theorem 1.1. The following conditions are equivalent:

(i) E is semistable, and ∆(E) ·Hn−2 = 0;

(ii) for any morphism f : C → X, where C is a smooth projective curve, the vector bundle

f∗(E) is semistable.

The property in (ii), both for ordinary and Higgs bundles, will be called curve semistability.

Actually using Theorem 2 in [15] the condition ∆(E) ·Hn−2 = 0 is shown to be equivalent —

for a semistable bundle — to ∆(E) = 0. In this form Theorem 1.1 was stated and proved with

different techniques in [6]. It is now quite natural to ask if this theorem holds true also for Higgs

bundles. As it was proved in [6], one has:

Theorem 1.2. A semistable Higgs bundle (E, φ) on (X,H) with ∆(E) = 0 is curve semistable.

The conjecture is that also the converse implication holds. This was proved for varieties with

nef tangent bundle in [7], and for some other classes of varieties obtained from these by some easy

geometric constructions. In section 6 we offer a proof of the conjecture for K3 surfaces; then, using

results from [7], the conjecture also holds for Enriques surfaces (using the language of [7], we thus

prove that K3 and Enriques surfaces are Higgs varieties.) The proof will use the results of the

previous sections, and the theory of Higgs numerically flat Higgs bundles [5, 3].

As a related result, in section 5 we show that on K3 surfaces there are no rank 3 curve semistable

Higgs bundles with nonzero Higgs field.

In sections 2 and 3 we shall consider bundles on compact Kähler manifolds, while in sections 4

through 6 we shall restrict to smooth projective varieties over C.

We conclude this introduction with the basic definitions about Higgs sheaves. Let X be an

n-dimensional compact complex manifold X equipped with a Kähler form ω. The degree of a

coherent OX–module F is defined as

degF =

∫
X

c1(F ) ∧ ωn−1

and if F has positive rank its slope is defined as

µ(F ) =
degF

rkF
.

If X is a smooth algebraic variety over C with a polarization H, one can give an intersection-

theoretic definition of the degree

degF = c1(F ) ·Hn−1.

Definition 1.3. A Higgs sheaf on X is a pair (E, φ), where E is a torsion-free coherent sheaf on

X and φ : E → E ⊗ Ω1
X is a morphism of OX-modules such that φ ∧ φ = 0, where φ ∧ φ is the
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composition

E
φ−→ E ⊗ Ω1

X
φ⊗id−−−→ E ⊗ Ω1

X ⊗ Ω1
X → E ⊗ Ω2

X .

A Higgs subsheaf of a Higgs sheaf (E, φ) is a subsheaf G of E such that φ(G) ⊂ G⊗Ω1
X . A Higgs

bundle is a Higgs sheaf whose underlying coherent sheaf is locally free.

If (E, φ) and (G,ψ) are Higgs sheaves, a morphism f : (E, φ)→ (G,ψ) is a homomorphism of

OX-modules f : E → G such that the diagram

E
f //

φ

��

G

ψ

��
E ⊗ Ω1

X

f⊗id // G⊗ Ω1
X

commutes.

Definition 1.4. A Higgs sheaf (E, φ) is semistable (respectively, stable) if µ(G) ≤ µ(E) (respec-

tively, µ(G) < µ(E)) for every Higgs subsheaf G of (E, φ) with 0 < rkG < rkE. It is polystable if

it is the direct sum of stable Higgs sheaf having the same slope.
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2. Vanishing of Higgs fields for polystable sheaves

In this section we extend to the torsion-free case the following result [2]. Here by Calabi-Yau

manifold we mean a Kähler manifold with vanishing first Chern class. We assume the manifold

to be compact and connected.

Theorem 2.1. [2, Corollary 2.6] For any polystable Higgs bundle over a simply connected, smooth

Calabi-Yau manifold the Higgs field is identically zero.

The generalization is easily done when the variety is a K3 surface S. In fact, let (E, φ) be a

polystable Higgs sheaf over S. We have the commutative diagram

0 // E //

φ

��

E∨∨

φ∨∨

��
0 // E ⊗ Ω1

S
// E∨∨ ⊗ Ω1

S

where φ∨ is defined as the composition

E∨ // E∨ ⊗ TS ⊗ Ω1
S

φ∗⊗id
Ω1
S // E∨ ⊗ Ω1

S

and analogously φ∨∨. The Higgs bundle (E∨∨, φ∨∨) is polystable, so φ∨∨ = 0, and by the diagram

also φ must vanish.
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For the higher-dimensional case, we start by recalling a couple of definitions:

Definition 2.2. Let (E, φ) be a torsion-free sheaf on a compact Kähler manifold X. We denote by

ω the Kähler form of X, and by S the locus where E fails to be locally free (which has codimension

at least 2). An hermitian metric h on the vector bundle E|X\S is said to be admissible if:

(i) the curvature form Fh of the associated Chern connection ∇h is square integrable, and

(ii) the mean curvature trω(Fh) is bounded.

An admissible hermitian metric h on (E, φ) is called hermitian Yang-Mills-Higgs if the equation

trω (Fh + [φ, φ∗]) = λ · idE

is satisfied on X \ S for some λ ∈ C.

The following result has been proved by Biswas and Schumacher:

Theorem 2.3. [4, Corollary 3.5] A Higgs sheaf (E, φ) on a compact Kähler manifold X is

polystable if and only if there exists an hermitian Yang-Mills-Higgs metric h on it (uniquely de-

termined up to homotheties). In particular, the Yang-Mills-Higgs connection ∇h is unique.

As a direct consequence of [14, Proposition 3.3] one has:

Lemma 2.4. Let (E, φ) be a polystable Higgs bundle over a connected open dense subset Y of a

compact Kähler manifold, and let F ⊂ E be a saturated Higgs subsheaf with µ(F ) = µ(E). Then:

• F is a subbundle;

• F⊥, where the orthogonal is taken with respect to the hermitian Yang-Mills-Higgs metric

h on Y , is a holomorphic bundle;

• E ' F ⊕ F⊥.

The key observation to prove Theorem 2.1 is given by [2, Proposition 2.2], which we briefly

recall here. Let (E, φ) be a polystable Higgs bundle on a Kähler manifold X and denote by h the

hermitian Yang-Mills-Higgs metric on E. If we denote by ∇ω,h the connection on End(E) ⊗ Ω1
X

induced by ∇h and by the Levi-Civita connection on Ω1
X associated with ω, then one proves

∇ω,hφ = 0 (i.e., φ is flat as a section of End(E) ⊗ Ω1
X). This needs Lemma 2.4. Moreover, let

Z be the regular locus of E; note that codim(X \ Z) ≥ 2. One uses the pointwise eigenspace

decomposition of φ, and the fact that X (and therefore also Z) is simply connected to establish

canonical isomorphisms

TxX ' TyX, Ex ' Ey
for every pair of points x, y ∈ Z. Then the pointwise eigenspace decomposition of E produces a

direct sum splitting

E|Z =

m⊕
i=1

Fi.

There is an induced Higgs field φi on Fi, and one defines

φ̃i = φi −
1

rkFi
trφi ⊗ idFi .

Proceeding as in [2, Proposition 2.5] one shows that φ̃i = 0, so that

φ− 1

rkE
trφ⊗ idE = 0
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on Z, and therefore on X, and since H0(X,Ω1
X) = 0, we eventually have φ = 0.

In this way we have proved the needed generalization of Theorem 2.1, as expressed by the

following result.

Theorem 2.5. For any polystable Higgs sheaf over a simply connected Calabi-Yau manifold the

Higgs field is identically zero.

Corollary 2.6. Let (E, φ) be a semistable Higgs sheaf over X. Then gr(φ) = 0 and φ is nilpotent.

Proof. gr(φ) vanishes as (gr(E), gr(φ)) is a polystable Higgs sheaf.

We claim that φs = 0, where X is the length of the Jordan-Hölder filtration {(Ei, φi)}. Indeed

this is equivalent to show that φ(Ei) ⊆ Ei−1 ⊗ Ω1
X for any i ∈ {1, . . . , s}, and this is ensured by

the condition gr(φ) = 0. �

Note that the implication gr(φ) = 0⇒ φ is nilpotent holds for any variety.

3. Vanishing of Higgs fields for semistable sheaves of low rank

We begin by presenting some preliminary results. X will be a compact Kähler manifold. Given

a holomorphic vector bundle M on X, an M -pair is a pair (E, φ), where E is a torsion-free sheaf

on X, and φ : E → E⊗M is a morphism. An M -pair is said to be semistable if, for any φ-invariant

subsheaf F of E, µ(F ) ≤ µ(E).

Proposition 3.1. Let (E, φ) be a semistable M -pair. If M is semistable and has nonpositive

degree, then E is semistable as a sheaf.

Proof. The proof of [7, Theorem 2.10] holds true also when E is only torsion-free. �

Lemma 3.2. [10, Proposition 5.5.(2)] Suppose that Ω1
X is semistable and has degree zero. Then,

for any semistable Higgs sheaf (E, φ), the kernel and the image of φ are semistable Higgs sheaves

with the same slope as E.

Proof. Let (E, φ) be a semistable Higgs sheaf. By Proposition 3.1, E is semistable as a sheaf;

in particular, also E ⊗ Ω1
X is semistable, with µ(E ⊗ Ω1

X) = µ(E). As K := kerφ is a subsheaf

of E, and Q := Imφ is a subsheaf of E ⊗ Ω1
X (note that, in particular, this implies that Q is

torsion-free), we have

µ(K) ≤ µ(E) and µ(Q) ≤ µ(E ⊗ Ω1
X) = µ(E) .

Finally, by considering the exact sequence

(3.1) 0→ K → E → Q→ 0 ,

one gets that the only possibility is µ(K) = µ(E) = µ(Q). Being a subsheaf and, respectively, a

Higgs quotient with the same slope as E, K and Q are both semistable. �



6

For later purposes, let us suppose that the induced Higgs field on Q vanishes. Under this

assumption, one obtains the diagram:

(3.2) 0

��
K K

��

0 // Q

0 // K

0

��

// E //

φ

��

Q //

0

��

0

0 // K ⊗ Ω1
X

// E ⊗ Ω1
X

//

��

Q⊗ Ω1
X

// 0

K ⊗ Ω1
X

// C

��

// Q⊗ Ω1
X

// 0

0

where C is defined as the cokernel of φ. By the snake lemma we get the exact sequence

(3.3) 0 // Q
ι // K ⊗ Ω1

X
// C // Q⊗ Ω1

X
// 0 ;

notice also that µ(K ⊗Ω1
X) = µ(Q⊗Ω1

X) = µ(E). Diagram (3.2) and eq. (3.3) will be repeatedly

used throughout the paper.

Lemma 3.3. Consider a rank 1 torsion-free sheaf L, and a locally free sheaf E on X. If E is

stable, L⊗ E is stable as well.

Proof. Let F be a destabilizing subsheaf for L ⊗ E; i.e., F ⊂ L ⊗ E and µ(F ) ≥ µ(L ⊗ E) =

µ(L) + µ(E). Consider the composition

F ⊗ L∨ → E ⊗ L⊗ L∨ → E ;

the support of its kernel T is a closed subset ofX of codimension at least 2, since the map is injective

where L is locally free. The quotient G = F ⊗ L∨/T destabilizes E: by Riemann-Roch Theorem,

c1(T ) = 0, and this implies that µ(G) = µ(F ) + µ(L∨) ≥ µ(L) + µ(E) + µ(L∨) = µ(E). �

We fix now a simply connected Calabi-Yau manifold X of dimension n ≥ 2; from now on,

however, by Calabi-Yau n-manifold we shall mean a compact complex manifold with (maximal)

SU(n) holonomy. Note that, as a consequence, the tangent bundle TX is stable. Note also that

Proposition 3.1 and Lemma 3.2 hold true on X.

As rank 1 sheaves are stable, by Theorem 2.5 there is no nonzero Higgs fields on a rank 1 Higgs

sheaf on X. More trivially, since the double dual of a rank 1 torsion-free sheaf is always locally

free (see e.g. Lemma 1 in [1]; the proof works also in the complex analytic case), if φ 6= 0, φ∨∨

would provide a nonzero element of H0(Ω1
X) = 0.

Theorem 3.4. One has the following vanishing results:

(i) Any rank 2 semistable Higgs sheaf (E, φ) on X has φ = 0.

(ii) If dim(X) ≥ 3, any rank 3 semistable Higgs sheaf (E, φ) on X has φ = 0.
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Proof. In both cases, if (E, φ) is stable, we can apply Theorem 2.5 to conclude. Indeed, suppose

that (E, φ) is properly semistable and φ 6= 0. Let K and Q be as in (3.1), and assume rk(K) = 1.

Suppose that the Higgs field φ̄ induced by φ on Q vanishes, so that one can consider the sequence

in (3.3). By Lemma 3.3, K ⊗ Ω1
X is a stable rank n sheaf. Therefore, by [9, Proposition 5.7.11],

the map ι in (3.3) is either generically surjective or zero. In the first case, we get a contradiction

since rk(Q) < rk(K ⊗ Ω1
X) = n (in both settings (i) and (ii)); but also in the other case we get a

contradiction, as Q is not the zero sheaf.

If rk(E) = 2, then rk(Q) = 1 and φ̄ = 0 by the previous considerations. This proves (i).

If rk(E) = 3, then rk(Q) = 2 and the vanishing of φ̄ is given by (i).

It remains to deal with the case in which E has rank 3 and K has rank 2. Since rk(Q) = 1,

φ̄ = 0. We dualize the sequence (3.3); setting G = E∨/Q∨, we obtain the diagram

(3.4) 0

��
Q∨ Q∨

��

0 // G

0 // Q∨

0

��

// E∨ //

φ∨

��

G //

0

��

0

0 // Q∨ ⊗ Ω1
X

// E∨ ⊗ Ω1
X

//

��

G⊗ Ω1
X

// 0

Q∨ ⊗ Ω1
X

// D

��

// G⊗ Ω1
X

// 0

0

with rk(Q∨) = 1, and we can conclude reasoning as in the first part of the proof. �

4. Rank 3 semistable Higgs bundles with nonzero Higgs fields on K3 surfaces

For rank 3 semistable Higgs bundles on K3 surfaces an analogue of Theorem 3.4 is false, as it

is shown in the next example. Throughout this section, S will be an algebraic K3 surface.

Example 4.1. Let E = OS ⊕ Ω1
S with Higgs field φ(f, ω) = (ω, 0) [14]. This is semistable as

an ordinary bundle, hence Higgs-semistable a fortiori, but the Higgs field is nonzero. We have

K = OS and Q = Ω1
S . Note that E is polystable as a bundle but not as a Higgs bundle. 4

We shall give a classification theorem for rank 3 semistable Higgs bundles on a K3 surface

having nonzero Higgs field, distinguishing the case where rkK = 1 or 2 (note that rkK ≥ 1 by

Corollary 2.6). We shall need the following result [13, Lemma II.1.16].

Lemma 4.2. On a smooth projective variety, any saturated subsheaf of a reflexive sheaf is reflexive.

For rank 3 Higgs sheaves on K3 surfaces Lemma 3.2 can be improved.
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Lemma 4.3. Let (E, φ) be a rank 3 semistable Higgs sheaf on S. Both K = kerφ and Q = Imφ

are stable (Higgs) sheaves.

Proof. When K is of rank 1, the stability of Q is given by the inclusion ι in (3.3) (since K ⊗ Ω1
S

is stable and the two sheaves have the same slope).

When K has rank 2, Q is stable as it has rank 1. On the other hand K is stable as well: the

injection

0→ G→ Q∨ ⊗ Ω1
S

coming from diagram (3.4) implies that G is stable. Now, dualizing (3.1) twice, we have an

isomorphism G∨ ' K∨∨, so that K is stable. �

Lemma 4.3 shows in particular that for rank 3 semistable Higgs bundles on K3 surfaces the

Jordan-Hölder filtration never has maximal length, as in both cases rkK = 1, 2, a Jordan-Hölder

filtration for (E, φ) is provided by 0 ⊂ K ⊂ E.

4.1. Classification in the rkK = 1 case. We take a rank 3 Higgs bundle (E, φ) on the K3

surface S, and assume that K = kerφ has rank 1, so that, by Lemma 4.2, it is a line bundle. We

have the exact sequence of morphisms of Higgs bundles (3.1). As Q is stable (Lemma 4.3), one

has Q∨ ' K∨ ⊗ TS . Moreover, by dualizing the sequence (3.1) we get

(4.1) 0→ Q∨ → E∨ → G→ 0

where G has the form G = IZ(−K) for a 0-cycle Z of length

` = − ch2(E)− 24 + 3
2κ

2

with κ = c1(K). Dualizing again we obtain

0→ K → E → Q∨∨
q−→ Ext1(IZ(−K),OS)→ 0,

and one has

Ext1(IZ(−K),OS) ' OZ(K).

We extract the following data.

(i) The class κ in Pic(S) of the line bundle K.

(ii) The 0-cycle Z.

(iii) A surjective morphism q : Ω1
S → OZ .

(iv) A locally free extension

(4.2) 0→ OS → F
f−→ ker q → 0 .

Note that if we replace (E, φ) by an isomorphic Higgs bundle (E′, φ′) the data κ and Z remain

unchanged, while q changes by an automorphism of Ω1
S , and the extension (4.2) is replaced by a

new one which is isomorphic to the previous one as a complex of sheaves.

Conversely, if such collection of data (the class κ, the 0-cycle Z, a surjective morphism q : Ω1
S →

OZ modulo automorphisms of Ω1
S , and an extension as in (4.2)) is given, we set E = F (κ) and

Q = ker q ⊗O(κ), and define a Higgs field φ for E as the composition

E
f⊗id−−−→ Q→ Ω1

S(κ)→ E ⊗ Ω1
S .
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4.2. Classification in the rkK = 2 case. We consider again the exact sequence (3.1) but this

time we assume that rkK = 2 (an example is provided by the dual to the Higgs bundle in Example

4.1). By Lemma 4.2, K is locally free. The sheaf Q, which is torsion-free of rank one, is of the

form IZ(γ), where γ = c1(Q), and Z is a suitable 0-cycle. Eventually, note that

(4.3) K ' TS(γ).

Again, we can extract the following data.

(i) The class γ = c1(Q) in Pic(S).

(ii) The 0-cycle Z.

(iii) A locally free extension

(4.4) 0→ TS → F → IZ → 0 .

(iv) In view of the isomorphism (4.3) the Higgs field of E yields a morphism j : IZ → TS⊗Ω1
S .

If we replace (E, φ) by an isomorphic Higgs bundle (E′, φ′) the data γ and Z remain unchanged,

while j changes by an automorphism of TS , and the extension (4.4) is replaced by a new one which

is isomorphic to the previous one as a complex of sheaves.

Vice versa, if such data are given (the class γ, the 0-cycle Z, a morphism IZ → TS⊗Ω1
S modulo

automorphisms of TS , and an extension as in (4.4)), it is immediate to define a vector bundle E

sitting in a sequence

0→ K → E → IZ(γ)→ 0

with a Higgs field φ given by j(κ), so that K is the kernel of φ.

In both cases (rkK = 1 or 2), it is easy to check that starting from a Higgs bundle (E, φ),

collecting the data as above, and reconstructing a Higgs bundle, we obtain the Higgs bundle (E, φ)

back up to isomorphism.

5. Analysis of curve semistability

Curve semistability, as reminded in the Introduction, is the property for a (Higgs) bundle to

be (Higgs) semistable whenever pulled back to smooth projective curves; i.e., a (Higgs) bundle

E on smooth projective variety X is said to be curve semistable if f∗(E) is semistable for every

f : C → X, where C is a smooth projective curve. In this section we prove the nonexistence of

rank 3 curve semistable Higgs bundles with nontrivial Higgs field on a K3 surface with Picard

number 1; in addition, after that, we discuss to some extent the case of rank 4 for Calabi-Yau

varieties. This in particular proves the conjecture described in the Introduction in the case of rank

3 Higgs bundles on K3 surfaces with Picard number 1; however, in the next section the conjecture

will be proved for Higgs bundles of any rank on any K3 surface.

Before proving the main result of the section, let us explain what is the underlying idea by

means of Example 4.1. The key point is that Q = Ω1
S is a Higgs quotient of E with vanishing

Higgs field: in other words, it can be viewed as an ordinary bundle. Since ∆(Ω1
S) = 24 > 0, by

Theorem 1.1 we find a morphism f : C → S such that f∗Q is not semistable. We denote by Q̄

a destabilizing quotient, and we claim that Q̄ destabilizes also f∗E. But this is obvious, since

µ(f∗Ω1
S) = µ(f∗E) = 0, and a Higgs quotient of a Higgs quotient is a Higgs quotient as well.
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In general we basically need to take care of two issues: the fact that Q may be non-locally free,

and the twisting. To overcome these problems, in what follows we put the additional hypothesis

Pic(S) ' Z (which is satisfied by the generic algebraic K3 surface).

Proposition 5.1. Let (E, φ) be a rank 3 semistable Higgs bundle (E, φ) on an algebraic K3 surface

S, with Pic(S) ' Z. If φ 6= 0, there exists a morphism f : C → S, where C is a smooth projective

curve, such that f∗E is not semistable as a Higgs bundle.

Proof. Let (E, φ) be a rank 3 semistable Higgs bundle on S. We begin by assuming rkK = 1. We

know that Q∨∨ ' K ⊗ Ω1
S . By dualizing twice the sequence in (3.1) we get

(5.1) E∨∨ → K∨∨ ⊗ Ω1
S → R→ 0 ,

where R is of rank 0. Since K∨∨ ⊗ Ω1
S has vanishing Higgs field and ∆(K∨∨ ⊗ Ω1

S) = 24 > 0, by

Theorem 1.1 we find a morphism f : C → S such that f∗(K∨∨ ⊗ Ω1
S) is not semistable; in other

words, there exists a subsheaf M of f∗(K∨∨ ⊗ Ω1
S) such that

degM >
1

2
deg f∗(K∨∨ ⊗ Ω1

S) = c1(K) · C

(notice that M is clearly also a Higgs subsheaf).

We claim that f∗E is not Higgs semistable. Indeed, by pulling back the sequence in (5.1), and

by recalling that f∗E∨∨ ' (f∗E)∨∨ ' f∗E, we get the following diagram:

0

��

0

��

0

��
0 // M2

��

// M

��

// M1

��

// 0

0 // kerα //

��

f∗(K∨∨ ⊗ Ω1
S)

α //

��

f∗R //

��

0

0 // Q2
//

��

Q1
//

��

C1

��

// 0

0 0 0

Note that Q2 is a Higgs quotient of kerα, and therefore also a Higgs quotient of f∗E. Now, since

rkC1 = 0,

degQ2 = degQ1 − degC1 ≤ degQ1 < c1(K) · C .

The hypothesis on the Picard group Pic(S) ' Z, together with µ(E) = µ(K), implies c1(K) ·C =

µ(f∗E), so that degQ2 < µ(f∗E), i.e., Q2 destabilizes f∗E, as wanted.

We assume now that rkK = 2. By dualizing (4.1) we get

E∨ → Q∨ ⊗ Ω1
S → R→ 0 ,

where R is a rank 0 sheaf and µ(E∨) = µ(Q∨ ⊗ Ω1
S). Reasoning as in the previous case (just

noticing that now all the slopes involved change sign) one can find a morphism f : C → S such

that f∗(E∨) is not semistable, and so also f∗E is not semistable. �
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In what follows we fix a simply connected, smooth Calabi-Yau variety X of dimension n ≥ 2;

(E, φ) will be a rank 4 Higgs bundle on X with nonvanishing Higgs field. We shall need the

following fact.

Lemma 5.2. If X is a Calabi-Yau manifold of dimension n ≥ 3, then c2(X) 6= 0.

Proof. In a Calabi-Yau manifold X, the square of the curvature of the Chern connection of the

Calabi-Yau metric is proportional to c2(X) (see eqs. (IV.4.2,3) in [9]); hence, the condition c2(X) =

0 is equivalent to the vanishing of the curvature. But the vanishing of the curvature contradicts

the hypothesis that X has maximal holonomy. �

Proposition 5.3. Let K be the kernel of φ (so that 1 ≤ rk(K) ≤ 3).

(i) If rk(K) = 3, then n = 3; in this case, under the further assumption Pic(X) ' Z, E is

not curve semistable.

(ii) If rk(K) = 1, then n = 2 or n = 3; in this case, for n = 3, under the further assumption

Pic(X) ' Z, E is not curve semistable.

Proof. (i) Consider the usual sequence in (3.1): K has vanishing Higgs field by definition, while

Q has vanishing Higgs field since it is of rank 1. Therefore, we get a diagram analogous to (3.2),

and, by dualizing it, also the one in (3.4). The injection 0→ G→ Q∨⊗Ω1
X , since the last term is

stable, has to be generically surjective; in particular, we must have 3 = rk(G) = rk(Q∨⊗Ω1
X) = n.

Now, let assume Pic(X) ' Z. Combining the morphism E∨ → G as in eq. (4.1) with the

morphism G→ Q∨ ⊗ Ω1
X contained in a diagram analogous to (3.4), we obtain a sequence

E∨ → Q∨ ⊗ Ω1
X → R→ 0

where R has rank 0 (note that Q∨ is locally free). Now, ∆(Q∨⊗Ω1
X) = c2(X) 6= 0 again ensures the

existence of a morphism f : C → X, where C is a smooth projective curve, such that f∗(Q∨⊗Ω1
X)

is not semistable. Proceeding as in Proposition 5.1 one shows that f∗E is not semistable.

(ii) We always refer to eq. (3.1). If we assume n ≥ 3, we can apply Theorem 3.4 to conclude

that the Higgs field induced on Q vanishes. We get then the usual diagram in (3.2). The injection

0→ Q→ K ⊗Ω1
X , since the last term is stable, has to be generically surjective; in particular, we

must have 3 = rk(Q) = rk(K ⊗ Ω1
X) = n.

For n = 3, assume Pic(X) ' Z; composing the morphism E → Q∨∨ obtained dualizing twice

the sequence (3.1) with the double dual of the morphism Q → K ⊗ Ω1
X coming from (3.3) we

obtain the sequence

E → K ⊗ Ω1
X → R→ 0

where R has rank 0. Now one proceeds as in the rkK = 3 case. �

Remark 5.4. When rk(K) = 2 the main obstruction in getting a classification lies in the fact

that in general neither K ⊗Ω1
X nor Q∨ ⊗Ω1

X are stable (K and Q∨ have both rank 2, so that we

cannot apply Lemma 3.3). 4

6. The conjecture for K3 surfaces

As we discussed in the Introduction, for Higgs bundles a full analogue of Theorem 1.1 is still

conjectural in general. So, we have the following
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Conjecture 1. Any curve semistable Higgs bundle on a polarized variety (X,H) has vanishing

discriminant.

This conjecture has been proved for varieties with nef tangent bundle in [7], and some other

classes of varieties obtained from these with some easy geometric constructions. The set of varieties

with nef tangent bundle contains all rational varieties, ruled surfaces and abelian varieties.

The results of the previous sections allow one to trivially prove the conjecture for rank 2 bundles

on Calabi-Yau varieties and rank 3 bundles on Calabi-Yau varieties of dimension at least 3 (note

that it makes sense to prove the conjecture for bundles of fixed rank). Indeed, in these cases the

Higgs field necessarily vanishes (Theorem 3.4), and one is reduced to Theorem 1.1. The conjecture

is easily showed to hold true also for rank 3 bundles on K3 surfaces with Picard number 1: it is

sufficient to notice that Proposition 5.1 implies that such a bundle or has vanishing Higgs field,

and one is reduced again to Theorem 1.1, or is not curve semistable, and there is nothing to prove.

In this section we prove Conjecture 1 for K3 surfaces. To this end we shall use some of the

results of the previous sections, and some properties of the so-called H-numerically flat (H-nflat)

Higgs bundles. We recall here their basic definitions and properties we shall need later on. See

[5, 3] for full definitions and proofs.

For the moment, let X be any smooth projective variety. If E is a rank r vector bundle

on X, and s < r is a positive integer, we denote by ps : Grs(E) → X the Grassmann bundle

parameterizing rank s locally free quotients of E of dimension s. There is on Grs(E) an exact

sequence of vector bundles

(6.1) 0→ Sr−s,E
ψ−→ p∗sE

η−→ Qs,E .→ 0

Here Sr−s,E is the universal rank r−s subbundle of p∗sE and Qs,E is the universal rank s quotient.

Given a Higgs bundle E = (E, φ), for every s we define a closed subscheme Grs(E) ⊂ Grs(E)

as the vanishing locus of the composite morphism

(η ⊗ Id) ◦ p∗s(φ) ◦ ψ : Sr−s,E → Qs,E ⊗ p∗sΩ1
X .

Let ρs = ps|Grs(E) : Grs(E) → X be the restriction. The restriction of (6.1) to Grs(E) provides

the universal exact sequence

0→ Sr−s,E
ψ−→ ρ∗sE

η−→ Qs,E → 0 ,

where Qs,E = Qs,E |Grs(E) is equipped with the quotient Higgs field induced by the Higgs field ρ∗sφ.

The scheme Grs(E) satisfies the universal property that a morphism of varieties f : T → X factors

through Grs(E) if and only if the pullback f∗(E) admits a locally free rank s Higgs quotient. In

that case the pullback of the above universal sequence on Grs(E) gives the desired quotient of

f∗(E).

Definition 6.1. A Higgs bundle E = (E, φ) of rank one is said to be Higgs-numerically effective

(H-nef for short) if E is numerically effective in the usual sense. If rkE ≥ 2, we inductively define

H-nefness by requiring that

(i) all Higgs bundles Qs,E are H-nef for all s, and

(ii) the determinant line bundle det(E) is nef.
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If both E and E∗ are Higgs-numerically effective, E is said to be Higgs-numerically flat (H-nflat).

From Definition 6.1 one sees that the first Chern class of an H-nflat Higgs bundle is numerically

equivalent to zero. Note that if E = (E, φ), with E nef in the usual sense, then E is H-nef. If

φ = 0, the Higgs bundle E = (E, 0) is H-nef if and only if E is nef in the usual sense.

We collect in the following Proposition the properties of H-nef and H-nflat Higgs bundles we

shall need later on.

Proposition 6.2.

(i) An H-nflat Higgs bundle is semistable (with respect to any polarization).

(ii) A curve semistable Higgs bundle whose first Chern class is numerically equivalent to zero

is H-nflat. In particular,

(iii) A semistable Higgs bundle on a curve having zero first Chern class in H-nflat.

(iv) A Higgs bundle E on X is H-nef (H-nflat) if and only if for every morphism f : C → X,

where C is a smooth projective curve, the Higgs bundle f∗E is H-nef (H-nflat).

(v) The kernel and cokernel of a morphism of H-nflat Higgs bundles are H-nflat Higgs bundles.

We recall the following fact [10, §3.2].

Proposition 6.3. Conjecture 1 is equivalent to the following statement: all Chern classes of an

H-nflat Higgs bundle vanish.

Theorem 6.4. Let X be a K3 surface. If (E, φ) is an H-nflat Higgs bundle on X, then ci(E) = 0

for i > 0. So, Conjecture 1 is true for K3 surfaces.

Proof. We prove this result by induction on the rank of E. Since (E, φ) is H-nflat, it is semistable

(Prop. 6.2(i)) and has c1(E) = 0. Moreover, it is curve semistable. We also know that K = kerφ

has rank at least one (Corollary 2.6) and again, it is locally free by Lemma 4.2. We claim that

c1(K) = 0. Indeed, given any polarization H on X, we have c1(K) ·H = 0 by Lemma 3.2, so that

by the Hodge index theorem c1(K)2 < 0. However, c1(K) ·H = 0 holds for all polarizations H in

X, and since the ample cone is open in Pic(X)⊗R, we obtain that c1(K) lies in the trascendental

lattice. But of course it also lies in the Picard lattice, and as c1(K)2 6= 0, we obtain c1(K) = 0.

Note that if K = E there is nothing to prove, as then φ = 0, E is numerically flat, and its

Chern classes vanish [8]. So 1 ≤ rkK < rkE.

We claim that K is H-nflat as well. To show that let us consider a morphism f : C → X, where

C is a smooth projective curve, and pull the exact sequence (3.1) back to C. Since K is locally

free, we get an exact sequence

0→ f∗(K)→ f∗(E)→ f∗(Q)→ 0.

Now µ(f∗(K)) = µ(f∗(E)) = 0, so that f∗(K) is semistable and hence H-nflat (Prop. 6.2(iii)); so

by Prop. 6.2(iv) K is H-nflat as claimed.

By Prop. 6.2(v), Q is H-nflat as well. By induction, K and Q have vanishing Chern classes, so

the same is true for E.

To start the induction, note that for rkE = 2 the Higgs field φ vanishes (Theorem 3.4), so

again E is numerically flat. �
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Finally, Proposition 3.12 in [7] implies that the conjecture also holds for Enriques surfaces (and

actually, more generally, for smooth projective surfaces X such that there is a finite étale map

Y → X where Y is a K3 surface); analogously, by Proposition 3.13 in [7], the conjecture holds for

varieties Y for which there is a surjective morphism onto a K3 surface Y whose fibres are smooth

and rationally connected (for instance, projective bundles on Y and blowups of Y at points).
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