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aSISSA, Scuola Internazionale Superiore di Studi Avanzati,
via Bonomea 265, 34136 Trieste Italy

INFN – Sezione di Trieste
e-mail: ugo.bruzzo@sissa.it

bDipartimento di Matematica G. Peano, Universitá di Torino
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Abstract

We advocate that the generalized Kronheimer construction of the Kähler quotient crepant resolution
Mζ −→ C3/Γ of an orbifold singularity where Γ ⊂ SU(3) is a finite subgroup naturally defines the field
content and the interaction structure of a superconformal Chern-Simons Gauge Theory. This latter is suppos-
edly the dual of an M2-brane solution of D = 11 supergravity with C×Mζ as transverse space. We illustrate
and discuss many aspects of this type of constructions emphasizing that the equation ppp∧ppp= 0 which provides
the Kähler analogue of the holomorphic sector in the hyperKähler moment map equations canonically defines
the structure of a universal superpotential in the CS theory. Furthermore the kernel DΓ of the above equation
can be described as the orbit with respect to a quiver Lie group GΓ of a special locus LΓ ⊂ HomΓ(Q⊗R,R)
that has also a universal definition. We provide an extensive discussion of the relation between the coset
manifold GΓ/FΓ, the gauge group FΓ being the maximal compact subgroup of the quiver group, the moment
map equations and the first Chern classes of the so named tautological vector bundles that are in one-to-one
correspondence with the nontrivial irreps of Γ. These first Chern classes are represented by (1,1)-forms on
Mζ and provide a basis for the cohomology group H2(Mζ ). We also discuss the relation with conjugacy
classes of Γ and we provide the explicit construction of several examples emphasizing the role of a general-
ized McKay correspondence. The case of the ALE manifold resolution of C2/Γ singularities is utilized as a
comparison term and new formulae related with the complex presentation of Gibbons-Hawking metrics are
exhibited.
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1 Introduction

The issue of of D = 3 N = 2 Chern-Simons gauge theories was reconsidered by one of us (P.F.) and P.A. Grassi
from two complementary viewpoints [1]:

a) The constructive viewpoint of their formulation in terms of Integral Forms in superspace that brings together,
within a unified (super)cohomological scheme, all the existing formulation of supersymmetric field theo-
ries, namely the component approach, the rheonomic approach and the superspace approach.

b) The field content and the interaction structure of the theories that are supposed to represent gauge duals of M2-
brane solutions of D= 11 supergravity having a C3/Γ quotient singularity in their transverse space. Such a
situation, as we recall in the present paper, arises by considering the classical case of an AdS4×S7 solution
where S7, viewed as a Hopf-fibration over P3, is modded by a discrete subgroup of Γ⊂ SU(3)⊂ SU(4).

The physical motivations and the perspectives of the study encompassed in point b) have been extensively dis-
cussed in [1]. Here we are more concerned with the mathematical aspects of these theories and we aim at proving
the following:

Statement 1.1 There is a one-to-one map between the field-content and the interaction structure of a D = 3,
N = 2 Chern-Simons gauge theory and the generalized Kronheimer algorithm of solving quotient singularities
C3/Γ via a Kähler quotient based on the McKay correspondence. All items on both sides of the one-to-one
correspondence are completely determined by the structure of the finite group Γ and by its specific embedding
into SU(3).

An ultra short summary of the results that we are going to present is the following. From the field–theoretic side
the essential items defining the theory are:

1. The Kähler manifold S spanned by the Wess-Zumino multiplets. This is the 3|Γ| dimensional mani-
fold SΓ = HomΓ (Q⊗R,R) where Q is the representation of Γ inside SU(3) and R denotes the regular
representation of the discrete group.

2. The gauge group FΓ. This latter is identified as the maximal compact subgroup FΓ of the complex quiver
group GΓ of complex dimension |Γ| − 1, to be discussed later. Since the action of FΓ on SΓ is defined
by construction, the gauge interactions of the Wess-Zumino multiplets are also fixed and the associated
moment maps are equally uniquely determined.

3. The Fayet-Iliopoulos parameters. These are in a one-to-one association with the ζ levels of the moment
maps corresponding to the center of the gauge Lie algebra z [FΓ]

1. The dimension of this center is r which
is the number of nontrivial conjugacy classes of the discrete group Γ and also of its nontrivial irreps.

4. The superpotential WΓ. This latter is a cubic function uniquely associated with a quadratic constraint
[A,B] = [B,C] = [C,A] = 0 which characterizes the generalized Kronheimer construction, defines a Kähler
subvariety V|Γ|+2 ⊂SΓ and admits a universal group theoretical description in terms of the quiver group
GΓ.

5. In presence of all the above items the manifold of vacua of the gauge theory, namely of extrema at zero of
its scalar potential, is just the minimal crepant resolution of the singularity MΓ→ C3

Γ
, obtained as Kähler

quotient of V|Γ|+2 with respect to the gauge group FΓ.

1In this paper we follow the convention that the names of the Lie groups are denoted with calligraphic letters F ,G ,U , the corre-
sponding Lie algebras being denoted by mathbb letters F,G,U.
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6. The Dolbeault cohomology of the space of vacua MΓ is predicted by the finite group Γ structure in terms
of a grading of its conjugacy classes named age grading. The construction of the homology cycles and
exceptional divisors that are Poincaré dual to such cohomology classes is the most exciting issue in the
present list of geometry ⇐⇒ field theory correspondences, liable to give rise to many interesting phys-
ical applications. In this context a central item is the notion of tautological bundles associated with the
nontrivial irreps of Γ that we discuss at length in the sequel [2].

2 The general form of N = 2 Chern-Simons Gauge Theories

To discuss the one-to-one map in statement 1.1, we begin by recalling, from the results of [1], the general
structure of the component lagrangian for an N = 2, D = 3 Chern-Simons gauge theory. The results of [1]
correspond to a generalization and more geometrical transcription of the general form of coupling of matter
with D=3 gauge theories constructed in 1999 in a series of three papers [3–5], using auxiliary fields and the
rheonomic approach. In 1999, the motivation to consider this type of theories was the reinterpretation [3–8],
within the AdS/CFT scheme of the Kaluza-Klein spectra of supergravity localized on backgrounds AdS4×M7
that were calculated in the years 1982-1985 [9–25]. In all those cases the manifold M7 was smooth, actually a
Sasakian coset manifold. As we better explain, in this paper we are interested to apply the same ideas to the case
where the metric cone ove M7 is an orbifold C×C3/Γ, denoting by Γ a finite subgroup of SU(3).

The lagrangian of N = 2 Chern-Simons Gauge Theory, as systematized in [1], takes the following form:

LCSo f f = −α Tr
(
F ∧ A +

2
3

A ∧ A ∧ A

)
+

(
1
2

gi j? Π
m|i

∇z j? + Π
m| j?

∇zi
)
∧ en ∧ ep

εmnp

− 1
6

gi j? Π
m|i

Π
m| j? er ∧ es ∧ et

εrst

+ i
1
2

gi j?
(

χ
j?

γ
m

∇χ
i + χ

i
c γ

m
∇χ

i?
c

)
∧ en ∧ ep

εmnp(
− 1

3
MΛ

(
∂ik

j
Λ

g j`? χ
`?

χ
i + ∂i?k

j?
Λ

g j`?χ
`
c χ

i?
c

)
+

α

3

(
λ

Λ
λ

Σ + λ
Λ

c λ
Σ
c

)
κΛΣ

+ i
1
3

(
χ

j?
c λ

Λ ki
Λ − χ

i
c λ

Λ k j?
Λ

)
gi j?

+
1
6

(
∂i∂ jW χ

i
c χ

j + ∂i?∂ j?W χ
i?

χ
j?

c

))
∧ en ∧ ep

εmnp

−V (M,D,H ,z,z) εmnp em ∧ en ∧ ep (2.1)

where:

1. The complex scalar fields zi span a Kähler manifold S , gi j? denoting its Kähler metric.

2. Πm|i are auxiliary fields that are identified with the world volume derivatives of the scalar zi by their own
equation of motion.

3. The one–forms em denote the dreiben of the world volume.

4. A Λ is the gauge-one form of the gauge group FΓ.

5. λ Λ are the gauginos, namely the spin 1
2 partners of the gauge bosons A Λ

6. χ i are the chiralinos, namely the spin 1
2 partners of the Wess-Zumino scalars zi.

7. MΛ are the real scalar fields in the adjoint of the gauge group that complete the gauge multiplet together
with the gauginos and the gauge bosons.
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8. W (z) is the superpotential.

9. ki
Λ

are the Killing vectors of the Kähler metric of S, associated with the generators of the gauge group.

10. κΛΣ, made of constants denotes the Cartan Killing metric on the Lie algebra FΓ of the gauge group FΓ

The scalar potential in terms of physical and auxiliary fields is the following one:

V (M,D,H ,z,z) =

(
α

3
MΛ

κΛΣ −
1
6

PΣ(z,z) +
1
6

ζI C
I
Σ

)
DΣ +

1
6

MΛ MΣ ki
Λ k j?

Σ
gi j?

+
1
6

(
H i

∂iW + H `?
∂`?W

)
− 1

6
gi`? H

i H `? (2.2)

where PΣ(z,z) are the moment maps associated with each generator of the gauge-group, ζI are the Fayet-
Iliopoulos parameters associated with each generator of the center of the gauge Lie algebra z(FΓ), H i are the
complex auxiliary fields of the Wess-Zumino multiplets and DΛ are the auxiliary scalars of the vector multiplets.
By CI

Σ
we denote the projector onto a basis of generators of the Lie Algebra center z [FΓ].

In these theories the gauge multiplet does not propagate and it is essentially made of lagrangian multipliers
for certain constraints. Indeed the auxiliary fields, the gauginos and the vector multiplet scalars have algebraic
field equations so that they can be eliminated by solving such equations of motion. The vector multiplet auxiliary
scalars DΛ appear only as lagrangian multipliers of the constraint2:

MΛ =
1

2α
κ

ΛΣ
(
PΣ − ζI C

I
Σ

)
(2.3)

while the variation of the auxiliary fields H j? of the Wess Zumino multiplets yields:

H i = gi j?
∂ j? W ; H

j?
= gi j?

∂iW (2.4)

On the other hand, the equation of motion of the field MΛ implies:

DΛ = − 1
α

κ
ΛΓgi j? ki

Γ k j?
Σ

MΣ = − 1
2α2 gi j? κ

ΛΓ ki
Γ k j?

Σ
κ

Σ∆
(
P∆ − ζI C

I
∆

)
(2.5)

which finally resolves all the auxiliary fields in terms of functions of the physical scalars.
Upon use of both constraints (2.3) and (2.4) the scalar potential takes the following positive definite form:

V (z,z) =
1
6

(
∂iW ∂ j?W gi j? + mΛΣ

(
PΛ − ζI C

I
Λ

) (
PΣ − ζJ C

J
Σ

))
mΛΣ(z,z) ≡ 1

4α2 κ
ΛΓ

κ
Σ∆ ki

Γ k j?
∆

gi j? (2.6)

In a similar way the gauginos can be resolved in terms of the chiralinos:

λ
Λ = − 1

2α
κ

ΛΣ gi j?χ
i k j?

Σ
; λ

Λ
c = − 1

2α
κ

ΛΣ gi j?χ
j? ki

Σ (2.7)

In this way if we were able to eliminate also the gauge one form A the Chern-Simons gauge theory would reduce
to a theory of Wess-Zumino multiplets with additional interactions. The elimination of A , however, is not pos-
sible in the nonabelian case and it is possible in the abelian case only through duality nonlocal transformations.
This is the corner where interesting nonperturbative dynamics is hidden.

2As it is customary for all metrics κΛΣ with upper indices denotes the inverse of the Cartan Killing metric κ∆Π with lower indices.
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2.1 A special class of N = 2 Chern-Simons gauge theory in three dimensions

In the realization of the one-to-one map advocated in statement 1.1, we are interested in theories where the
Wess-Zumino multiplets are identified with the non-vanishing entries of a triple of matrices, named A,B,C, and
the superpotential takes the following form:

W = const× Tr(A [B,C])+Tr(B [C,A])+Tr(C [A,B])

= 3const× (Tr(ABC)−Tr(AC B)) (2.8)

Because of the positive-definiteness of the Kähler metric gi j? and of the Killing metric mΛΣ the zero of the
potential, namely the vacua, are characterized by the two conditions:

∂iW = 0 ⇒ [A,B] = [B,C] = [C,A] = 0 (2.9)

PΛ = ζI C
I
Λ (2.10)

which will have a distinctive interpretation in the Kähler quotient construction à la Kronheimer. Notice that CI
Λ

denotes the projector of the gauge Lie algebra onto its center, as we already said.

3 On superconformal Chern-Simons theories dual to M2-branes

In this short section we collect some issues and hints relative to the construction of superconformal gauge theories
dual to orbifolds of the M2-brane transverse space with respect to Γ ⊂ SU(3) ⊂ SU(4). The most important
conclusion is that, as long as we require the existence of a complex structure of R8 compatible with L168

3, we
reduce the singularity to:

C4

Γ
→ C× C3

Γ
; Γ⊂ SU(3) (3.1)

From the point of view of supergravity and string theory the factorization of a C factor is welcome. It provides
the means to reduce M2-branes to D2-branes in D = 10 type IIA theory.

As it is well known SO(8)-gauged supergravity is obtained from d=11 supergravity compactified on:

AdS4×S7 (3.2)

which is the near horizon geometry of an M2-brane with R8 transverse space. Indeed R8 is the metric cone
on S7. The entire Kaluza-Klein spectrum which constitutes the spectrum of BPS operators of the d=3 theory is
organized in short representations of the supergroup:

Osp(8|4) (3.3)

Our discussion leads to the conclusion that we can consider the compactification of supergravity on orbifolds of
the following type:

CΓS7 =
S7

Γ
; Γ⊂ SU(3)⊂ SO(8) (3.4)

The corresponding M2-brane solution has the orbifold:

CΓR8 =
R8

Γ
(3.5)

3Following the notations of [26] by L168 we denote the simple group of order 168 that is isomorphic with PSL(2,7) and which is also
the largest non abelian non solvable finite subgroup of SU(3), according with the classification of [27, 28].
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as transverse space.
The massive and massless modes of the Kalauza Klein spectrum are easily worked out from the Osp(8|4)

spectrum of the 7-sphere. Indeed since the group Γ is embedded by the above construction into SO(8) ⊂
Osp(8|4), it suffices to cut the spectrum to the Γ singlets.

3.1 Quotient singularities and CS gauge groups

What we said above can be summarized by saying that we construct models where M2-branes are probing the
singularity (3.5) and we might be interested in the smooth manifold obtained by blowing up the latter.

From another viewpoint, according to [29] the superconformal Chern-Simons theory with the gauge groups
SU(N)×SU(N) at level k is dual to supergravity on:

AdS4×
S7

Zk
(3.6)

namely the association is at the orbifold point between the gauge-group structure and the Γ discrete group, so
that:

SU(N) |k level ×SU(N) |k level⇔ Zk (3.7)

Despite the difficulties in working out the blowup, it is therefore legitimate to ask the question: what is the CS
gauge group corresponding to Γ ⊂ SU(3):

gauge CS ? ⇔ Γ ⊂ SU(3) (3.8)

As it is implicit in the comparison between eq. (3.8) and eq. (3.7), the statement contained in [29] is incomplete.
It is not sufficient to say S7

Zk
. In order to derive the dual superconformal field theory it is essential to specify the

embedding of Zk into the isometry group SO(8) of the seven sphere. Different embeddings of the same discrete
group can lead to different CS gauge theories.

3.2 Some suggestions from ALE manifolds

Some useful suggestions on this conceptual link can arise by comparing with the case of well known singularities
like C2/Γ, the discrete group Γ being one of the finite subgroups of SU(2) falling into the ADE classification.
In that case the blowup of the singularities can be done by means of a hyperKähler quotient according to the
Kronheimer construction [30, 31]. The gauge group is essentially to be identified with the nonabelian extension
U(1)→ U(N) of the group F one utilizes in the hyperKähler quotient. The group FΓ is a product of U(1)’s
as long as the discrete group Γ is the cyclic group Zk, yet it becomes nonabelian with factors SU(k) when Γ is
nonabelian. As far as we know no one has constructed CS gauge theories corresponding to M2-branes that probe
singularities of the type C2×C2/Γ with a nonabelian Γ. This case might be a ground-zero case to investigate.

3.3 Moduli of the blowup and superconformal operators: inspirations from geometry

It must be stressed that in the spectrum of the conformal field theory obtained at the orbifold point (which
corresponds to the Kaluza Klein spectrum in the case of smooth manifolds) there must be those associated with
the moduli of the blowup. By similarity with the case of superstrings at orbifold points, we expect that these
are twisted states, namely states not visible in the Kaluza Klein spectrum on the orbifold. Yet when the orbifold
is substituted with its smooth counterpart, obtained blowing of up the singularity, these states should appear as
normal states in the supergravity Kaluza Klein spectrum.
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3.4 Temporary conclusion

The above discussion shows that the embedding of Γ is fundamental. We can treat L168 ≡ PSL(2,Z7) and other
discrete group Γ singularities when Γ has a holomorphic action on C4. This happens when

Γ⊂ SU(3)⊂ SO(8) (3.9)

In this case the singularity is just C×C3/Γ and C3/L168 is the blowup described by Markushevich in [32]. We
mention it again in a later section. The classification of discrete subgroups of SL(3,C) was achieved at the dawn
of the XXth century in [27, 28]. The largest nonabelian nontrivial group appearing in this classification is the
unique simple group with 168 elements named L168 (see [26] and [33] for a thorough discussion). The other
possibilities are provided by a finite list of cyclic and solvable groups reviewed for instance in [34].

3.5 Quotient singularities and M2-branes

We come now to the mathematics which is of greatest interest to us in order to address the physical problem
at stake, i.e., the construction of CS theories dual to M2-branes that have the metric cone on orbifolds S7/Γ as
transverse space. The first step is to show that such metric cone is just C4/Γ. This is a rather simple fact but it
is of the utmost relevance since it constitutes the very bridge between the mathematics of quotient singularities,
together with their resolutions, and the physics of CS theories. The pivot of this bridge is the complex Hopf
fibration of the 7-sphere. The argument leading to the above conclusion was provided in the paper [1] and we do
not deem it necessary to repeat it here. We just jump to the conclusion there reached. The space C4−{0} can
be regarded as the total space of the canonical C?-fibration over CP3:

π : C4−{0} → CP3

∀y ∈ CP3 : π
−1(y)∼ C? (3.10)

By restricting to the unit sphere in C4 we obtain the Hopf fibration of the seven sphere:

π : S7 → CP3

∀y ∈ CP3 : π
−1(y)∼ S1 (3.11)

The consequence of such a discussion is that if we have a finite subgroup Γ⊂ SU(4), which obviously is an
isometry of CP3, we can consider its action both on CP3 and on the seven sphere so that we have:

AdS4×
S7

Γ
→ ∂AdS4×

C4

Γ
(3.12)

We are therefore interested in describing the theory of M2-branes probing the singularity C4

Γ
. Hence an important

guiding line in addressing mathematical questions comes from their final use in connection with M2-brane
solutions of D = 11 supergravity and with the construction of quantum gauge theories dual to such M2-solutions
of supergravity.

Recalling the results of [1] we start from the following diagram

K3
π←− M7

Cone
↪→ K4

A
↪→ Vq (3.13)

where M7 is the compact manifold on which D=11 supergravity is compactified and Vq denotes some appropriate
algebraic variety of complex dimension q. It is required that M7 should be a Sasakian manifold.

What Sasakian means is visually summarized in the following table.
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base of the fibration projection 7-manifold inclusion metric cone

B6
π←− M7 ↪→ C (M7)

m ∀p ∈B6 π−1(p) ∼ S1 m m
Kähler K3 Sasakian Kähler Ricci flat K4

First of all the M7 manifold must admit an S1-fibration over a Kähler three-fold K3:

π : M7
S1

−→ K3 (3.14)

Calling zi the three complex coordinates of K3 and φ the angle spanning S1, the fibration means that the metric
of M7 admits the following representation:

ds2
M7

= (dφ −A )2 + gi j? dzi⊗dz j? (3.15)

where the one–form A is some suitable connection one–form on the U(1)-bundle (3.14).
Secondly the metric cone C (M7) over the manifold M7 defined by the direct product R+×M7 equipped

with the following metric:
ds2

C (M7)
= dr2 +4e2 r2 ds2

M7
(3.16)

should also be a Ricci-flat complex Kähler 4-fold. In the above equation e just denotes a constant scale parameter
with the dimensions of an inverse length [e] = `−1.

Altogether the Ricci flat Kähler manifold K4, which plays the role of transverse space to the M2-branes, is a
line bundle over the base manifold K3:

π : K4 −→ K3

∀p ∈ K3 π
−1(p) ∼ C (3.17)

In [1], following [7], it was emphasized that the fundamental geometrical clue to the field content of the
superconformal gauge theory on the boundary is provided by the construction of the Kähler manifold K4 as a
holomorphic algebraic variety in some higher dimensional affine or projective space Vq, plus a Kähler quotient.
The equations identifying the algebraic locus in Vq are related with the superpotential W appearing in the
d = 3 lagrangian, while the Kähler quotient is related with the D-terms appearing in the same lagrangian. The
coordinates uα of the space Vq are the scalar fields of the superconformal gauge theory, whose vacua, namely
the set of extrema of its scalar potential, should be in a one–to–one correspondence with the points of K4. Going
from one to multiple M2–branes just means that the coordinates zi of Vq acquire color indices under a proper set
of color gauge groups and are turned into matrices. In this way we obtain quivers.

This is the main link between the D=3 Chern-Simons gauge theories discussed in sections 2, 2.1 and the
geometry of the transverse space to the branes.

Next in [1] eq. (3.13) was rewritten in slightly more general terms. The AdS4 compactification of D = 11
supergravity is obtained by utilizing as complementary 7-dimensional space a manifold M7 which occupies the
above displayed position in the inclusion–projection diagram (3.13). The metric cone C (M7) enters the game
when, instead of looking at the vacuum:

AdS4⊗M7 (3.18)

we consider the more general M2-brane solutions of D=11 supergravity, where the D=11 metric is of the follow-
ing form:

ds2
11 = H(y)−

2
3
(
dξ

µ ⊗dξ
ν
ηµν

)
−H(y)

1
3
(
ds2

M8

)
(3.19)
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ηµν being the constant Lorentz metric of Mink1,2 and:

ds2
M8

= dyI⊗dyJ gIJ(y) (3.20)

being a Ricci-flat metric on an asymptotically locally Euclidean 8-manifold M8. In eq. (3.19) the symbol H(y)
denotes a harmonic function over the manifold M8, namely:

2gH(y) = 0 (3.21)

Eq. (3.21) is the only differential constraint required in order to satisfy all the field equations of D = 11 super-
gravity in presence of the standard M2-brain ansatz for the 3-form field:

A[3]
∝ H(y)−1 (dξ

µ ∧dξ
ν ∧dξ

ρ
εµνρ

)
(3.22)

In this more general setup the manifold M8 is what substitutes the metric cone C (M7). To see the connection
between the two viewpoints it suffices to introduce the radial coordinate r(y) by means of the position:

H(y) = 1 − 1
r(y)6 (3.23)

The asymptotic region where M8 is required to be locally Euclidean is defined by the condition r(y)→∞. In this
limit the metric (3.20) should approach the flat Euclidean metric of R8 'C4. The opposite limit where r(y)→ 0
defines the near horizon region of the M2-brane solution. In this region the metric (3.19) approaches that of the
space (3.18), the manifold M7 being a codimension one submanifold of M8 defined by the limit r→ 0.

To be mathematically more precise let us consider the harmonic function as a map:

H : M8 → R+ (3.24)

This view point introduces a foliation of M8 into a one-parameter family of 7-manifolds:

∀h ∈ R+ : M7(h) ≡ H−1(h)⊂M8 (3.25)

In order to have the possibility of residual supersymmetries we are interested in cases where the Ricci flat
manifold M8 is actually a Ricci-flat Kähler 4-fold.

In this way the appropriate rewriting of eq. (3.13) is as follows:

K3
π←− M7

H−1

←− K4
A
↪→ Vq (3.26)

Next we recall the general pattern laid down in [1] that will be our starting point.

The N = 8 case with no singularities. The prototype of the above inclusion–projection diagram is provided
by the case of the M2-brane solution with all preserved supersymmetries. In this case we have:

CP3 π←− S7 Cone
↪→ C4 A =Id

↪→ C4 (3.27)

On the left we just have the projection map of the Hopf fibration of the 7-sphere. On the right we have the
inclusion map of the 7 sphere in its metric cone C (S7) ≡ R8 ∼ C4. The last algebraic inclusion map is just the
identity map, since the algebraic variety C4 is already smooth and flat and needs no extra treatment.
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The singular orbifold cases. The next orbifold cases are those of interest to us in this paper. Let Γ ⊂ SU(4)
be a finite discrete subgroup of SU(4). Then eq. (3.27) is replaced by the following one:

CP3

Γ

π←− S7

Γ

Cone
↪→ C4

Γ

A =?
↪→ ? (3.28)

The consistency of the above quotient is guaranteed by the inclusion SU(4) ⊂ SO(8). The question marks can
be removed only by separating the two cases:

A) Case: Γ⊂ SU(2)⊂ SU(2)I⊗SU(2)II ⊂ SU(4). Here we obtain:

C4

Γ
' C2× C2

Γ
(3.29)

and everything is under full control for the Kleinian C2

Γ
singularities and their resolution à la Kronheimer

in terms of hyperKähler quotients.

B) Case: Γ⊂ SU(3)⊂ SU(4). Here we obtain:

C4

Γ
' C× C3

Γ
(3.30)

and the study and resolution of the singularity C3

Γ
in a physicist friendly way is the main issue of the present

paper. The comparison of case B) with the well known case A) will provide us with many important hints.

Let us begin by erasing the question marks in case A). Here we can write:

CP3

Γ

π←− S7

Γ

Cone
↪→ C2× C2

Γ

Id×AW
↪→ C2×C3 (3.31)

In the first inclusion map on the right, Id denotes the identity map C2→ C2 while AW denotes the inclusion of
the orbifold C2

Γ
as a singular variety in C3 cut out by a single polynomial constraint:

AW :
C2

Γ
→ V(I W

Γ )⊂ C3

C [V(IΓ)] =
C[u,w,z]

WΓ(u,w,z)
(3.32)

where by C [V(IΓ)] we denote the coordinate ring of the algebraic variety V. As we recall in more detail in
the next section, the variables u,w,z are polynomial Γ-invariant functions of the coordinates z1,z2 on which Γ

acts linearly. The unique generator WΓ(u,w,z) of the ideal I W
Γ

which cuts out the singular variety isomorphic to
C2

Γ
is the unique algebraic relation existing among such invariants. In the next sections we discuss the relation

between this algebraic equation and the embedding in higher dimensional algebraic varieties associated with the
McKay quiver and the hyperKähler quotient.

Let us now consider the case B). Up to this level things go in a quite analogous way with respect to case A).
Indeed we can write

CP3

Γ

π←− S7

Γ

Cone
↪→ C× C3

Γ

Id×AW
↪→ C×C4 (3.33)

In the last inclusion map on the right, Id denotes the identity map C→C while AW denotes the inclusion of the
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orbifold C3

Γ
as a singular variety in C4 cut out by a single polynomial constraint:

AW :
C3

Γ
→ V(IΓ)⊂ C4

C [V(IΓ)] ∼
C[u1,u2,u3,u4]

WΓ(u1,u2,u3,u4)
(3.34)

Indeed as we show in later sections for the case Γ = L168, discussed by Markushevich, and for all of its sub-
groups4, including Γ = G21 ⊂ L168, the variables u1,u2,u3,u4 are polynomial Γ-invariant functions of the coor-
dinates z1,z2,z3 on which Γ acts linearly. The unique generator WΓ(u1,u2,u3,u4) of the ideal IΓ which cuts out
the singular variety isomorphic to C3

Γ
is the unique algebraic relation existing among such invariants. As for the

relation of this algebraic equation with the embedding in higher dimensional algebraic varieties associated with
the McKay quiver, things are now more complicated.

In the years 1990s up to 2010s there has been an intense activity in the mathematical community on the issue
of the crepant resolutions of C3/Γ (see for instance [32, 35, 36, 36, 37]) that has gone on almost unnoticed by
physicists since it was mostly formulated in the abstract language of algebraic geometry, providing few clues to
the applicability of such results to gauge theories and branes. Yet, once translated into more explicit terms, by
making use of coordinate patches, and equipped with some additional ingredients of Lie group character, these
mathematical results turn out to be not only useful, but rather of outmost relevance for the physics of M2-branes.
In the present paper we aim at drawing the consistent, systematic scheme which emerges in this context upon a
proper interpretation of the mathematical constructions.

So let us consider the case of smooth resolutions. In case A) the smooth resolution is provided by a manifold
ALEΓ and we obtain the following diagram:

M7
H−1

←− C2×ALEΓ

Id×qK←− C2×V|Γ|+1
AP
↪→ C2×C2|Γ| (3.35)

In the above equation the map H−1

←− denotes the inverse of the harmonic function map on C2×ALEΓ that we

have already discussed. The map
Id×qK←− is instead the product of the identity map Id : C2→ C2 with the Kähler

quotient map:
qK : V|Γ|+1 −→ V|Γ|+1 //K F|Γ|−1 ' ALEΓ (3.36)

of an algebraic variety of complex dimension |Γ|+1 with respect to a suitable Lie group F|Γ|−1 of real dimension

|Γ| − 1. Finally the map
AP
↪→ denotes the inclusion map of the variety V|Γ|+1 in C2|Γ|. Let y1, . . .y2|Γ| be the

coordinates of C2|Γ|. The variety V|Γ|+1 is defined by an ideal generated by |Γ|−1 quadratic generators:

V|Γ|+1 = V(IΓ)

C [V(IΓ)] =
C
[
y1, . . .y2|Γ|

](
P1(y),P2(y), . . . ,P|Γ|−1(y)

) (3.37)

Actually the |Γ|−1 polynomials Pi(y) are the holomorphic part of the triholomorphic moment maps associated
with the triholomorphic action of the group F|Γ|−1 on C2|Γ| and the entire procedure from C2|Γ| to ALEΓ can be
seen as the hyperKähler quotient:

ALEΓ = C2|Γ|//HK F|Γ|−1 (3.38)

yet we have preferred to split the procedure into two steps in order to compare case A) with case B) where the
two steps are necessarily distinct and separated.

4The group L168 has three maximal subgroups, up to conjugation, namely two non conjugate copies of the octahedral group O24 ∼ S4
and one non abelian group of order 21, denoted G21 that is isomorphic to the semidirect product Z3 nZ7.
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Indeed in case B) we can write the following diagram:

M7
H−1

←− C×YΓ

Id×qK←− C×V|Γ|+2
Id×AP
↪→ C×C3|Γ| (3.39)

In this case, just as in the previous one, the intermediate step is provided by the Kähler quotient but the map on

the extreme right
AP
↪→ denotes the inclusion map of the variety V|Γ|+2 in C3|Γ|. Let y1, . . .y3|Γ| be the coordinates

of C3|Γ|. The variety V|Γ|+2 is defined as the principal branch of a set of quadratic algebraic equations that are
group-theoretically defined. Altogether the mentioned construction singles out the holomorphic orbit of a certain
group action to be discussed in detail in the sequel. So we anticipate:

V|Γ|+2 = DΓ ≡ OrbitGΓ
(LΓ) (3.40)

where both the set LΓ and the complex group GΓ are completely defined by the discrete group Γ defining the
quotient singularity.

4 Generalities on C3

Γ
singularities

Recalling what we summarized above we conclude that the singularities relevant to our goals are of the form:

X =
C3

Γ
(4.1)

where the finite group Γ⊂ SU(3) has a holomorphic action on C3. For this case, as we mentioned above, there
is a series of general results and procedures developed in algebraic geometry that we want to summarize in the
perspective of their use in physics.

To begin with let us observe the schematic diagram sketched here below:

~
⇓

levels
ζ

of moment map

�
�

�
�
�

�
�~

@
@
@
@
@
@
@~

r = dimz [FΓ] center of the Lie Algebra

r = # of nontrivial
Γ irred. represent.s

r = # of nontrivial
Γ conjugacy classes ⇓ ⇓

age grading,
exceptional divisors

first Chern classes of
tautological bundles

n nd d⇔
(4.2)

The fascination of the mathematical construction lying behind the desingularization process, which has a definite
counterpart in the structure of the Chern-Simons gauge theories describing M2-branes at the C3/Γ singularity,
is the triple interpretation of the same number r which alternatively yields:

• The number of nontrivial conjugacy classes of the finite group Γ,

• The number of irreducible representations of the finite group Γ,
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• The center of the Lie algebra z [FΓ] of the compact gauge group FΓ, whose structure, as we will see, is:

FΓ =
r⊗

i=1

U(ni) (4.3)

The levels ζI of the moment maps are the main ingredient of the singularity resolution. At levelζ I = 0 we have
the singular orbifold M0 = C3

Γ
, while at ζ i 6= 0 we obtain a smooth manifold Mζ which develops a nontrivial

homology and cohomology. In physical parlance the levels ζ I are the Fayet-Iliopoulos parameters appearing
in the lagrangian, while Mζ is the manifold of vacua of the theory, namely of extrema of the potential, as we
already emphasized.

Quite generally, we find that each of the gauge factors U(ni) is the structural group of a holomorphic vector
bundle of rank ni:

Vi
π−→ Mζ (4.4)

whose first Chern class is a nontrivial (1,1)-cohomology class of the resolved smooth manifold:

c1 (Vi) ∈ H1,1 (Mζ

)
(4.5)

On the other hand a very deep theorem originally proved in the nineties by Reid and Ito [36] relates the dimen-
sions of the cohomology groups Hq,q

(
Mζ

)
to the conjugacy classes of Γ organized according to the grading

named age. So named junior classes of age = 1 are associated with H1,1
(
Mζ

)
elements, while the so-named

senior classes of age = 2 are associated with H2,2
(
Mζ

)
elements.

The link that pairs irreps with conjugacy classes is provided by the relation, well-known in algebraic ge-
ometry, between divisors and line bundles. The conjugacy classes of γ can be put into correspondence with the

exceptional divisors created in the resolution Mζ

ζ→0−→ C3

Γ
and each divisor defines a line bundle whose first Chern

class is an element of the H1,1
(
Mζ

)
cohomology group.

These line bundles labeled by conjugacy classes have to be compared with the line bundles created by the
Kähler quotient procedure that are instead associated with the irreps, as we have sketched above. In this way we
build the bridge between conjugacy classes and irreps.

Finally there is the question whether the divisor is compact or not. In the first case, by Poincaré duality, we
obtain nontrivial H2,2

(
Mζ

)
elements. In the second case we have no new cohomology classes. The age grading

precisely informs us about the compact or noncompact nature of the divisors. Each senior class corresponds to
a cohomology class of degree 4, thus signaling the existence of a non-trivial closed (2,2) form, and via Poincaré
duality, it also corresponds to a compact component of the exceptional divisor.

The physics–friendly illustration of this general beautiful scheme, together with the explicit construction of
a few concrete examples is the main goal of the present paper. We begin with the concept of age grading.

4.1 The concept of aging for conjugacy classes of the discrete group Γ

According to the above quoted theorem that we shall explain below, the age grading of Γ conjugacy classes
allows to predict the Dolbeaults cohomology of the resolved algebraic variety. It goes as follows.

Suppose that Γ (a finite group) acts in a linear way on Cn. Consider an element γ ∈ Γ whose action is the
following:

γ.~z =


. . . . . . . . .
...

...
...

. . . . . . . . .


︸ ︷︷ ︸

Q(γ)

·


z1
...

zn

 (4.6)
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Since in a finite group all elements have a finite order, there exists r ∈ N, such that γr = 1. We define the age
of an element in the following way. Let us diagonalize D(γ), namely compute its eigenvalues. They will be as
follows:

(λ1, . . . ,λn) = exp
[

2π i
r

ai

]
; r > ai ∈ N i = 1, . . . ,n (4.7)

We define:

age(γ) =
1
r

n

∑
i=1

ai (4.8)

Clearly the age is a property of the conjugacy class of the element, relative to the considered three-dimensional
complex representation.

4.2 The fundamental theorem

In [36] Y. Ito and M. Reid proved the following fundamental theorem:

Theorem 4.1 Let Y →C3/Γ be a crepant 5 resolution of a Gorenstein 6 singularity. Then we have the following
relation between the de-Rham cohomology groups of the resolved smooth variety Y and the ages of Γ conjugacy
classes:

dimH2k (Y ) = # of age k conjugacy classes of Γ

On the other hand it happens that all odd cohomology groups are trivial:

dimH2k+1 (Y ) = 0 (4.9)

This is true also in the case of C2/Γ singularities, yet in n = 2,3 the consequences of the same fact are drastically
different. In all complex dimensions n the deformations of the Kähler class are in one-to-one correspondence
with the harmonic forms ω(1,1), while those of the complex structure are in correspondence with the harmonic
forms ω(n−1,1). In n = 2 the harmonic ω(1,1) forms play the double role of Kähler class deformations and
complex structure deformations. This is the reason why we can do a hyperKähler quotient and we have both
moduli parameters in the Kähler potential and in the polynomials cutting out the smooth variety. Instead in n = 3
eq. (4.9) implies that the polynomials constraints cutting the singular locus have no deformation parameters. The
parameters of the resolution occur only at the level of the Kähler quotient and are the levels of the Kählerian
moment maps.

Given an algebraic representation of the variety Y as the vanishing locus of certain polynomials W (x) = 0,
the algebraic 2k-cycles are the 2k-cycles that can be holomorphically embedded in Y . The following statement
in n = 3 is elementary:

Statement 4.1 The Poincaré dual of any algebraic 2k-cycle is of type (k,k).

Its converse is known as the Hodge conjecture, stating that any cycle of type (k,k) is a linear combination of
algebraic cycles. This will hold true for the varieties we shall be considering.

Thus we conclude that the so named junior conjugacy classes (age=1) are in a one-to-one correspondence
with ω(1,1)-forms that span H1,1, while conjugacy classes of age 2 are in one-to-one correspondence with ω(2,2)-
forms that span H2,2.

5A resolution of singularities X → Y is crepant when the canonical bundle of X is the pullback of the canonical bundle of Y .
6A variety is Gorenstein when the canonical divisor is a Cartier divisor, i.e., a divisor corresponding to a line bundle.
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5 Comparison with ALE manifolds and comments

Let us compare the above predictions for the case B) of C3/Γ singularities with the well known case A) of C2/Γ

where Γ is a Kleinian subgroup of SU(2) and the resolution of the singularity leads to an ALE manifold [2, 30,
31, 38–40]. As we already stressed above, this latter can be explicitly constructed by means of a hyperKähler
quotient, according to Kronheimer’s construction.

In table 1 we summarize some well known facts about Y → X = C2/Γ which are the following. Here χ

denotes Hirzebruch’s signature characteristic of the resolved manifold.

Table 1: Finite SU(2) subgroups versus ALE manifold properties

Γ. WΓ(u,w,z) R = C[u,w,z]
∂W |R| #c. c. τ ≡ χ−1

Ak u2 +w2− zk+1 {1,z, .. k k+1 k

..,zk−1}

Dk+2 u2 +w2z+ zk+1 {1,w,z,w2, k+2 k+3 k+2

z2, ...,zk−1}

E6 = u2 +w3 + z4 {1,w,z, 6 7 6

T wz,z2,wz2}

E7 = u2 +w3 +wz3 {1,w,z,w2, 7 8 7

O z2,wz,w2z}

E8 = u2 +w3 + z5 {1,w,z,z2,wz, 8 9 8

I z3,wz2,wz3}

1. As an affine variety the singular orbifold X is described by a single polynomial equation WΓ(u,w,z) = 0 in
C3. This equation is simply given by a relation existing among the invariants of Γ as we anticipated in the
previous section. Note that this is the case also for X = C3

L168
, as Markushevich has shown. He has found

one polynomial constraint WL168(u1,u2,u3,u4) = 0 of degree 10 in C4 which describes X . We were able
to find a similar result for the subgroup G21 ⊂ L168 and obviously also for the cases C3/Z3 and C3/Z7. In
the G21 case the equation is of order 16. We will present these results in a future publication.
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2. The resolved locus Y in the case of ALE manifolds is described by a deformed equation:

W ALE
Γ (u,w,z; t) = WΓ(u,w,z) +

r

∑
i=1

ti P(i)(u,w,z)

r ≡ dimRΓ (5.1)

where

a) WΓ(u,w,z) is the simple singularity polynomial corresponding to the finite subgroup Γ⊂ SU(2) accord-
ing to Arnold’s classification of isolated critical points of functions [41], named simple singularities
in the literature.

b) P(i)(u,w,z) is a basis spanning the chiral ring

RΓ =
C[u,w,z]

∂WΓ

(5.2)

of polynomials in u,w,z that do not vanish upon use of the vanishing relations ∂uWΓ = ∂wWΓ =
∂zWΓ = 0.

c) The complex parameters t i are the complex structure moduli and they are in one–to–one correspondence
with the set of complex level parameters `X

+.

3. According to the general view put forward in the previous section, for ALE manifolds we have:

dimH1,1 = r ≡ # nontrivial conjugacy classes of Γ (5.3)

We also have:
dimRΓ = r (5.4)

as one sees from table 1. From the point of view of complex geometry this is the consequence of a special
coincidence, already stressed in the previous section, which applies only to the case of complex dimension
2. As one knows, for Calabi-Yau n-folds complex structure deformations are associated with ωn−1,1 ∈
Hn−1,1 harmonic forms, while Kähler structure deformations, for all n, are associated with ω1,1 ∈ H1,1

harmonic forms. Hence when n = 2, the (1,1)-forms play a double role as complex structure deformations
and as Kähler structure deformations. For instance, this is well known in the case of K3. Hence in the
n = 2 case the number of nontrivial conjugacy classes of the group Γ coincides both with the number of
Kähler moduli and with number of complex structure moduli of the resolved variety.

4. In the case of Y → X = C3

Γ
the number of (1,1)-forms and hence of Kähler moduli is still related with

r = # junior conjugacy classes of Γ but there are no complex structure deformations.

5.1 The McKay correspondence for C2/Γ

The table of characters χ
(µ)
i of any finite group γ allows to reconstruct the decomposition coefficients of any

representation along the irreducible representations:

D =
r⊕

µ=1

aµ Dµ

aµ =
1
g

r

∑
i=1

gi χ
(D)
i χ

(µ)?
i (5.5)
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Figure 1: Extended Dynkin diagrams of the infinite series
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Figure 2: Exceptional extended Dynkin diagrams

where χ(D) is the character of D. For the finite subgroups Γ⊂ SU(2) a particularly important case is the decom-
position of the tensor product of an irreducible representation Dµ with the defining 2-dimensional representation
Q. It is indeed at the level of this decomposition that the relation between these groups and the simply laced
Dynkin diagrams becomes explicit and is named the McKay correspondence. This decomposition plays a crucial
role in the explicit construction of ALE manifolds according to Kronheimer. Setting

Q ⊗ Dµ =
r⊕

ν=0

Aµν Dν (5.6)

where D0 denotes the identity representation, one finds that the matrix cµν = 2δµν −Aµν is the extended Cartan
matrix relative to the extended Dynkin diagram corresponding to the given group. We remind the reader that
the extended Dynkin diagram of any simply laced Lie algebra is obtained by adding to the dots representing
the simple roots {α1 ......αr } an additional dot (marked black in figs. 1, 2) representing the negative of the
highest root α0 = ∑

r
i=1 ni αi (ni are the Coxeter numbers). Thus we see a correspondence between the nontrivial

conjugacy classes Ci (or equivalently the nontrivial irreps) of the group Γ(G) and the simple roots of G. In this
correspondence the extended Cartan matrix provides the Clebsch-Gordon coefficients (5.6), while the Coxeter
numbers ni express the dimensions of the irreducible representations. All these informations are summarized in
Figs. 1, 2 where the numbers ni are attached to each of the dots: the number 1 is attached to the extra dot since
it stands for the identity representation.

5.2 Kronheimer’s construction

Given any finite subgroup Γ ⊂ SU(2), we consider a space P whose elements are two-vectors of |Γ| × |Γ|
complex matrices: (A,B) ∈P . The action of an element γ ∈ Γ on the points of P is the following:(

A

B

)
γ−→

(
uγ i vγ

i vγ uγ

)(
R(γ)AR(γ−1)

R(γ)BR(γ−1)

)
(5.7)
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where the two-dimensional matrix on the right hand side is the realization of γ inside the defining two-dimensional
representation Q ⊂ SU(2), while R(γ) is the regular, |Γ|-dimensional representation. The basis vectors in R
named eγ are in one-to-one correspondence with the group elements γ ∈ Γ and transform as follows:

R(γ)eδ = eγ·δ ∀γ , δ ∈ Γ (5.8)

Intrinsically, the space P is named as:
P ' Hom(R,Q⊗R) (5.9)

Next we introduce the space S , which by definition is the subspace made of Γ-invariant elements in P:

S ≡ {p ∈P/∀γ ∈ Γ,γ · p = p} (5.10)

Explicitly the invariance condition reads as follows:(
uγ i vγ

i vγ uγ

)(
A

B

)
=

(
R(γ−1)AR(γ)

R(γ−1)BR(γ)

)
(5.11)

The decomposition (5.6) is very useful in order to determine the Γ-invariant vector space (5.10).
A two-vector of matrices can be thought of also as a matrix of two-vectors: that is, P = Q⊗Hom(R,R) =

Hom(R,Q⊗ R). Decomposing the regular representation, R =
⊕r

ν=0 nµDµ into irreps, using eq. (5.6) and
Schur’s lemma, we obtain:

S =
⊕
µ,ν

Aµ,νHom(Cnµ ,Cnν ) . (5.12)

The dimensions of the irreps, nµ are dispayed in figs. 1,2. From eq. (5.12) the real dimension of S follows
immediately: dim S = ∑µ,ν 2Aµνnµnν implies, recalling that A = 2× 1− c [see eq. (5.6)] and that for the
extended Cartan matrix cn = 0:

dimC S = 2∑
µ

n2
µ = 2|Γ| . (5.13)

Intrinsically, one writes the space S as:

S ' HomΓ (R,Q⊗R) (5.14)

So we can summarize the discussion by saying that:

dimC [HomΓ (R,Q⊗R)] = 2 |Γ| (5.15)

The quaternionic structure of the flat manifolds P and S can be seen by simply writing their elements as
follows:

p =

(
A iB†

iB A†

)
∈ Hom(R,Q⊗R) A,B ∈ End(R) .

Then the hyperKähler forms and the hyperKähler metric are defined by the following formulae:

Θ = Tr(dp†∧dp) =

(
iK iΩΩΩ

iΩΩΩ −iK

)
ds2×1 = Tr(dp†⊗dp) (5.16)

In the above equations the trace is taken over the matrices belonging to End(R) in each entry of the quaternion.
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From eq. (5.16) we extract the explicit expressions for the Kähler 2-form K and the holomorphic 2-form ΩΩΩ of
the flat hyperKähler manifold Hom(R,Q⊗R). We have:

K = −i
[
Tr
(
dA†∧dA

)
+Tr

(
dB†∧dB

)]
≡ ig

αβ
dqα ∧dqβ

ds2 = g
αβ

dqα ⊗dqβ

ΩΩΩ = 2Tr(dA∧dB) ≡ Ωαβ dqα ∧dqβ (5.17)

Starting from the above written formulae, by means of an elementary calculation one verifies that both the metric
and the hyperKähler forms are invariant with respect to the action of the discrete group Γ defined in eq. (5.7).
Hence one can consistently reduce the space Hom(R,Q⊗R) to the invariant space HomΓ (R,Q⊗R) defined in
eq. (5.10). The hyperKähler 2-forms and the metric of the flat space S , whose real dimension is 4|Γ|, are given
by eqs.(5.17) where the matrices A,B satisfy the invariance condition eq. (5.11).

5.2.1 Solution of the invariance constraint in the case of the cyclic groups Ak

The space S can be easily described when Γ is the cyclic group Ak = Zk+1, whose multiplication table can
be read off. We can immediately read it off from the matrices of the regular representation. Obviously, it is
sufficient to consider the representative of the first element e1, as R(e j) = (R(e1))

j.
One has:

R(e1) =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


(5.18)

Actually, the invariance condition eq. (5.11) is best solved by changing basis so as to diagonalize the regular
representation, realizing explicitly its decomposition in terms of the k unidimensional irreps. Let ν = e

2πi
k+1 , be a

(k+1)th root of unity so that νk+1 = 1. The looked for change of basis is performed by means of the matrix:

Si j =
1√

k+1
ν

i j ; i, j = 0,1,2, . . . ,k(
S−1)

i j =
(
S†)

i j =
1√

k+1
ν

k+1−i j (5.19)
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In the new basis we find:

R̂(e0) ≡ S−1 R(e0)S =



1 0 . . . 0 0

0 1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1



R̂(e1) ≡ S−1 R(e1)S =



1 0 . . . 0 0

0 ν 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . νk−1 0

0 0 . . . 0 νk


(5.20)

Eq. (5.20) displays on the diagonal the representatives of e j in the one-dimensional irreps.
In the above basis, the explicit solution of eq. (5.11) is given by

A =



0 u0 0 · · · 0

0 0 u1 · · · 0
...

...
...

. . .
...

...
...

... uk−1

uk 0 0 · · · 0


; B =



0 0 · · · · · · vk

v0 0 · · · · · · 0

0 v1 · · · · · · 0
...

...
. . .

...

0 0 · · · vk−1 0


(5.21)

We see that these matrices are parameterized in terms of 2k+2 complex, i.e. 4(k+1) = |Ak| real parameters. In
the Dk+2 case, where the regular representation is 4k-dimensional, choosing appropriately a basis, one can solve
analogously eq. (5.11); the explicit expressions are too large, so we do not write them. The essential point is that
the matrices A and B no longer correspond to two distinct set of parameters, the group being nonabelian.

5.3 The gauge group for the quotient and its moment maps

The next step in the Kronheimer construction of the ALE manifolds is the determination of the group F of tri-
holomorphic isometries with respect to which we will perform the quotient. We borrow from physics the nomen-
clature gauge group since in a N = 3,4 rigid three-dimensional gauge theory where the space HomΓ (R,Q⊗R)
is the flat manifold of hypermultiplet scalars, the triholomorphic moment maps of F emerge as scalar dependent
nonderivative terms in the hyperino supersymmetry transformation rules generated by the gauging of the group
F .

Consider the action of SU(|Γ|) on Hom(R,Q⊗R) given, using the quaternionic notation for the elements of
Hom(R,Q⊗R), by

∀g ∈ SU(|Γ|) , g :

(
A iB†

iB A†

)
7−→

(
gAg−1 igB† g−1

igBg−1 gA† g−1

)
(5.22)

It is easy to see that this action is a triholomorphic isometry of Hom(R,Q⊗R). Indeed both the hyperKähler
forms Θ and the metric ds2 are invariant.
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Let F ⊂ SU(|Γ|) be the subgroup of the above group which commutes with the action of Γ on the space
Hom(R,Q⊗R), action which was defined in eq. (5.7). Then the action of F descends to HomΓ (R,Q⊗R) ⊂
Hom(R,Q⊗R) to give a triholomorphic isometry: indeed the metric and the hyperKähler forms on the space
HomΓ (R,Q⊗R) are just the restriction of those on Hom(R,Q⊗R). Therefore one can take the hyperKähler
quotient of HomΓ (R,Q⊗R) with respect to F .

Let { fA} be a basis of generators for F, the Lie algebra of F . Under the infinitesimal action of f = 1+λ A fA ∈
F, the variation of p ∈ HomΓ (R,Q⊗R) is δ p = λ AδA p, with

δA p =

(
[ fA,A] i[ fA,B†]

i[ fA,B] [ fA,A†]

)

The components of the momentum map are then given by

µA = Tr(q†
δA p) ≡ Tr

(
fA µ3(p) fA µ−(p)

fA µ+(p) fA µ3(p)

)

so that the real and holomorphic maps µ3 : HomΓ (R,Q⊗R)→ F∗ and µ+ : HomΓ (R,Q⊗R) → C×F∗ can be
represented as matrix-valued maps:

µ3(p) = −i
(
[A,A†]+ [B,B†]

)
µ+(p) = ([A,B]) . (5.23)

In this way we get:

µA =

(
P3

A P−A

P+
A −P3

A

)
(5.24)

where:

P3
A = −i

[
Tr
([

A , A†] fA
)
+Tr

([
B† , B

]
fA
)]

P+
A = Tr([A , B] fA) (5.25)

Let Z? be the dual of the center of F.
In correspondence with a level ζ = {ζ 3,ζ+} ∈ R3⊗Z? we can form the hyperKähler quotient:

Mζ ≡ µ
−1(ζ )//HK F (5.26)

Varying ζ and Γ all ALE manifolds can be obtained as Mζ .
First of all, it is not difficult to check that Mζ is four-dimensional. Let us see how this happens. There is a

nice characterization of the group F in terms of the extended Dynkin diagram associated with Γ. We have

F =
r+1⊗
µ=1

U(nµ)
⋂

SU(|Γ|) (5.27)

where the sum is extended to all the irreducible representations of the group Γ and nµ are their dimensions.
One should also take into account that the determinant of all the elements must be one, since F ⊂ SU(|Γ|).
Pictorially the group F has a U(nµ) factor for each dot of the diagram, nµ being associated with the dots as in
figs. 1,2. F acts on the various components of HomΓ (R,Q⊗R) that are in correspondence with the edges of
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the diagram, see eq. (5.12), as dictated by the diagram structure. From eq. (5.27) it is immediate to derive:

dimF = ∑
µ

n2
µ −1 = |Γ|−1 (5.28)

It follows that
dimRMζ = dimR HomΓ (R,Q⊗R)−4dimRF = 4|Γ|− (4|Γ|−1) = 4 (5.29)

Analyzing the construction we see that there are two steps. In the first step, by setting the holomorphic part
of the moment map to its level ζ , we define an algebraic locus in HomΓ(Q⊗R,R). Next the Kähler quotient
further reduces such a locus to the necessary complex dimension 2. The two steps are united in one because
of the triholomorphic character of the isometries. As we already stressed in the previous section, in complex
dimension 3 the isometries are not triholomorphic rather just holomorphic; hence the holomorphic part of the
moment map does not exist and the two steps have to be separated. There must be another principle that leads to
impose those constraints that cut out the algebraic locus V|Γ|+2 of which we perform the Kähler quotient in the
next step (see eq. (3.40)). The main question is to spell out such principles. As anticipated, equation p∧p = 0 is
the one that does the job. We are not able to reduce the 3|Γ|2 quadrics on 3|Γ| variables to an ideal with 2|Γ|−2
generators, yet we know that such reduction must exist. Indeed, by means of another argument that utilizes Lie
group orbits we can show that there is a variety of complex dimension 3, named D0

Γ
which is in the kernel of the

equation p∧p = 0.

5.3.1 The triholomorphic moment maps in the Ak case of Kronheimer construction

The structure of F and the momentum map for its action are very simply worked out in the Ak case. An element
f ∈F must commute with the action of Ak on P , eq. (5.7), where the two-dimensional representation in the
l.h.s. is given by:

Γ(Ak) γ` = Q` ≡

(
e2πi`/(k+1) 0

0 e−2πi`/(k+1)

)
; {`= 1, .....,k+1}

Then f must have the form

f = diag(eiϕ0 ,eiϕ1 , . . . ,eiϕk) ;
k

∑
i=0

ϕi = 0 . (5.30)

Thus F is just the algebra of diagonal traceless k+ 1-dimensional matrices, which is k-dimensional. Choose a
basis of generators for F, for instance:

f1 = diag(1,−1,0, . . . ,0)

f2 = diag(1,0,−1,0, . . . ,0)

. . . = . . .

fk = diag(1,0,0, . . . ,0,−1) (5.31)

From eq. (5.25) we immediately obtain the components of the momentum map:

P3
A = |u0|2−|uk|2−|v0|2 + |vk|2 +

(
|uA−1|2−|uA|2−|vA−1|2 + |vA|2

)
P+

A = u0v0−ukvk +
(
uA−1vA−1 − uA vA

)
, (A = 1, . . . ,k) (5.32)
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5.4 Level sets and Weyl chambers

If F acts freely on µ−1(ζ ) then Mζ is a smooth manifold. This happens or does not happen depending on the
value of ζ . A simple characterization of Z can be given in terms of the simple Lie algebra G associated with Γ.
There exists an isomorphism between Z and the Cartan subalgebra HCSA ⊂G. Thus we have

dim Z= dim HCSA = rankG
= #of nontrivial conj. classes in Γ (5.33)

The space Mζ turns out to be singular when, under the above identification Z∼HCSA, any of the level compo-
nents ζ i ∈ R3⊗Z lies on a wall of a Weyl chamber. In particular, as the point ζ i = 0, (i = 1, . . . ,r) is identified
with the origin of the root space, which lies of course on all the walls of the Weyl chambers, the space M0 is
singular. Not too surprisingly we will see in a moment that M0 corresponds to the orbifold limit C2/Γ of a
family of ALE manifolds with boundary at infinity S3/Γ.

To verify this statement in general let us choose the natural basis for the regular representation R, in which
the basis vectors eδ transform as in eq. (5.8). Define the space L⊂S as follows:

L =

{(
C

D

)
∈S /C,D are diagonal in the basis {eδ}

}
(5.34)

For every element γ ∈ Γ there is a pair of numbers (cγ ,dγ) given by the corresponding entries of C,D : C · eγ =
cγeγ , D · eγ = dγeγ . Applying the invariance condition eq. (5.11), which is valid since L⊂S , we obtain:(

cγ·δ

dγ·δ

)
=

(
uγ ivγ

ivγ uγ

)(
cδ

dδ

)
(5.35)

We can identify L with C2 associating for instance (C,D)∈ L 7−→ (c0,d0)∈C2. Indeed all the other pairs (cγ ,dγ)
are determined in terms of eq. (5.35) once (c0,d0) are given. By eq. (5.35) the action of Γ on L induces exactly
the action of Γ on C2 provided by its two-dimensional defining representation inside SU(2). It is quite easy
to show the following fundamental fact: each orbit of F in µ−1(0) meets L in one orbit of Γ. Because of the
above identification between L and C2, this leads to conclude that µ−1(0)/F is isometric to C2/Γ. Instead of
reviewing the formal proofs of these statements as devised by Kronheimer, we will verify them explicitly in the
case of the cyclic groups, giving a description which sheds some light on the deformed situation; that is we show
in which way a nonzero level ζ+ for the holomorphic momentum map puts µ−1(ζ ) in correspondence with the
affine hypersurface in C3 cut out by the polynomial constraint (5.1) which is a deformation of that describing the
C2/Γ orbifold, obtained for ζ+ = 0.

5.4.1 Retrieving the polynomial constraint from the hyperKähler quotient in the Γ=Ak case.

We can directly realize C2/Γ as an affine algebraic surface in C3 by expressing the coordinates x, y and z of C3

in terms of the matrices (C,D) ∈ L. The explicit parametrization of the matrices in S in the Ak case, which was
given in eq. (5.21) in the basis in which the regular representation R is diagonal, can be conveniently rewritten in
the natural basis

{
eγ

}
via the matrix S−1 defined in eq. (5.19). The subset L of diagonal matrices (C,D) is given

by:
C = c0 diag(1,ν ,ν2, . . . ,νk), D = d0 diag(1,νk,νk−1, . . . ,ν), (5.36)
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This is nothing but the fact that L∼ C2. The set of pairs

(
νmc0

νk−md0

)
, m = 0,1, . . . ,k is an orbit of Γ in C2 and

determines the corresponding orbit of Γ in L. To describe C2/Ak one needs to identify a suitable set of invariants
(u,w,z) ∈ C3 such that

0 = WΓ(u,w,z) ≡ u2 +w2 − zk+1 (5.37)

To this effect we define:

u = 1
2 (x+ y) ; w =−i 1

2 (x− y) ⇒ xy = u2 +w2 (5.38)

and we make the following ansatz:

x = det C ; y = det D, ; z =
1

k+1
TrCD. (5.39)

This guess is immediately confirmed by the study of the deformed surface. We know that there is a one-to-one
correspondence between the orbits of F in µ−1(0) and those of Γ in L. Let us realize this correspondence
explicitly.

Choose the basis where R is diagonal. Then (A,B) ∈S have the form of eq. (5.21). The relation xy = zk+1

holds also true when, in eq. (5.39), the pair (C,D) ∈ L is replaced by an element (A,B) ∈ µ−1(0).
To see this, let us describe the elements (A,B) ∈ µ−1(0). We have to equate the right hand sides of eq. (5.23)

to zero. We note that:
[A,B] = 0 ⇒ vi =

u0v0

ui
∀i (5.40)

Secondly,
[A,A†]+ [B,B†] = 0 ⇒ |ui|= |u j|and |vi|= |v j| ∀i, j (5.41)

From the previous two equations we conclude that:

u j = |u0|eiφ j ; v j = |v0|eiψ j (5.42)

Finally:
[A,B] = 0 ⇒ ψ j = Φ−φ j ∀ j (5.43)

where Φ is an arbitrary overall phase.
In this way, we have characterized µ−1(0) and we immediately check that the pair (A,B) ∈ µ−1(0) satisfies

xy = zk+1 if x = det A, y = det B and z = 1/(k+1)TrAB as we have proposed in eq. (5.39).
After this explicit solution of the momentum map constraint has been implemented we are left with k+ 4

parameters, namely the k+1 phases φ j, j = 0,1, . . .k, plus the absolute values |u0| and |v0| and the overall phase
Φ. So we have:

dim µ
−1(0) = dimS −3dimF = 4|Γ|−3(|Γ|−1) = |Γ|+3 (5.44)

where |Γ|= k+1.
Now we perform the quotient of µ−1(0) with respect to F . Given a set of phases fi such that ∑

k
i=0 fi =

0mod2π and given f = diag(ei f0 ,ei f1 , . . . ,ei fk) ∈F , the orbit of F in µ−1(0) passing through

(
A

B

)
has the

form

(
f A f−1

f B f−1

)
.

Choosing f j = f0 + jψ +∑
j−1
n=0 φn, j = 1, . . . ,k, with ψ = −1

k ∑
k
n=0 φn, and f0 determined by the condition
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∑
k
i=0 fi = 0mod2π , one obtains

f A f−1 = a0



0 1 0 . . . 0

0 0 1 . . . 0

. . . . . .

0 0 . . . 0 1

1 0 0 . . . 0


, f B f−1 = b0



0 0 . . . 0 1

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . .

0 . . . 0 1 0


(5.45)

where a0 = |u0|eiψ and b0 = |v0|ei(Φ−ψ). Since the phases φ j are determined modulo 2π , it follows that ψ is
determined modulo 2π

k+1 . Thus we can say (a0,b0) ∈ C2/Γ. This is the one-to-one correspondence between
µ−1(0)/F and C2/Γ.

Next we derive the deformed relation between the invariants x,y,z. It fixes the correspondence between the
resolution of the singularity performed in the momentum map approach and the resolution performed on the
hypersurface xy = zk+1 in C3. To this purpose, we focus on the holomorphic part of the momentum map, i.e. on
the equation:

[A,B] = Λ0 = diag(λ0,λ1,λ2, . . . ,λk) ∈ Z⊗C (5.46)

λ0 = −
k

∑
i=1

λi (5.47)

Let us recall the expression (5.21) for the matrices A and B. Naming ai = uivi, eq. (5.46) implies:

ai = a0 +λi ; i = 1, . . . ,k (5.48)

Let Λ = diag(λ1,λ2, . . . ,λk). We have

xy = detA detB = a0 Π
k
i=1(a0 +λi) = ak+1

0 det
(

1+
1
a0

Λ

)
=

k

∑
i=0

ak+1−i
0 Si(Λ) (5.49)

The Si(Λ) are the symmetric polynomials in the eigenvalues of Λ. They are defined by the relation det(1+ tΛ) =
∑

k
i=0 t iSi(Λ) and are given by:

Si(Λ) = ∑
j1< j2<···< ji

λ j1λ j2 · · ·λ ji (5.50)

In particular, S0 = 1 and S1 = ∑
k
i=1 λi. Define Sk+1(Λ) = 0, so that we can rewrite:

xy =
k+1

∑
i=0

ak+1−i
0 Si(Λ) (5.51)

and note that
z =

1
k+1

TrAB = a0 +
1

k+1
S1(Λ). (5.52)

Then the desired deformed relation between x, y and z is obtained by substituting a0 = z− 1
k S1 in (5.49), thus
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obtaining

xy =
k+1

∑
m=0

k+1−m

∑
n=0

(
k+1−m

n

)
zn
(
− 1

k+1
S1

)k+1−m−n

Sm zn =
k+1

∑
n=0

tn+1 zn

=⇒ tn+1 =
k+1−n

∑
m=0

(
k+1−m

n

)(
− 1

k+1
S1

)k+1−m−n

(5.53)

Note in particular that tk+2 = 1 and tk+1 = 0, i.e.

xy = zk+1 +
k

∑
n=0

tn+1zn (5.54)

which means that the deformation proportional to zk is absent. This establishes a clear correspondence between
the momentum map construction and the polynomial ring C[x,y,z]

∂W where W (x,y,z)= xy−zk+1. Moreover, note that
we have only used one of the momentum map equations, namely [A,B] = Λ0. The equation [A,A†]+ [B,B†] = Σ

has been completely ignored. This means that the deformation of the complex structure is described by the
parameters Λ, while the parameters Σ describe the deformation of the Kähler structure. The relation (5.53) can
also be written in a simple factorized form, namely

xy = Π
k
i=0(z−µi), (5.55)

where

µi =
1
k
(λ1 +λ2 + · · ·+λi−1−2λi +λi+1 + · · ·+λk), i = 1, . . . ,k−1

µ0 = −
k

∑
i=1

µi =
1
k

S1. (5.56)

6 Generalization of the correspondence: McKay quivers for C3/Γ singularities

One can generalize the extended Dynkin diagrams obtained in the above way by constructing McKay quivers,
according to the following definition:

Definition 6.1 Let us consider the quotient Cn/Γ, where Γ is a finite group that acts on Cn by means of the
complex representation Q of dimension n and let Di, (i = 1, . . . ,r+ 1) be the set of irreducible representations
of Γ having denoted by r+1 the number of conjugacy classes of Γ. Let the matrix Ai j be defined by:

Q⊗Di =
r+1⊕
j=1

Ai j D j (6.1)

To such a matrix we associate a quiver diagram in the following way. Every irreducible representation is denoted
by a circle labeled with a number equal to the dimension of the corresponding irrep. Next we write an oriented
line going from circle i to circle j if D j appears in the decomposition of Q⊗Di, namely if the matrix element
Ai j does not vanish.

The analogue of the extended Cartan matrix discussed in the case of C2/Γ is defined below:

ci j = nδi j − Ai j (6.2)
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and it has the same property, namely, it admits the vector of irrep dimensions

n ≡ {1,n1, . . . ,nr} (6.3)

as a null vector:
c.n = 0 (6.4)

Typically the McKay quivers encode the information determining the interaction structure of the dual gauge
theory on the brane world volume. Indeed the bridge between Mathematics and Physics is located precisely at
this point. In the case of a single M2-brane, the n|Γ| complex coordinates (n=2, or 3) of the flat Kähler manifold
HomΓ(R,Q⊗R) are the scalar fields of the Wess-Zumino multiplets, the unitary group F commuting with the
action of Γ is the gauge group, the moment maps of F enter the definition of the potential, according to the
standard supersymmetry formulae, recalled in section 2 and the holomorphic constraints defining the V|Γ|+2
variety have to be related with the superpotential W of the N = 2 theories in d=3 (i.e. the n=3 case where
the singular space is C×C3/Γ). In the case of N = 4 theories, also in d=3, (i.e. the n=2 case where the
singular space is C2×C2/Γ), the holomorphic constraints Pi(y) are identified with the holomorphic part of the
tri-holomorphic moment map. When one goes to the case of multiple M2-branes the gauge group is enlarged by
color indices. This is another story. The first step is to understand the case of one M2-brane and here the map
between Physics and Mathematics is one-to-one.

6.1 Representations of the quivers and Kähler quotients

Let us now follow the same steps of the Kronheimer construction and derive the representations of the C3/Γ

quivers. The key point is the construction of the analogues of the spaces PΓ in eq. (5.9) and of its invariant
subspace SΓ in eq. (5.10). To this effect we introduce three matrices |Γ|× |Γ| named A,B,C and set:

p ∈PΓ ≡ Hom(R,Q⊗R) ⇒ p =


A

B

C

 (6.5)

The action of the discrete group Γ on the space PΓ is defined in full analogy with the Kronheimer case:

∀γ ∈ Γ : γ · p ≡ Q(γ)


R(γ)AR(γ−1)

R(γ)BR(γ−1)

R(γ)C R(γ−1)

 (6.6)

where Q(γ) denotes the three-dimensional complex representation of the group element γ , while R(γ) denotes
its |Γ|× |Γ|-matrix image in the regular representation.

In complete analogy with eq. (5.10) the subspace SΓ is obtained by setting:

SΓ ≡ HomΓ (R,Q⊗R) = {p ∈PΓ/∀γ ∈ Γ,γ · p = p} (6.7)

Just as in the previous case a three-vector of matrices can be thought as a matrix of three-vectors: that is,
Pγ = Q⊗Hom(R,R) = Hom(R,Q⊗R). Decomposing the regular representation, R =

⊕r
i=0 niDi into irreps,

using eq. (6.1) and Schur’s lemma, we obtain:

SΓ =
⊕
i, j

Ai, jHom(Cni ,Cn j) (6.8)
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The properties (6.2,6.3,6.4) of the matrix Ai j associated with the quiver diagram guarantee, in perfect analogy
with eq. (5.13)

dimC SΓ ' HomΓ (R,Q⊗R) = 3∑
i

n2
i = 3|Γ| . (6.9)

6.2 The quiver Lie group, its maximal compact subgroup and the Kähler quotient

We address now the most important point, namely the reduction of the 3|Γ|-dimensional complex manifold
HomΓ (R,Q⊗R) to a |Γ|+ 2-dimensional subvariety of which we will perform the Kähler quotient in order
to obtain the final 3-dimensional (de-singularized) smooth manifold that provides the crepant resolution. The
inspiration about how this can be done is provided by comparison with the C2/Γ case, mutatis mutandis. The
key formulae to recall are the following ones: eq. (5.23), (5.27) and (5.34).

From eq. (5.23) we see that the analytic part of the triholomorphic moment map is provided by the projection
onto the gauge group generators of the commutator [A , B]. When the level parameters are all zero (namely
when the locus equation is not perturbed by the elements of the chiral ring) the outcome of the moment map
equation is simply the condition [A , B] = 0. In the case of C3/Γ we already know that there are no deformations
of the complex structure and that the analogue of the holomorphic moment map constraint has to be a rigid
parameterless condition. Namely the ideal that cuts out the V|Γ|+2 variety should be generated by a list of
quadric polynomials Pi(y) fixed once and for all in a parameterless way. It is reasonable to guess that these
equations should be a generalization of the condition [A , B] = 0. In the C3/Γ case we have three matrices A,B,C
and the obvious generalization is given below:

p∧p = 0 (6.10)

where:

p =


A

B

C

 ∈ HomΓ (R,Q⊗R)

p1 = A ; p2 = B ; p3 = C (6.11)

This is a short-hand for the following explicit equations

0 = ε
i jkpi ·p j

m
0 = [A,B] = [B,C] = [C,A] (6.12)

Eq. (6.10) is the very same equation numbered (1.18) in Craw’s doctoral thesis [37]. We will see in a moment
that it is indeed the correct equation reducing HomΓ (R,Q⊗R) to a |Γ|+2-dimensional subvariety. The way to
understand it goes once again through a detailed comparison with the Kronheimer case.

One has to discuss the construction of the gauge group and to recall the identification of the singular orbifold
C2/Γ with the subspace named L defined by eq. (5.34). Both constructions have a completely parallel analogue
in the C3/Γ case and these provide the key to understand why (6.10) is the right choice.

Before we do that let us provide the main link between the here considered mathematical constructions and
the Physics of three-dimensional Chern-Simons gauge theories. To this purpose let us go back to the results
of [1]. For those special N = 2 Chern-Simons gauge theories that are actually N = 3, the superpotential W
has the form displayed below:

W = − 1
8α

PΛ
+PΣ

+ κΛΣ (6.13)
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where PΛ
+ denote the holomorphic parts of the triholomorphic moment maps and κΛΣ is the Killing metric of

the gauge Lie algebra. When looking for extrema at V = 0 of the scalar potential, namely for classical vacua of
the gauge theory, taking into account the positive definiteness of the scalar metric gαβ ?

of the Killing metric κΛΣ

and of the matrix mΛΣ one obtains the following conditions:

PΛ
3 = ζ

Λ
3 (6.14)

PΛ
+ = ζ

Λ
+ (6.15)

where PΛ
3 denotes the real part of the tri-holomorphic moment map. In mathematical language, the above

equations just define the level set µ−1 (ζ ) utilized in the hyperKähler quotient.
The same field theoretic mechanism is realized in a gauge theory whose scalar fields span the space SΓ for

a C3/Γ singularity, if we introduce the following superpotential:

W = Tr [px py pz] ε
xyz (6.16)

With this choice the conditions for the vanishing of the scalar potential are indeed the Kähler moment map
equations that we are going to discuss and eq. (6.10).

6.2.1 Quiver Lie groups

We are interested in determining the subgroup

GΓ ⊂ SL(|Γ|,C) (6.17)

made by those elements that commute with the group Γ.

GΓ = {g ∈ SL(|Γ|,C) | ∀γ ∈ Γ : [DR (γ) , Ddef (g) ] = 0} (6.18)

In the above equation DR() denotes the regular representation while Ddef denotes the defining representation of
the complex linear group. The two representations, by construction, have the same dimension and this is the
reason why equation (6.18) makes sense.

It is sufficient to impose the defining constraint for the generators of the group on a generic matrix depending
on |Γ|2 parameters: this reduces it to a specific matrix depending on |Γ|-parameters. The further condition that
the matrix should have determinant one, reduces the number of free parameters to |Γ|−1. In more abstract terms
we can say that the group GΓ has the following general structure:

GΓ =
r+1⊗
µ=1

GL(nµ ,C)
⋂

SL(|Γ|,C) (6.19)

This is a perfectly analogous result to that displayed in eq. (5.27) for the Kronheimer case. The difference is that
there we had unitary groups while here we are talking about general linear complex groups with a holomorphic
action on the quiver coordinates. The reason is that we have not yet introduced a Kähler structure on the quiver
space HomΓ (R , Q⊗R): we do it presently and we shall realize that isometries of the constructed Kähler metric
will be only those elements of GΓ that are contained in the unitary subgroup mentioned below:

FΓ ≡
r+1⊗
µ=1

U(nµ)
⋂

SU(|Γ|) ⊂ GΓ (6.20)
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6.2.2 The holomorphic quiver group and the reduction to V|Γ|+2

Yet the group GΓ plays an important role in understanding the rationale of the holomorphic constraint (6.10).
The key item is the coset GΓ/FΓ.

Let us introduce some notations. Relaying on eq. (6.5) we define the diagonal embedding:

D : GL(|Γ|,C) → GL(3|Γ|,C) (6.21)

∀M ∈ GL(|Γ|,C) ; D[M] ≡


M 0 0

0 M 0

0 0 M

 (6.22)

In this notation, the invariance condition that defines SΓ = HomΓ(R,Q×R) can be rephrased as follows:

∀γ ∈ Γ : Q[γ]p = D[R−1
γ ]pD[Rγ ] (6.23)

It is clear that any |Γ|×|Γ| - matrix M that commutes with Rγ realizes an automorphism of the space SΓ, namely
it maps it into itself. The group GΓ is such an automorphism group. In particular equation (6.10) or alternatively
(6.12) is invariant under the action of GΓ. Hence the locus:

DΓ ⊂ SΓ

DΓ ≡ {p ∈SΓ | [A,B] = [B,C] = [C,A] = 0} (6.24)

is invariant under the action of GΓ. A priori the locus DΓ might be empty, but this is not so because there exists
an important solution of the constraint (6.10) which is the obvious analogue of the space LΓ defined for the
C2/Γ-case in eq. (5.34). In full analogy we set:

SΓ ⊃ LΓ ≡




A0

B0

C0

 ∈SΓ | A0,B0,C0 are diagonal in the natural basis of R : {eδ}

 (6.25)

Obviously diagonal matrices commute among themselves and they do the same in any other basis where they
are not diagonal, in particular in the split basis. By definition we name in this way the basis where the regular
representation R is split into irreducible representations. A general result in finite group theory tells us that every
ni-dimensional irrep DDDi appears in R exactly ni-times:

R =
r⊕

i=0

ni DDDi ; dimDDDi ≡ ni (6.26)
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In the split basis every element γ ∈ Γ is given by a block diagonal matrix of the following form:

R(γ) =



1 0 . . . . . . 0 1

0

a1,1 . . . a1,n1

... . . .
...

an1,1 . . . an1,n1

0 . . . . . . 0

... . . . . . . . . . . . .
...

... . . . . . . . . . . . .
...

0 . . . . . . 0

b1,1 . . . b1,nr−1

... . . .
...

bnr−1,1 . . . bnr−1,nr−1

0

0 . . . . . . . . . 0

c1,1 . . . c1,nr

... . . .
...

cnr,1 . . . cnr,nr



(6.27)

In appendix D we provide the explicit form of the matrices A0,B0,C0 in the split basis and for the case of several
groups Γ. In analogy to what was noticed for the Kronheimer case, the space LΓ has complex dimension three
(in Kronheimer case it was two):

dimC LΓ = 3 (6.28)

Indeed if we fix the first diagonal entry of each of the three matrices, the invariance condition (6.23) deter-
mines all the other ones uniquely. In any other basis the number of parameters remains three. Let us call them
(a0,b0,c0). Because of the above argument and, once again, in full analogy with the Kronheimer case, we
can conclude that the space LΓ is isomorphic to the singular orbifold C3/Γ, the Γ-orbit of a triple (a0,b0,c0)
representing a point in C3/Γ.

The existence of the solution of the constraint (6.10) provided by the complex three-dimensional space LΓ

shows that we can construct a variety of dimension |Γ|+2 which is in the kernel of the constraint (6.10). This is
just the orbit, under the action of GΓ of LΓ. We set:

DΓ ≡ OrbitGΓ
(LΓ) (6.29)

The counting is easily done.

1. A generic point in LΓ has the identity as stability subgroup in GΓ.

2. The group GΓ has complex dimension |Γ|−1, hence we get:

dimC (DΓ) = |Γ|−1+3 = |Γ|+2 (6.30)

In the sequel we define the variety V|Γ|+2 to be equal to D0
Γ

.
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6.2.3 The coset GΓ/FΓ and the Kähler quotient

It is now high time to introduce the Kähler potential of the original 3|Γ|-dimensional complex flat manifold SΓ.
We set:

KSΓ
≡ Tr

(
p† p

)
= Tr

(
A† A

)
+ Tr

(
B† B

)
+ Tr

(
C†C

)
(6.31)

Using the matrix elements of A,B,C as complex coordinates of the manifold and naming λi the independent
parameters from which they depend in a given explicit solution of the invariance constraint, the Kähler metric is
defined, as usual, by:

ds2
SΓ

= g`m dλ
`⊗dλ

m
(6.32)

where:
g`m = ∂` ∂ m K (6.33)

From eq. (6.31) we easily see that the Kähler potential is invariant under the unitary subgroup of the quiver group
defined by:

FΓ =
{

M ∈ GΓ | M M† = 1
}

(6.34)

whose structure was already mentioned in eq. (6.20). The center z(FΓ) of the Lie algebra FΓ has dimension r,
namely the same as the number of nontrivial conjugacy classes of Γ and it has the following structure:

z(FΓ) = u(1)⊕u(1)⊕·· ·⊕u(1)︸ ︷︷ ︸
r

(6.35)

In the appendices we provide the explicit form of FΓ while working out examples.
Since FΓ acts as a group of isometries on the space SΓ we might construct the Kähler quotientof the latter

with respect to the former, yet we may do better.
In the case of an abelian |Γ| the center z[F] = F coincides with the entire gauge algebra. We discuss in detail

these cases in the sequel.
Let us consider the inclusion map of the variety DΓ into SΓ:

ι : DΓ → SΓ (6.36)

and let us define as Kähler potential and Kähler metric of the locus DΓ the pull backs of the Kähler potential
(6.31) and of metric (6.32) of SΓ, namely let us set:

KDΓ
≡ ι

?KSΓ
(6.37)

ds2
DΓ

= ι
? ds2

SΓ
(6.38)

By construction, the isometry group FΓ is inherited by the pullback metric on DΓ and we can consider the
Kähler quotient:

Mζ ≡ DΓ//
ζ

FΓ
(6.39)

Let fI be a basis of generators of FΓ (I = 1, . . . , |Γ|− 1) and let Zi (i = 1, . . . , |Γ|+ 2) be a system of complex
coordinates spanning the points of DΓ. By means of the inclusion map we have:

∀Z ∈DΓ : ι(Z) = p(Z) =


A(Z)

B(Z)

C(Z)

 (6.40)
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The action of the gauge group FΓ on DΓ is implicitly defined by:

p(δIZ) = δIp(Z) =


[ fI , A(Z)]

[ fI , B(Z)]

[ fI ,C(Z)]

 (6.41)

and the corresponding real moment maps are easily calculated:

µI(Z,Z) = Tr
(

fI
[
A(Z),A†(Z)

])
+ Tr

(
fI
[
B(Z),B†(Z)

])
+ Tr

(
fI
[
C(Z),C†(Z)

])
(6.42)

One defines the level sets by means of the equation:

µ
−1 (ζ ) =

{
Z ∈DΓ ‖ µI(Z,Z) = 0 if fI 6∈ Z ; µI(Z,Z) = ζI if fI ∈ Z

}
(6.43)

which, by construction, are invariant under the gauge group FΓ and we can finally set:

Mζ ≡ µ
−1 (ζ )//FΓ

≡ DΓ//
ζ

FΓ
(6.44)

The real and complex dimensions of Mζ are easily calculated. We start from |Γ|+2 complex dimensions, namely
from 2|Γ|+ 4 real dimensions. The level set equation imposes |Γ|− 1 real constraints, while the quotiening by
the group action takes other |Γ|− 1 parameters away. Altogether we remain with 6 real parameters that can be
seen as 3 complex ones. Hence the manifolds Mζ are always complex three-folds that, for generic values of ζ ,
are smooth: supposedly the crepant resolutions of the singular orbifold. For ζ = 0 the manifold M0 degenerates
into the singular orbifold C3/Γ, since the solution of the moment map equation is given by the FΓ orbit of the
locus LΓ, namely:

µ
−1 (0) = OrbitFΓ

(LΓ) (6.45)

Comparing eq. (6.29) with eq. (6.45) we are led to consider the following direct sum decomposition of the Lie
algebra:

GΓ = FΓ⊕KΓ (6.46)

[FΓ , FΓ] ⊂ FΓ ; [FΓ ,KΓ] ⊂ KΓ ; [KΓ ,KΓ] ⊂ FΓ (6.47)

where FΓ is the maximal compact subalgebra and KΓ denotes its complementary orthogonal subspace with
respect to the Cartan Killing metric.

A special feature of all the quiver Groups and Lie Algebras is that FΓ and KΓ have the same real dimension
|Γ|−1 and one can choose a basis of hermitian generators TI such that:

∀ΦΦΦ ∈ FΓ : ΦΦΦ = i×∑
|Γ|−1
I=1 cIT I ; cI ∈ R

∀KKK ∈KΓ : KKK = ∑
|Γ|−1
I=1 bIT I ; bI ∈ R

(6.48)

Correspondingly a generic element g ∈ GΓ can be split as follows:

∀g ∈ GΓ : g = U H ; U ∈FΓ ; H ∈ exp [KΓ] (6.49)

Using the above property we arrive at the following parametrization of the space DΓ

DΓ = OrbitFΓ
(exp [KΓ] ·LΓ) (6.50)
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where, by definition, we have set:

p ∈ exp [KΓ] ·LΓ ⇒ p = {exp [−KKK] A0 exp [KKK] , exp [−KKK] B0 exp [KKK] , exp [−KKK]C0 exp [KKK]} (6.51)

{A0, B0,C0} ∈ LΓ (6.52)

KKK = KΓ (6.53)

Relying on this, in the Kähler quotient we can invert the order of the operations. First we quotient the action of
the compact gauge group FΓ and then we implement the moment map constraints. We have:

DΓ//FΓ
= exp [KΓ] ·LΓ (6.54)

Calculating the moment maps on exp [KΓ] ·LΓ and imposing the moment map constraint we find:

µ
−1 (ζ )//FΓ

=
{

Z ∈ exp [KΓ] ·LΓ ‖ µI(Z,Z) = 0 if fI 6∈ Z ; µI(Z,Z) = ζI if fI ∈ Z
}

(6.55)

Eq. (6.55) provides an explicit algorithm to calculate the Kähler potential of the final resolved manifold if we are
able to solve the constraints in terms of an appropriate triple of complex coordinates. Furthermore for each level
parameter ζa we have to find the appropriate one-parameter subgroup of GΓ that lifts the corresponding moment
map from the 0-value to the generic value ζ . Indeed we recall that the Kähler potential of the resolved variety is
given by the celebrated formula:

KM = π
?KN + ζIC

IJ
ΦΦΦJ (6.56)

where, by definition:
π : N → M (6.57)

is the quotient map and exp[ζI C
IJ ΦΦΦI] ∈ exp [KΓ]⊂ GΓ is the element of the quiver group which lifts the moment

maps from zero to the values ζI , while CIJ is a constant matrix whose definition we discuss later on. Indeed the
rationale behind formula (6.56) requires a careful discussion, originally due to Hitchin, Karlhede, Lindström and
Roček [42] which we shall review in the next section.

7 Lessons from the Eguchi-Hanson case

In order to give a concrete illustrative example of the Kronheimer construction we focus on the simplest and
oldest known ALE manifold, namely on the Eguchi-Hanson space [43]. To this effect we begin by introducing a
set of Maurer Cartan forms on the three sphere S3 ∼ SU(2):

σ1 = − 1
2
(dθ cos(ψ)+dφ sin(θ)sin(ψ))

σ2 =
1
2
(dθ sin(ψ)−dφ sin(θ)cos(ψ))

σ3 = − 1
2
(dφ cos(θ)+dψ) (7.1)

which depend on three Euler angles θ ,φ ,ψ and satisfy the Maurer Cartan equations in the form:

dσi = εi jk σ j ∧σk (7.2)

Furthermore, let us introduce a radial coordinate m≤ r ≤+∞ and the following function:

G(r) =

√
1 −

(m
r

)2
(7.3)
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The Eguchi-Hanson metric is given by the following expression:

ds2
EH = G(r)−2 dr2 + r2 (

σ
2
1 +σ

2
2
)
+ r2 G(r)2

σ
2
3

=
1
4

((
r4−a4

)
(dφ cos(θ)+dψ)2

r2 +
4dr2

1− a4

r4

+ r2 (dφ
2 sin2(θ)+dθ

2))
(7.4)

Calculating the curvature two-form of the above metric, we find that it is self-dual, while its Ricci tensor van-
ishes. Hence the Eguchi-Hanson metric is an Euclidean vacuum solution of Einstein equations and it describes
a gravitational instanton. As r→ ∞ the Eguchi-Hanson metric approaches a Euclidean metric:

ds2
EH

r→∞
=⇒ 1

2
r2dψdφ cos(θ)+

1
4

r2dθ
2 +

1
4

r2dψ
2 +

1
4

r2dφ
2 +dr2 (7.5)

Next, one describes the Eguchi-Hanson space as a complex manifold MEH and the Eguchi-Hanson metric
d̂s2

EH as a Kähler metric on MEH . To this effect let us introduce the following two complex coordinates:

Z1 =
(
r4−m4)1

4

(
ei(θ+φ)+ ieiθ + eiφ − i

)
e−

1
2 i(θ−ψ+φ)

2
√

2

Z2 =
(
r4−m4)1

4

(
ei(θ+φ)− ieiθ + eiφ + i

)
e−

1
2 i(θ−ψ+φ)

2
√

2
(7.6)

By direct calculation we can verify that:

ds2
EH =

∂

∂Zi
∂

∂Z j? KEH dZi⊗dZ j? (7.7)

where:

KEH =
√

τ2 +m4−m2 log
(√

τ2 +1+m4
)
+m2 log(τ)

τ ≡ |Z1|2 + |Z2|2 (7.8)

Having derived the form of the Kähler potential for the Eguchi-Hanson metric we can now connect it to the
Kronheimer construction of the ALE manifolds by recalling eqs. (5.32) and rewriting them in the case k = 1 for
which the group F = U(1), so that there is only one component of the triholomorphic moment map:

P3 = |u0|2−|v0|2 + |v1|2−|u1|2 (7.9)

P+ = u0 v0−u1 v1 (7.10)

In this case it is convenient to redefine:

U = {u0,v1} (7.11)

V = {v0,u1} (7.12)
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so that eqs. (7.10) can be rewritten as follows:

P3 = P3(U,V ) ≡
2

∑
i=1
|Ui|2 −

2

∑
i=1
|Vi|2 (7.13)

P+ = P+(U,V ) ≡
2

∑
i=1

UiVi (7.14)

Furthermore the action of the group FZ2 = U(1) on the complex coordinates U,V is the following one:

U(1) : (U,V ) =⇒
(
eiϕU , e−iϕV

)
(7.15)

Considering the quiver group GZ2 which is just the complexification of FZ2 we obtain the transformation:

GZ2 : (U,V ) =⇒
(

e−ΦΦΦU , eΦΦΦV
)

(7.16)

Relying on these preliminaries we are ready to perform the algebro-geometric hyperKähler quotient according
to formula (6.56). Introducing the level parameters we have to solve the equations:

` = P3
(

e−ΦΦΦU,eΦΦΦV
)

s = P+
(

e−ΦΦΦU,eΦΦΦV
)
= P+ (U,V ) (7.17)

As stated several times and recalled in the second line of the above equation, the holomorphic part of the moment
map is invariant under the action of the quiver group. This is very useful for the solution of the constraints. Indeed
we can just choose a gauge condition like the following one:

U1 = V2 (7.18)

Furthermore, in the case k = 1 the holomorphic level parameter s can be just set equal to zero without loss of
generality, since it simply amounts to a change of coordinates. In this way we arrive at:

U1 = V2 ≡ 1
2 Z1 ; U2 = V1 ≡ 1

2 Z2 (7.19)

and the first of equations (7.17) is solved by:

ΦΦΦ = − log

[
`±
√

`2 +4|U |2 |V 2|
2|V 2|

]
= − log

[
`±
√
`2 + |Z|4

2|Z|2

]
; |Z|2 ≡ |Z1|2 + |Z2|2 (7.20)

The restriction to the level surface of the ambient Kähler potential is calculated in an equally easy fashion:

K |N = e−2ΦΦΦ |U |2 + e2ΦΦΦ |V |2 =
√

`2 + |Z|4 (7.21)

Choosing one branch of the solution (7.20) and applying the general formula (6.56) we obtain the Kähler poten-
tial of the manifold M :

KM =
√
`2 + |Z|4 − ` log

[
`±
√
`2 + |Z|4

2|Z|2

]
(7.22)

For ` = m2, we see that the Kähler potential (7.22) obtained by means of the hyperKähler quotient advocated
in the Kronheimer construction coincides with that of the Eguchi-Hanson manifold displayed in eq. (7.8). This
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concludes the proof that the Eguchi-Hanson manifold is a smooth resolution of the singularity C2/Z2.

7.1 The algebraic equation of the locus and the exceptional divisor

First we consider the algebraic equation of the locus in C3 that corresponds to the Eguchi-Hanson manifold.
According to the discussion following eq. (5.39) such an equation is provided by the relation between the Γ

invariants:
x≡ DetA ; DetB ; z≡ 1

2 Tr(AB) (7.23)

Upon use of the gauge condition (7.18) and of the solution of the holomorphic moment map constraint (7.19) we
have:

A =

(
0 1

2 Z1
1
2 Z2 0

)
; B =

(
0 1

2 Z2
1
2 Z1 0

)
(7.24)

so that:
x = − 1

4 Z1 Z2 ; y = − 1
4 Z1 Z2 ; z = 1

4 Z1 Z2 (7.25)

and the equation of the orbifold locus C2/Γ:
xy = z2 (7.26)

remains unmodified. This happens because the holomorphic moment map has not been lifted away from zero
and similarly will happen in all the resolutions of the C3/Γ singularities since, as we stressed, there we have no
complex structure deformations and the analogue of the holomorphic moment map equation [A , B] = [B ,C] =
[C , A] obtains no deformation. Yet we know that by lifting the level of the real moment map we obtain the smooth
Eguchi-Hanson manifold which has a nontrivial homology 2-cycle, as foreseen by the general theorem 4.1. In
quasi polar coordinates these homology cycle is the two–sphere spanned by angles θ and φ when we set r = m
and we disregard the angle ψ . Such a homology cycle disappears when m→ 0 hence it is the exceptional divisor
generated by the minimal resolution of the singularity. Hence it is interesting to see where such an exceptional
divisor is located in the complex description of the Eguchi-Hanson manifold obtained from the Kronheimer
construction. To this effect it is convenient to recall the relation between divisors and line bundles.

7.1.1 Divisors and line bundles

A prime divisor in a complex manifold or algebraic variety X is an irreducible closed codimension one subvariety
of X . A divisor D is a locally finite formal linear combination

D= ∑
i

aiDi (7.27)

where the ai are integers, and the Di are prime divisors. A prime divisor D can be descrived by a collection
{(Uα , fα)}, where {Uα} is an open cover of X , and the { fα} are holomorphic functions on Uα such that fα = 0
is the equation of D∩Uα in Uα . As a consequence, the functions gαβ = fα/ fβ are holomorphic nowhere
vanishing functions

gαβ : Uα ∩Uβ → C∗

that on triple intersections Uα ∩Uβ ∩Uγ satisfy the cocycle condition

gαβ gβγ = gαγ

and therefore define a line bundle L (D). If D is a divisor as in (7.27) then one sets

L (D) =
⊗

i

L (Di)
ai .
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The inverse correspondence (from line bundles to divisors) is described as follows. If s is a nonzero meromorphic
section of a line bundle L , and V is a codimension one subvariety of X over which s has a zero or a pole, denoted
by ordV (s) the order of the zero, or minus the order of the pole; then

D= ∑
V

ordV (s) ·V

is a divisor, whose associated line bundle L (D) is isomorphic to L .

7.1.2 The exceptional divisor

It is easy to work out the exceptional divisor in the Eguchi-Hanson case by performing the following holomorphic
coordinate transformation:

Z1 → (1−ξ1) ξ2 ; Z2 → −(1+ξ1) ξ2 (7.28)

Upon the substitution (7.28) and the identification ` = m2 the Kähler potential (7.22) becomes:

KEH = K0 +m2 (KE + log |W |2
)

K0 =

√
m4 +4(1+ |ξ1|2)2 |ξ2|4 − m2 log

(
m2 +

√
m4 +4(1+ |ξ1|2)2 |ξ2|4

)
KE = log

(
1+ |ξ1|2

)
W ≡

√
2ξ2 (7.29)

Inspecting eq. (7.29) we realize that KE is the standard Kähler potential of a P1 written in the affine coordinate
ξ1. This suggests that the Eguchi-Hanson manifold is covered by two open charts:

UN =
{

ξ
N
1 ,ξ N

2
}

US =
{

ξ
S
1 ,ξ

S
2
}

(7.30)

with transition function: {
ξ

N
1 ,ξ N

2
}
=

{
1

ξ S
1
,ξ S

2 ξ
S
1

}
(7.31)

Under the transformation (7.30) the function K0 is invariant, while KE transforms as follows:

KE

(
ξ

N ,ξ N
)
= KE

(
ξ

S,ξ S
)
− log |ξ S

1 |2 (7.32)

Therefore we can introduce a line bundle L
π→MEH defined by two local trivializations, one based on UN , the

other on US with transition function:

gNS : WN(ξ
N) = ξ

S
1 WS(ξ

S) (7.33)

a fiber metric on such a bundle is obtained by defining the following invariant norm for the bundle sections:

‖W ‖2≡ eKE |W |2 (7.34)

The corresponding first Chern class is:

c1(L ) = ω
(1,1) ≡ i

2π
∂∂ log ‖W ‖2 W→0−→ i

2π

dξ1∧dξ 1

(1+ |ξ1|2)2 ≡ ω
(1,1)
D (7.35)
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The divisor D related with this line bundle is obviously obtained as the vanishing locus of the global section
W = ξ2 = 0. The cohomology class of ω(1,1) is that of the Poincaré dual ω

(1,1)
D of the vanishing section W ,

namely of the divisor D: [
ω

(1,1)
]
=
[
ω

(1,1)
D

]
(7.36)

What we have discussed so far is just an explicit illustration of the well known fact that the Eguchi-Hanson
manifold is the total space of the fiber bundle OP1(−2).

Since the function K0 is invariant, it is clear that its contribution ∂∂K0 to the Kähler 2-form is cohomologous
to zero which implies:

[KEH ] = m2
[
ω

(1,1)
D

]
(7.37)

Finally it is instructive to compare the above complex description of the Eguchi-Hanson space with its description
in terms of quasi polar coordinates. To this effect it suffices to rewrite the coordinate transformation (7.6) in terms
of the xi coordinates. We have:

ξ1 = eiφ cot
(

θ

2

)
, ξ2 =

1
2

√
1− cos(θ) 4

√
r4−m4e

1
2 i(ψ−φ) (7.38)

As we see the locus ξ2 = 0 corresponds to r = m and ψ = any value.

7.2 Comparison with the two-center Gibbons-Hawking metric

Finally we derive the map between the manifold with a two center Gibbons-Hawking (GH) metric [44, 45] and
the Eguchi-Hanson space. We begin with a conceptual discussion about the parameters of GH-metrics (Appendix
C is devoted to a concise description of GH-metrics and also provides new formulae concerning their explicit
description in terms of complex coordinates. There we also address the problem of deriving the corresponding
Kähler potential).

The Gibbons-Hawking multi-center metrics have a number of parameters that can be counted in the following
way. Let n be the number of centers. Each center has 3-coordinates, hence a priori we have 3n parameters. Yet,
using the Euclidean group of translations and rotations, which is a symmetry of the 3d laplacian, we can always
bring a center to a reference point, say the origin xxx = 0. So we are left with 3(n−1) parameters. Furthermore,
once a center is fixed, another center lies somewhere on a two-sphere around the first center and we can use the
rotation group to bring it to a preferred direction. This kills two additional parameters. In this way we have:

# of effective parameters in a GH metric = 3n−5 (7.39)

From the point of view of the Kronheimer construction, the n-center metric corresponds to the resolution Y →
C2

Zm
via a hyperKähler quotient. In this case the gauge group is U(1)n−1 and we have indeed 3(n−1) parameters.

Two parameters corresponding to one complex moment map level can be disposed of by a redefinition of the
complex coordinates for the resolved manifold Y. Hence also on the side of the hyperKähler quotient we have:

# of effective parameters in a hyperKähler quotient resolution of
C2

Zn
= 3n−5 (7.40)

In the Eguchi-Hanson case n = 2 and there is only one effective parameter on both sides of the correspondence,
namely the parameter m2 that we have associated with real moment map level. The level of the holomorphic
moment map corresponds to the two parameters that can be disposed of by a coordinate transformation and was
set to zero.

From the GH-side, the removal of the spurious parameters can be conventionally performed by aligning
the two centers on the z-axis at symmetrical positions with respect to the origin z = 0. Hence referring to eqs.
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(C.1)and (C.2) we set:

VEH =
1√(

m2

8 + z
)2

+ x2 + y2

+
1√(

z− m2

8

)2
+ x2 + y2

(7.41)

and we obtain the following connection one-form :

ωEH =

m2

 1√
(m2−8z)2 +64(x2 + y2)

− 1√
(m2 +8z)2 +64(x2 + y2)


− 8z√

(m2−8z)2 +64(x2 + y2)
− 8z√

(m2 +8z)2 +64(x2 + y2)
+2

× ydx− xdy
x2 + y2

(7.42)

which satisfies with VEH the duality relation (C.4). The one-form ωEH agrees with eq. (C.17) if we set:

∂zFEH =
∫

dzVEH

= log

√(z− m2

8

)2

+ x2 + y2− m2

8
+ z

+ log

√(m2

8
+ z
)2

+ x2 + y2 +
m2

8
+ z


(7.43)

The metric:
ds2

two−center =
1

VEH
(dτ +ωEH)

2 +VEH
(
dx2 +dy2 +dz2) (7.44)

is exactly mapped into the Eguchi-Hanson metric (7.4) by the following coordinate transformation:

x→ 1
8

sin(θ)
√

r4−m4 cos(ψ) , y→ 1
8

sin(θ)
√

r4−m4 sin(ψ)

z→ 1
8

r2 cos(θ) , τ → 2ψ +2φ (7.45)

It is also interesting to work out the explicit form, in the present case of the complex coordinates h and z
introduced in eqs. (C.16) and (C.22) within the framework of the general discussion. After some algebra one
finds:

h =
64e2i(ψ+φ)

(cos(θ)+1)2 (r4−m4)
, z =

1
8

i e−iψ sin(θ)
√

r4−m4 (7.46)

As one realizes, both these coordinates are singular on the exceptional divisor r = m and they are not convenient
to describe it. The relation with the good coordinates ξ1,2 is actually antiholomorphic and it would be difficult to
be guessed a priori:

ξ 1 = − i
z
√
h

, ξ 2 = −
√

2 z 4
√
h

m
(7.47)

In terms of the GH-coordinates, by inspecting eq. (7.45) we readily retrieve the image of exceptional divisor
inside the GH space. It is given by the locus:

DE =

{
x = y = 0 ,−m2

8
≤ z≤ m2

8
, 0≤ τ ≤ 2π

}
(7.48)
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namely the product of the segment joining the two centers on the z-axis with the circle spanned by the τ-angle.
(Actually a detailed analysis of the metric shows that it degenerates at the ends of the cylinder, so that the latter
may be thought of as a sphere.) This observation may be useful in order to find the exceptional divisors in the
more complicated multi-center cases.

8 The generalized Kronheimer construction for C3

Γ
and the Tautological Bun-

dles

In the present section we aim at extracting a general scheme from the detailed discussions presented in the
previous sections. Our final goal is to establish all the algorithmic steps that give a precise meaning to each of
the lines appearing in the conceptual diagram of eq. (4.2).

8.1 Construction of the space Nζ ≡ µ−1(ζ )

Summarizing the points of our construction we have the following situation. We have considered the moment
map

µ : SΓ −→ FΓ
∗ (8.1)

where FΓ
∗ is the dual of the Lie algebra of the maximal compact subgroup FΓ of the quiver group GΓ. Next

we have considered the center of the above Lie algebra z[FΓ]⊂FΓ and its dual z [FΓ]
∗. The moment map can be

restricted to the subspace:
DΓ ⊂SΓ ; DΓ ≡ { p ∈SΓ| p∧ p = 0} (8.2)

which is just the orbit, with respect to the quiver group GΓ, of a locus EΓ ⊂ SΓ of complex dimension three
obtained in the following way.

Consider the following subspace of S
[0,0]

Γ
⊂SΓ

S
[0,0]

Γ
= { p ∈SΓ| p∧ p = 0 ; µ(p) = 0} (8.3)

whose elements are triples of |Γ|× |Γ| complex matrices (A,B,C) satisfying, by the above definition, in addition
to the invariance constraint (6.6-6.7) also the following two ones:

[A,B] = [B,C] = [C,A] = 0 ; Tr
[
TI
([

A,A†]+ [B,B†]+ [C,C†])] = 0 ; I = 1, . . . , |Γ|−1 (8.4)

Since the action of the compact group FΓ leaves both the first and the second constraint invariant, it follows that
it maps the locus S

[0,0]
Γ

into itself
FΓ : S

[0,0]
Γ
→ S

[0,0]
Γ

(8.5)

The locus EΓ is defined as the quotient:

EΓ ≡
S

[0,0]
Γ

FΓ

(8.6)

which turns out to be of complex dimension three and to be isomorphic to the singular orbifold :

S
[0,0]

Γ

FΓ

' C3

Γ
(8.7)

Choosing a representative in each equivalence class S
[0,0]

Γ

FΓ
simply amounts to a choice of local coordinates on C3

Γ

which will be promoted to a system of local coordinates on the manifold Mζ of the final resolved singularity.
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We have a canonical algorithm to construct a canonical coordinate system for EΓ which originates from
Kronheimer and from the 1994 paper by Anselmi, Billò, Frè, Girardello and Zaffaroni on ALE manifolds and
conformal field theories [38]. The construction is the following. We begin with the locus LΓ ⊂SΓ defined as
the set of triples (Ad ,Bd ,Cd) such that the invariance constraint (6.7) is satisfied with respect to Γ and they are
diagonal in the natural basis of the regular representation. We have shown on the basis of several examples that :

DΓ = OrbitGΓ
(LΓ) (8.8)

We obtain an explicit parameterization of the locus EΓ by solving the algebraic equation for the hermitian matrix
V0 ∈ exp [KΓ], such that

∀p ∈ LΓ : µ (V0.p) = 0 (8.9)

The important thing is that the solution for the above equation is a constant matrix V0, indipendent from the point
p ∈ LΓ. Then we fix the coordinates of our manifold by parameterizing

p ∈ EΓ⇒ p =


A0

B0

C0

=


V0
−1AdV0

V0
−1BdV0

V0
−1CdV0

 where


Ad

Bd

Cd

 ∈ LΓ (8.10)

It follows that equation (8.8) can be substituted by

V|Γ|+2 ≡ DΓ = OrbitGΓ
(EΓ) (8.11)

We can also introduce a subspace DΓ
0⊂V|Γ|+2 which is the orbit of EΓ under the compact subgroup FΓ:

DΓ
0 = OrbitFΓ

(EΓ) (8.12)

This being the case we consider the restriction of the moment map to DΓ

µ : DΓ −→ FΓ
∗ (8.13)

and given an element
ζ ∈ z [FΓ]

∗ (8.14)

we define:
Nζ ≡ µ

−1(ζ )⊂DΓ : Nζ = { p ∈DΓ|µ(p) = ζ} (8.15)

Obviously we have:
N0 ≡ µ

−1(0) = DΓ
0 (8.16)

8.2 The space Nζ as a principal fiber bundle

The space Nζ has a natural structure of an FΓ principal line bundle over the quotient Mζ :

Nζ

π−→ Mζ ≡ Nζ//FΓ (8.17)

On the tangent space to the total space of the FΓ–bundle TN ζ we have a metric induced, as the pullback, by
the inclusion map:

ι : Nζ −→SΓ (8.18)
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of the flat metric g on SΓ

gN = ι
∗ (gSΓ

) (8.19)

Since the metric gSΓ
is Kählerian we have a Kähler potential KSΓ

from which it derives and we define the
function

KN ≡ ι
∗ (KSΓ

) (8.20)

This function is not the Kähler potential of Nζ which is not even Kählerian (it has odd dimensions) but it will be
related to the Kähler potential of the final quotient Mζ by means of an argument due to [42], that we spell out
a few lines below. Let us denote by p ∈Mζ a point of the base manifold and by π−1(p) the FΓ-fiber over that
point.

8.2.1 The natural connection and the tautological bundles

We can determine a natural connection on the principal bundle (8.17) through the following steps. As it is
observed in eq. (2.7) of the paper by Degeratu and Walpuski [2], which agrees with the formulae of the present
paper, the quiver group has always the following form:

GΓ =
r

∏
i=1

GL
(
Cdim[DDDi]

)
(8.21)

where DDDi are the nontrivial irreducible representations of the finite group Γ, with the esclusion of DDD0, the identity
representation. It also follows that the compact gauge subgroup FΓ has the corresponding following structure

FΓ =
r

∏
i=1

U(dim [Di]) (8.22)

Consequently, the principal bundle (8.17) induces holomorphic vector bundles of rank dim [DDDi] on which the
compact structural group acts non-trivially only with its component U(dim [DDDi]). A natural connection on these
bundles is obtained as it follows

A=
i
2

(
H −1

∂H −H ∂H −1
)
+g−1dg ∈

r
⊕
i=1

u(dim [Di]) (8.23)

where H is a hermitian fiber–metric on the direct sum of the tautological vector bundles defined below:

R ≡
r⊕

i=1

Ri ; Ri
π−→Mζ ; ∀p ∈Mζ : π

−1(p)' Cdim[Di] (8.24)

By definition the matrix H must be of dimension

dim[H ] = n×n where n =
r

∑
i=1

dim [Di] =
r

∑
i=1

ni (8.25)

In order to find the hermitian matrix H , we argue in the following way. First we observe that in the regular
representation R each irreducible representation DDDi is contained exactly dim [DDDi] times, so that the form of the
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matrix V corresponding to the hermitian parameterization of the coset GΓ

FΓ
has always the following form:

V =



H0 0 0 . . . 0

0 H1⊗111n1×n1111n1×n1111n1×n1 0 . . .
...

0 0 H2⊗111n2×n2111n2×n2111n2×n2 . . .
...

... . . . . . . . . . . . .
...

... . . . . . . . . . 0

0 . . . . . . 0 Hr⊗111nr×nr111nr×nr111nr×nr


(8.26)

where ni denotes the dimension of the i-th nontrivial representation of the discrete group Γ and from this we
extract the block diagonal matrix:

H ≡



H1 0 . . . . . . 0

0 H2 . . . . . .
...

... . . . . . . . . . . . . . . .
...

... . . . . . . . . . Hr−1 0

0 . . . . . . . . . 0 Hr


(8.27)

The hermitian matrix H is the fiber metric on the direct sum:

R =
r⊕

i=1

Ri (8.28)

of the r tautological bundles that, by construction, are holomorphic vector bundles with rank equal to the dimen-
sion of the r irreducible representations of Γ:

Ri
π−→ Mζ ; ∀p ∈Mζ : π

−1(p)≈ Cni (8.29)

The compatible connection7 on the holomorphic vector bundle R is given by:

ϑ = H −1
∂H =

r⊕
i=1

θi

θi = H−1
i ∂Hi ∈ GL(ni,C) (8.30)

where GL(ni,C) is the Lie algebra of GL(ni,C) which is structural group of the i-th tautological vector bundle.
The natural connection of the FΓ principal bundle, mentioned in eq. (8.23) is just, according to a universal
scheme, the imaginary part of the holomorphic connection ϑ .

8.2.2 The tautological bundles from the irrep viewpoint and the Kähler potential

From the analysis of the above section we have reached a very elegant conclusion. Once the matrix V is
calculated as function of the level parameters ζ and of the base-manifold coordinates (zm,zm) (m = 1,2,3), we

7Following standard mathematical nomenclature, we call compatible connection on a holomorphic vector bundle, one whose (0,1)
part is the Cauchy Riemann operator of the bundle
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also have the block diagonal hermitian matrix H which encodes the hermitian fiber metrics Hi(ζ ,z,z) on each
of the tautological holomorphic bundles Vi whose ranks are equal, one by one, to the dimensions ni of the irreps
of Γ. The first Chern classes of these bundles are represented by the differential (1,1) forms:

ωi
(1,1) =

i
2π

∂∂Log [Det [Hi]] (8.31)

Let us recall another remarkable group theoretical fact. The number r of nontrivial irreps of Γ is equal to the
number r of nontrivial conjugacy classes and to the number r of generators of the center of the compact Lie
algebra FΓ, hence also to the number r of level parameters ζ and to number r of holomorphic tautological
bundles. Now we are in a position to derive in full generality the formula for the Kähler potential and, hence, for
the Kähler metric of the resolved manifold Mζ that we anticipated in (6.56) . In view of the above discussion,
we rewrite the latter as it follows:

KMζ
= KSΓ

|Nζ
+ζ

iCijLog [Det [H j]] (8.32)

where KSΓ
is the Kähler potential of the flat space SΓ and |Nζ

denotes its restriction to the level surface Nζ ,
while CIJ is an r×r constant matrix whose structure we will define and determine below. Why the matrix defined
there yields the appropriate Kähler potential is what we will now explain starting from an argument introduced
in 1987 by Hitchin, Karlhede, Lindström and Roček.

The HKLR differential equation and its solution Before explaining the origin of the matrix CIJ, we would
like to stress that, conceptually it encodes a pairing between the level parameters ( = generators of the Lie algebra
center) and the tautological bundles ( = irreps). If we could understand the relation between conjugacy classes
with their ages and cohomology classes, then we would have a relation between irreps and conjugacy classes
and we could close the three-sided relation diagram among the center z [FΓ ] and the other two items, irreps and
conjugacy classes. As we are going to show, this side of the relation is based on the concept of weighted blowup.
On the other hand, understanding the matrix CIJ, is a pure Lie algebra theory issue, streaming from the HKLR
argument.

Hence, continuing such an argument, let us consider the flat Kähler manifold SΓ and its Kähler potential

K =
3

∑
i=1

Tr
[
AiA

†
i

]
where we have defined Ai = {A,B,C} (8.33)

The exponential of the Kähler potential is also, by definition, the hermitian metric on the Hodge line bundle:

LHodge
π−→SΓ where ∀p ∈SΓ : π

−1(p)≈ C∗

‖W‖2 ≡ eKS WW (8.34)

Indeed, the second line of the above equation ‖W‖2 defines the invariant norm of any section of LHodge.
Let us know consider the action of the quiver group on SΓ and its effect on the fiber metric h=eK . The

maximal compact subgroup FΓ is an isometry group for the Kähler metric defined by (8.33). Hence we focus
on the orthogonal (with respect to the Killing form) complement of FΓ. Let

ΦΦΦ ∈KΓ (8.35)

be an element of the orthogonal subspace to the maximal compact subalgebra

GΓ = FΓ⊕KΓ (8.36)
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consider the one parameter subgroup generated by this Lie algebra element

g(λ )≡ eλΦΦΦ (8.37)

The action of this group on the Kähler potential is easily calculated

KS (λ ) =
3

∑
i=1

Tr
[
Aie2λΦΦΦA†

i e−2λΦΦΦ

]
(8.38)

Performing the derivative with respect to λ we obtain

∂λ KS (λ ) |λ=0=
3

∑
i=1

Tr
(

ΦΦΦ

[
Ai,A

†
i

])
(8.39)

Then we utilize the fact that each element ΦΦΦ∈KΓ is just equal to i×ΦΦΦc where ΦΦΦc denotes an appropriate element
of the compact subalgebra. Hence the above equation becomes

∂λ KS (λ ) |λ=0= i×
3

∑
i=1

Tr
(

ΦΦΦc

[
Ai,A

†
i

])
= iPΦΦΦc (8.40)

Let us decompose the moment map along the standard basis of compact generators. We obtain:

PΦ =
|Γ|−1

∑
I=1

ΦΦΦ
ITr
(
Kc

I

[
Ai,A

†
i

])
= i

|Γ|−1

∑
I=1

ΦΦΦ
I
cPI(p) =

|Γ|−1

∑
I=1

ΦΦΦ
IPI(p) =

|Γ|−1

∑
I=1

ΦΦΦ
ITr
(
KI

[
Ai,A

†
i

])
(8.41)

where p ∈DΓ ⊂ SΓ denotes the arbitrary point in the ambient space described by the triple of matrices Ai,
KI=i Kc

I are the |Γ|-1 noncompact generators of the quiver group GΓ that, by construction, are just as many as
the compact generators Kc

I of the maximal compact subgroup FΓ. Formally integrating the above differential
equation it follows that the fiber of the metric Hodge line bundle (8.34)

h(p)≡ Exp [KS (p)] (8.42)

transforms in the following way under the action of the quiver group

∀g ∈ GΓ g : h(p)−→ hg(p)≡ h
(

eLog[g]p
)
= ec(g,p)h(p) (8.43)

where
Log[g] ∈GΓ (8.44)

is an element of the quiver group Lie algebra and as such can be decomposed along a complete basis of generators

Log[g] =
7

∑
I=1

ΦΦΦ
IKI +ΦΦΦc

IKc
I (8.45)

and the anomaly c(g, p)introduced in eq. (8.43) has, in force of the differential equation discussed above the
following form:

c(g, p) =
7

∑
I=1

(
ΦΦΦ

I + iΦΦΦc
I)PI(p) (8.46)
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where PI(p) are the moment maps at point p.
Next consider the diagram

SΓ

ι←− Nζ

π−→ Mζ ≡ Nζ/FΓ (8.47)

where Nζ is the level surface and Mζ the final Kähler threefold with its associated Hodge line bundle whose
curvature is the Kähler form KM

KM ≡
i

2π
∂∂KM =

i
2π

∂

(
1

hM
∂hM

)
(8.48)

KM being the Kähler potential of the resolved variety. Following HKLR, we require that

π
∗KM = ι

∗KSΓ
(8.49)

where KSΓ
is the Kähler form of the flat Kähler manifold SΓ =HomΓ(Q⊗R,R). At the level of fiber metric on

the associated Hodge line bundles, eq. (8.49) amounts to stating that

∀p ∈Mζ : hM (p) = hg
SΓ

(p) = hSΓ
(g.p) = ec(g,p) hSΓ

(p) (8.50)

where g is an element of the quiver group that brings the point p ∈ Nζ on the level surface of level ζ to the
reference level surface N0 which corresponds to the singular orbifold C3

Γ
. Applying this to eq. (8.46) we obtain:

c(g, p) = ζ
I
ΦΦΦI(p) = ζ

I ∗Tr [KILog[g]] =
r

∑
i=1

ζ
I ∗Tr

[
Kcentral

I Log[g]
]

(8.51)

since the only non-vanishing levels are located in the Lie Algebra center. On the oher hand we have g = H :

Tr
[
Kcentral

I Log[H ]
]
≡

r

∑
J=1

CIJLog [Det [HJ]] (8.52)

The above formula defines the constant matrix CIJ and justifies the final formula (8.32). In appendix D we will
calculate an example of matrix CIJ for a simple case of a nonabelian group Γ which leads to tautological bundles
of rank larger then one. In the case of cyclic Γ the center of the Lie Algebra FΓ coincides with the algebra itself
and the matrix CIJ is just diagonal and essentially trivial.

Expansion to first order In the Eguchi-Hanson example, which is the only one where the explicit form of

the closed forms can be derived, we have explicitly verified that the term of order one
(1)
ω i

(1,1) in the small ζ

parameter expansion is

ω
(1,1)
i = 0+

∞

∑
n=1

ζ
n(n)
ω i

(1,1) (8.53)

cohomologous to the full form ω
(1,1)
i . Hence it suffices to solve the moment map equations at first order in

ζ (which is always possible) and we obtain a calculation of the cohomology classes of the resolved variety
according to the above displayed scheme. At the same time we obtain a calculation of the Kähler potential to the
very same order.

We assume that this is a general feature applying to all cases.

Dolbeault cohomology The objects we are dealing with are Dolbeault cohomology classes of the final resolved
manifold Mζ which is Kähler as a result of its Kähler quotient construction.
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When we say that ω p,q is a harmonic representative of a nontrivial cohomology class in H1,1
(
Mζ

)
we are

stating that:

• The form is ∂ -closed and ∂ -closed
∂ω

p,q = ∂ω
p,q = 0

• There do not exist forms φ p−1,q and φ p,q−1 such that:

ω
p,q = ∂φ

p−1,q = ∂φ
p,q−1

The reason why the ω
(1,1)
i are nontrivial representatives of (1,1) cohomology classes is that they are obtained as

∂ of connection one-forms θ (1,0) that are not globally defined. Indeed if we introduce the curvatures and the first
Chern classes of the tautological vector bundles we have the elegant formula anticipated in eq. (8.31):

Θi = ∂θi

ω
(1,1)
i ≡ c1(Ri) = Tr(Θi) = ∂ ∂ log [Det(Hi)] (8.54)

Comparing now with the definition of Dolbeault cohomology we see that ω
(1,1)
i are nontrivial cohomology

classes because either
θ
(1,0) ≡ ∂ log [Det(Hi)] or θ

(0,1) ≡ ∂ log [Det(Hi)] (8.55)

are non-globally defined 1-forms on the base manifold. This is so because they transform nontrivially from one
local trivialization of the bundle to the next one. The transition functions on the connections are determined by
the transition functions on the metric H , namely on the coset representative. Here comes the delicate point.

Where from in the Kronheimer–like construction do we know that there are different local trivializations,
otherwise that the tautological bundles are nontrivial? Computationally we solve the algebraic equations for H
in terms of the coordinates zi (i = 1,2,3) parameterizing the locus LΓ, which is equivalent to the singular locus
C3

Γ
and we find H =H (ζ ,z) where ζ are the level parameters. In order to conclude that the tautological bundle

is nontrivial we should divide the locus LΓ into patches and find the transition functions of the connections θi

from one patch to the other. Obviously the transition function must be an element of the the quiver group g∈ GΓ.
At the first sight it is not clear how to implement such a program, since we do not know how we should partition
the locus LΓ. Clearly the actual solution of the algebraic equations is complicated and, as we very well know,
we are able to implement it only by means of a power series in ζ , yet it is obvious that this is not a case by
case study. As everything else in the Kronheimer–like construction, it must be based on first principles and it is
precisely these first principles that we are going to find out. It is at this level that the issue of ages is going to
come into play in an algorithmic way. We begin by inspecting the only case where the final analytic form of all
the construction items is available in closed form, namely the Eguchi-Hanson case.

8.3 What we see in the Eguchi-Hanson case

Let us briefly summarize what we have verified in the EH case. The space Nζ has a natural structure of principal
U(1)-bundle over the quotient Mζ , as the maximal compact subgroup of the quiver group FΓ ⊂GΓ in this case
is just U(1).

Nζ

π−→ Mζ ≡ Nζ//FΓ (8.56)

As Nζ is a closed submanifold of SΓ it has an induced metric g. The vertical tangent bundle to Nζ is locally
generated by the vector field

Vvert =
∂

∂φ
(8.57)
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Pointwise we can consider the space TN hor orthogonal to the vertical tangent bundle

TN hor =

{
X ∈ TN ζ

∣∣< X ,
∂

∂φ
>≡ g

(
X ,

∂

∂φ

)
= 0
}

(8.58)

This assignment of a complement to the vertical tangent spaces is smooth and U(1)-invariant, and therefore
defines a connection on the principal bundle Nζ , whose connection form AAA satisfies

∀X ∈ TN hor : AAA(X) = 0 ;AAA
(

∂

∂φ

)
= 1 (8.59)

In the chosen coordinates we find:

AAA=== dφ − ζ dθ 1ρ2
1

2
(
1+ρ2

1

)√
ζ 2 +64

(
1+ρ2

1

)
2ρ4

2

− ζ dθ 2

2
√

ζ 2 +64
(
1+ρ2

1

)
2ρ4

2

(8.60)

where:
z1,2 = exp [iθ1,2] ρ1,2 (8.61)

are the standard complex coordinates labeling the points of the locus LΓ, namely parametrizing the two matrices
A,B that solve the invariance constraint of Γ, defining HomΓ(Q×R,R), and are also diagonal in the natural basis
of the regular representation. In the split basis they turn out to be antidiagonal:

A =

(
0 Z1

Z1 0

)
; B =

(
0 Z2

Z2 0

)
(8.62)

By means of the usual correspondence between U(1) bundles and line bundles we conclude that this connection
AAA is the imaginary part of the connection theta of the corresponding bundle and we write the equation:

θ = H−1
∂H (8.63)

where the explicit solution of the algebraic moment map equations yields:

H =

4

√
ζ+

√
ζ 2+16|Z2

1|
2
+|Z2

2|2
|Z1|2+|Z2|2√

2
(8.64)

Curvature of the line bundle In this way we find that the tautological bundle has the following curvature:

Θ = ∂∂Log[H] (8.65)

Θ is the first Chern class of the tautological line bundle implicitly defined by the above construction

L
π−→Mζ

c1(L ) =

[
i

2π
Θ

]
∈ H1,1 (Mζ

)
(8.66)
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where H1,1
(
Mζ

)
is the (1,1) cohomology group of the manifold Mζ . On the other hand the very space of

Eguchi-Hanson Mζ is a line bundle over P1:

Mζ

π0−→ P1 (8.67)

There is a (1,1)-form ω over P1 which is the the first Chern class of the bundle Mζ .

c1
(
Mζ

)
= ω ∈ H1,1 (P1) (8.68)

We find that, as usual the pullback π0
∗of the projection π0 works in particular as follows:

π0
∗ : T(1,1)

∗P1 −→ T(1,1)
∗Mξ (8.69)

We find that the (1,1)-form Θ which is defined over the whole Mζ is the pullback image of the first Chern class
of the line bundle Mζ .

π0
∗ [c1

(
Mζ

)]
= c1(L ) (8.70)

The line bundle Mζ

π0−→ P1 is by definition the one associated with the vanishing locus of the section ξ2.

What we have learned from this explicit case? The above detailed analysis reveals that, according to general
lore, the cohomology classes constructed as first Chern classes of the tautological holomorphic vector bundles
defined by the Kähler quotient via hermitian matrices Hi, are naturally associated with the components of the
exceptional divisor. This latter is defined as the vanishing locus of a global holomorphic section W (p) of a line
bundle:

LD
π−→ Mζ

D⊂Mζ ; D =
{

p ∈Mζ | W (p) = 0 where W ∈ Γ(LD)
}

(8.71)

The line bundle LD is singled out by the divisor D and for this reason it is labeled by it. Its first Chern class
ω

(1,1)
D is certainly a cohomology class and so it must be a linear combination of the first Chern classes ω

(1,1)
i

created by the Kähler quotient and associated with the hermitian matrices Hi(ζ , p):[
ω

(1,1)
D

]
= SD,i

[
ω

(1,1)
i

]
(8.72)

The question is to know which is which and to determine the constant matrix SD,i.
Another point revealed by the analysis of the Eguchi-Hanson case is that, at least locally, the entire space

Mζ can be viewed as the total space of a line bundle over the divisor D:

Mζ

πd−→ D

∀p ∈D ; π
−1
d (p) ' C? (8.73)

Furthermore the matrix Hi can be viewed as the invariant norm of a section of the appropriate line bundle:

Hi(ζ ,z,z) = Hi(ξ ,ξ ,W,W ) |W |2 (8.74)

where ξ denote the two coordinates spanning the divisor D and W (as in fig.3) spans the vertical fibers out of the
divisor. The projection πd corresponds to setting W → 0 and obtaining:

πd : H(ξ ,ξ ,W,W )−→ h(ξ ,ξ )≡ H(ξ ,ξ ,0,0) (8.75)
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Figure 3: In the Eguchi-Hanson case the exceptional divisor is a submanifold D ⊂Mζ of codimension one
that is mapped into the singular point by the resolving morphism Mζ −→ C2

Γ
. There is a projection operation

Mζ

π−→D that makes Mζ the total space of a line bundle over the divisor. Accordingly we can choose a local
coordinate system for Mζ such that two coordinates span the divisor while the third, named W , transforms as if
it were a section of the mentioned line bundle.

Just as in the case of Eguchi-Hanson, we expect that the two (1,1)-forms:

Ωi = ∂∂Hi(ξ ,ξ ,W,W )

Ω̂i = ∂∂h(ξ ,ξ ) (8.76)

should be cohomologous:
[Ωi] =

[
Ω̂i

]
(8.77)

The form Ω̂i is the first Chern class of the line bundle (8.73) while Ωi is the first Chern class of the line bundle
(8.71) that defines the divisor.

Divisors and conjugacy classes graded by age. Hence the question boils down to the following: What are the
components of the exceptional divisor of a crepant resolution of the singularity C3/Γ, and how many are they?
The answer is provided by Theorem 4.1 (Theorem 1.6 in [36]); they are the inverse images via the blowdown
morphism of the irreducible components of the fixed locus of the action of Γ on C3, and are in a one-to-one
correspondence with the junior conjugacy classes of Γ. The irreducible components of the exceptional divisor
may be compact (corresponding to a component of the fixed locus which is just the origin of C3) or noncompact
(corresponding to fixed loci of higher dimensions, i.e., curves).
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Let us consider the case of a cyclic group Γ, with only the origin as fixed locus, and choose a generator
γ of Γ of order r. As in eq. (4.7), we can write γ = 1

r (a1,a2,a3). As described in [36], Sections 2.3 and 2.4,
the resolution of singularities is obtained by iterating the following construction, which uses toric geometry (a
general reference for toric geometry, which in particular explains how to perform a toric blowup by subdividing
the fan of the toric variety one wants to blowup, is [46]). The fan of the toric variety C3 is the first octant of
R3, with all its faces; by adding the ray 1

r (a1,a2,a3) we perform a blowup B[a1,a2,a3] → C3 whose exceptional
divisor F is the weighted projective space WP[a1,a2,a3]. The same procedure applied to C3/Γ produces a
partial desingularization Wγ → C3/Γ which is the base of a cyclic covering B[a1,a2,a3]→Wγ , ramified along the
exceptional divisor E of Wγ → C3/Γ. The situation is summarised by the following diagram

F �
� /

��

B[a1,a2,a3]
weighted blowup //

��

C3

��
E �
� /Wγ

crepant resolution // C3/Γ

. (8.78)

The full desingularization is obtained by performing a multiple toric blowup, adding all rays corresponding
to junior conjugacy classes.

8.4 Steps of a weighted blowup

8.4.1 Weighted projective planes

Let us define in a pedantic way the weighted blowup of the origin in C3. To this effect we begin by recalling
the definition of a weighted projective plane WP[a1,a2,a3], where [a1,a2,a3] are the weights (good references for
weighted projective spaces and line bundles on them are [47–49]). We restrict our attention to the case where
the weights are integers. One defines an action of C∗ on C3−{0} letting

(y1,y2,y3)→ (y1 λ
a1 ,y2 λ

a2 ,y3 λ
a2), λ ∈ C∗.

The weighted projective plane WP[a1,a2,a3] is the quotient of C3−{0} under this action. It is by construction a
complex variety of dimension 2.

To examine the properties of this space it is expedient to assume that the triple (a1,a2,a3) is reduced. One
defines

di = g.c.d.(ai−1,ai+1), bi = l.c.m.(di−1,di+1)

(where indices in the r.h.s. are meant mod 3, i.e., 1−1 = 3, etc.). The triple (a1,a2,a3) is reduced if (b1,b2,b3) =
(1,1,1); otherwise one defines a′i = ai/bi. The numbers a′i are positive integers, the triple (a′1,a

′
2,a
′
3) is reduced,

and the weighted projective planes WP[a1,a2,a3] and WP[a′1,a
′
2,a
′
3]

are isomorphic. Henceforth we shall assume that
the triple (a1,a2,a3) is reduced. It turns out that WP[a1,a2,a3] is smooth if and only if (a1,a2,a3) = (1,1,1), in
which case the weighted projective plane is just P2.

The same construction of line bundles on projective spaces (see e.g. [50], Section II.5) produces on weighted
projective spaces rank one sheaves OWP[a1 ,a2 ,a3 ]

(i), with i ∈Z, that in general are not locally free (i.e., they are not
line bundles), but only reflexive (i.e., they are isomorphic to their duals). It turns out that OWP[a1 ,a2 ,a3 ]

(i) is locally
free if and only if i is a multiple of m = l.c.m.(a1,a2,a3) [48].

The weighted projective plane WP[a1,a2,a3] is covered by the open sets

Ui = {(y1,y2,y3) |yi 6= 0}.
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On this open cover the line bundle OWP[a1 ,a2 ,a3]
(km) has transition functions

gi j : Ui∩U j→ C∗, gi j(y1,y2,y3) = ykm/a j
j y−km/ai

i (8.79)

where m = l.c.m. (a1,a2,a3). In particular, (the isomorphism class of) OWP[a1 ,a2 ,a3 ]
(m) is the (very ample) gener-

ator of the Picard group of WP[a1,a2,a3], the group of isomorphism classes of line bundles on WP[a1,a2,a3], which
is isomorphic to Z. We conclude this brief introduction to weighted projective planes by defining an orbifold
Kähler metric for the spaces WP[a1,a2,a3]. Denoting again by (y1,y2,y3) a set of homogeneous coordinates on
WP[a1,a2,a3], and m = l.c.m.(a1,a2,a3), one can check the 2-form

ω =
i

2π
∂∂ log

3

∑
i=1

ym/ai
i ym/ai

i

is invariant under rescaling of the homogeneous coordinates, and therefore defines a 2-form on the smooth locus
of WP[a1,a2,a3]; this reduces to the usual Fubini-Study form when the projective space is smooth.

8.4.2 The weighted blowup and the tautological bundle

The weighted blowup of C3, denoted B[a1,a2,a3], is a subvariety

B[a1,a2,a3] ⊂ C3×WP[a1,a2,a3] (8.80)

defined by the equations

z1ya1a3
2 = z2ya2a3

1 , z2ya1a2
3 = z3ya1a3

2 , z1ya1a2
3 = z3ya2a3

1 (8.81)

where {z1,z2,z3} are standard coordinates in C3, and {y1,y2,y3} are homogenous cooordinates in WP[a1,a2,a3].
Actually the three equations are not independent (regarding them as a linear system in the unknowns z, the
associated matrix has rank at most 2) and therefore the locus B[a1,a2,a3] is 3-dimensional. The projections of
C3×WP[a1,a2,a3] onto its factors define projections

p : B[a1,a2,a3]→ C3

π : B[a1,a2,a3]→WP[a1,a2,a3]

From eq. (8.81) we see that the fibers of π are isomorphic to C; indeed, by comparing with eq. (8.79), we see
that B[a1,a2,a3] is the total space of the line bundle OWP[a1 ,a2 ,a3]

(−1) over the base WP[a1,a2,a3], and π is the bundle
projection. On the other hand, the morphism p is birational, as it is an isomorphism away from the fiber p−1(0),
while the fiber itself — the exceptional divisor F of the blowup — is isomorphic to WP[a1,a2,a3].

The blowup B[a1,a2,a3] is nicely described in terms of toric geometry [46]. Denoting by {ei} the standard basis
of R3, the variety B[a1,a2,a3] is associated with the fan given by the one-dimensional cones (rays) generated by

e1, e2, e3, v = a1e1 +a2e2 +a3e3.

The fan has three 3-dimensional cones σi, corresponding to 3 open affine toric varieties Ui which cover B[a1,a2,a3]

(see Figure 4). It turns out that Ui is smooth if and only if ai = 1, so that B[a1,a2,a3] is smooth if and only if
a1 = a2 = a3 = 1 (in which case the exceptional divisor is a P2). Moreover, unless again a1 = a2 = a3 = 1, F is a
Weil divisor, so that its associated rank one sheaf (it ideal sheaf, i.e., the sheaf of functions B[a1,a2,a3] that vanish
on F), is not locally free, but only reflexive. We shall denote the dual of this sheaf as OB[a1 ,a2 ,a3]

(F). Although
this in general is not locally free, it is still true that its first Chern class if Poincaré dual to F .
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e1 e2

e3

v

σ3

σ2 σ1

Figure 4: Representation of the fan of B[a1,a2,a3]. The vector v is not on the plane singled out by e1, e2, e3.

Let us assume that we are interested in desingularizing a quotient C3/Γ, where Γ is cyclic, and the represen-
tation of Γ on C3 has just one junior class 1

r (a1,a2,a3), which is compact, i.e., all ai are strictly positive. The
geometric constructions in this section show that the orbifold Kähler form on WP[a1,a2,a3] induce by pullback a
Kähler form on the smooth locus of the blowup B[a1,a2,a3]. With reference to diagram (8.78), the action of the
group Γ leaves the exceptional divisor F pointwise fixed, so that the form descends to the desingularization Mζ

of C3/Γ. However, this Kähler form does not appear to coincide with the Kähler form built on Mζ by means
of the Kähler reduction (cf. Section D). This comes to no surprise as it is known that there are several different
metrics on a weighted projective space which all reduce to the standard Fubini-Study metric in the smooth case
(see [51]). We shall analyze the relation between the naive metric introduced above and the one obtain by Kähler
reduction in a future work.

8.4.3 Pairing between irreps and conjugacy class in the Kähler quotient resolution: open questions

According to [36], in the crepant resolution:

Mζ −→
C3

Γ
(8.82)

we obtain a component of the exceptional divisor D(E) for each junior conjugacy class of the group Γ, namely
we have:

D(E) =

# of junior classes⋃
i=1

D[a1,a2,a3]i (8.83)

When there is just one junior class, the procedure described in previous subsections, which is graphically sum-
marized in the diagram (8.78), is exhaustive and we easily identify the exceptional divisor with a single projective
plane WP[a1,a2,a3]. Indeed, the divisor F is the weighted projective plane WP[a1,a2,a3] by construction, and the
action of Γ leaves it pointwise fixed, so that E is isomorphic to F .

Utilizing the correspondence between line bundles and divisors, we can conclude that the exceptional divisor
WP[a1,a2,a3] uniquely identifies a line-bundle, i.e., the tautological line bundle T[a1,a2,a3], whose first Chern class

56



is necessarily given by:

c1
(
T[a1,a2,a3]

)
=

i
2π

∂ ∂ log
(
H[a1,a2,a3]

)
(8.84)

where H[a1,a2,a3] is a suitable hermitian fiber-metric. The most interesting issue is to relate such an invariant fiber
metric and the (1,1)-form c1

(
T[a1,a2,a3]

)
with the real functions Hi in eq.(8.27) and the corresponding (1,1)-forms

(8.31), that are produced by the Kähler quotient construction.
In the next section such a relation will be explicitly analyzed in the context of a simple master example that

indeed is characterized by a unique junior conjugacy class.
The construction of the exceptional divisor and the structure of the blowup in cases with several junior classes

is more complicated and it is still under investigation. The general pairing rules between irreps and conjugacy
classes will be discussed and elucidated in a future publication by the present authors. In the next section we
briefly outline the general problem before presenting our explicit results for the above mentioned one junior class
master model.

9 Analysis of the (1,1)-forms: irreps versus conjugacy classes that is cohomol-
ogy versus homology

In the present section we plan to analyze in full detail, within the scope of a one junior class model, the relation
between the above extensively discussed ω

(1,1)
α forms (α = 1, . . . ,r = # of nontrivial irreps), with the exceptional

divisors generated by the blowup of the singularity, together with the other predictions of the fundamental the-
orem 4.1 which associates cohomology classes of Mζ with conjugacy classes of Γ. The number of nontrivial
conjugacy classes and the number of nontrivial irreps are equal to each other so that we use r in both cases, yet
what is the actual pairing is not clear a priori and it is not intrinsic to group theory, as we have stressed several
times. In this section we want to explore this pairing and to do that in an explicit way we need explicit calcu-
lable examples. These are very few because of the bottleneck constituted by the solution of the moment map
equations, that are algebraic of higher degree and only seldom admit explicit analytic solutions. For this reason
we introduce here the full-fledged construction of one of those rare examples, where the moment map equations
are solved in terms of radicals. As anticipated above this model has the additional nice feature that the number
of junior conjugacy classes is just one. It will be the master model for our explicit analysis. The construction of
other examples is confined to appendices. In particular appendix D contains two Abelian examples where Γ is a
cyclic group, respectively Γ = Z3 and Γ = Z7. In both cases there analyzed the chosen group Γ is a subgroup
of the maximal simple group L168 ' PSL(2,7) whose action on C3 was considered by Markushevich in [32].
The master model that we discuss here is also based on Γ = Z3 but the action of the latter on C3 is differently
constructed. The radically different results of appendix D.1 from those of the next section 9.1 should advise the
reader of the relevance of the embedding:

ι : Γ ↪→ SU(3) (9.1)

In appendix E we also provide the construction of the simplest possible nonabelian model that corresponds to
the choice Dih3 ∼ S3. Also for this toy model the moment maps are algebraic of higher degree and an analytic
solution is out of question. Nevertheless the nonabelian cases are our main final target and we will return to them
in future publications.

It is also important to stress that aim of the Kronheimer-like construction is not only the calculation of
cohomology but also the actual determination of the Kähler potential (yielding the Kähler metric), which is
encoded in formula (8.32). From this point of view one of the DetHi may lead to a corresponding ω

(1,1)
i =

i
2π

∂∂DetHi that is either exact or cohomologous to another one, yet its contribution to the Kähler potential,
which is very important in physical applications, can not be neglected. It is only the cohomology class of the
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Kähler 2-form that is affected by the triviality of one or more of the ω
(1,1)
i ; the contributions to the Kähler

potential that give rise to exact form deformations of the Kähler 2-form are equally important as others.
Having anticipated these general considerations we turn to our master model.

9.1 The master model C3

Γ
with generator {ξ ,ξ ,ξ}

In this section we develop all the calculations for the Kähler quotient resolution of the quotient singularity C3

Z3
in

the case where the generator Y of Z3 is of the following form:

Y =


ξ 0 0

0 ξ 0

0 0 ξ

 (9.2)

ξ being a primite cubic root of unity ξ 3 =1.
The equation p∧ p=0 which is a set of quadrics has solutions arranged in various branches. There is a unique,
principal branch of the solution that has maximal dimension D0

Γ
and is indeed isomorphic to the GΓ orbit of the

singular locus LΓ . This principal branch is the algebraic variety V|Γ|+2 mentioned in eq. (3.40), of which we
perform the Kähler quotient with respect to the group FΓ

FΓ =
r+1
⊗

µ=1
U
(
nµ

)
∩SU(|Γ|) = U(1)⊗U(1) (9.3)

in order to obtain the crepant resolution together with its Kähler metric. In the above formula nµ = {1,1,1} are
the dimensions of the irreducible representations of Γ=Z3 and r+1=3 is the number of conjugacy classes of the
group (r is the number of nontrivial representations).
To make a long story short, exactly as in the Kronheimer case we are able to retrieve the algebraic equation of
the singular locus from traces and determinants of the quiver matrices restricted to LΓ. Precisely for the Z3 case
under consideration we obtain

I1 = Det [Ao] ;I2 = Det [Bo] ; I3 = Det [Co] ;I4 =
1
3

Tr [AoBoCo] (9.4)

and we find the relation
I1I2I3 = I4

3 (9.5)

which reproduces the C3 analogue of eqs. (5.37-5.39) applying to the C2 case of Kronheimer and Arnold.
The main difference, as we have several time observed, is that now the same eqs. remain true, with no

deformation for the entire GΓ = C∗ × C∗, orbit of the locus LΓ, namely for the entire V|Γ|+2 = V5 variety of
which we construct the Kähler quotient with respect to the compact subgroup U(1)×U(1)⊂ C∗×C∗. This is in
line with the many times emphasized feature that in the C3 case there is no deformation of the complex structure.

9.1.1 The actual calculation of the Kähler quotient and of the Kähler potential

The calculation of the final form of the Kähler potential is reduced to the solution of a set of two algebraic
equations. The solutions of such equations are accessible in this particular case since they reduce to a single
cubic for which we have Cardano’s formula. For this reason the present case is the three-dimensional analogue
of the Eguchi-Hanson space where everything is explicitly calculable and all theorems admit explicit testing and
illustration.

By calculating the ages we determine the number of ω(q,q) harmonic forms (where q = 1,2). According to
theorem 4.1 all these forms (and their dual cycles in homology) should be in one-to-one correspondence with
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Figure 5: The quiver diagram of the cyclic group with generator Y = diag{ξ ,ξ .ξ}.

the r nontrivial conjugacy classes of Γ. On the other hand the Kähler quotient construction associates one level
parameter ζ to each generator of the center z(FΓ) of the group FΓ, two ζ .s in this case, that are in one-to-one
correspondence with the r nontrivial irreducible representation of Γ. The number is the same, but what is the
pairing between irrepsirrepsirreps and conjugacy classesconjugacy classesconjugacy classes? More precisely how do we see the homology cycles that are
created when each of the r level parameters ζ departs from its original zero value? Using the explicit expression
of the functions H1,2 defined in eqs. (8.26-8.31) we arrive at the calculation of the ω(1,1)

i=1,2 forms that encode
the first Chern classes of the two tautological bundles. The expectation from the age argument is that these two
2-forms should be cohomologous corresponding to just the unique predicted class of type (1,1) since h1,1=1. On
the other hand we should be able to construct an ω(2,2) form representing the unique class that is Poincarè dual
to the exceptional divisor.

In this case we can successfully answer both questions and this is very much illuminating.

Ages. Indeed taking the explicit generator

Y =


(−1)2/3 0 0

0 (−1)2/3 0

0 0 (−1)2/3

 (9.6)

we easily calculate the {a1,a2,a3} vectors respectively associated to each of the three conjugacy classes and we
obtain:

a−vectors = {{0,0,0}, 1
3 {1,1,1},

1
3 {2,2,2}} (9.7)

from which we conclude that, apart from the class of the identity, there is just one junior and one senior class.
Hence we conclude that the Hodge numbers of the resolved variety should be

h(0,0) = 1; h(1,1) = 1 ; h(2,2) = 1.
If we follow the weighted blowup procedure described in section 8.4 using the weights of the unique junior class
{1,1,1}, we see that the projection π of eq. (8.82) yields

π : B(1,1,1) −→WP(1,1,1) ∼ P2 (9.8)

So the blowup replaces the singular point 0 ∈ C3 with a P2, which is compact. As a result, also the expectional
divisor in the resolution Mζ is compact. By Poincaré duality this entrains the existence of a harmonic (2,2)–form
associated with the unique senior class.

9.1.2 The quiver matrix

In this case, the quiver matrix defined by eq. (6.1) is the following one :

Ai j =


0 3 0

0 0 3

3 0 0

 (9.9)

and it has the graphical representation displayed in fig. 5
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9.1.3 The space SΓ = HomΓ(Q⊗R,R) in the natural basis

Solving the invariance constraints (6.7) in the natural basis of the regular representation we find the triples of
matrices {A,B,C} spanning the locus SΓ. They are as follows:

A =


α1,1 α1,2 α1,3

(−1)2/3α1,3 (−1)2/3α1,1 (−1)2/3α1,2

−(−1)1/3α1,2 −(−1)1/3α1,3 −(−1)1/3α1,1



B =


β1,1 β1,2 β1,3

(−1)2/3β1,3 (−1)2/3β1,1 (−1)2/3β1,2

−(−1)1/3β1,2 −(−1)1/3β1,3 −(−1)1/3β1,1



C =


γ1,1 γ1,2 γ1,3

(−1)2/3γ1,3 (−1)2/3γ1,1 (−1)2/3γ1,2

−(−1)1/3γ1,2 −(−1)1/3γ1,3 −(−1)1/3γ1,1

 (9.10)

The locus LΓ. The locus LΓ ⊂SΓ is easily described by the equation:

A0 =


α1,1 0 0

0 (−1)2/3α1,1 0

0 0 −(−1)1/3α1,1



B0 =


β1,1 0 0

0 (−1)2/3β1,1 0

0 0 −(−1)1/3β1,1



C0 =


γ1,1 0 0

0 (−1)2/3γ1,1 0

0 0 −(−1)1/3γ1,1

 (9.11)
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9.1.4 The space SΓ in the split basis

Solving the invariance constraints in the split basis of the regular representation we find another representation
of the triples of matrices {A,B,C} that span the space SΓ. They are as follows:

A =


0 0 m1,3

m2,1 0 0

0 m3,2 0



B =


0 0 n1,3

n2,1 0 0

0 n3,2 0



C =


0 0 r1,3

r2,1 0 0

0 r3,2 0

 (9.12)

9.1.5 The equation p∧ p = 0 and the characterization of the variety V5 = DΓ

Here we are concerned with the solution of eq. (6.12) and the characterization of the locus DΓ.
Differently from the more complicated cases of larger groups, in the present abelian case of small order, we

can explicitly solve the quadratic equations provided by the commutator constraints and we discover that there
is a principal branch of the solution, named D0

Γ
that has indeed dimension 5=|Γ|+2. In addition however there

are several other branches with smaller dimension. These branches describe different components of the locus
DΓ. Actually as already pointed out they are all contained in the GΓ orbit of the subspace LΓ defined above. The
quadratic equations defining DΓ have a set of 14 different solutions realized by a number ni of constraints on the
9 parameters. Hence there are 14 branches D i

Γ
(i=0,1,...16) of dimensions:

dimCD i
Γ = 9−ni (9.13)

The full dimension table of these branches is displayed below

{5,4,4,4,4,3,3,3,3,3,3,3,2,2}

As we see, there is a unique branch that has the maximal dimension 5 =|Z3|+ 2. This is the principal branch
D0

Γ
. It can be represented by the substitution:

n2,1→
m2,1n1,3

m1,3
, n3,2→

m3,2n1,3

m1,3
, r2,1→

m2,1r1,3

m1,3
, r3,2→

m3,2r1,3

m1,3
(9.14)

In this way we have reached a complete resolution of the following problem. We have an explicit parametrization
of the variety V|Γ|+2. This variety is described by the following three matrices depending on the 5 complex

61



variables ωi (i=1,...,5):

A =


0 0 ω1

ω2 0 0

0 ω3 0



B =


0 0 ω4

ω2ω4
ω1

0 0

0 ω3ω4
ω1

0



C =


0 0 ω5

ω2ω5
ω1

0 0

0 ω3ω5
ω1

0

 (9.15)

9.1.6 The quiver group

Our next point is the derivation of the group GΓ defined in eqs. (6.17) and (6.18), namely:

GΓ = {g ∈ SL(|Γ|,C) |∀γ ∈ Γ : [DR(γ),Ddef(g)] = 0} (9.16)

Let us proceed to this construction. In the diagonal basis of the regular representation this is a very easy task,
since the group is simply given by the diagonal 3×3 matrices with determinant one. We introduce such matrices

g ∈ GΓ : g=


a1 0 0

0 a2 0

0 0 a3

 (9.17)

9.1.7 V5 as the orbit under GΓ of the locus LΓ

In this section we want to verify and implement eq. (3.40), namely we aim at showing that V5=DΓ =OrbitGΓ
(LΓ).

To this effect we rewrite the locus LΓ in the diagonal split basis of the regular representation. The change of basis
is performed by the character table of the cyclic group Z3. The result is displayed below:

A0 =


0 0 α1,1

α1,1 0 0

0 α1,1 0



B0 =


0 0 β1,1

β1,1 0 0

0 β1,1 0



C0 =


0 0 γ1,1

γ1,1 0 0

0 γ1,1 0

 (9.18)
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Eventually the complex parameters

z1 ≡ α1,1; z2 ≡ β1,1; z3 ≡ γ1,1 (9.19)

will be utilized as complex coordinates of the resolved variety when the level parameters ζ1,2 are switched on.
Starting from the above the orbit is given by:

OrbitGΓ
≡
{{

gA0 g
−1,gB0 g

−1,gC0 g
−1} | ∀g ∈ GΓ , ∀{A0,B0,C0} ∈ LΓ

}
⊃ D0

Γ (9.20)

and the correspondence between the parameters of the principal branch D0
Γ

and the parameters spanning GΓ and
LΓ is provided below:

a1→
ω

1/3
2

ω
1/3
1

,a2→
ω

1/3
3

ω
1/3
2

,a3→
ω

1/3
1

ω
1/3
3

,z1→ ω
1/3
1 ω

1/3
2 ω

1/3
3 ,z2→

ω
1/3
2 ω

1/3
3 ω4

ω
2/3
1

,z3→
ω

1/3
2 ω

1/3
3 ω5

ω
2/3
1

(9.21)

Branches of smaller dimension of the solution are all contained in the OrbitGΓ
(LΓ) and correspond to the orbits

of special points of LΓ where some of the zi vanish or satisfy special relations among themselves. Hence, indeed
we have:

OrbitGΓ
= DΓ

9.1.8 The compact gauge group FΓ = U(1)2

We introduce a basis for the generators of the compact subgroup U(1)2 = FΓ ⊂ GΓ provided by the set of two
generators displayed here below

T 1 =


i 0 0

0 −i 0

0 0 0

 ; T 2 =


0 0 0

0 i 0

0 0 −i

 (9.22)

whose trace-normalization is the A2 Cartan matrix

Tr
(
T iT j)= Cij =

(
2 −1

−1 2

)
(9.23)

9.1.9 Calculation of the Kähler potential and of the moment maps

Naming ∆i the moduli of the coordinates zi and θi their phases according to zi = eiθ i∆i and considering a generic
element gR of the quiver group that is real and hence is a representative of a coset class in GΓ

FΓ
:

gR =


eλ1 0 0

0 e−λ1+λ2 0

0 0 e−λ2

 ; λ1,2 ∈ R (9.24)
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The triple of matrices {A,B,C}=
{
gRA0gR

−1,gRB0gR
−1,gRC0gR

−1
}

have the following explicit appearance:

A =


0 0 eiθ1−λ1−λ2∆1

eiθ1+2λ1−λ2∆1 0 0

0 eiθ1−λ1+2λ2∆1 0



B =


0 0 eiθ2−λ1−λ2∆2

eiθ2+2λ1−λ2∆2 0 0

0 eiθ2−λ1+2λ2∆2 0



C =


0 0 eiθ3−λ1−λ2∆3

eiθ3+2λ1−λ2∆3 0 0

0 eiθ3−λ1+2λ2∆3 0

 (9.25)

Calculating the Kähler potential we find

KS |D =
(
Tr
[
A A†]+Tr

[
B B†]+Tr

[
C C†])= e−2(λ1+λ2)

(
1+ e6λ1 + e6λ2

)(
∆

2
1 +∆

2
2 +∆

2
3
)

(9.26)

We have used the above notation since Tr
[
A,A†

]
+Tr

[
B,B†

]
+Tr

[
C,C†

]
is the Kähler potential of the ambient

space SΓ restricted to the orbit DΓ. Indeed since FΓ is an isometry of SΓ, the dependence in KS |D is only
on the real part of the quiver group, namely on the real factors λ1,2. Just as it stands, KS |D cannot work as
Kähler potential of a complex Kähler metric. Yet, when the real factors λ1,2 will be turned into functions of the
complex coordinates zi, then KS |D will be enabled to play the role of a contribution to the Kähler potential of
the resolved manifold Mζ .

Next we calculate the moment maps according to the formulas:

P1 ≡ −iTr
[
T 1 ([A,A†]+ [B,B†]+ [C,C†])]= e−2(λ1+λ2)

(
1−2e6λ1 + e6λ2

)(
∆

2
1 +∆

2
2 +∆

2
3
)

P2 ≡ −iTr
[
T 2 ([A,A†]+ [B,B†]+ [C,C†])]= e−2(λ1+λ2)

(
1+ e6λ1−2e6λ2

)(
∆

2
1 +∆

2
2 +∆

2
3
)

(9.27)

9.1.10 Solution of the moment map equations

In order to solve the moment map equations it is convenient to introduce the new variables

ϒ1,2 = exp [2λ1,2] (9.28)

and to redefine the moment maps with indices lowered by means of the inverse of the Cartan matrix mentioned
above

Pi =
(
C−1)

ijP
j (9.29)

In this way imposing the level condition
Pi =−ζi (9.30)

where ζ1,2 > 0 are the two level parameters, we obtain the final pair of algebraic equations for the factors ϒ1,2{
Σ
(
−1+ϒ3

1

)
ϒ1ϒ2

,
Σ
(
−1+ϒ3

2

)
ϒ1ϒ2

}
= {ζ1,ζ2} (9.31)
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where we have introduced the shorthand notation:

Σ =
3

∑
i=1
|zi|2 (9.32)

The above algebraic system composed of two cubic equations is simple enough in order to find all of its nine
roots by means of Cardano’s formula. The very pleasant property of these solutions is that one and only one of
the nine branches satisfies the correct boundary conditions, namely provides real ϒi(ζ ,Σ) that are positive for all
values of Σ and ζ and reduce to 1 when ζ→0.

The complete solution of the algebraic equations can be written in the following way. For the first factor we
have:

ϒ1 =
1

61/3

(
N

Σ3Π
1
3

) 1
3

(9.33)

where

N = 2×21/3
ζ

3
1 ζ

2
2 +6Σ

3
Π

1
3 +2ζ

2
1

(
3×21/3

Σ
3 +ζ2Π

1
3

)
+ζ1

(
6×21/3

Σ
3
ζ2 +22/3

Π
2
3

)
Π = 27Σ

6 +9Σ
3

ζ
2
1 ζ2 +9Σ

3
ζ1ζ

2
2 +2ζ

3
1 ζ

3
2 +3

√
3Σ

3R

R =
√

27Σ6 +6Σ3ζ1ζ 2
2 −ζ 4

1 ζ 2
2 −4Σ3ζ 3

2 +ζ 3
1

(
−4Σ3 +2ζ 3

2

)
+ζ 2

1

(
6Σ3ζ2−ζ 4

2

)
(9.34)

For the second factor we have

ϒ2 =
−M8/3

Σ5 + 18M5/3

Σ2 −72M2/3Σ+36
(M

Σ3

)2/3
ζ 3

1 −36
(M

Σ3

)2/3
ζ 2

1 ζ2 +6
(M

Σ3

)5/3
ζ 2

1 ζ2

36×62/3 Σ2ζ1
(9.35)

where

M =
6Σ3Π1/3 +22/3Π2/3ζ1 +6×21/3Σ3 ζ 2

1 +6×21/3Σ3 ζ1ζ2 +2Π1/3ζ 2
1 ζ2 +2×21/3ζ 3

1 ζ 2
2

Ω1/3 (9.36)

9.2 Discussion of cohomology in the master model

Since the two scale factors ϒ1,2 are functions only of Σ, the two (1,1)-forms, relative to the two tautological bun-
dles, respectively associated with the first and second nontrivial irreps of the cyclic group, defined in eq. (8.31)
take the following general appearance:

ω
(1,1)
1,2 =

i
2π

(
d

dΣ
Log [ϒ1,2(Σ)]dzi∧dzi +

d2

dΣ
2 Log [ϒ1,2(Σ)]z jzidzi∧dz j

)
=

i
2π

( f1,2Θ + g1,2Ψ) (9.37)

where we have introduced the short hand notation

Θ =
3

∑
i=1

dzi∧dzi ; Ψ =
3

∑
i, j=1

z j zidzi∧dz j (9.38)

Indeed in the present case the fiber metrics H1,2 are one-dimensional and given by H1,2 =
√

ϒ1,2. The most
relevant point is that the two functions f1,2 and g1,2 being the derivatives (first and second) of ϒ1,2 depend only
on the variable Σ.
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It follows that a triple wedge product of the two–forms ω
(1,1)
a (a=1,2) has always the following structure:

ω
(1,1)
a ∧ω

(1,1)
b ∧ω

(1,1)
b =

(
i

2π

)3

( fa fb fc +2Σ (ga fb fc +gb fc fa +gc fa fb))×Vol (9.39)

where
Vol = dz1∧dz2∧dz3∧dz1∧dz2∧dz3 (9.40)

This structure enables us to calculate intersection integrals of the considered forms very easily. It suffices to
change variables as we explain below. The equations

Σ =
3

∑
i=1
|zi|2 = ρ

2 (9.41)

define 5-spheres of radius ρ . Introducing the standard Euler angle parametrization of a 5-sphere, the volume
form (9.40) reduces to:

Vol = 8iρ5 cos4 (θ1)cos3 (θ2)cos2 (θ3)cos(θ4)
5

∏
i=1

dθi (9.42)

The integration on the Euler angles can be easily performed and we obtain:

4

∏
i

∫ π

2
π

2

dθi

∫ 2π

0
dθ5

(
8iρ5 cos4 (θ1)cos3 (θ2)cos2 (θ3)cos(θ4)

)
= 8iπ3

ρ
5 (9.43)

Hence defining the intersection integrals:

Iabc =
∫

M
ω

(1,1)
a ∧ω

(1,1)
b ∧ω

(1,1)
b (9.44)

we arrive at

Iabc =

(
i

2π

)3

×8iπ3×
∫

∞

0

(
6ρ

5 fa fb fc +2ρ
7 ( fb fcga + fa fcgb + fa fbgc)

)
dρ

=
∫

∞

0

(
6ρ

5 fa fb fc +2ρ
7 ( fb fcga + fa fcgb + fa fbgc)

)
dρ (9.45)

We have performed the numerical integration of these functions and we have found the following results

(ζ1 > 0,ζ2 = 0) : I111 =
1
8

(ζ1 = 0,ζ2 ≥ 0) : I111 = 0

(ζ1 > 0,ζ2 > 0) : I111 = 1

(9.46)

From this we reach the following conclusion. Since the corresponding integral is nonzero it follows that:

ω
(2,2)
S ≡ ω

(1,1)
1 ∧ω

(1,1)
1 (9.47)

is closed but not exact and by Poincaré duality it is the Poincaré dual of some cycle S ∈ H2(M ) such that:∫
S

ι
∗
ω

(1,1)
1 =

∫
M

ω
(1,1)
1 ∧ω

(2,2)
S (9.48)

66



where
ι : S−→M (9.49)

is the inclusion map. Since H2
c (M )= H2(M ) and both have dimension 1 it follows that dim H2(M ) = 1, so that

every nontrivial cycle S is proportional (as homology class) via some coefficient α to a single cycle C , namely
we have S= α C . Then we can interpret eq. (29) as follows∫

αC
ι
∗
ω

(1,1)
1 = α

∫
M

ω
(1,1)
1 ∧ω

(2,2)
C (9.50)

If we choose as fundamental cycle, that one for which∫
C

ι
∗
ω

(1,1)
1 = 1 (9.51)

we conclude that

α =

{
1 case{ζ1 > 0,ζ2 > 0}
1
8 case{ζ1 > 0,ζ2 = 0}

(9.52)

Next we have calculated the intersection integral I211 and we have found:

(ζ1 > 0,ζ2 = 0) : I211 = 0

(ζ1 = 0,ζ2 ≥ 0) : I211 = 0

(ζ1 > 0,ζ2 > 0) : I211 = 1

(9.53)

Conclusions on cohomology. We have two cases.

case{ζ1 > 0,ζ2 > 0} . The the first Chern classes of the two tautological bundles are cohomologous:[
ω

(1,1)
1

]
=
[
ω

(1,1)
2

]
=
[
ω

(1,1)
]

(9.54)

case{ζ1 > 0,ζ2 = 0} . The the first Chern class of the first tautological bundle is nontrivial and generates
H(1,1)

c (M ) = H1,1(M ). [
ω

(1,1)
1

]
= nontrivial (9.55)

The the first Chern class of the second tautological bundle is trivial , namely

ω
(1,1)
2 = exact form (9.56)

Obviously since there is symmetry in the exchange of the first and second scale factors, exchanging ζ1↔ζ2, the
above conclusion is reversed in the case {ζ1 = 0,ζ2 > 0}.

In passing we have also proved that the unique (2,2)-class is just the square of the unique (1,1)-class[
ω

(2,2)
]
=
[
ω

(1,1)
]
∧
[
ω

(1,1)
]

(9.57)
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9.2.1 The exceptional divisor

Finally let us discuss how we retrieve the exceptional divisor P2 predicted by the weighted blowup argument. As
we anticipated in eqs. (8.74-8.75), replacing the three coordinates zi with

z1 = W ; z2 = W ξ1 ; z3 = W ξ2 (9.58)

which is the appropriate change for one of the three standard open charts of P2, we obtain

H1(Σ) =
1

|W |2 H1(ξ ,ξ ,W,W )
(9.59)

where the function H1(ξ ,ξ ,W,W ) has the property that:

lim
W→0

log[H1(ξ ,ξ ,W,W )] = − log[1+ |ξ1|2 + |ξ2|2]+ log[const] (9.60)

From the above result we conclude that the exceptional divisor D(E) is indeed the locus W = 0 and that on this
locus the first Chern class of the first tautological bundle reduces to the Kähler 2-form of the Fubini-Study Kähler
metric on P2. Indeed we can write:

c1 (L1) |D(E) = −
i

2π
∂ ∂ log[1+ |ξ1|2 + |ξ2|2] (9.61)

From this point of view this master example is the perfect three-dimensional analogue of the Eguchi-Hanson
space, the P1 being substituted by a P2.

9.3 The model C3

Z4

Another interesting model is the case C3

Z4
, where the group Z4 is generated by

Y =


i 0 0

0 i 0

0 0 −1

 (9.62)

9.3.1 Construction of the blowups according to conjugacy classes

Calculating the ages we find two junior conjugacy classes, namely 1
4 {1, 1, 2} and 1

4 {2,2,0}, and one senior
class 1

4{3,3,2}. Hence we expect two cohomology classes of type (1,1) and one cohomology class of type (2,2).
The fact that there is a senior cohomology class means that one of the two exceptional divisors is compact, and
the other is not. One of the consequences of all this is that out of the three tautological line bundles that we
construct solving the moment map equation one must be dependent on the other two.
According to the theory of weighted blowup we introduce the following two sets of coordinates corresponding
to the two junior classes

Ψ[1,1,2] =W
(

1,Ψ1,
√

Ψ3

)
;Φ[2,2,0] =W 2 (1,Φ1)×Φ2 (9.63)

In the first case Ψ1 and Ψ3 are the inhomogenous coordinates on WP1,1,2, while in the second case Φ1 is the
inhomogeneous coordinate on P1, while Φ2 spans C.

The three moment maps Pi can be calculated exactly with the same procedure as in the previous master case
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and as in the cyclic examples of appendices D. It is also convenient to rearrange the moment maps as follows

Π1 =P1−P3 ; Π2 =P1 +P3−P2 ; Π3 =−P2 (9.64)

This is done by the following nonsingular matrix

S =


1 0 −1

1 −1 1

0 1 0

 ; Π = S.P (9.65)

Furthermore it is convenient to introduce reduced variables Hi=
√

Xi and new level parameters κi = Sijζ j

{κ1,κ2,κ3}= {ζ1−ζ3,ζ1−ζ2 +ζ3,ζ2} (9.66)

In terms of these variables the moment map equation hence takes the following form:


−(X2

1−X2
3 )(X1X3(∆2

1+∆2
2)+(1+X2

2 )∆2
3)

X1X2X3
(X2+X3

2−X1X3(X2
1 +X2

3 ))(∆2
1+∆2

2)
X1X2X3

−(−1+X2
2 )(X2(∆2

1+∆2
2)+(X2

1 +X2
3 )∆2

3)
X1X2X3

=


κ1

κ2

κ3

 (9.67)

where ∆i = | zi | are the moduli of the three complex coordinates.

9.3.2 Proof that one tautological line bundle depends from the other two

By this we mean that the isomorphism classes of these bundles are not linearly independent in the Picard group.
We shall indeed show that the differential forms representing the first Chern classes of the three bundles satisfy
a linear relation. The strategy we adopt to check this fact is the following. We observe that the equations are
written in such a way that they depend only on two variables Z= |z1|2+|z2|2 and U=|z3|2. Hence instead of solving
the equations for X1,2,3, in terms of the levels κ1,2,3and of U and Z, we rather do the reverse and we solve them
for U and Z in terms of the levels κ1,2,3 and of X1,2,3.. Just because there are three independent equations for
two variables, by substituting back we obtain a condition that has to be satisfied by H1,2,3 =

√
X1,2,3 and κ1,2,3,

among themselves which is the following one:

H3 = H1
4

√
κ1−κ2 +κ3 +(−κ1 +κ2 +κ3)H4

2

−κ1−κ2 +κ3 +(κ1 +κ2 +κ3)H4
2

(9.68)

which implies

Log [H3] = Log [H1]+
1
4

Log
[
−a+H4

2
]
− 1

4
Log

[
−b+H4

2
]

(9.69)

where a, b are two constants

a =− κ1−κ2 +κ3

−κ1 +κ2 +κ3
; b =−−κ1−κ2 +κ3

κ1 +κ2 +κ3
(9.70)
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Expanding in power series of a small parameter we have:

κ1 = εk1 +O[ε2] , κ2 = εk2 +O[ε2] , κ3 = εk3 +O[ε2]

H1 = 1− εω1 +O[ε]2

H2 = 1− εω2 +O[ε]2

H3 = 1− εω3 +O[ε2] (9.71)

we calculate to that order the first Chern classes of the line bundles and we find:

ω
(1,1)
1 =

i
2π

∂∂Log
[
1− ε ω1 +O[ε2]

]
ω

(1,1)
2 =

i
2π

∂∂Log
[
1− ε ω2 +O[ε2]

]
(9.72)

ω
(1,1)
3 =

i
2π

∂∂Log
[
1− ε ω3 +O[ε2]

]
(9.73)

where

ω1 =
i

2π

2k1
(∣∣z1|2 +

∣∣z2|2
)
+2k3

(∣∣z1|2 +
∣∣z2|2

)
+ k2

(∣∣z1|2 +
∣∣z2|2 +2

∣∣z3|2
)

(16(|z1|2 + |z2|2 )(|z1|2 + |z2|2 +2|z3|2 ))

ω2 =
i

2π

εk3

4(|z1|2 + |z2|2 +2|z3|2 )

ω3 =
i

2π

(
−2k1

(∣∣z1|2 +
∣∣z2|2

)
+2k3

(∣∣z1|2 +
∣∣z2|2

)
+ k2

(∣∣z1|2 +
∣∣z2|2 +2

∣∣z3|2
))

16(|z1|2 + |z2|2 )(|z1|2 + |z2|2 +2|z3|2 )
(9.74)

This solution perfectly agrees with the prediction on the relation between Chern classes at this order that follows
from the relation (9.68) between H factors:

Log [H3] =
1
4

Log
[

1+
2k1

−k1 + k2 + k3

]
+

(
ω1−

k1ω2

k3

)
ε +O[ε2] (9.75)

which implies

ω3 =

(
ω1−

k1ω2

k3

)
(9.76)

9.3.3 Special solution of the moment map equations

If we choose the following special values of the level parameters

κ3 =−κ,κ2 = 0,κ1 = κ (9.77)

we obtain a solution of the moment map equations by setting:

H3 = H2,H1 = 1 (9.78)

where the H2 satisfies the following quartic equation:

U +ZH2 +κH2
2−ZH3

2−UH4
2 = 0 (9.79)
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Indeed with the choices (9.77) and (9.78) the moment map equations reduce to the above quartic algebraic
constraint.

Thanks to Cardano’s formula we have four roots only one of which has the correct property that it reduces
to 1 when the level parameter κ goes to zero. Such a solution has the following explicit appearance:

H2 =
1

2
√

3

√√
6
√

A+
√

3
√

B−3Z
U

(9.80)

A = 8κU +22/3 3

√
Λ2 +

√
Λ2

2−4Λ3
1U +

2 3
√

2Λ1U

3

√
Λ2 +

√
Λ2

2−4Λ3
1

− 3
√

3Λ3√
8κU−2 22/3 3

√
Λ2 +

√
Λ2

2−4Λ3
1U− 4 3√2Λ1U

3
√

Λ2+
√

Λ2
2−4Λ3

1

+3Z2

+3Z2

(9.81)

B = 8κU−2 22/3 3

√
Λ2 +

√
Λ2

2−4Λ3
1U− 4 3

√
2Λ1U

3

√
Λ2 +

√
Λ2

2−4Λ3
1

+3Z2 (9.82)

where Λ1,2,3 is a short hand for three polynomials in U and Z that are specified below:

Λ1 =−12U2 +3Z2 +κ
2,Λ2 = 72U2

κ +9Z2
κ +2κ

3,Λ3 = Z
(
−8U2 +Z2 +4Uκ

)
(9.83)

On the other hand Z and U are short hand notations for:

Z =
∣∣z1|2 +

∣∣z2|2 ; U =
∣∣z3|2 (9.84)

In this way the calculation of the first Chern classes from the irrep side is explicit in this case:

ω
(1,1)
1 = 0 (9.85)

ω
(1,1)
3 = ω

(1,1)
2 =

i
2π

∂∂Log [H2] (9.86)

10 Conclusions

As we emphasized in the introduction the present paper focuses on the resolution of C3/Γ singularities, Γ ⊂
SU(3) being a finite group, in the perspective of applications to the duality between superconformal Chern-
Simons gauge theories in three space–time dimensions and M2-brane solutions of D = 11 supergravity. In
many regards this perspective is the M-theory analogue of what was done about 18 years ago in [39, 40] where
the smooth analogue of fractional three-branes was considered, replacing the 6-dimensional singular transverse
dimensions C×C2/Zk to a fractional three-brane with their smooth resolution C×ALEk. Here the analogous
scenario is:

C× C3

Γ
−→ C×Mζ (10.1)
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The main point of this paper is that the generalization to the case of three-folds of the Kronheimer construction
of ALE manifolds encodes precisely, in a well-defined geometrical language, all the necessary information and
the needed steps that lead to a dual superconformal Chern-Simons gauge theory on the M2-brane world-volume.
A comment is in order to appreciate the difference between our results and those obtained in the ABJM set
up [29]. The orbifold of the seven sphere considered in [29] corresponds to an identical phase action of the
cyclic group Zk on all the four homogeneous coordinates of P3 base of the Hopf-fibration of S7. The resulting
quotient C4/Zk pertaining to the ABJM case is not of the type considered in this paper, since that representation
of Γ = Zk is not in SU(4) (unless k = 4), but only in U(4). The resolution of such a singularity does not have the
properties predicted by the Ito–Reid theorem, in particular, it is not crepant. The quantization of the levels of the
Chern-Simons terms in terms of k, which is the characterizing features of the ABJM-case is to be rediscussed
from scratch in the case of the theories addressed in the present paper. At the present stage we do not know what
the analogue feature might be in our case.

A part from the above mentioned unsolved problem, we already listed the impressive translation vocabulary
between geometry and field theory in the introduction and we do not repeat it once again. In this final section we
rather summarize the achieved results, the open problems and the perspectives for further investigations.

A) One important issue concerns the difference between hyperKähler and Kähler quotients, which is also the dif-
ference between N = 4/N = 3 supersymmetry and N = 2 supersymmetry in three space–time dimen-
sions. As we extensively discussed in the main text, there is an analogue of the holomorphic part of mo-
ment map equation that is provided by the equation ppp∧ppp= 0, defining the subspace DΓ⊂HomΓ(Q×R,R)
(see eqs. (6.10-6.12)) and leads to a precise suggestion for the superpotential W in the corresponding
superconformal field theory. A striking feature of this generalization that cannot escape notice is the
following. In the hyperKähler case the holomorphic moment map equation is of the form [p1, p2] = 0
(eventually deformed by the ζ+ parameters). In the Kähler case it is εxyz px · py = 0 with x,y,z = 1,2,3. It
looks like we have a reversed correspondence with division algebras, the hyperKähler case corresponding
to C (one imaginary unit, hence one matrix condition), the Kähler case corresponding instead to quater-
nions (three imaginary units, hence three matrix conditions). This naturally leads to a wild conjecture.
What about a further generalization of the Kronheimer construction corresponding to octonions? We
might consider finite groups Γ⊂ SU(4) that are also subgroups of G2(−14), namely preserve the octonion
structure constants ai jk, and we might consider 7-tuples of matrices pi (i = 1, . . . ,7) each belonging to
Hom(R,R), where R denotes the regular representation of Γ. Because of our hypothesis there is a natural
7-dimensional representation Q of Γ (corresponding to the embedding Γ ↪→ G2(−14)) and we can define
the space ŜΓ = HomΓ(Q⊗R,R). Next one can deem of the analogue subspace D̂Γ ⊂ ŜΓ singled out by
the 7 conditions:

ai jk p j · pk = 0 (10.2)

We might perform some quotient of this space with respect to a suitable compact quiver group FΓ. What
the result might be of such a construction is totally unexplored both from the mathematical and from the
physical point of view. Yet it is particularly inspiring that the mentioned conditions for the finite group Γ

are satisfied by L168 and by all of its subgroups. Careful consideration of this possibility is certainly an
interesting line for further research.

B) As we repeatedly stressed, the relation between the first Chern classes of the tautological bundles associated,
by means of the generalized Kronheimer construction, with the nontrivial irreps of the discrete group Γ and
the components of the exceptional divisor produced by the blowup is of central relevance on both sides of
the correspondence Geometry/Superconformal Gauge-Theory. In the present paper this relation has been
explored and fully established in one of the few cases where the algebraic moment map equations admit
an explicit analytic solution, i.e for the master case treated in section 9.1, where there is just one junior
class and the blowup produces just one component of the exceptional divisor which is a P2. The extension
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of this in depth analysis to cases where the junior classes are several and moreover to cases where Γ is
nonabelian is one principal direction for further investigation and we plan to address such a question in the
nearest future. This issue was fully solved in the abelian case in the paper [52] using different techniques
and relying on results presented in [53].

C) In relation with the above issue a very important point concerns the possibility of analyzing algebraic moment
map equations by means of a series development in the neighborhood of zero for the level parameters ζI .
Since intersection integrals in cohomology do not depend on the value of ζI , except for a jump when
ζI = 0 for some value of I, we can advocate the use of infinitesimal ζI . A rigorous investigation of
this possibility is of utmost relevance since the solution of moment map equations at first order in the
ζI is always accessible. This might prove the winning weapon to discriminate among all the available
cohomology patterns. We plan to address this question in the nearest future.

D) In the long run the main target is to promote the superconformal Chern-Simons gauge theory on the brane
from the theory of one M2-brane to the theory of several M2-branes which means to add color indices
to the scalar fields. These latter are the coordinates of SΓ ≡ HomΓ (Q⊗R,R) and in the case where Γ

is a cyclic Zk, the gauge group FΓ produced by the Kronheimer construction is just a product of U(1).s.
Adding color indices typically amounts to promote the U(1)’s to U(N), where N is the number of colors.
It is a completely open question to establish the enlargement by colors of those nonabelian gauge groups
FΓ = ∏

r
µ=1 U(nµ) that are produced by a nonabelian discrete group Γ.

E) Last but not least in the list of open problems is a detailed analysis of the relation between the algebraic
blowup procedure of singular orbifolds C3/Γ, as that utilized by Markushevich for the case Γ = L168 [32],
and the Kähler quotient algorithm discussed in the present paper. We plan to come back to this point in
the nearest future.
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A Age grading for various groups

Since our main interest is to chart the possible M2-brane solutions and their dual Chern-Simons gauge theories
that can be obtained by various choices of the discrete group Γ, and since several supergravity arguments point
to the fundamental relevance of the group L168 (see [26, 33]), in this appendix we just provide the calculation
of ages for the maximal subgroups of L168 and their further subgroups starting from its embedding in SU(3)
considered by Markushevich [32].

A.1 Ages for Γ⊂ L168

Starting from the construction of the irreducible three-dimensional complex representation discussed in [26,33],
we have computed the ages of the various conjugacy classes for the holomorphic action of the group L168 on C3.

In order to be able to compare with Markusevich’s paper [32], it is important to note that the form given by
Markusevich of the generators which he calls τ , χ and ω , respectively of order 7, 3 and 2, does not correspond
to the standard generators in the presentation of the group L168 utilized by one of us in the recent paper [26]. Yet
there is no problem since we have a translation vocabulary. Setting:

R = ω.χ ; S = χ.τ ; T = χ
2.ω (A.1)

these new generators satisfy the standard relations of the presentation displayed below:

L168 =
(

R,S,T ‖ R2 = S3 = T 7 = RST = (T SR)4 = e
)

(A.2)

From now on we utilize the abstract notation in terms of ρ = R,σ = S,τ = T .
We begin by constructing explicitly the group L168 in Markushevich’s basis substituting the analytic form of

the generators which follows from the identification (A.1). We find

ε →


1 0 0

0 1 0

0 0 1



ρ →


−2Cos[ π

14 ]√
7

−2Cos[ 3π

14 ]√
7

2Sin[ π

7 ]√
7

−2Cos[ 3π

14 ]√
7

2Sin[ π

7 ]√
7

−2Cos[ π

14 ]√
7

2Sin[ π

7 ]√
7

−2Cos[ π

14 ]√
7

−2Cos[ 3π

14 ]√
7



σ →


0 0 −(−1)1/7

(−1)2/7 0 0

0 (−1)4/7 0



τ →


i+(−1)13/14
√

7
− (−1)1/14(−1+(−1)2/7)√

7

(−1)9/14(1+(−1)1/7)√
7

(−1)11/14(−1+(−1)2/7)√
7

i+(−1)5/14
√

7

(−1)3/14(1+(−1)3/7)√
7

− (−1)11/14(1+(−1)1/7)√
7

− (−1)9/14(1+(−1)3/7)√
7

−−i+(−1)3/14
√

7


(A.3)

We remind the reader that ρ ,σ ,τ are the abstract names for the generators of L168 whose 168 elements are
written as words in these letters (modulo relations). Substituting these letters with explicit matrices that satisfy
the defining relation of the group one obtains an explicit representation of the latter. In the present case the
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substitution A.3 produces the irreducible 3-dimensional representation DA3.

A.1.1 The case of the full group Γ = L168

Utilizing this explicit representation it is straightforward to calculate the age of each conjugacy class and we
obtain the result displayed in the following table.

Conjugacy class of L168 C1 C2 C3 C4 C5 C6

representative of the class e R S T SR T SR

order of the elements in the class 1 2 3 4 7 7

age 0 1 1 1 1 2

number of elements in the class 1 21 56 42 24 24

(A.4)

A.1.2 The case of the maximal subgroup Γ = G21 ⊂ L168

In order to obtain the ages for the conjugacy classes of the maximal subgroup G21, we just need to obtain the
explicit three-dimensional form of its generators X and Y satisfying the defining relations:

X 3 = Y 7 = 1 ; X Y = Y 2X (A.5)

This latter is determined by the above explicit form of the L168 generators, by recalling the embedding relations:

Y = ρ σ τ
3

σ ρ ; X = σ ρ σ ρ τ
2 (A.6)

In this way we obtain the following explicit result:

Y → Y =


−(−1)3/7 0 0

0 (−1)6/7 0

0 0 −(−1)5/7



Y → X =


0 1 0

0 0 1

1 0 0

 (A.7)

Hence, for the action on C3 of the maximal subgroup G21 ⊂ L168 we obtain the following ages of its conjugacy
classes:

Conjugacy Class of G21 C1 C2 C3 C4 C5

representative of the class e Y X 2Y X Y 2 Y X 2 X

order of the elements in the class 1 7 7 3 3

age 0 2 1 1 1

number of elements in the class 1 3 3 7 7

(A.8)
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A.1.3 The case of the two maximal octahedral subgroups

For the other two maximal subgroups O24A and O24B we find instead an identical result. This is retrieved from
the two embedding conditions of the generators S and T , satisfying the defining relations:

S2 = T 3 = (ST )4 = 1 (A.9)

Subgroup O24A
T = ρ σ ρ τ

2
σ ρ τ ; S = τ

2
σ ρ τ σ

2 (A.10)

Subgroup O24B
T = ρ τ σ ρ τ

2
σ ρ τ ; S = σ ρ τ σ ρ τ (A.11)

In this way we get:
Conjugacy Class of the O24A C1 C2 C3 C4 C5

representative of the class e T ST ST S ST

order of the elements in the class 1 3 2 2 4

age 0 1 1 1 1

number of elements in the class 1 8 3 6 6

(A.12)

and
Conjugacy Class of the O24B C1 C2 C3 C4 C5

representative of the class e T ST ST S ST

order of the elements in the class 1 3 2 2 4

age 0 1 1 1 1

number of elements in the class 1 8 3 6 6

(A.13)

A.1.4 The case of the cyclic subgroups Z3 and Z7

Last we consider the age grading for the quotient singularities C3/Z3 and C3/Z7. As generators of the two cyclic
groups we respectively choose the matrices X and Y displayed in eq. (A.7). In other words we utilize either one
of the two generators of the maximal subgroup G21 ⊂ L168.

The Γ = Z3 case. The first step consists of diagonalizing the action of the generator X. Introducing the unitary
matrix:

q =


1√
3

1√
3

1√
3

−1+i
√

3
2
√

3
−1−i

√
3

2
√

3
1√
3

−1−i
√

3
2
√

3
−1+i

√
3

2
√

3
1√
3

 (A.14)

we obtain:

X̃ ≡ q† Xq =


e

2iπ
3 0 0

0 e−
2iπ
3 0

0 0 1

 (A.15)
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This shows that the quotient singularity C3/Z3 is actually of the form C2/Z3×C since it suffices to change basis
of C3 by introducing the new complex coordinates:

z̃a = q b
a zb (A.16)

It follows that in the resolution of the singularity we will obtain:

ALEZ3×C → C3

Z3
(A.17)

Yet, as we discuss more extensively below, the starting setup C3/Γ produces a special type of ALE-manifold
where all the holomorphic moment map levels are frozen to zero and only the Kähler quotient parameters are
switched on.

Eq. (A.15) corresponds also to the decomposition of the three-dimensional representation of Z3 into irre-
ducible representations of Z3. From the diagonalized form (A.15) of the generator we immediately obtain the
ages of the conjugacy classes:

Conjugacy Class of Z3 C1 C2 C3

representative of the class e X X2

order of the elements in the class 1 3 3

age 0 1 1

number of elements in the class 1 1 1

(A.18)

The Γ = Z7 case. In the Z7 case, the generator Y is already diagonal and, as we see, none of the three complex
coordinates is invariant under the action of the group. Hence differently from the previous case we obtain:

MZ7 →
C3

Z7
(A.19)

where the resolved smooth manifold is not the direct product of C with an ALE-manifold:

MZ7 6= ALEZ7×C (A.20)

From the explicit diagonal form (A.7) of the generator we immediately obtain the ages of the conjugacy classes:

Conjugacy Class of Z7 C1 C2 C3 C4 C5 C6 C7

representative of the class e Y Y2 Y3 Y4 Y5 Y6

order of the elements in the class 1 7 7 7 7 7 7

age 0 2 2 1 2 1 1

number of elements in the class 1 1 1 1 1 1 1

(A.21)

B The McKay quiver of various groups

Since it is of central relevance to the resolution of the singularity by means of a Kähler quotient based on a
generalized Kronheimer construction, it is convenient to calculate also the Mckay quiver matrices associated to
the subgroups considered in the previous appendix.
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B.1 The McKay quiver of L168

We calculate the McKay matrix defined by

Q⊗Di =
6⊕

j=1

Ai j D j (B.1)

where Q is the three-dimensional complex representation defining the action of L168 on C3 while Di denote the
6 irreducible representation ordered in the standard way we have so far adopted, namely:

Di =
{

D1,D6,D7,D8,D3,D3

}
(B.2)

We find the following matrix:

A =



0 0 0 0 1 0

0 0 1 1 0 1

0 1 1 1 0 0

0 1 1 1 1 0

0 1 0 0 0 1

1 0 0 1 0 0


(B.3)

The matrix A admits the graphical representation displayed in fig.6, named the McKay quiver of the quotient
C3/L168

8

B.2 The McKay quiver of G21

We calculate the McKay matrix defined by

Q⊗Di =
5⊕

j=1

Ai j D j (B.4)

where Q is the three-dimensional complex representation defining the action of G21 on C3 while Di denote the
5 irreducible representations ordered in the standard way we have so far adopted, namely:

Di =
{

D0,D1,D1,D3,D3

}
(B.5)

8The authors are grateful to their friend Massimo Bianchi who noticed that the McKay quiver presented in the ArXiv version of the
present paper was probably mistaken since the number of lines entering and outgoing from some of the nodes was not equal. This caused
a revision of our calculation of the quiver matrix (B.3) where there was indeed a trivial, yet hidden, mistake. The mistake was spotted
by Bianchi because of his experience with quiver gauge theories discussed in the several papers [54–56]. What is not widely appreciated
in this literature and in general in the physical community is that the quivers utilized in such a gauge–theory capacity and the McKay
quivers, group theoretically defined as we do in the present paper, are just one and the same thing. This point will be addressed in full
generality in a forthcoming paper [57].
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Figure 6: The quiver diagram of the finite group L168 ⊂ SU(3)

We find the following matrix:

A =



0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 2

1 1 1 1 1


(B.6)

The matrix A admits the graphical representation presented in fig. 7, named the McKay quiver of the quotient
C3/G21.

B.3 The McKay quiver for Z3

Next we calculate the McKay matrix for the case where Q is the three-dimensional representation of the group
Z3 generated by X given as in eq. (A.7) and Di are the three irreducible one-dimensional representations of Z3.
The result is displayed below.

Q⊗Di =
3⊕

j=1

Ai j D j (B.7)

Ai j =


1 1 1

1 1 1

1 1 1

 (B.8)

The matrix Ai j in eq. (B.8) admits the graphical representation shown in eq. (B.8).

79



Figure 7: The quiver diagram of the finite group G21 ⊂ L168

B.4 The McKay quiver for Z7

Then we calculate the McKay matrix for the case where Q is the three-dimensional representation of the group
Z7 generated by Y as given in eq. (A.7) and Di are the seven irreducible one-dimensional representations of Z7.
The result is displayed below.

Q⊗Di =
7⊕

j=1

Ai j D j (B.9)

Ai j =



0 0 0 1 0 1 1

1 0 0 0 1 0 1

1 1 0 0 0 1 0

0 1 1 0 0 0 1

1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 0 1 0 1 1 0


(B.10)

The McKay matrix in eq. (B.10) admits the graphical representation of fig.9.
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Figure 8: The quiver diagram of the finite group Z3 ⊂ L168. The three vertices correspond to the three irreducible
representations, 1, ψ and ψ2, where ψ is a primitive cubic root of unity. It is not necessary to mark the names
of the representation since the quiver diagram is completely symmetric. In each vertex converge three lines and
three lines depart from each vertex. It is interesting to compare this quiver diagram with that of the master model
presented in fig.5.

Figure 9: The quiver diagram of the finite group Z7⊂L168. The seven vertices correspond to the seven irreducible
representations, 1, marked 0, and ψ, . . . ,ψ6, marked 1,2, . . . ,6, where ψ is a primitive seventh root of the unity.
In each vertex converge three lines and three lines depart from each vertex.
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C Gibbons-Hawking metrics and the resolution of C2/Γ singularities

As an illustration of the above outlined generalized Kronheimer construction which resolves the quotient singu-
larities C3/Γ, we intend to discuss the abelian cases Γ = Z3 and Z7, looking at the case where such finite groups
are subgroups of L168 ⊂ SU(3). In this way, by steps of increasing complexity, we approach the discussion of the
nonabelian cases like G21. When Γ=Z3⊂L168⊂ SU(3) we already pointed out that the singularity is actually of
the type mentioned in eq. (A.17). This is quite useful for our purposes since the ALEZk manifolds admit another
well known representation with which we can compare the Kronheimer construction in order to get orientation
in our main task of understanding the cohomology of the resolved Kähler manifold. The representation we are
alluding to is that of the Gibbons-Hawking multicenter metrics that are known to be hyperKählerian and indeed
equivalent to ALEZk . The comparison between these two forms of the same metrics is very useful in order to
get cues about the mechanisms by means of which the moment map parameters blowup the singularities in the
purely Kählerian case. Hence let us start with the general form of the GH-metrics.

Let the x,y,z be the real coordinates of R3 to which we adjoin an angle τ spanning a circle S1. A general
GH-metric has the following form:

ds2
GH =

(dτ +ω)2

V
+V

(
dx2 +dy2 +dz2) (C.1)

where V = V (x,y,z) is a harmonic function on R3:

∂ 2 V

∂x2 +
∂ 2 V

∂y2 +
∂ 2 V

∂ z2 = 0 (C.2)

and
ω = ωx dx+ωy dy+ωz dz (C.3)

is a one-form whose external derivative is requested to be Hodge dual, in the flat metric ds2
R3 = dx2 +dy2 +dz2

of R3, to the gradient of V :
?R3 dω = dV (C.4)

Without loss of generality we can choose an axial gauge for the connection ω by setting:

ωz = 0 (C.5)

The four-dimensional Riemannian space MGH, whose metric is provided by eq. (C.1), is a U(1)-bundle over R3.
Actually we can easily prove that MGH is Kählerian by means of the following argument. Consider the following
two-form:

KGH = 2((dτ +ω)∧dz − V dx∧dy) (C.6)

which is closed in force of eqs.(C.2) and (C.3):

dKGH = 0 (C.7)

From eq. (C.1) we easily workout the components of the metric in the x,y,z,τ coordinate basis:

gi j =


V + ω2

x
V

ωxωy
V 0 ωx

V
ωxωy
V V +

ω2
y

V 0 ωy
V

0 0 V 0
ωx
V

ωy
V 0 1

V

 (C.8)
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and of its inverse:

gi j =


1
V 0 0 −ωx

V

0 1
V 0 −ωy

V

0 0 1
V 0

−ωx
V −ωy

V 0 V 2+ω2
x +ω2

y
V

 (C.9)

Similarly, from eq. (C.6) we work out the components of the form KGH:

Ki j =


0 −V ωx 0

V 0 ωy 0

−ωx −ωy 0 −1

0 0 1 0

 (C.10)

Raising the second index of the antisymmetric tensor Ki j with the inverse metric g j` we obtain a mixed tensor

J `
i ≡ Ki j g j` =


0 −1 ωx

V ωy

1 0 ωy
V −ωx

0 0 0 −V

0 0 1
V 0

 (C.11)

which satisfies the property:
J `

i J m
` = −δ

m
i (C.12)

Hence J is a almost complex structure which is proved to be a complex structure by verifying that its Nijenhuis
tensor vanishes:

N`
i j ≡ ∂[iJ

`
j] − J m

i J n
j ∂[mJ `

n] = 0 (C.13)

It follows that MGH is a complex manifold, the metric (C.6) being hermitian with respect to J since the matrix
Ki j ≡ J `

i g` j is by construction antisymmetric and, as such, it defines a Kähler 2-form. Thus we have a Kähler
form which is closed and this, by definition, implies that the complex manifold MGH is a Kähler manifold.

C.1 Integration of the complex structure and the issue of the Kähler potential

The first task to put the Kähler metric of a 2n-dimensional real manifold into a standard complex form derived
from a Kähler potential is that of deriving a suitable set of complex coordinates Zµ that are eigenstates of
the complex structure. This means to find a complete set of n complex solutions of the following differential
equation:

J `
i ∂`Z = i∂iZ (C.14)

In the case of the complex structure in equation (C.11) a basis of the eigenspace pertaining to the eigenvalue i is
easily provided by the following two vectors

v1 = {−iωy, iωx, iV ,1}
v2 = {i,1,0,0}

J v1,2 = iv1,2 (C.15)

83



The second eigenvector v2 inserted into equation (C.14) immediately singles out one of the two complex coor-
dinates:

z ≡ y+ i x (C.16)

In order to integrate eq. (C.14) utilizing the first eigenvector v1, a very useful tool is provided by a recent obser-
vation made by Ortin et al in [58] who pointed out that a convenient way of automatically realizing conditions
(C.2) and (C.4) is obtained by setting:

ωx =
∂ 2F

∂y∂ z
; ωy = − ∂ 2F

∂x∂ z
; V =

∂ 2F

∂ z2 (C.17)

where F (x,y,z) is a harmonic prepotential:

∂ 2 F

∂x2 +
∂ 2 F

∂y2 +
∂ 2 F

∂ z2 = 0 (C.18)

Using the prepotential F the differential equation to be satisfied by the searched for complex coordinate w is
the following one: {

i
∂ 2F

∂ z∂ z
, i

∂ 2F

∂y∂ z
, i

∂ 2F

∂ z2 ,1
}

= {∂xw,∂yw,∂zw,∂τw} (C.19)

In view of eq. (C.17) we can set:

F (x,y,z) =
∫

dz
∫

dzV (x,y,z) (C.20)

and the differential equation (C.19) is immediately integrated by setting:

w = τ + i∂zF = τ + i
∫

V dz (C.21)

Obviously, whenever a complex coordinate has been found, any invertible holomorphic function of the same is
an equally good complex coordinate. Hence in addition to z, defined in eq. (C.16), we choose the second complex
coordinate as follows:

h = exp [iw] = eiτ
ρ ; ρ = exp

[
−
∫

V dz
]

(C.22)

Using the above implicit definition of the complex coordinates one can transform the Kähler 2-form (C.6) to the
complex coordinates obtaining:

KGH = Khh dh∧dh+Khz dh∧dz+Kzh dz∧dh+Kzz dz∧dz (C.23)

where

Khh = i
1

hhV
= ∂h∂ hK

Khz =
iωx +ωy

hV
= ∂h∂ zK

Kzh =
iωx−ωy

hV
= ∂z∂ hK

Kzz = i
ω2

x +ω2
y +V 2

V
= ∂z∂ zK (C.24)
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The problem of deriving the Kähler potential K (h,z,h,z) corresponding to the GH-metric is reduced to the
nontrivial task of inverting the coordinate transformation encoded in eqs. (C.21) and (C.16) and then solving the
system of coupled differential equations encoded in eqs. (C.24). Typically this is far from being a nontrivial task,
but in some simple cases it can be done. The primary illuminating example is provided by the Eguchi-Hanson
metric corresponding to ALEZ2 .
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D Abelian Examples of generalized Kronheimer constructions

D.1 Construction à la Kronheimer of the crepant resolution MZ3 →
C3

Z3
with Z3 ⊂ L168

Our next exercise is the resolution of the singularity C3

Z3
where the group Z3 is embedded in G21 ⊂ L168. We will

see that here the algebraic moment map equations are of higher order, actually reduce to a single equation of the
sixth order which cannot be explicitly solved and no analytically close expression of either the Kähler potential
or the first Chern classes of the tautological bundles can be written down. Yet from another view point we know
that the resolved manifold is the product C×ALEZ3 , the second factor being equivalent to a Gibbons-Hawking
space for which an explicit expression of the metric exists although written in different coordinates.

Following the general strategy outlined in the main text sections, the first step consists in deriving the invari-
ant space SΓ = HomΓ(R,Q⊗R) made of triples {A,B,C} of 3×3 matrices that satisfy eq. (6.6), namely:

X


A

B

C

 =


R(X−1)AR(X)

R(X−1)BR(X)

R(X−1)C R(X)

 (D.1)

where X is the Z3-generator displayed in eq (A.7) and R(X) is its representation in the natural basis of the regular
representation. Quite exceptionally this latter coincides with X as a matrix:

R(X) = X (D.2)

The constraint (D.1) reduces the number of parameters from 27 to 9. Explicitly we have:

(A,B,C) ∈ HomΓ(R,Q⊗R)

⇓

A =


α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3



B =


α2,2 α2,3 α2,1

α3,2 α3,3 α3,1

α1,2 α1,3 α1,1



C =


α3,3 α3,1 α3,2

α1,3 α1,1 α1,2

α2,3 α2,1 α2,2

 (D.3)

If we perform the diagonalization of the regular representation by means of the matrix (A.14), the result of the
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same constraint (D.1) can be expressed in the following way:

(A,B,C) ∈ HomΓ(R,Q⊗R)

⇓

A =


m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3



B =


m1,1 − 3

√
−1m1,2 (−1)2/3m1,3

(−1)2/3m2,1 m2,2 − 3
√
−1m2,3

− 3
√
−1m3,1 (−1)2/3m3,2 m3,3



C =


m1,1 (−1)2/3m1,2 − 3

√
−1m1,3

− 3
√
−1m2,1 m2,2 (−1)2/3m2,3

(−1)2/3m3,1 − 3
√
−1m3,2 m3,3

 (D.4)

in terms of a new set of nine parameters mi, j.

D.1.1 Characterization of the locus DZ3 and of the variety V3+2

Next we define the reduction of the invariant space HomΓ(R,Q⊗R) to the locus cut out by the holomorphic
constraint (6.12) which was named DΓ:

DZ3 ≡

 p =


A

B

C

 ∈ HomΓ(R,Q⊗R) / [A,B] = [B,C] = [C,A] = 0

 (D.5)

Differently from the more complicated cases of maximal subgroups of L168, in the present abelian case we can
explicitly solve the quadratic equations provided by the commutator constraints and we discover that there is a
principal branch of the solution, named D0

Γ
that has indeed dimension 5 = |Γ|+2. However, in addition to that

there are 25 more branches of the solution with smaller dimension. This clarifies a point stated by us in our
previous general discussion. There is always a unique principal branch of the solution with the maximal number
|Γ|+2 of free parameters and we are able to show that such principal branch D0

Γ
is indeed the orbit with respect

to the group GΓ of the subspace LΓ defined in eq. (5.34). Hence the variety V|Γ|+2 of which we are supposed to
take the Kähler quotient is not defined by eq. (D.5), rather by the principal branch of that variety.

In the present case, the principal branch of the solution to eq. (D.5) can be expressed in the following way:

m1,1 = ω1, m1,2 = ω2, m1,3 = ω3, m2,1 = ω4, m2,2 = ω1, m2,3 = ω5, m3,1 =
ω2ω4

ω3
, m3,2 =

ω2ω4

ω5
, m3,3 = ω1

(D.6)
where ω1,...,5 are five free complex parameters. Substituting eq. (D.6) in eq. (D.4) we obtain the explicit parame-
terization of the locus D0

Z3
in terms of the 5 parameters ωi.

D.1.2 Derivation of the quiver group GΓ

Our next point is the derivation of the group GΓ defined in eq. (6.19), namely:

GZ3 = {g ∈ SL(3,C) | ∀γ ∈ Z3 : [DR(γ),Ddef(g)] = 0} (D.7)
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Let us proceed to this construction. In the diagonal basis of the regular representation this is a very easy task,
since the group is simply given by the diagonal 3×3 matrices with determinant one. We introduce these matrices:

g =


a1 0 0

0 a2 0

0 0 a3

 (D.8)

subject to the constraint ∏
3
i=1 ai=1.

Next we want to show that

D0
Z3

= OrbitGZ3
(LZ3) (D.9)

To this effect we rewrite the locus

LZ3 ≡ {A0,B0,C0}

A0 =


α1,1 0 0

0 α2,2 0

0 0 α3,3

 ; B0 =


α2,2 0 0

0 α3,3 0

0 0 α1,1

 ; C0 =


α3,3 0 0

0 α1,1 0

0 0 α2,2

 (D.10)

in the diagonal basis of the regular representation. The change of basis is performed by the normalized character
table of the cyclic group Z3

χχχ =
1√
3


1 1 1

1 e
2iπ
3 e−

2iπ
3

1 e−
2iπ
3 e

2iπ
3

 (D.11)

by setting Ã0 = χχχ† A0 χχχ and similarly for B̃0 and C̃0. Next let us setup the orbit of interest to us:

OrbitGZ3
(LZ3) ≡

{
g−1

χχχ
† A0 χχχ g, g−1

χχχ
† B0 χχχ g, g−1

χχχ
†C0 χχχ g

}
(D.12)

where g is given in eq. (D.8). The space (D.12) is clearly 5-dimensional, the five parameters being, α1,1,α2,2,α3,3
and a1,a2,a3 with constraint ∏

3
i=1 ai = 1. We can easily verify that the identification (D.9) holds true upon use
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of the following identification:

a1 =
ω

1/3
4

ω
1/3
3

a2 =
ω

1/3
2

ω
1/3
5

a3 =
ω

1/3
3 ω

1/3
5

ω
1/3
2 ω

1/3
4

α1,1 = ω1 +
ω

1/3
2 ω

1/3
3 ω

2/3
4

ω
1/3
5

+
ω

2/3
2 ω

1/3
4 ω

1/3
5

ω
1/3
3

α2,2 =
1
6

(
6ω1 +

3i
(
i+
√

3
)

ω
1/3
2 ω

1/3
3 ω

2/3
4

ω
1/3
5

−
6(−1)1/3ω

2/3
2 ω

1/3
4 ω

1/3
5

ω
1/3
3

)

α3,3 =
−2
√

3ω
1/3
2 ω

2/3
3 ω

2/3
4 +

(
−3i+

√
3
)

ω1ω
1/3
3 ω

1/3
5 +

(
3i+
√

3
)

ω
2/3
2 ω

1/3
4 ω

2/3
5(

−3i+
√

3
)

ω
1/3
3 ω

1/3
5

(D.13)

between the orbit parameters and those that parameterize, according to (D.6), the principal branch D0
Z3

of the
locus (6.12).

In conclusion the variety V5 of which we are supposed to take the Kähler quotient in order to obtain the
resolution Mζ → C3

Z3
is defined in the following way:

V5 ≡ OrbitGZ3
= {A,B,C} (D.14)

A =


ω1 ω2 ω3

ω4 ω1 ω5
ω2ω4

ω3

ω2ω4
ω5

ω1



B =


ω1 − 3

√
−1ω2 (−1)2/3ω3

(−1)2/3ω4 ω1 − 3
√
−1ω5

−
3√−1ω2ω4

ω3

(−1)2/3ω2ω4
ω5

ω1



C =


ω1 (−1)2/3ω2 − 3

√
−1ω3

− 3
√
−1ω4 ω1 (−1)2/3ω5

(−1)2/3ω2ω4
ω3

−
3√−1ω2ω4

ω5
ω1

 (D.15)
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D.1.3 The algebraic equation of the orbifold locus

Let us now consider the action of the Z3 group on C3 as defined by the generator X in eq. (A.7). If {z1,z2,z3}
are the coordinates of a point in C3, we see that there are four invariant polynomials:

J1 =
1

216

(
2
√

3z1−
(√

3+3i
)

z2−
(√

3−3i
)

z3

)
3 ≡ w3

1

J2 =
1

216

(
2
√

3z1−
(√

3−3i
)

z2−
(√

3+3i
)

z3

)
3 ≡ w3

2

J3 =
(z1 + z2 + z3)

3

3
√

3
≡ w3

3

J4 =
z3

1−3z2z3z1 + z3
2 + z3

3

3
√

3
≡ w1 w2 w3 (D.16)

which satisfy the following equation:
J1 J2 J3 − J3

4 = 0 (D.17)

This equation can be regarded as the cubic equation which cuts out in C4 the locus corresponding to the singular
orbifold C3/Z3. As we know this latter is equivalent to C×C3/Z3. How do we retrieve this fact in the present
language? It is a simple matter. Consider the new coordinates of C3 that diagonalize the action of X and are
implicitly defined already in eq. (D.16):

w ≡ χχχ
† z

w1 = 1
6

(
2
√

3z1−
(√

3+3i
)

z2−
(√

3−3i
)

z3

)
w2 = 1

6

(
2
√

3z1−
(√

3−3i
)

z2−
(√

3+3i
)

z3

)
w3 = 1√

3
(z1 + z2 + z3) (D.18)

We have the correspondence:

Xz ⇔ X̃w where X̃ =


e

2π

3 i 0 0

0 e−
2π

3 i 0

0 0 1

 (D.19)

which implies that in terms of the w-variables we have the following Z3 invariants:

j1 = w3
1 ; j2 = w3

2 ; j3 = w1 w2; ; j4 = w3 (D.20)

and we can write:
J1 = j1 ; J2 = j2 ; J3 = j34 ; J4 = j3 j4 (D.21)

Regarding Ji and ji as the coordinates of two copies of C4 we can regard eq. (D.21) as a morphism:

µ : C3×C → C4 (D.22)

Under such a morphism the algebraic equation (D.17) is mapped into:

j34
(
j1 j2 − j33

)
= 0 (D.23)
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and in the expression in bracket we recognize the equation of the C2

Z3
orbifold as described in eq. (5.38) while

discussing the standard Kronheimer construction (it suffices to identify x = j1,y = j2,z = j3).

D.1.4 Map of the variety V5 into the algebraic locus corresponding to the orbifold

Having established the above relations we verify that, in complete analogy with the standard Kronheimer con-
struction, we can reproduce the defining equation (D.17) in terms of invariants of the three matrices (D.15)
spanning the V5 variety. It suffices to identify:

J1 = Det[A] = ω
3
1 −3ω2ω4ω1 +

ω2
2 ω4ω5

ω3
+

ω2ω3ω2
4

ω5

J2 = Det[B] = ω
3
1 −3ω2ω4ω1 +

ω2
2 ω4ω5

ω3
+

ω2ω3ω2
4

ω5

J3 = Det[C] = ω
3
1 −3ω2ω4ω1 +

ω2
2 ω4ω5

ω3
+

ω2ω3ω2
4

ω5

J4 = Tr[ABC] =

(
ω

3
1 −3ω2ω4ω1 +

ω2
2 ω4ω5

ω3
+

ω2ω3ω2
4

ω5

)3

(D.24)

Eq. (D.24) describes an explicit inclusion map of the variety V5 into the algebraic locus C3/Z3:

V5 →
C3

Z3
(D.25)

D.1.5 The Kähler quotient

The next step consists in performing the Kähler quotient of the Kähler manifold V5 with respect to the compact
subgroup of the quiver group GZ3 , which, as we several times emphasized, is the gauge group of the correspond-
ing three-dimensional Chern-Simons gauge theory:

FZ3 ≡ GZ3

⋂
SU(3) (D.26)

A generic element g ∈FZ3 is of the form (D.8) with:

ai = exp [iθi] ;
3

∑
i=1

θi = 2π n (n ∈ Z) (D.27)

The Kähler structure of V5 is provided by the pullback on the V5 surface of the Kähler potential of the entire flat
Kähler manifold HomZ3 (R,Q⊗R), namely we have:

KV ≡ Tr
([

A† , A
]
+
[
B† , B

]
+
[
C† ,C

])
= 3

(
3ω1ω1 +ω3ω3 +ω4ω4 +ω2ω2

(
ω4ω4

ω3ω3
+

ω4ω4

ω5ω5
+1
)
+ω5ω5

)
(D.28)

KV is obviously invariant under the unitary transformations of the gauge group :

∀g ∈FZ3 : {A, B,C} →
{

g†Ag, g†Bg, g†Cg
}

(D.29)

which, for that reason, is an isometry group of the corresponding Kähler metric on HomZ3 (R,Q⊗R) and of its
restriction to V5. The last point follows from the fact that, by construction, FZ3 maps V5 ⊂ HomZ3 (R,Q⊗R)
into itself.
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A basis of two linearly independent generators of the Lie algebra FZ3 is provided by the following two
matrices:

f1 =


i 0 0

0 −i 0

0 0 0

 ; f2 =


0 0 0

0 i 0

0 0 −i

 (D.30)

and the moment maps corresponding to the two isometries generated by them are defined as follows:

PA = − iTr
(
fA
([

A† , A
]
+
[
B† , B

]
+
[
C† ,C

]))
, (A = 1,2) (D.31)

Explicitly we find:

P1(ω,ω) = 3ω3ω3−6ω4ω4 +3ω2ω2

(
−ω4ω4

ω3ω3
+

ω4ω4

ω5ω5
+2
)
−3ω5ω5

P2(ω,ω) = 3
(

ω3ω3 +ω4ω4 +ω2ω2

(
−ω4ω4

ω3ω3
− 2ω4ω4

ω5ω5
−1
)
+2ω5ω5

)
(D.32)

Choosing a gauge. As we emphasized several times, the quiver group GZ3 leaves the surface [A,B] = [B,C] =
[C,A] = 0 invariant, namely it maps V5 into itself, yet it does not leave the moment maps PA invariant since it is
not an isometry. The latter are invariant only under the compact gauge subgroup. This property is very important
since it is the key instrument to obtain the lifting from a zero level to a prescribed one of the level surfaces, thus
providing the algorithm to perform the Kähler quotient explicitly.

To this effect we consider the action of an element:

g =


µ1 0 0

0 µ2
µ1

0

0 0 1
µ2

 ∈ GZ3 ; µ1,2 ∈ C (D.33)

on the coordinates ωi. Such an action is easily worked out to be the following one:{
ω1→ ω1,ω2→

µ2ω2

µ2
1

,ω3→
ω3

µ1µ2
,ω4→

µ2
1 ω4

µ2
,ω5→

µ1ω5

µ2
2

}
(D.34)

Relying on this we can introduce three complex coordinates ui (i = 1,2,3) parameterizing the locus LZ3 and we
identify the remaining two complex coordinates as parameters of the quiver group. With some ingenuity we have
singled out the following transformation:

ω1→ u1 , ω2→
µ2u2

2

µ2
1 u3

, ω3→
u2

3
µ1µ2u2

, ω4→
µ2

1 u2
3

µ2u2
, ω5→

µ1u2
3

µ2
2 u2

(D.35)

If we separate the modulus from the phase of the complex parameters µ1,2 by writing:

µ1,2 = Ω1,2 eiθ1,2 Ω1,2 ∈ R+ (D.36)

the substitution (D.35) can be rewritten as follows:

ω1→ u1 , ω2→
e2θ2−2θ1u2

2Ω2

u3Ω2
1

, ω3→
e−θ1−2θ2u2

3
u2Ω1Ω2

, ω4→
e2θ1−2θ2u2

3Ω2
1

u2Ω2
, ω5→

eθ1−4θ2u2
3Ω1

u2Ω2
2

(D.37)

which can be implemented into eqs. (D.32) that define the moment maps. One easily verifies that the phases
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θi disappear in the resulting expressions as a result of the invariance of the moment maps with respect to the
gauge-group. Neither do the moment maps depend from the phases of the complex coordinates ui. Setting

u1,2,3 =
√

∆1,2,3 eiφ1,2,3 ∆1,2,3 ∈ R+ (D.38)

and using the following convenient new basis for the gauge Lie algebra and for the moment maps:

P̂1 = 1
3 (2P1 +P2) ; P̂2 = 1

3 (P1 +2P2) (D.39)

we obtain the following quite simple result:

{
P̂1 , P̂2

}
=

{
−

3
(
Ω6

1−1
)(

∆3
2Ω4

2 +∆3
3Ω2

1
)

∆2∆3Ω4
1Ω2

2
,
3
(
Ω4

1 +Ω2
2
)(

∆3
3−∆3

2Ω6
2

)
∆2∆3Ω2

1Ω4
2

}
(D.40)

In order to study the moment map equations:{
P̂1 , P̂2

}
= {ζ1 , ζ2} (D.41)

where ζ1,2 are the level parameters it is convenient to make the following change of parameterization:

Ω1→ 3
√

ϒ1
6
√

ϒ2 , Ω2→ 6
√

ϒ1
3
√

ϒ2 (D.42)

The remaining task is that of solving eq. (D.41) as an algebraic equation for the parameters ϒ1,2 to be determined
in terms of the coordinates ui and of the level parameters ζ1,2.

Calibration of the solutions at ζ1,2 = 0 Upon the substitution (D.42), eq. (D.41) can be easily solved for
ζ1,2 = 0 and we find the following six solutions

1) ϒ1→−1 ϒ2→ 1

2) ϒ1→−1 ϒ2→−
∆3

3
∆3

2

3) ϒ1→ ∆2
∆3

ϒ2→
∆2

3
∆2

2

4) ϒ1→−
3√−1∆2

∆3
ϒ2→−

3√−1∆2
3

∆2
2

5) ϒ1→ (−1)2/3∆2
∆3

ϒ2→
(−1)2/3∆2

3
∆2

2

6) ϒ1→
∆3

2
∆3

3
ϒ2→−

∆3
3

∆3
2

(D.43)

Inspecting the above result we immediately see that only the solution 3) is acceptable since it is the only one for
which both ϒ1 and ϒ2 are real and positive. In terms of the original parameters Ω1,2 solution 3) means:

Ω1 → 1 ; Ω2 →
|u3|
|u2|

(D.44)

and reinstalling the phases we can argue that it corresponds to the following complex transformation of the quiver
group:

µ1 → 1 ; µ2→
u3

u2
(D.45)

Inserting eq. (D.45) in eq. (D.35) and replacing the ωi accordingly in eq. (D.15) we obtain a set of three matrices
that we name Â0, B̂0,Ĉ0. Transforming these latter back to the natural basis of the regular representation by
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setting A0 ≡ χχχ Â0 χχχ† and similarly for B0 and C0 we get:

A0 =


u1 +u2 +u3 0 0

0 1
2

(
2u1 +

(
−1− i

√
3
)

u2 + i
(√

3+ i
)

u3
)

0

0 0 1
2

(
2u1 + i

(√
3+ i

)
u2 +

(
−1− i

√
3
)

u3
)


B0 =


u1− 3
√
−1u2 +(−1)2/3u3 0 0

0 1
2

(
2u1 + i

(√
3+ i

)
u2 +

(
−1− i

√
3
)

u3
)

0

0 0 u1 +u2 +u3



C0 =


u1 +(−1)2/3u2− 3

√
−1u3 0 0

0 u1 +u2 +u3 0

0 0 1
2

(
2u1 +

(
−1− i

√
3
)

u2 + i
(√

3+ i
)

u3
)
 (D.46)

Being diagonal and belonging to HomZ3 (R,Q⊗R), the triple of matrices {A0,B0,C0} lies in the locus LZ3

which we have already established to be isomorphic with the singular orbifold C3/Z3. The coordinates u1,2,3
just provide a linear parameterization of C3/Z3. This shows that at zero-level of the momentum map we are
back to the singular orbifold. The resolution of singularities occur at the non-vanishing levels.

D.1.6 Solutions of the moment map equations at ζ 6= 0

When ζ1,2 6= 0 we have been able to find the solutions of the moment map equation (D.41) in an implicit way
in terms of the roots of a sixth order equation whose coefficients depend on the level parameters ζ1,2 and on the
moduli-square ∆1,2,3 of the complex coordinates u1,2,3. The resolving sixth-order equation has the form:

6

∑
n=0

cnα
n = 0 (D.47)

where the coefficients have the form:

c1 = 9∆
6
3

c2 = 3∆
3
3
(
−3∆

3
2 +6∆

3
3 +∆2∆3 (2ζ1−ζ2)

)
c3 = ∆

2
3
(
−18∆

3
2∆3 +9∆

4
3 +∆

2
2ζ1 (ζ1−ζ2)+6∆2∆

2
3 (2ζ1−ζ2)

)
c4 = ∆2∆3

(
−18∆

2
2∆

2
3 +3∆

3
3 (2ζ1−ζ2)+∆

3
2 (−6ζ1 +3ζ2)+∆2∆3

(
2ζ

2
1 −2ζ1ζ2 +ζ

2
2
))

c5 = ∆
2
2
(
9∆

4
2−18∆2∆

3
3 +∆

2
3ζ1 (ζ1−ζ2)+6∆

2
2∆3 (−2ζ1 +ζ2)

)
c6 = 3∆

3
2
(
6∆

3
2−3∆

3
3 +∆2∆3 (−2ζ1 +ζ2)

)
c7 = 9∆

6
2 (D.48)

Let us name αi the 6 roots of equation (D.47). For each α = αi, the solution of the momentum-map equations is
given by:
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ϒ1 =α

ϒ2 =(
−81(1+α)∆11

2 +81
(
1+2α +α2 +α3 +α4

)
∆8

2∆3
3−54α3(1+α)2∆10

3 ζ2−9α2(1+α)2(2+α)∆2∆8
3 (2ζ1−ζ2)ζ2+

27∆9
2∆3
((

1+3α +2α2
)

ζ1−
(
−2+α2

)
ζ2
)
−27∆6

2∆4
3
(
3α2ζ1 +3α4ζ1 +4ζ2 +α (3ζ1 +ζ2)+α3 (3ζ1 +ζ2)

)
−

9∆7
2∆2

3
(
3α2ζ 2

1 +α3ζ1 (ζ1−ζ2)+(4ζ1−ζ2)ζ2 +α
(
2ζ 2

1 +5ζ1ζ2−4ζ 2
2
))

+

9∆4
2∆5

3

(
α (8ζ1−5ζ2)ζ2 +(4ζ1−ζ2)ζ2 +α3

(
3ζ 2

1 +6ζ1ζ2−4ζ 2
2
)
+α2

(
ζ 2

1 +7ζ1ζ2−3ζ 2
2
)
+

α4
(
2ζ 2

1 +3ζ1ζ2−2ζ 2
2
))

+

3α∆2
2∆6

3

(
27α4∆3

3 +2ζ1ζ2 (−ζ1 +ζ2)+αζ2
(
−8ζ 2

1 +8ζ1ζ2−3ζ 2
2
)
−2α2ζ2

(
5ζ 2

1 −5ζ1ζ2 +ζ 2
2
)
+

α3
(
27∆3

3−ζ2 (−2ζ1 +ζ2)
2
))
−

3∆5
2∆3

3

(
54α4∆3

3 +27α5∆3
3 +ζ1ζ2 (−2ζ1 +ζ2)+α3

(
27∆3

3−ζ 3
1 +ζ1ζ 2

2
)
+α2

(
27∆3

3−ζ 3
1 −5ζ 2

1 ζ2 +5ζ1ζ 2
2 −2ζ 3

2

)
+

α
(
27∆3

3 +ζ2
(
−8ζ 2

1 +9ζ1ζ2−2ζ 2
2
)))

+

∆3
2∆4

3
(
54∆3

3ζ2 +81α4∆3
3 (ζ1 +ζ2)+27α5∆3

3 (ζ1 +ζ2)+α2ζ2
(
54∆3

3−4ζ 3
1 +6ζ 2

1 ζ2−4ζ1ζ 2
2 +ζ 3

2

)
+

αζ2
(
54∆3

3−ζ1
(
2ζ 2

1 −3ζ1ζ2 +ζ 2
2
))

+α3
(
27∆3

3 (2ζ1 +3ζ2)−ζ1ζ2
(
2ζ 2

1 −3ζ1ζ2 +ζ 2
2
))))/

(
9∆6

2∆3ζ2
(
6∆3

2−6∆3
3 +∆2∆3 (−2ζ1 +ζ2)

))
;

Instructed by the case of zeroth level we try to inspect the solution which at 0-th level reduces to{
Ω1→ 1 , Ω2→

√
∆3

∆2

}
⇐⇒

{
ϒ1→

∆2

∆3
, ϒ2→

∆2
3

∆2
2

}
(D.49)

To this effect we consider a power series expansion of the solution for small moment maps, around the 0th level
solution:

ϒ1→
∆2

∆3
+Y1ε, ϒ2→

∆2
3

∆2
2
+Y2ε, ζ1→ k1ε, ζ2→ k2ε (D.50)

where ε is an infinitesimal parameter. Inserting eq. (D.50) into the moment map equation we obtain the approx-
imate solution:

Ω1→ 1− k1ε

18(∆2 +∆3)
, Ω2→

18∆3 (∆2 +∆3)−∆3k2ε

18
√

∆2∆3 (∆2 +∆3)
(D.51)

which in terms of the complex quiver group transformations can also be interpreted as follows:

µ1→ 1− ε
k1

18(∆2 +∆3)
, µ2→

u3

u2

(
1− ε

k2

18(∆2 +∆3)

)
(D.52)

In some way, to be better clarified, the above deformation should describe the inflation of the two homology
cycles predicted by the general theorem.

D.1.7 The formal solution for the Kähler potential

In any case, assuming the scalar factors Ω1,2 = Ω1,2 (uuu,uuu,ζζζ ) known in terms of the coordinates and of the
moment map parameters, we can calculate the final Kähler potential. Substituting (D.35) into eq. (D.28) we
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obtain the restriction to the level surface N of the original Kähler potential:

K |N =
3u2

3Ω4
1u2

3

u2Ω2
2u2

+
3u2

3Ω2
1u2

3

u2Ω4
2u2

+
3u2

2Ω2
2Ω2

1u2
2

u3u3
+

3u2
3u2

3

u2Ω2
2Ω2

1u2
+

3u2
2Ω4

2u2
2

u3Ω2
1u3

+
3u2

2Ω2
2u2

2

u3Ω4
1u3

+9u1u1 (D.53)

Then the final Kähler potential of the resolved smooth manifold is:

KM = K |N + ζ
1 logΩ1 +ζ

2 logΩ2 (D.54)

Note that when ζ1,2 = 0 we have (see eq. (D.49)):

Ω1 = 1 , Ω2 =

√
u3u3

u2u2
(D.55)

which inserted into eq. (D.53) yields:

lim
ζζζ→000

K |M = lim
ζζζ→000

K |N = 9u1u1 +9u2u2 +9u3u3 (D.56)

namely we obtain the Kähler potential of the flat C3/Z3 orbifold of which u1,2,3 are the Z3 invariant coordinates.

D.1.8 Comparison with GH metrics

Although for the case under study, the explicit form of the Kähler potential is not available in terms of radicals,
since it involves the roots of a sextic equation, yet the metric can be easily written in terms of real coordinates
by utilizing the Gibbons-Hawking form of ALE metrics. Let us recall eq. (7.40) which predicts the number of
parameters in the hyperKähler quotient resolution of a C2/Zp singularity. For p = 3 this number is 4, yet in our
case the number of parameters is less since we take only the Kähler quotient and we keep fixed the analogue of
the holomorphic moment map equations, namely the constraint [A,B] = [B,C] = [C,A]. Hence although, as we
have observed, the resolution of the singularity C3/Z3 reduces to a direct product C×

(
Y → C2/Z3

)
yielding

C× ALEZ3 (indeed, once diagonalized the action of Z3 is effective only on two complex coordinates), the
ALEZ3 that we obtain in this process is a particular one depending only on 2 of the 4 available parameters. From
the holomorphic point of view the missing parameters are clearly localized. They are those of a holomorphic
moment map level which is not switched on. The other can always be suppressed by a coordinated change. This
is the reason why in this type of resolutions, the algebraic equation is not touched (it is preserved identical to
the case of the orbifold, by utilizing only the locus D0

Γ
which is the orbit of the locus LΓ under the action of

the quiver group GΓ). In the case of Eguchi-Hanson, as we have seen, there is no loss of generality, but for all
the other cases we have a reduced number of moduli with respect to the general ALE. This implies that also the
GH-metric which is equivalent to these specialized ALE manifolds should be in some sense a special one and
should depend only on (p-1) parameters. We conjecture that the GH multicenter spaces equivalent to the special
ALE of the above discussion are those where the centers are all aligned on the same line, say along the z-axis.
Let us follow this idea.

D.1.9 The harmonic potential and the connection one-form

As for the harmonic potential VZ3 we adopt the following one:

VZ3 =
1√

x2 + y2 +(z−δ2) 2
+

1√
x2 + y2 +(z−δ3) 2

+
1√

x2 + y2 +(z−δ1) 2
(D.57)
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implying that the three centers of the metric are at ci = {0,0,δi}. The corresponding connection one-form is as
follows:

ωZ3 =
(z−δ1)(xdy− ydx)

(x2 + y2)
√

x2 + y2 +(z−δ1) 2
+

(z−δ2)(xdy− ydx)

(x2 + y2)
√

x2 + y2 +(z−δ2) 2
+

(z−δ3)(xdy− ydx)

(x2 + y2)
√

x2 + y2 +(z−δ3) 2

(D.58)
This information suffices to write the explicit form of the metric as given in eq. (C.1) and of the the Kähler 2-form
as given in eq. (C.6). Inspired by the example of the Eguchi-Hanson case, we can now conjecture the location
of the homology two-cycles within the GH-manifold. We embed two S2 parameterized by the angles θ ,φ by
setting:

D1
E =

{
x = y = 0 , z = 1

2 (δ1 +δ2)+
1
2 (δ1−δ2) cosθ , τ = φ

}
D2

E =
{

x = y = 0 , z = 1
2 (δ2 +δ3)+

1
2 (δ2−δ3) cosθ , τ = φ

}
(D.59)

D.2 Construction à la Kronheimer of the crepant resolution MZ7 →
C3

Z7

Next we address the case of the singularity C3

Z7
, provided by the embedding Z7 ↪→ SU(3) encoded in the form

of the generator Y of eq. (A.7). It is still an abelian case as the previous one, yet the resolution MZ7 → C3

Z3
no

longer factorizes:
MZ7 6= C×ALEZ7 (D.60)

although ALEZ7 does independently exist. The reason is that in the quotient C3

Z7
there is no linear subspace of

C3 which is left invariant. Hence this is a truly new case which displays intrinsically three-dimensional features.
The most dramatic and relevant of them is the prediction from theorem 4.1 and from eq. (A.21) of the existence
of 3-harmonic (2,2)-forms, along side with three harmonic (1,1)-forms:

h1,1 (MZ7) = 3 ; h2,2 (MZ7) = 3 (D.61)

Notwithstanding these novelties, the construction of the resolution à la Kronheimer, which is the one directly
mirrored in the structure of the D = 3 Chern-Simons gauge theory supposedly dual to one M2-brane that probes
the corresponding singularity, goes along the same lines as before.

Following the general strategy, the first step in the construction consists of deriving the invariant space
SΓ = HomΓ(R,Q⊗R) made of those triples {A,B,C} of 7×7 matrices that satisfy eq. (6.6), namely:

Y


A

B

C

 =


R(Y−1)AR(Y)

R(Y−1)BR(Y)

R(Y−1)C R(Y)

 (D.62)

where Y is the Z7-generator displayed in eq (A.7) and R(Y) is its representation in the natural basis of the regular
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representation:

R(Y) =



0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0


(D.63)

The constraint (D.62) reduces the number of parameters from 147 to 21. If we perform the diagonalization of
the regular representation Rdiag(Y)≡ χχχ† R(Y)χχχ by means of the normalize character table:

χχχ =
1√
7



1 1 1 1 1 1 1

1 e
2iπ
7 e

4iπ
7 e

6iπ
7 e−

6iπ
7 e−

4iπ
7 e−

2iπ
7

1 e
4iπ
7 e−

6iπ
7 e−

2iπ
7 e

2iπ
7 e

6iπ
7 e−

4iπ
7

1 e
6iπ
7 e−

2iπ
7 e

4iπ
7 e−

4iπ
7 e

2iπ
7 e−

6iπ
7

1 e−
6iπ
7 e

2iπ
7 e−

4iπ
7 e

4iπ
7 e−

2iπ
7 e

6iπ
7

1 e−
4iπ
7 e

6iπ
7 e

2iπ
7 e−

2iπ
7 e−

6iπ
7 e

4iπ
7

1 e−
2iπ
7 e−

4iπ
7 e−

6iπ
7 e

6iπ
7 e

4iπ
7 e

2iπ
7


(D.64)

the result of the constraint (D.62) with Rdiag(Y) in place of R(Y) can be expressed in the following way:

(A,B,C) ∈ HomΓ(R,Q⊗R)

⇓

A =



0 0 m1,3 0 0 0 0

0 0 0 m2,4 0 0 0

0 0 0 0 m3,5 0 0

0 0 0 0 0 m4,6 0

0 0 0 0 0 0 m5,7

m6,1 0 0 0 0 0 0

0 m7,2 0 0 0 0 0


(D.65)

B =



0 0 0 0 n1,5 0 0

0 0 0 0 0 n2,6 0

0 0 0 0 0 0 n3,7

n4,1 0 0 0 0 0 0

0 n5,2 0 0 0 0 0

0 0 n6,3 0 0 0 0

0 0 0 n7,4 0 0 0


(D.66)
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C =



0 r1,2 0 0 0 0 0

0 0 r2,3 0 0 0 0

0 0 0 r3,4 0 0 0

0 0 0 0 r4,5 0 0

0 0 0 0 0 r5,6 0

0 0 0 0 0 0 r6,7

r7,1 0 0 0 0 0 0


(D.67)

in terms of a new set of 21 parameters evident from the above formulae.

D.2.1 Derivation of the locus DZ7 and of the variety V7+2

Next we define the reduction of the invariant space HomΓ(R,Q⊗R) to the locus cut out by the holomorphic
constraint (6.12) which was named DΓ:

DZ7 ≡

 p =


A

B

C

 ∈ HomZ7(R,Q⊗R) / [A,B] = [B,C] = [C,A] = 0

 (D.68)

Differently from the more complicated cases of maximal subgroups of L168 and analogously to the previous
Z3 case, here we can explicitly solve the quadratic equations provided by the commutator constraints and we
discover that there is a unique principal branch of the solution, named D0

Γ
, that has the maximal dimension

9 = |Γ|+ 2. However, in addition to that there are 785 more branches of the solution with smaller dimension.
Also here, D0

Γ
is the orbit with respect to the group GΓ of the subspace LΓ defined in eq. (5.34). Hence the variety

V|Γ|+2 of which we are supposed to take the Kähler quotient is not defined by eq. (D.68), rather by the principal
branch of that variety.

D.2.2 Derivation of the quiver group GZ7

In view of what we stated above our next point is precisely the derivation of the group GΓ defined in eq. (6.19),
namely:

GZ7 = {g ∈ SL(7,C) | ∀γ ∈ Z3 : [DR(γ),Ddef(g)] = 0} (D.69)

Let us proceed to this construction. In the diagonal basis of the regular representation this is a very easy task,
since the group is simply given by the diagonal 7×7 matrices with determinant one. A convenient parametriza-
tion of such a group is the following one:

g =



µ1 0 0 0 0 0 0

0 µ2
µ1

0 0 0 0 0

0 0 µ3
µ2

0 0 0 0

0 0 0 µ4
µ3

0 0 0

0 0 0 0 µ5
µ4

0 0

0 0 0 0 0 µ6
µ5

0

0 0 0 0 0 0 1
µ6


∈ GZ3 ; µ1,...,6 ∈ C (D.70)
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The explicit form (D.70) allows to construct the OrbitGZ7
(LZ7) of the locus

LZ7 ≡ {A0,B0,C0} (D.71)

made by those triples of matrices belonging to HomZ7 (Q⊗R,R) that are diagonal in the natural basis of the
regular representation. Considering eqs. (D.65-D.67) such a locus, which has complex dimension 3, is obtained,
by setting:

m1,3 = m2,4 = m3,5 = m4,6 = m5,7 = m6,1 = m7,2 = u1

n1,5 = n2,6 = n3,7 = n4,1 = n5,2 = n6,3 = n7,4 = u2

r1,2 = r2,3 = r3,4 = r4,5 = r5,6 = r6,7 = r7,1 = u3 (D.72)

where u1,2,3 are three complex parameter that will play the role of coordinates of the resolved manifold. The six
complex parameters of the quiver group plus these three make the total of nine parameters of V9≡OrbitGZ7

(LZ7),
which, as we have explicitly verified is the same as the principal branch D0

Z7
of the quadratic locus [A,B] =

[B,C] = [C,A] = 0.
In conclusion the variety V9 of which we are supposed to perform the Kähler quotient is spanned by the

following triple of matrices, depending on the 9 complex parameters u1,2,3,µ1,...,6:

V9 = {A,B,C}

A =



0 0 u1µ3
µ1µ2

0 0 0 0

0 0 0 u1µ1µ4
µ2µ3

0 0 0

0 0 0 0 u1µ2µ5
µ3µ4

0 0

0 0 0 0 0 u1µ3µ6
µ4µ5

0

0 0 0 0 0 0 u1µ4
µ5µ6

u1µ1µ5
µ6

0 0 0 0 0 0

0 u1µ2µ6
µ1

0 0 0 0 0


(D.73)

B =



0 0 0 0 u2µ5
µ1µ4

0 0

0 0 0 0 0 u2µ1µ6
µ2µ5

0

0 0 0 0 0 0 u2µ2
µ3µ6

u2µ1µ3
µ4

0 0 0 0 0 0

0 u2µ2µ4
µ1µ5

0 0 0 0 0

0 0 u2µ3µ5
µ2µ6

0 0 0 0

0 0 0 u2µ4µ6
µ3

0 0 0


(D.74)
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C =



0 u3µ2
µ2

1
0 0 0 0 0

0 0 u3µ1µ3
µ2

2
0 0 0 0

0 0 0 u3µ2µ4
µ2

3
0 0 0

0 0 0 0 u3µ3µ5
µ2

4
0 0

0 0 0 0 0 u3µ4µ6
µ2

5
0

0 0 0 0 0 0 u3µ5
µ2

6

u3µ1µ6 0 0 0 0 0 0


(D.75)

D.2.3 The algebraic equation of the orbifold locus

Let us now consider the action of the Z3 group on C3 as defined by the generator X in eq. (A.7). If {z1,z2,z3}
are the coordinates of a point in C3, we see that there are four invariant polynomials:

J1 = z7
1

J2 = z7
2

J3 = z7
3

J4 = z1 z2 z3 (D.76)

which satisfy the following equation:
J1 J2 J3 − J7

4 = 0 (D.77)

This equation can be regarded as the cubic equation which cuts out in C4 the locus corresponding to the singular
orbifold C3/Z7.

D.2.4 Map of the variety V9 into the algebraic locus corresponding to the orbifold

Having established the above relations we verify that, in a completely analogous way to what happens in the case
of the standard Kronheimer construction, we can reproduce the defining equation (D.77) in terms of invariants
of the three matrices (D.73-D.75) spanning the V9 variety. It suffices to identify:

J1 = Det[A] = u7
1

J2 = Det[B] = u7
2

J3 = Det[C] = u7
3

J4 = Det[ABC] = u1 u2 u3 (D.78)

Eq. (D.78) describes an explicit map of the variety V9 into the algebraic locus C3/Z7:

V9 →
C3

Z7
(D.79)

D.2.5 The Kähler quotient

The next step consists of performing the Kähler quotient of the Kähler manifold V9 with respect to the compact
subgroup of the quiver group GZ7 , which, as we several times emphasized, is the gauge group of the correspond-
ing three-dimensional Chern-Simons gauge theory:

FZ7 ≡ GZ7

⋂
SU(7) (D.80)
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A generic element g ∈FZ7 , is of the form (D.70) with:

µi = exp [iθi] (D.81)

The Kähler structure of V9 is provided by the pullback on the V9 surface of the Kähler potential of the entire flat
Kähler manifold HomZ3 (R,Q⊗R), namely we have:

KV9 ≡ Tr
([

A† , A
]
+
[
B† , B

]
+
[
C† ,C

])
=

µ2µ4u3µ4µ2u3

µ2
3 µ

2
3

+
µ2µ5u1µ5µ2u1

µ3µ4µ3µ4
+

µ2µ6u1µ6µ2u1

µ1µ1
+

µ2µ4u2µ4µ2u2

µ1µ5µ1µ5

+
µ2u2µ2u2

µ3µ6µ3µ6
+

µ2u3µ2u3

µ2
1 µ

2
1

+
µ5u2µ5u2

µ1µ4µ1µ4

+
µ3µ5u3µ3µ5u3

µ2
4 µ

2
4

+µ1µ6u3µ1µ6u3 +
µ4µ6u2µ4µ6u2

µ3µ3
+

µ3µ6u1µ3µ6u1

µ4µ5µ4µ5

+
µ4µ6u3µ4µ6u3

µ2
5 µ

2
5

+
µ1µ3u2µ1µ3u2

µ4µ4

+
µ1µ5u1µ1µ5u1

µ6µ6
+

µ4u1µ4u1

µ5µ6µ5µ6
+

µ5u3µ5u3

µ2
6 µ

2
6

+
µ3u1µ3u1

µ1µ2µ1µ2

+
µ1µ4u1µ1µ4u1

µ2µ3µ3µ2
+

µ1µ6u2µ1µ6u2

µ2µ5µ5µ2
+

µ3µ5u2µ3µ5u2

µ2µ6µ6µ2
+

µ1µ3u3µ1µ3u3

µ2
2 µ

2
2

(D.82)

KV9 is obviously invariant under the unitary transformations of the gauge group :

∀g ∈FZ7 : {A, B,C} →
{

g†Ag, g†Bg, g†Cg
}

(D.83)

which, for that reason, is an isometry group of the corresponding Kähler metric on HomZ7 (R,Q⊗R) and of its
restriction to V9. The last point follows from the fact that, by construction, FZ7 maps V9 ⊂ HomZ3 (R,Q⊗R)
into itself.

A basis of six linearly independent generators of the Lie algebra FZ3 is provided by the following six matri-
ces:

f1 = diag(i,−i,0,0,0,0,0)

f2 = diag(0, i,−i,0,0,0,0)

f3 = diag(0,0, i,−i,0,0,0)

f4 = diag(0,0,0, i,−i,0,0)

f5 = diag(0,0,0,0, i,−i,0)

f6 = diag(0,0,0,0,0, i,−i) (D.84)

and the moment maps corresponding to the isometries generated by them are defined as follows:

PA = − iTr
(
fA
([

A† , A
]
+
[
B† , B

]
+
[
C† ,C

]))
, (A = 1, . . . ,6) (D.85)

We do not write the explicit form of PA since it is rather involved. First we change basis for the generators of
the Lie algebra FZ7 observing that they are not orthogonal with respect to the Killing form defined by the trace.
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Indeed we have:

κAB ≡ Tr
(
f†A fB

)
=



2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2


(D.86)

which is nothing else but the Cartan matrix of the A6 Lie algebra. Consequently we define a new basis of moment
maps, dual to the above one:

PA =
(
κ
−1)AB

PB (D.87)

and we express them in terms of the following variables:

∆1,2,3 ≡ |u1,2,3|2 ; µi = µ i = Ωi ∈ R+ (i = 1, . . . 6) (D.88)

The choice (D.88) streams from the following three facts that we find it convenient to recall once again:

A) When µi = 1 (i = 1, . . . ,6), namely when the quiver group element with which we have rotated the locus
LZ7 is the identity, the moment maps PA are all zero.

B) The moment maps PA are invariant under the action of the gauge group FZ7 ⊂ GZ7 .

C) It follows from A) and B) that the only transformations of the quiver group that lift the levels of the moment
maps from zero are those in the coset

GZ7
FZ7

.

In this way we obtain the following result:

P1 =

Ω2
1

(
∆2(Ω2

5−Ω4
1Ω2

3)
Ω2

4
+∆1

(
Ω2

3
Ω2

2
− Ω4

1Ω2
5

Ω2
6

))
+∆3

(
Ω2

2−Ω6
1Ω2

6

)
Ω4

1
(D.89)

P2 =

∆3(Ω2
3−Ω4

2Ω2
6)Ω4

1

Ω4
2

+∆1

(
−Ω2

5Ω4
1

Ω2
6
−Ω2

2Ω2
6 +

Ω2
4Ω4

1+Ω4
3

Ω2
2Ω2

3

)
+∆2

((
Ω2

6
Ω2

2Ω2
5
− Ω2

3
Ω2

4

)
Ω4

1 +
Ω4

5−Ω2
2Ω4

4
Ω2

4Ω2
5

)
Ω2

1
(D.90)

P3 = ∆3

(
Ω2

2Ω2
4

Ω4
3
−Ω

2
1Ω

2
6

)
+∆1

((
Ω2

4

Ω2
2Ω2

3
−

Ω2
5

Ω2
6

)
Ω

2
1 +

Ω2
2Ω2

5

Ω2
3Ω2

4
−

Ω2
2Ω2

6

Ω2
1

)
+∆2

((
Ω2

6

Ω2
2Ω2

5
−

Ω2
3

Ω2
4

)
Ω

2
1 +

Ω4
2−Ω4

3Ω2
5

Ω2
2Ω2

3Ω2
6

+
Ω4

5−Ω2
2Ω4

4

Ω2
4Ω2

5Ω2
1

)
(D.91)

P4 = ∆3

(
Ω2

3Ω2
5

Ω4
4
−Ω

2
1Ω

2
6

)
+∆1

((
Ω2

5

Ω2
3Ω2

4
−

Ω2
6

Ω2
1

)
Ω

2
2 +

Ω2
3Ω2

6

Ω2
4Ω2

5
−

Ω2
1Ω2

5

Ω2
6

)
+∆2

(
Ω2

1Ω2
6

Ω2
2Ω2

5
+

Ω4
5−Ω2

2Ω4
4

Ω2
1Ω2

4Ω2
5

+
Ω4

2−Ω2
4Ω4

6Ω2
2−Ω4

3Ω2
5

Ω2
2Ω2

3Ω2
6

)
(D.92)

P5 =

∆3(Ω2
4−Ω2

1Ω4
5)Ω4

6

Ω4
5

+∆1

(
−Ω2

2Ω4
6

Ω2
1

+
Ω2

3Ω4
6

Ω2
4Ω2

5
−Ω2

1Ω2
5 +

Ω2
4

Ω2
5

)
+∆2

(
−Ω2

4Ω4
6

Ω2
3

+
Ω2

1Ω4
6−Ω2

3Ω4
5

Ω2
2Ω2

5
+

Ω2
2

Ω2
3

)
Ω2

6
(D.93)

P6 =

Ω2
6

(
∆1

(
Ω2

4
Ω2

5
− Ω2

2Ω4
6

Ω2
1

)
+

∆2(Ω2
2−Ω2

4Ω4
6)

Ω2
3

)
+∆3

(
Ω2

5−Ω2
1Ω6

6

)
Ω4

6
(D.94)
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and we are led to the following system of six higher order algebraic equations:

PA(∆,Ω) = ζ
A (D.95)

that has to be solved for ΩA in terms of ∆1,2,3 and of the level parameters ζ A. At vanishing level ζζζ = 000 we know
that the solution is ΩΩΩ = 111, hence the best we can do, since we deal with higher order equations that admit no
solution by radicals, is to attempt a power series solution in terms of the levels ζζζ . Formally, however, the problem
of the Kähler quotient is solved. Assuming the scalar factors Ω1,...,6 = Ω1,...,6

(
|u|2|u|2|u|2,ζζζ

)
to be known in terms of

the coordinates and of the moment map parameters, we can calculate the final Kähler potential. Substituting
(D.88) into eq. (D.82) we obtain the restriction to the level surface N of the original Kähler potential:

K |N =
∆3Ω2

4Ω2
2

Ω4
3

+
∆1Ω2

5Ω2
2

Ω2
3Ω2

4
+

∆1Ω2
6Ω2

2

Ω2
1

+
∆2Ω2

4Ω2
2

Ω2
1Ω2

5
+

∆2Ω2
2

Ω2
3Ω2

6
+

∆3Ω2
2

Ω4
1

+
∆2Ω2

5

Ω2
1Ω2

4
+

∆3Ω2
3Ω2

5

Ω4
4

+∆3Ω
2
1Ω

2
6 +

∆2Ω2
4Ω2

6

Ω2
3

+
∆1Ω2

3Ω2
6

Ω2
4Ω2

5
+

∆3Ω2
4Ω2

6

Ω4
5

+
∆2Ω2

1Ω2
3

Ω2
4

+
∆1Ω2

1Ω2
5

Ω2
6

+
∆1Ω2

4

Ω2
5Ω2

6

+
∆3Ω2

5

Ω4
6

+
∆1Ω2

3

Ω2
1Ω2

2
+

∆1Ω2
1Ω2

4

Ω2
3Ω2

2
+

∆2Ω2
1Ω2

6

Ω2
5Ω2

2
+

∆2Ω2
3Ω2

5

Ω2
6Ω2

2
+

∆3Ω2
1Ω2

3

Ω4
2

(D.96)

Then the final Kähler potential of the resolved smooth manifold is:

KM = K |N +
6

∑
A=1

ζ
A logΩA (D.97)

When ζ A = 0 we have, as we already said, ΩA = 1 (A = 1, . . . ,6 which, inserted into eq. (D.96), yields:

lim
ζζζ→000

K |M = lim
ζζζ→000

K |N = 7u1u1 +7u2u2 +7u3u3 (D.98)

namely we obtain the Kähler potential of the flat C3/Z7 orbifold of which u1,2,3 are the Z7 invariant coordinates.

E A non-abelian example: crepant resolution à la Kronheimer of MDih3

In the ADE classification of SU(2) subgroups we do not find the dihedral groupsDihm whose order is |Dihm|
= 2m. We rather find their binary extensions Dihm

b whose order is |Dihm
b| = 4m.

The Dihm
b groups correspond to the Lie algebras Dm+2 in the McKay correspondence. The smallest non-

abelian case corresponds to Dih3
b with 12 elements, since Dih2

b with eight elements is abelian. The matrices
occurring in the generalized Kronheimer construction are already rather big and the degree of the resolving
algebraic equations is expected to be rather high.

On the other hand we can easily embed the groups Dihm into SU(3). Hence we address immediately the case
of the dihedral groups in C3

Dihm
which allows to consider the case m = 3 with 6 elements. As it is well known

Dih3 is isomorphic to S3, the symmetric group on three elements and this is the smallest nonabelian group. It
remains to understand what is the generalized Weyl group corresponding to the quiver matrix generated by this
case which, as we show below is the following one:

CQ =


0 1 1

1 0 1

1 1 2

 (E.1)
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The corresponding extended diagram is the following one:

CE =


3 −1 −1

−1 3 −1

−1 −1 1

 (E.2)

E.1 Definition of Dihm ⊂ SU(3)

The presentation of the dihedral group Dihm is the following one

Am = 1 ; B2 = 1 ; (AB)2 = 1 (E.3)

we introduce the following representation of the generators as matrices acting on C3

A =


e

2i∗π
m 0 0

0 e−
2i∗π

m 0

0 0 1

 (E.4)

B =


0 i 0

−i 0 0

0 0 −1

 (E.5)

E.2 Abstract structure of the Dihedral Groups Dihm with m = odd

E.2.1 Conjugacy classes

The total number of conjugacy classes is

`=
m+3

2
(E.6)

that are enumerated as follows9:

C1 = 〈E〉
C2 =

〈
B,AB,A2B, ...Am−1B

〉
,

C3 =< A,Am−1 >,C4 =< A2,Am−2 >,

C5 =< A3,Am−3 >,

...,

Cm+3
2

=< A
m−1

2 ,A
m+1

2 > (E.7)

Hence we have one class of population 1, one class of population m and m−1
2 classes of population 2

|Dihm|= 2m = 1+m+2× m−1
2

(E.8)

9In table E.7 we denote by E the identity element of the group.
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E.2.2 Irreps

Accordingly we expect `= m+3
2 irreducible representations. They are as follows:

1. The one dimensional identity representation D0

2. The alternating one-dimensional representation D1, obtained by setting A→ 1, B→ -1.

3. The m−1
2 two-dimensional representations obtained in the following way:

Dk+1[A] =

(
e

2i∗π
m k 0

0 e−
2i∗π

m k

)
; Dk+1[B] =

(
0 1

1 0

)
;
(

k,1,2, ...,
m−1

2

)
; (E.9)

E.2.3 Characters

In this way we obtain the following character table:

0 C1 C2 C3 C4 C5 ... C6

× E B A A2 A3 ... A
m−1

2

D1 1 1 1 1 1 ... 1

D2 1 −1 1 1 1 ... 1

D3 2 0 2 cos
[2π

m

]
2 cos

[4kπ

m

]
2 cos

[6kπ

m

]
... 2 cos

[
(−1+m)π

m

]
D4 2 0 2 cos

[4π

m

]
2 cos

[8π

m

]
2 cos

[12π

m

]
... 2 cos

[
2(−1+m)π

m

]
... ... ... ... ... ... ... ...

Dm−1
2

2 0 2 cos
[
(−1+m)π

m

]
2 cos

[
2(−1+m)π

m

]
2 cos

[
3(−1+m)π

m

]
... 2 cos

[
(−1+m)2π

2m

]

(E.10)

E.3 The quiver matrix of Dih3 acting on C3

Using the above character table (case m = 3) we easily derive the following decomposition into irreps:

Q⊗Di =
`=3
⊕
j=1

QCijD j (E.11)

where Q is the three-dimensional representation of the dihedral group defined by eqs. (E.4,E.5) and Di are the
irreducible representations listed above. The matrix QCij is that anticipated in equation (E.1)

E.4 Ages

In a similar easy way we derive the age grading of the three conjugacy classes and the associated triple of integer
numbers ai that define the weights in the weighted blowup procedure. We find:

1. age = 0 ; 1{0,0,0}

2. age = 1 ; 1
2{1,1,0}

3. age = 1 ; 1
3{0,2,1}

Hence apart from the age = 0 class of the identity we find two junior classes and no senior one. In force of the
fundamental theorem 41 we conclude that the Hodge numbers of the resolved variety M are as follows h0,0 = 1,
h1,1 = 2, h2,2 = 0. Indeed no (1,1)-class has compact support.
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E.5 The regular representation construction and decomposition

The next item that we need is the regular representation of the group Dih3 and its block diagonalization into
irreducible subspaces corresponding to the irreducible representations. As it is well known the regular represen-
tation of any finite group contains as many copies of each irrep Di as it is its dimension. Hence ordering the three
irreducible representations of Dih3 according to the above presented scheme, namely D1,D2,D3 with

dimD1 = 1 ; dimD2 = 1 ; dimD3 = 2 (E.12)

and naming R the regular representation we have:

R = D1⊕D2⊕D3⊕ D̂3 (E.13)

With some effort one derives the matrix m that performs the change of basis from the natural basis of the regular
representation whose axes are the group elements to the block diagonal basis where each block correspond to
one irreducible representation. The explicit form of m is displayed below:

m =



1 1 0 −1
2 i
(
−i+

√
3
) 1

2 i
(
i+
√

3
)

0

1 −1 1
2 i
(
i+
√

3
)

0 0 −1
2 i
(
−i+

√
3
)

1 −1 1 0 0 1

1 −1 −1
2 i
(
−i+

√
3
)

0 0 1
2 i
(
i+
√

3
)

1 1 0 1 1 0

1 1 0 1
2 i
(
i+
√

3
)

−1
2 i
(
−i+

√
3
)

0


(E.14)

Using m we obtain the explicit form of the 6 group elements of the dihedral group in the block diagonal form of
the 6-dimensional regular representation. They are displayed below:

R[1] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



R[2] =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 1
2 i
(
i+
√

3
)

0 0

0 0 −1
2 i
(
−i+

√
3
)

0 0 0

0 0 0 0 0 1
2 i
(
i+
√

3
)

0 0 0 0 −1
2 i
(
−i+

√
3
)

0
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R[3] =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 −1
2 i
(
−i+

√
3
)

0 0

0 0 1
2 i
(
i+
√

3
)

0 0 0

0 0 0 0 0 −1
2 i
(
−i+

√
3
)

0 0 0 0 1
2 i
(
i+
√

3
)

0



R[4] =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0



R[5] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1
2 i
(
i+
√

3
)

0 0 0

0 0 0 −1
2 i
(
−i+

√
3
)

0 0

0 0 0 0 1
2 i
(
i+
√

3
)

0

0 0 0 0 0 −1
2 i
(
−i+

√
3
)



R[6] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1
2 i
(
−i+

√
3
)

0 0 0

0 0 0 1
2 i
(
i+
√

3
)

0 0

0 0 0 0 −1
2 i
(
−i+

√
3
)

0

0 0 0 0 0 1
2 i
(
i+
√

3
)


(E.15)

E.6 The invariant space SΓ = HomΓ(R,Q⊗R)

Imposing the invariance constraint (6.6) and (5.10) and using the explicit form of the regular representation
derived above we obtain the triples of matrices spanning SΓ. They depend on 3×6 = 18 parameters and their
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explicit form written in the split basis where the regular representation is block diagonal is displayed below:

A =



0 0 m1,3 0 m1,5 0

0 0 m2,3 0 m2,5 0

0 0 0 m3,4 0 m3,6

m4,1 m4,2 0 0 0 0

0 0 0 m5,4 0 m5,6

m6,1 m6,2 0 0 0 0



B =


0 0 0 − 1

2

(
−i−

√
3
)

m1,3 0 − 1
2

(
−i−

√
3
)

m1,5

0 0 0 − 1
2

(
i+
√

3
)

m2,3 0 − 1
2

(
i+
√

3
)

m2,5

− 1
2

(
−i−

√
3
)

m4,1 − 1
2

(
i+
√

3
)

m4,2 0 0 0 0

0 0 − 1
2

(
−i−

√
3
)

m3,4 0 − 1
2

(
−i−

√
3
)

m3,6 0

− 1
2

(
−i−

√
3
)

m6,1 − 1
2

(
i+
√

3
)

m6,2 0 0 0 0

0 0 − 1
2

(
−i−

√
3
)

m5,4 0 − 1
2

(
−i−

√
3
)

m5,6 0



C =



0 r1,2 0 0 0 0

r2,1 0 0 0 0 0

0 0 r3,3 0 r3,5 0

0 0 0 −r3,3 0 −r3,5

0 0 r5,3 0 r5,5 0

0 0 0 −r5,3 0 −r5,5


(E.16)

E.6.1 The locus LΓ ⊂SΓ

The triples of matrices {A0,B0,C0} spanning the locus LΓ ⊂SΓ defined in eq. (5.34) depend on three complex
parameters z1,z2,z3 that can be regarded as a set of global coordinates for the orbifold locus C3

Dih3
. They are

displayed below written in the split basis of the regular representation. They are the image after the change of
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basis of those matrices that belong to SΓ and are diagonal in the natural basis:

A0 =



0 0 z2√
15

0 z1√
15

0

0 0 − z2√
15

0 z1√
15

0

0 0 0 0 0 2z2√
15

2z1√
15

2z1√
15

0 0 0 0

0 0 0 2z1√
15

0 0
2z2√

15
− 2z2√

15
0 0 0 0



B0 =



0 0 0 − ei 7
6 π z2

2
√

15
0 − ei 7

6 π z1
2
√

15

0 0 0 − ei 7
6 π z2

2
√

15
0 ei 7

6 π z1
2
√

15

− ei 7
6 π z1√
15

ei 7
6 π z1√
15

0 0 0 0

0 0 0 0 − ei 7
6 π z2√
15

0

− ei 7
6 π z2√
15

− ei 7
6 π z2√
15

0 0 0 0

0 0 − ei 7
6 π z1√
15

0 0 0



C0 =



0 z3√
6

0 0 0 0
z3√

6
0 0 0 0 0

0 0 − z3√
6

0 0 0

0 0 0 z3√
6

0 0

0 0 0 0 z3√
6

0

0 0 0 0 0 − z3√
6


(E.17)

E.7 The complex quiver group GΓ

Our next point is the derivation of the group GΓ discussed in section 6.2.1 of the main text and defined by the
following condition

GΓ = {g ∈ SL(|Γ|,C) | ∀γ ∈ Γ : [DR(γ),Ddef(g)] = 0} (E.18)

Abstractly the quiver group turns out to have has the following structure:

GΓ = C∗×C∗×SL(2,C) (E.19)

Indeed a generic group element of the quiver group depends on 5 complex parameters χi (i=1,..,5) and it has the
following form:

g ∈ GΓ : g =



1
χ1(χ3χ4−χ2χ5)2 0 0 0 0 0

0 χ1 0 0 0 0

0 0 χ2 0 χ3 0

0 0 0 χ2 0 χ3

0 0 χ4 0 χ5 0

0 0 0 χ4 0 χ5


(E.20)
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E.7.1 Construction of the V|Γ|+2 manifold as an orbit of the quiver group

According to the discussion of the main text and with eq. (6.29) we construct the variety V|Γ|+2 = V8 as the
orbit DΓ = OrbitGΓ

(LΓ) of the locus LΓ with respect to the quiver group. Therefore the coordinates on V8 are
{z1,z2,z3,χ1,...χ5}.

E.7.2 Reduction to the compact gauge group

The next task is to derive the maximal compact subgroup of the quiver group

FΓ ⊂ GΓ (E.21)

which, as emphasized several times, is the gauge group of the Chern-Simons theory on the brane volume and the
group with respect to which we perform the Kähler quotient. In the present case we have:

FΓ = U(1)×U(1)×SU(2)⊂ C∗×C∗×SL(2,C) = GΓ (E.22)

Let us name the corresponding Lie algebras according to the following obvious nomenclature and perform the
following orthogonal split

GΓ = FΓ⊕KΓ

[FΓ,FΓ] ⊂ FΓ ; [FΓ,KΓ]⊂KΓ ; [KΓ,KΓ]⊂ FΓ (E.23)

The main final item is encoded in the coset manifold:

VΓ ≡
GΓ

FΓ

; dimRVΓ = dimCGΓ = dimRFΓ = 5 (in our case) (E.24)

for whose solving element exp[f] we will find a system of algebraic equations encoding the complete resolution
of the problem of the Kähler quotient and the definition of all the tautological bundles.

Schematically we will have the following equation. Let P represent the moment map

P : SΓ −→ FΓ (E.25)

and let us denote by g.p the action of the quiver group on the space SΓ:

GΓ : SΓ −→SΓ

∀g ∈ GΓ , Ωg : p−→ g.p ∈SΓ (E.26)

The fundamental property of the compact subgroup is the following one:

P(g.p) =P(p) iff g ∈FΓ ⊂ GΓ (E.27)

In view of this, provided we have chosen some parametrization of the coset VΓ, given by coordinates fi

(i=1,..,dimRVΓ) we find an equation of the following form:

P(Exp[f].p0) = ζ (E.28)

where
P(p0) = 0 ⇔ po ∈ LΓ (E.29)
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E.7.3 Generators of the Lie Algebra FΓ = u(1)⊕u(1)⊕ su(2)

Here we restart our analysis at the level of Lie algebra rather than at the level of Lie Groups and we derive the
form of the generators of FΓ. This is very important for the explicit discussion of the Kähler quotient. Then we
construct the complementary subspace KΓ.

A generic element of the compact Lie algebra FΓ can be written as the following 6×6 matrix depending on
five real parameters ν1,...,ν5:

f ∈ FΓ : f=



i(−ν1−2ν2−2ν3) 0 0 0 0 0

0 iν1 0 0 0 0

0 0 iν2 0 ν4 + iν5 0

0 0 0 iν2 0 ν4 + iν5

0 0 −ν4 + iν5 0 iν3 0

0 0 0 −ν4 + iν5 0 iν3


(E.30)

Hence the generators are provided by the matrices multiplying each of the parameters ν1,...,ν5.

E.7.4 Generators in the complementary subspace KΓ

The explicit form of a matrix belonging to the complementary subspace KΓ is given here below and depends on
the five real parameters ψi (i=1,..,5)

k ∈KΓ : k=



−ψ1−2ψ2−2ψ3 0 0 0 0 0

0 ψ1 0 0 0 0

0 0 ψ2 0 ψ4 + iψ5 0

0 0 0 ψ2 0 ψ4 + iψ5

0 0 ψ4− iψ5 0 ψ3 0

0 0 0 ψ4− iψ5 0 ψ3


(E.31)

A basis of the subspace KΓ is given by the matrices that multiply each ψi.
The above explicit matrices exemplify the discussion in section 8.2.2 of the main text.

E.7.5 Exponentiation of the orthogonal subspace KΓ

In this subsection we derive the hermitian matrix V = V † = Exp[KΓ] that can be used as a coset representative
for the coset GΓ

FΓ
.

One parametrization of the coset manifold GΓ

FΓ
is provided exp[KΓ] = V which depends on five real parame-

ters, namely the three scale factors ϒ1,ϒ2,ϒ3 , the hyperbolic angle ρ and the elliptic angle φ . Indeed taking the
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product of the exponentiation of the various generators we get that V ∈ Exp [KΓ] has the following form:

V =



Cosh[ρ]4

ϒ1ϒ2
2ϒ2

3
0 0 0 0 0

0 ϒ1 0 0 0 0

0 0 ϒ2 0 eiφ√ϒ2ϒ3Tanh[ρ] 0

0 0 0 ϒ2 0 eiφ√ϒ2ϒ3Tanh[ρ]

0 0 e−iφ√ϒ2ϒ3Tanh[ρ] 0 ϒ3 0

0 0 0 e−iφ√ϒ2ϒ3Tanh[ρ] 0 ϒ3


(E.32)

Subsequently suitably renaming the parameters we can rewrite the above hermitian matrix V in a different more
friendly way which is the following one:

V =

1
(−1+X2+Y 2)

2
ϒ1ϒ2

2ϒ2
3

0 0 0 0 0

0 ϒ1 0 0 0 0

0 0 ϒ2 0 (X + iY )
√

ϒ2ϒ3 0

0 0 0 ϒ2 0 (X + iY )
√

ϒ2ϒ3

0 0 (X− iY )
√

ϒ2ϒ3 0 ϒ3 0

0 0 0 (X− iY )
√

ϒ2ϒ3 0 ϒ3


(E.33)

The 5 real parameters ϒ1,ϒ2,ϒ3 >0 and X ,Y play a fundamental role in the elaboration of the tautological
bundles.

E.7.6 Calculation of the center of the compact Lie algebra

We are interested in the calculation of the center of the compact Lie algebra z [FΓ] since it is only the moment
maps in this center that can be assigned non vanishing values. The abstract form of the searched for center is the
following:

z [FΓ] = u(1)⊕u(1) (E.34)

To find the explicit immersion of z [FΓ] in FΓ we impose the condition that an element of the center should
commute with all the generators of FΓ. In this way we can reorganize the listing of the 5 generators into 2
belonging to the center for which we can lift the level of the moment map from 0 to a finite value ζ and 3 whose
moment map must remain at level 0. Henceforth we introduce a new basis for the complete Lie Algebra FΓ

which is reorganized as follows:
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The two central generators

z1 =



−i
√

5
6 0 0 0 0 0

0 i√
30

0 0 0 0

0 0 i√
30

0 0 0

0 0 0 i√
30

0 0

0 0 0 0 i√
30

0

0 0 0 0 0 i√
30


; z2 =



0 0 0 0 0 0

0 − 2i√
5

0 0 0 0

0 0 i
2
√

5
0 0 0

0 0 0 i
2
√

5
0 0

0 0 0 0 i
2
√

5
0

0 0 0 0 0 i
2
√

5


(E.35)

The three generators of su(2)

J1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 i
2 0 0 0

0 0 0 i
2 0 0

0 0 0 0 − i
2 0

0 0 0 0 0 − i
2


; J2 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 −1
2 0 0 0

0 0 0 −1
2 0 0


; J3 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 i
2 0

0 0 0 0 0 i
2

0 0 i
2 0 0 0

0 0 0 i
2 0 0


(E.36)

that satisfy the standard commutation relations:

[Ji , J j] = εi jk Jk (E.37)

According to the general discussion of section 8.2.2 as a basis of KΓ we can just take the same 5 generators listed
above, each multiplied by an i factor.

E.8 Fixing the zero level point and the moment maps

In the previously analyzed abelian cases the point in the OrbitGΓ
(LΓ) where the moment map vanishes and which

therefore corresponds to the orbifold, was just the locus LΓ itself, defined as that one where, in the natural basis
of the Regular Representation the three matrices A,B,C are diagonal. There is nothing magic in that point apart
from the fact of being a convenient starting point to calculate the entire orbit. What has an intrinsic geometrical
significance in the OrbitGΓ

(LΓ) = V|Γ|+2 is the point p0 where the moment map vanishes for all components. This
is the orbifold limit C3

Γ
⇔p0

Γ
∈ OrbitGΓ

(LΓ)
P
(

p0
Γ

)
= 0 (E.38)

The present section is devoted to the determination of p0
Γ
={A0,B0,C0}.

E.8.1 Construction of the moment maps

In order to construct the moment maps we need the matrices {A, B, C} in the orbit and their hermitian conjugate
A†, B†, C†. Then the Kähler potential of the ambient space is defined as follows:

K = Tr
(
A†A

)
+ Tr

(
B†B

)
+Tr

(
C†C

)
(E.39)
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while the moment maps are obtained from

PI =−i
(
Tr
(
TI
[
A,A†])+Tr

(
TI
[
B,B†])+Tr

(
TI
[
C,C†])) ; (I = 1, ...,5) (E.40)

where TI are the generators of the compact subgroup.
Calculating the moment maps at p ∈ LΓ we find that they are not zero, yet it suffices to apply a transformation

of exp[KΓ] as in equation (E.33) with the following parameters:

ϒ1 =

(
6

√
1
4

)
, ϒ2 =

6
√

2, ϒ3−
1(

6
√

1
4

)
∗ 6
√

2
, ρ = 0, φ = 0 (E.41)

and the moment map vanishrs. In this way we have found the point p0
Γ
∈ OrbitGΓ

(LΓ) mentioned above which
exactly corresponds to the orbifold limit C3

Γ
. The explicit form of the triple p0

Γ
={A0,B0,C0} is displayed below

(where ξ = 7
6 π):

A0 =



0 0
√

2
15 z2 0

√
2

15 z1 0

0 0 −
√

2
15 z2 0

√
2

15 z1 0

0 0 0 0 0 2z2√
15√

2
15 z1

√
2
15 z1 0 0 0 0

0 0 0 2z1√
15

0 0√
2

15 z2 −
√

2
15 z2 0 0 0 0



B0 =



0 0 0 − eiξ z2√
30

0 − eiξ z1√
30

0 0 0 − eiξ z2√
30

0 eiξ z1√
30

− eiξ z1√
30

eiξ z1√
30

0 0 0 0

0 0 0 0 − eiξ z2√
15

0

− eiξ z2√
30
− eiξ z2√

30
0 0 0 0

0 0 − eiξ z1√
15

0 0 0



C0 =



0 z3√
6

0 0 0 0
z3√

6
0 0 0 0 0

0 0 − z3√
6

0 0 0

0 0 0 z3√
6

0 0

0 0 0 0 z3√
6

0

0 0 0 0 0 − z3√
6


(E.42)

The above matrices depend on new triple of complex parameters zi that will eventually be interpreted as the
complex coordinates of the resolved variety just as they are the coordinates of the locus C3

Γ
when the moment

map is not lifted from its zero value. Note that we have named A0,B0,C0 the matrices at the point p0 in order to
distinguish them from the matrices A0,B0,C0 that correspond to the locus LΓ.
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E.8.2 Construction of the moment maps starting from the right zero-point

Next we reconsider the orbit starting from the triple of matrices that have zero-moment map:

p0 =


A0

B0

C0

 ; p =


A

B

C

=


V −1A0V

V −1B0V

V −1C0V

 (E.43)

and we also utilize a polar parametrization of the coordinates

zi = ∆i Exp [iθi] (E.44)

Inserting the newly calculated matrices in the formula (E.39) for the Kähler potential we obtain a complicated
Kähler potential that for p = p0 reduces to:

K0 = ∆
2
1 +∆

2
2 +∆

2
3 =

3

∑
i=1

∣∣zi|2 (E.45)

This shows that at zero level the space is indeed every where flat except for the singular fixed point.
Next we construct the explicit form of the moment maps for a generic point of the orbit and we obtain five

algebraic functions PI(ϒ,X ,Y ) of the five parameters ϒ1,2,3,X ,Y that depend on the three moduli ∆1,2,3 and the
three phases θ1,2,3 of the complex coordinates. Equating the five moment maps to {ζ1,ζ2,0,0,0} we have an
algebraic system that determines the parameters ϒ,X ,Y in terms of the levels ζ1,2 and the coordinates zi.

Higher degree algebraic system. The explicit expressions of the moment maps are rather formidable and it is
difficult to display them on paper since they are very large. Furthermore the degree of the equations is certainly
higher than the fourth and there is no hope to solve them by radicals. Yet we know that there is just one and
only one solution that has the correct reality property, namely ϒ1,2,3,X ,Y are all real and ϒ1,2,3 are also positive.
A convenient way to verify such property of the system is provided by considering small deformations, namely
level parameters ζ1,2 infinitesimally close to zero.

First order solution of the algebraic equations We are supposed to solve the moment map equations. We
recall that the last three moment maps have to be zero, while the first two have to be lifted to an arbitrary level
ζ . We consider the solution by power series in the neighborhood of the identity element, namely we set:

ϒ1→ 1+ εω1, ϒ2→ 1+ εω2, ϒ3→ 1+ εω3, X → xε, Y → yε (E.46)

and
ζ1→ εc , ζ2→ εd (E.47)
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where ε is an infinitesimal parameter. At first order in ε the moment maps are:

P1 = ε

(
−4

3
i(2(xCos [θ1−θ2]− ySin [θ1−θ2])∆1∆2

+∆
2
1 (ω1 +ω2 +ω3)+

(
∆

2
2 +2∆

2
3
)
(ω1 +ω2 +ω3)

))
+O

(
ε

2)
P2 = ε

(
−2

3
i(8(xCos [θ1−θ2]− ySin [θ1−θ2])∆1∆2+

8∆
2
3 (ω1 +ω2 +ω3)+∆

2
1 (4ω1 +13(ω2 +ω3))+∆

2
2 (4ω1 +13(ω2 +ω3))

))
+O

(
ε

2)
P3 = ε

(
−i
(
∆

2
1 +∆

2
2
)
(ω2−ω3)

)
+O

(
ε

2)
P4 = ε

(
−4

3
i
(
y∆

2
1 + y

(
∆

2
2 +2∆

2
3
)
+∆1∆2 (yCos [θ1−θ2]− xSin [θ1−θ2]

−Sin [θ1−θ2]ω1−Sin [θ1−θ2]ω2−Sin [θ1−θ2]ω3)))+O
(
ε

2)
P5 = ε

(
−4

3
i
(
x∆

2
1 + x

(
∆

2
2 +2∆

2
3
)
−∆1∆2 (xCos [θ1−θ2]+ ySin [θ1−θ2]−Cos [θ1−θ2]ω1

−Cos [θ1−θ2]ω2−Cos [θ1−θ2]ω3)))+O
(
ε

2)
(E.48)

Equating the 5-vector of these moment maps to the 5-vector {c,d,0,0,0} we obtain the solution:

ω1 → 1
12

i

(
4c−2d
∆2

1 +∆2
2
+

9c
(
∆4

1 +
(
∆2

2 +2∆2
3
)

2 +∆2
1
(
∆2

2 +4∆2
3
))

∆6
1−2Cos [3(θ1−θ2)]∆

3
1∆3

2 +6∆4
1∆2

3 +6∆2
1∆2

3

(
∆2

2 +2∆2
3

)
+
(
∆2

2 +2∆2
3

)
3

)

ω2 → − i(2c−d)
12
(
∆2

1 +∆2
2

)
ω3 → − i(2c−d)

12
(
∆2

1 +∆2
2

)
x → −

3ic∆1∆2
(
Cos [θ1−θ2]∆

2
1 +Cos [2(θ1−θ2)]∆1∆2 +Cos [θ1−θ2]

(
∆2

2 +2∆2
3
))

4
(
∆6

1−2Cos [3(θ1−θ2)]∆
3
1∆3

2 +6∆4
1∆2

3 +6∆2
1∆2

3

(
∆2

2 +2∆2
3

)
+
(
∆2

2 +2∆2
3

)
3
)

y → (3icSin [θ1−θ2]∆1∆2)×
(
4
(
∆

4
1 +2Cos [θ1−θ2]∆

3
1∆2 +2Cos [θ1−θ2]∆1∆2

(
∆

2
2 +2∆

2
3
)

+
(
∆

2
2 +2∆

2
3
) 2 +∆

2
1
(
(1+2Cos [2(θ1−θ2)])∆

2
2 +4∆

2
3
)))−1

(E.49)

This clearly shows that the 5-fields ϒ1,ϒ2,ϒ3,X ,Y are all activated and equally necessary in the solution of the
moment map equation as soon as we move out of level zero.

E.9 The tautological bundles and their Chern classes

Assuming that we have solved the algebraic equations for the fields ϒ1,ϒ2,ϒ3,X ,Y (at first order in the level
parameters we have done it, and for many considerations this might turn out to be sufficient) we can now utilize
the present example in order to illustrate the discussion of the main text in section 8.2.1. With reference to the
matrix H in eq. (8.27) we have determined it. Indeed in our case of Dih3 there are two non trivial irreducible
representations and correspondingly two tautological bundles, respectively of rank 1 and of rank 2. The matrix

117



H has the following appearance:

H =


ϒ1 0 0

0 ϒ2 (X− iY )
√

ϒ2ϒ3

0 (X + iY )
√

ϒ2ϒ3 ϒ3

 (E.50)

which corresponds to

H1 = ϒ1 ; H2 =

(
ϒ2 (X− iY )

√
ϒ2ϒ3

(X + iY )
√

ϒ2ϒ3 ϒ3

)
(E.51)

and we get
Det [H2] = ϒ2ϒ3

(
1−X2−Y 2) (E.52)

This allows us to calculate the first Chern classes explicitly according to eq. (8.31) and the Kähler potential
according to eq. (8.32)

The provided illustration of the present nonabelian case, which is the smallest possible one, was finalized
to show that everything in the Kronheimer-like construction is fully algorithmic and uniquely determined. The
bottleneck however is localized in the system of algebraic equations for the entries of the matrix H that, also
in the simplest cases, are typically quite formidable and of higher degree. Yet it appears and it is worth further
investigation that the relevant topological information is fully encapsulated in the first order approximation of
small level parameters ζ . We shall go back to this issue in future publications.

References
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