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Abstract: We use scale invariant scattering theory to exactly determine the lines of

renormalization group fixed points for O(N)-symmetric models with quenched disorder in

two dimensions. Random fixed points are characterized by two disorder parameters: a

modulus that vanishes when approaching the pure case, and a phase angle. The critical

lines fall into three classes depending on the values of the disorder modulus. Besides the

class corresponding to the pure case, a second class has maximal value of the disorder

modulus and includes Nishimori-like multicritical points as well as zero temperature fixed

points. The third class contains critical lines that interpolate, as N varies, between the

first two classes. For positive N , it contains a single line of infrared fixed points spanning

the values of N from
√

2 − 1 to 1. The symmetry sector of the energy density operator

is superuniversal (i.e. N -independent) along this line. For N = 2 a line of fixed points

exists only in the pure case, but accounts also for the Berezinskii-Kosterlitz-Thouless phase

observed in presence of disorder.
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1 Introduction

Gaining theoretical access to the critical properties of disordered systems with short range

interactions has been a challenging problem of statistical mechanics. For weak randomness,

the Harris criterion [1] relates the relevance of disorder to the sign of the specific heat

critical exponent of the pure system. If this sign is positive weak disorder drives the system

towards a new (“random”) fixed point of the renormalization group, responsible for new

critical exponents that in some limits can be computed perturbatively (see e.g. [2]). In the

regime of strong disorder, a relevant role is played by the gauge symmetry [3] exhibited by

systems such as the Ising model with ±J bond randomness. This allows, in particular, the

identification of a multicritical point along the phase boundary separating the ferromagnetic

and the paramagnetic (or spin glass, if present) phases in the temperature-disorder plane.

For the rest, the study of critical properties at strong disorder has essentially relied on

numerical methods.

Particularly noticeable has been the absence of exact results in two dimensions, to the

point that one could legitimately wonder whether random fixed points of planar systems

possess the infinite-dimensional conformal symmetry [4, 5] that yielded the exact critical

exponents in the pure case. Progress has been achieved recently [6] extending to the ran-

dom case the idea of implementing conformal invariance within the basis of the underlying

particle excitations [7, 8]. It was explicitly shown in [6, 9] for the q-state Potts model with

quenched disorder how the method yields exact equations for the scattering amplitudes

whose solutions correspond to random fixed points. One of the remarkable emerging prop-

erties is the presence of superuniversal (i.e. symmetry independent) sectors able to shed

light on longstanding numerical and theoretical puzzles for critical exponents.

In this paper we consider two-dimensional disordered systems with O(N) symmetry

that reduce to the N -vector ferromagnet in the pure limit. It is known that weak disorder

is marginally irrelevant at N = 1 (Ising) [10, 11], and becomes relevant for N < 1. This

means that slightly below N = 1 an infrared random fixed point can be found through a

perturbative approach similar to that used in [12, 13] for the q → 2+ Potts model. This

perturbative study was performed in [14], where the one-loop beta function was used to
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argue that the line of infrared fixed points spans an interval N ∈ (N∗, 1), while in the

interval N ∈ (0, N∗) the system flows directly to a strong disorder regime; the estimate

N∗ ≈ 0.26 was obtained within the one-loop approximation. The O(N) model with a

specific bimodal distribution of bond disorder was then studied in [15] within a numerical

transfer matrix approach. In particular, this study confirmed the presence of the lower

endpoint N∗ for the line of infrared fixed points originating at N = 1, and obtained the

estimate N∗ ≈ 0.5. At N = N∗ the infrared line was observed to join a line of strong

randomness multicritical points extending for N > N∗, and the universal properties of

the point at N = 1 on this line were found in quantitative agreement with those of the

Nishimori multicritical point.

Below we will use the scattering formalism to exactly determine the lines of renor-

malization group fixed points for systems with O(N) symmetry in presence of quenched

disorder. We will show, in particular, that these critical lines belong to three different

classes depending on the values of a disorder modulus ρ4, one of two parameters associ-

ated to disorder. The three classes are: solutions for the pure systems (ρ4 = 0), strongly

disordered solutions (ρ4 = 1), and solutions with values of ρ4 interpolating between 0 and

1. For positve N , the latter class contains a single line of infrared fixed points, extending

from N = 1 (where ρ4 = 0) down to N = N∗ =
√

2− 1 = 0.414 . . . (where ρ4 = 1). At N∗
this line joins one of the solutions in the class ρ4 = 1, which are defined for any N . The

class with ρ4 = 1 contains fixed points that do not merge a fixed point of the pure system

in any limit. Typical examples in this class are the multicritical points of Nishimori type

and those encountered flowing from such a multicritical point towards lower temperatures.

The paper is organized as follows. In the next section we recall the replica approach

to random systems, introduce the scattering description for the random O(N) model, and

obtain the equations for the renormalization group fixed points. In section 3 we obtain

the solutions to these equations and discuss their interpretation and physical properties,

before summarizing our results in the final section.

2 Scattering formalism for the random O(N) model

We start recalling that the random bond N -vector model is defined by the

lattice Hamiltonian

H = −
∑
〈i,j〉

Jij si · sj , (2.1)

where si is a N -component unit vector located at site i, the sum runs over nearest neigh-

boring sites, and Jij are bond couplings drawn from a probability distribution P (Jij). The

average over disorder is taken on the free energy,

F =
∑
{Jij}

P (Jij)F (Jij) . (2.2)

The well known replica method exploits the fact that F is related to the partition function

Z =
∑
{si} e

−H/T as F = − lnZ, so that the identity

F = −lnZ = − lim
m→0

Zm − 1

m
(2.3)
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Figure 1. Qualitative phase diagram and expected fixed points for the two-dimensional Ising model

with ±J disorder. 1 − p is the amount of disorder and M indicates the multicritical (Nishimori)

point.

maps the problem onto that of m → 0 replicas coupled by the average over disorder.

Figure 1 qualitatively shows the phase diagram yielded by numerical simulations (see

e.g. [16, 17]) for the two-dimensional Ising model with disorder distribution P (Jij) =

pδ(Jij − 1) + (1− p)δ(Jij + 1).

When approaching a fixed point of the renormalization group the correlation length di-

verges and the universal properties of the system can be studied directly in the continuum,

within the field theoretical framework. For the case we consider, in which homogeneity of

the system is restored by the disorder average, the field theory in question is rotationally

invariant, and corresponds to the analytic continuation to imaginary time of a relativis-

tically invariant quantum field theory. We study these field theories within their basis of

particle excitations, relying only on symmetry and restricting our attention to fixed points.

As observed in [18] for the off-critical pure case, O(N) symmetry is implemented

adopting a vector multiplet representation of the particle excitations. In our scale-invariant

case, these particles are left- and right-movers with momentum and energy related as

p = ±E. Moreover, such excitations exist in each of the m replicas and will be denoted as

ai, where a = 1, 2, . . . N , i = 1, 2, . . . ,m. When considering the scattering of a right-mover

with a left-mover, the infinitely many conservation laws implied by conformal symmetry

in two dimensions allow only for final states with a left-mover and a right-mover [7]. The

scattering amplitudes are energy independent by scale invariance, and the product of two

vectorial representations yields the six possibilities depicted in figure 2. They correspond to

transmission and reflection within the same replica (S2 and S3, respectively) or in different

replicas (S5 and S6); two identical particles can also annihilate producing another pair

within the same replica (S1) or in a different replica (S4). Crossing symmetry [19] then

relates amplitudes under exchange of space and time directions as

S1 = S∗3 ≡ ρ1 e
iφ, (2.4)

S2 = S∗2 ≡ ρ2, (2.5)

S4 = S∗6 ≡ ρ4 e
iθ, (2.6)

S5 = S∗5 ≡ ρ5, (2.7)
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Figure 2. Scattering processes corresponding to the amplitudes S1, S2, S3, S4, S5, S6, in that

order. Time runs upwards, indices i and j correspond to different replicas.

where we introduced parametrizations in terms of ρ1 and ρ4 non-negative, and ρ2, ρ5, φ

and θ real. Finally, unitarity of the scattering matrix translates into the equations

ρ21 + ρ22 = 1 , (2.8)

ρ1ρ2 cosφ = 0 , (2.9)

Nρ21 +N(m− 1)ρ24 + 2ρ1ρ2 cosφ+ 2ρ21 cos 2φ = 0 , (2.10)

ρ24 + ρ25 = 1 , (2.11)

ρ4ρ5 cos θ = 0 , (2.12)

2Nρ1ρ4 cos(φ− θ) +N(m− 2)ρ24 + 2ρ2ρ4 cos θ + 2ρ1ρ4 cos(φ+ θ) = 0 . (2.13)

We notice that the superposition
∑

a,i aiai scatters into itself with amplitude

S = NS1 + S2 + S3 + (m− 1)NS4 , (2.14)

which must be a phase by unitarity. Similarly, the combinations aibi + biai and aibj + bjai
scatter into themselves with phases

Σ = S2 + S3 , (2.15)

Σ̄ = S5 + S6 , (2.16)

respectively.

3 Solutions of the fixed point equations

The solutions of equations (2.8)–(2.13) correspond to renormalization group fixed points

characterized by O(N) invariance and permutational symmetry of the m replicas. Equa-

tions (2.8) and (2.12) can be used to express ρ2 and ρ5 in terms of ρ1 and ρ4, which take

values in the interval [0, 1]. The parameter ρ4, to which we refer as disorder modulus, gives

a measure of the disorder strength at the fixed point, since for ρ4 = 0 the replicas decouple
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(S4 = S6 = 0, S5 = ±1) and eqs. (2.8)–(2.10) are those for the pure case (m = 1). The

interacting solutions for this pure case are [7]

ρ1 = 1, ρ2 = 0, −2 cos 2φ = N ∈ [−2, 2], (3.1)

and

ρ1 =
√

1− ρ22, cosφ = 0, N = 2 ; (3.2)

the latter is a line of fixed points parametrized by ρ1 that accounts for the Berezinskii-

Kosterlitz-Thouless (BKT) phase of the XY model [20, 21].

Coming to random fixed points (ρ4 6= 0, m = 0), eq. (2.10) shows that they have

ρ1 6= 0, and (2.11), (2.12) show that they fall into two classes. The first class has cos θ = 0

and disorder modulus varying with N , while the second class has fixed (actually maximal)

disorder modulus ρ4 = 1. Considering the class with varying ρ4, we look for the line of

fixed points that approaches the pure Ising point as N → 1. Then (3.1) excludes cosφ = 0

for any N , so that (2.9) implies ρ2 = 0, and we finally obtain

ρ1 = 1, ρ2 = cos θ = 0, cosφ = − 1

N + 1
, ρ4 =

∣∣∣∣N − 1

N + 1

∣∣∣∣
√
N + 2

N
. (3.3)

For positive N this solution is defined for N ≥
√

2 − 1, and has ρ4 → 0 as N → 1, as

expected. Notice that for this solution the phase (2.14) becomes S = 2 cosφ = −1 at

N = 1, in agreement with the fact that the pure Ising model in two dimensions is a free

fermionic theory (scattering on the line involves position exchange); actually, this has been

used to fix the sign of cosφ in (3.3). We know from Harris criterion1 that the branch with

N < 1 is a line of infrared fixed points, and we see that it extends down to the minimal

value N∗ =
√

2− 1. At this point the solution (3.3) has ρ4 = 1 and reaches the subspace of

fixed points with maximal disorder modulus (figure 3). In this subspace there exists and

is unique a solution coinciding with (3.3) at N∗; it is defined for any N and reads

ρ1 = ρ4 = 1, ρ2 = 0, cosφ = − 1√
2
, cos θ = −N

2 + 2N − 1√
2(N2 + 1)

. (3.4)

The subspace with ρ4 = 1 contains another solution defined for positive N , and actually for

any N ; it differs from (3.4) for having cos θ = cosφ, and is then completely N -independent.

The fixed point pattern of figure 3 allows a discussion of the renormalization group

flows between ρ4 = 0 and ρ4 = 1. First of all we know that weak disorder is relevant for

N ∈ (0, 1) and irrelevant for N ∈ (1, 2). This means that for N ∈ (0, N∗) the flow goes

directly from the pure model to the strong disorder solution (3.4), while for N ∈ (N∗, 1)

there are flows from the pure model and the solution (3.4) towards the infrared fixed

line (3.3). For N ∈ (1, 2), on the other hand, there are flows towards the pure model both

from the solution (3.3) and from one of the solutions with ρ4 = 1, and we expect this

1The scaling dimension Xε of the energy density operator in the pure model becomes smaller than 1 for

N < 1 (see e.g. [7]), so that weak disorder, with scaling dimension 2Xε, is relevant. Marginality of disorder

at N = 1 can also be used for a perturbative expansion in 2 + ε dimensions within the Ising model [2, 22].
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Figure 3. Projection in the parameter subspace ρ4-cosφ of the lines of renormalization group fixed

points of the disordered O(N) model, for N ∈ (0, 2). The disorder modulus ρ4 varies from 0 (pure

case) to the maximal value 1. Merging occurs at N = 1 for ρ4 = 0 and N∗ =
√

2− 1 for ρ4 = 1.

pattern to extend to the region2 N > 2. Indeed, for N > 2 the unitarity equations for the

pure model admit only the free solutions S1 = S3 = 0, S2 = ±1, consistently with the fact

that the pure model with N > 2 only possesses an asymptotically free zero-temperature

fixed point, which exhibits an exponentially diverging correlation length (see e.g. [2]). The

latter property means that the energy density operator of the pure model is marginal, so

that weak disorder is irrelevant.

To these flows we have to add those at ρ4 = 1 between solutions differing for the value

of the second disorder parameter θ. Taking this into account, for values of N inside the

interval (N∗, 1) the theory naturally accounts for a pattern of three flows between four

fixed points (critical point of the pure model, infrared fixed point, multicritical point, zero

temperature infrared fixed point) as that observed numerically at N = 0.6 in [15]. The

role of θ will be discussed in more detail in [23], where we will also give the solutions of

the fixed point equations for finite number of replicas, and will discuss the case N = 0,

relevant for polymers in a disordered environment.

It is interesting to notice that in [15] the phase diagram was also numerically explored

for N = 8, with results that might appear not completely consistent with what we found

for the regime N > 2. The point can be illustrated for the pure case, where only a fixed

point with Z3 symmetry was observed in [15], while we saw that no such a fixed point is

allowed by O(N) symmetry. The explanation is in the fact that the study of [15] is made

for the loop model on the hexagonal lattice. It is well known that the partition function of

the N -vector spin model can be rewritten as a sum over loop configurations [2, 24]. If this

is done on the hexagonal lattice [25], the loops cannot intersect. As originally observed

in [18], the loop paths correspond in the scattering picture to the particle trajectories, and

non-intersection in the pure model corresponds to S2 = 0 (see figure 2). It follows that the

hexagonal lattice loop model yields the fixed points of the pure O(N) spin model in the

interval N ∈ (−2, 2), where S2 = 0 (see eq. (3.1)), but not in the regime N > 2, where

2For N > N∗ the solution (3.3) approaches ρ4 = 1 only in the asymptotic limit N →∞.
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there is no reflection at all. For N > 2 the hexagonal lattice loop model only exhibits a

Z3-symmetric fixed point associated to the specific lattice symmetry rather than to O(N)

symmetry [15, 26].

For N = 2 the equations (2.8)–(2.13) admit a line of fixed points only in the pure case

ρ4 = 0; this is the line (3.2) that, as we already pointed out, accounts for the BKT phase

of the pure model. On the other hand, since the flow from ρ4 = 1 can end in the infrared

onto any point of the line (3.2), also the disordered model should exhibit a BKT phase,

and this is confirmed by numerical studies (see e.g. [27, 28]). The phase diagram observed

in these studies is similar to that of figure 1, with the ferromagnetic phase replaced by the

BKT phase.3 On the other hand, numerical studies still disagree on the values of critical

exponents along the portion of the phase boundary going from the multicritical point M to

the critical point of the pure model: a constant magnetic exponent η = 1/4 (the value at

the BKT transition in the pure model) was deduced in [27], while a continuously varying

η was found in [28].

It can be checked that the scattering phase (2.14) is N -independent for the solu-

tion (3.3), and that N dependence disappears only in the limit m = 0 corresponding to

quenched disorder. This means that the symmetry sector of the superposition
∑

a,i aiai, to

which the energy density operator belongs, becomes superuniversal along this line of fixed

points. An analogous result obtained in [6] and further discussed in [9] accounts for the

accumulated evidence [29–38] that the correlation length critical exponent ν in the random

bond q-state Potts ferromagnet does not show any appreciable deviation from the Ising

value up to q infinite. On the other hand, the spin operator does not belong to the supe-

runiversal sector and its scaling dimension is expected to vary along the solution (3.3). This

scaling dimension was measured in [15] at N = 0.55 on the infrared fixed line and found to

be consistent with the two-loop perturbative result of [14]. We also observe that the phase

amplitude (2.15) is straightforwardly seen to be N -independent along the solution (3.4).

4 Conclusion

In this paper we used scale (as well as conformally) invariant scattering theory to exactly

determine the lines of renormalization group fixed points in O(N) invariant models with

quenched disorder. We showed that random fixed points are characterized, in particular,

by two disorder parameters: a modulus ρ4 and a phase angle θ. The critical lines fall into

the three classes with ρ4 = 0 (pure case), ρ4 = 1 (containing Nishimori-like multicritical

points as well as zero temperature fixed points), and ρ4 interpolating between 0 and 1 as N

varies. The pattern of fixed points allowed us to deduce, in particular, that weak disorder

drives the system to ρ4 = 1 for values of N in the interval (0, N∗ =
√

2 − 1), to a line of

fixed points of interpolating type in the interval (N∗, 1), and to the pure system for N > 1.

The exact result N∗ = 0.414 . . . is not far from the numerical estimate N∗ ≈ 0.5 obtained

3Notice that the model studied in [27, 28] is the random phase XY model, for which si = (cosαi, sinαi),

the nearest neighbor interaction is − cos(αi − αj + Aij), and Aij are the random variables drawn from

a distribution P (Aij) ∝ e−A
2
ij/σ; σ replaces 1 − p in figure 1. Relying only on symmetry, our formalism

applies also to this type of disorder.
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in [15]. The infrared line spanning the interval (N∗, 1) exhibits superuniversality in the

symmetry sector of the energy density operator. For N = 2 a line of fixed points exists

only in the pure system and accounts also for the BKT phase observed in the random case.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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