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Abstract

The light cone spreading of correlations following a quantum quench is obtained from first

principles. Fully taking into account quantum and interaction effects, the derivation shows

how light cone dynamics does not require peculiar properties of the post-quench state.
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1 Introduction

Information does not propagate instantaneously. Even for extended quantum systems in which

relativistic effects can be ignored, so that the finite speed of light does not enter the theoretical

treatment, upper bounds on the speed of signal propagation can be obtained [1]. As a conse-

quence, correlations grow significantly only within “light” cones in space-time. In recent years

substantial attention has been devoted to correlation spreading in isolated extended quantum

systems brought out of equilibrium. A main reason is that the quantum state of such sys-

tems (see e.g. [2, 3, 4, 5] for reviews) proved difficult to characterize, so that identifying the

mechanism of correlation spreading can possibly help elucidating its properties. The following

picture was proposed in [6] (see also [7]). Following a sudden alteration of the Hamiltonian

(“quantum quench”) bringing the system out of equilibrium, pairs of particle excitations with

opposite momenta are created and travel classically with a maximal velocity vm and without

scattering; then correlations between two points separated by a distance r start to develop at

time t ≃ r/2vm, when they are first and simultaneously reached by two particle excitations

emitted at the same point. The assumptions associated to the picture aim at accounting for

the light cone effect exhibited by the examples studied analytically in [6]. A problematic point,

from the point of view of the general interpretation, is that such examples are also those for

which the strong assumption of propagation without scattering effectively holds. Indeed, the

analytic results were obtained for two different cases. The first corresponds to mass quenches

in a free theory, which indeed produce pairs of non-interacting particles with opposite momenta

(see below). The second case is that of integrable (in particular conformal) dynamics on a half

plane space-time, where the state is again made of pairs of particles with opposite momenta;

here the particles can interact, but integrability ensures that the scattering preserves number

of particles and individual momenta [8]. Notice that, within the above picture, integrability in

one spatial dimension appears as a necessary condition, since particles moving classically on a

line cannot miss each other. Also the experimental observation of the light cone within a one-

dimensional system was described in terms of a post-quench state with excitations organized in

pairs [9]. This state of affairs leaves open two questions that we address in this paper. First:

is the light cone effect related to specific features of the quantum state? Second: can the light

cone be derived from first principles?

2 The post-quench state

It is clear from the above discussion that a crucial issue is that of having theoretical access to a

larger class of quenches. It was shown in [10] and further illustrated in [11] that a fundamental

and general approach can be formulated near quantum critical points. This condition ensures

that the correlation length is sufficiently large (both before and after the quench), so that the

problem is described by massive quantum field theory. We now briefly recall the formalism and

the result for the post-quench state. Before the quench the translationally invariant system,

1



with Hamiltonian H0, is in the ground state, which is the vacuum state |0〉 of the pre-quench

field theory. Excitations over this vacuum state correspond to particles with momentum p and

energy Ep =
√

p2 +M2, M being the particle mass. The post-quench Hamiltonian can be

written as

H = H0 + λ

∫

dxΨ , (1)

where we refer to λ and Ψ as the quench parameter and the quench operator, respectively. Due

to the quench at t = 0, the system passes in the new state |ψ0〉, which is determined in the

scattering formalism and, to first order in λ, reads [10, 11]

|ψ0〉 ≃

(

1− iλ

∫

∞

0
dt

∫

∞

−∞

dxΨ(x, t)

)

|0〉

= |0〉+ λ

∞
∑

n=1

(2π)D

n!

∫

∞

−∞

n
∏

i=1

dpi δ(

n
∑

i=1

pi)
[FΨ

n (p1, . . . ,pn)]
∗

∑n
i=1Epi

|p1, . . . ,pn〉 , (2)

where D is the number of spatial dimensions and we used the relation

Ψ(x, t) = eiP·x+iH0tΨ(0, 0)e−iP·x−iH0t , (3)

P being the momentum operator. The result has been expanded over the complete basis of

multiparticle states1 |p1, . . . ,pn〉 of the pre-quench theory, introducing the matrix elements

(form factors)

FΨ
n (p1, . . . ,pn) = 〈0|Ψ(0, 0)|p1, . . . ,pn〉; (4)

the states entering the scattering formalism are asymptotic states with particles far apart from

each other and eigenvalues of energy and momentum given by
∑

iEpi
and

∑

i pi, respectively.

Notice that if both H0 and Ψ are quadratic operators, as it is the case for a mass quench for

free particle excitations, FΨ
n ∝ δn,2 and only the contribution of |p,−p〉 survives in (2) (more

pairs are generated at higher orders in λ). In the other cases, i.e. in presence of interacting

particle excitations, the form of |ψ0〉 consisting of particle pairs with opposite momenta does

not occur.

3 Derivation of the light cone

In principle, the equal-time two-point function 〈ψ0|Φ(x, t)Φ(0, t)|ψ0〉 for an operator Φ, which

contains the information about the spreading of correlations over a distance |x| after a time t

from the quench, can be calculated to first order in λ using the expression (2), and to higher

orders continuing the perturbative expansion. In this paper, however, we are not interested in

an explicit calculation of two-point functions, which is essentially out of reach for the general

case we are addressing. Instead, we are interested in a specific property, the light cone, and

1With respect to [10, 11], we lighten the notation adopting a different normalization of states. We also recall

that quantum field theory and its particle formalism automatically implement properties such as locality of

interactions and cluster decomposition of correlators (see e.g. [12]).
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will show that this can be derived non-perturbatively, relying only on first principles. For this

purpose, we retain from the perturbative result (2) only the fact that in general the post-quench

state is a superposition over all multiparticle states, with the only constraint that their total

momentum is zero. Hence, we perform the derivation for the general state

|A〉 =

∞
∑

n=0

∫

∞

−∞

n
∏

i=1

dpi δ(

n
∑

i=1

pi) fn(p1, . . . ,pn) |p1, . . . ,pn〉 , (5)

which features generic coefficients fn for the superposition2. We then obtain

〈A|Φ(x, t)Φ(0, t)|A〉 =
∞
∑

n1,n2,m=0

∫ n1
∏

i=1

dpi

n2
∏

j=1

dp′

j

m
∏

k=1

dqk f
∗

n2
(p′

1, . . . ,p
′

n2
) fn1

(p1, . . . ,pn1
)

× FΦ
n2,m

(p′

1, . . . ,p
′

n2
|q1, . . . ,qm)FΦ

m,n1
(q1, . . . ,qm|p1, . . . ,pn1

)

× δ(

n1
∑

i=1

pi) δ(

n2
∑

j=1

p′

j) e
−iϕ(x,t) , (6)

where we inserted a complete set of asymptotic m-particle states in between the two operators,

introduced the notation

FΦ
m,n(q1, . . . ,qm|p1, . . . ,pn) = 〈q1, . . . ,qm|Φ(0, 0)|p1, . . . ,pn〉 , (7)

and use (3) to obtain

ϕ(x, t) = x ·
m
∑

k=1

qk + t





n1
∑

i=1

Epi
−

n2
∑

j=1

Ep′

j



 . (8)

The term with m = 0 in the expansion (6) is x-independent, hence contributes to the

disconnected part of the two-point function and can be ignored in the discussion of spatial

correlations. For m > 0, let us consider the limit of large |x| (|x| ≫ 1/M). Then the phase in

(6) rapidly oscillates and suppresses the integral, unless there is a stationary point, i.e. ∇qk
ϕ = 0

for k = 1, 2, . . . ,m. A superficial examination of (6) and (8) may suggest that stationarity is

not satisfied, with the consequence that no sizeable correlation arises between the two points at

any time. However, we have to remember that the matrix elements (7) actually decompose into

the sum of a fully connected part plus disconnected contributions [12], namely

FΦ
m,n(q1, . . . ,qm|p1, . . . ,pn) = 〈q1, . . . ,qm|Φ(0, 0)|p1, . . . ,pn〉connected (9)

+ δ(q1 − p1)〈q2, . . . ,qm|Φ(0, 0)|p2, . . . ,pn〉connected + · · · ,

where the dots stay for all remaining contractions of particles from the state on the left with

particles from the state on the right (see figure 1). The relevant point is that each contraction

2Notice that, since |A〉 is a non-perturbative state of the post-quench theory, the superposition is taken over

the basis of asymptotic states of the post-quench excitations. In (2), instead, the states entering the superposition

are those of the pre-quench theory, and the post-quench mass is reconstructed order by order in perturbation

theory.
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Φ Φ Φ Φ= + +

Figure 1: Connectedness structure of the matrix element FΦ
2,2.

yields a delta function δ(qk − pi). It follows that for m = 1 the disconnected contribution in

the second line of (9) modifies (8) into

x · q+ t



Eq +

n1−1
∑

i=2

Epi
+ E−q−(p2+···+pn1−1) −

n2
∑

j=1

Ep′

j



 , (10)

where we made explicit that the constraint
∑n1

i=1 pi = 0 induces the presence of q in two energy

terms. Differentiating now with respect to q one obtains the stationarity condition

x = −Vt , (11)

where

V = vq + vq+p2+···+pn−1
, (12)

vp ≡ ∇pEp =
p

√

p2 +M2
. (13)

In our natural units the maximal value of the velocity |vp| is one, so that upon integration over

momenta the values of |V| span the interval (0, 2). It follows that the stationarity condition

(11) is satisfied when

t >
|x|

2
. (14)

This conclusion was obtained considering the intermediate state with m = 1. For m > 1 a

stationary phase is provided by disconnected contributions yielding m delta functions. The

stationarity condition with respect to each momentum qk is again (11) with a maximal value of

|V| which remains 2; as a consequence (14) is not modified. For |x| large enough the contribution

to the connected correlator from configurations not producing a stationary point vanishes. Since

the condition for stationarity is the same for all the terms allowing for it, for |x| large enough

spatial correlations exist only within the light cone specified by (14).
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4 Discussion

We see that the light cone (14) is a general property of two-point functions (6) over states of

the form (5) with fn 6= 0 for some n > 1, a condition required for having suitable disconnected

contributions. The factor 1/2 in (14) is related to the zero momentum condition on the state |A〉,

corresponding to spatial translation invariance. The fact that the state (2) is only a particular

case of |A〉 leaves room for the same effect to be observed within paths to non-equilibrium

different from an instantaneous alteration of the Hamiltonian.

It is worth stressing how our general derivation of the light cone relied only on first principles

of quantum field theory and involved no approximations. Of course, being general, the result

coincides with that obtained from explicit calculations of two-point functions in solvable cases

(see [7]). In particular, the result that the light cone is a property of the individual terms

of the series (6) and does not require its resummation generalizes that observed in [13] for the

order parameter correlator in the transverse field Ising chain, a case in which the particles do not

interact; obviously, resummation would be needed to obtain the functional form of the connected

correlator inside the light cone.

The derivation makes clear the essential role played for the light cone result (14) by the delta

functions over momenta explicitly appearing in (5) and (9). It is worth stressing that these delta

functions follow from first principles (momentum conservation and connectedness structure), and

that no other delta function can appear in the general interacting case we consider. As we already

stressed, only if the theory is free both before and after the quench the post-quench state will be

made of pairs of particles with opposite momenta, a structure corresponding to delta functions

δ(pi + pj) in the coefficients fn entering (5); in (6) these give rise to some terms containing

squares of delta functions that need to be regularized. The regularization (see [13]) shows that

the location of the light cone in this particular case coincides with that we are now deriving

for the interacting case. Similarly, we see that the result (14) does not depend on the detailed

manipulation of the annihilation poles of form factors required for the explicit calculations of

correlators in solvable cases (see e.g. [13]): it is well known [14] that those poles are in one to

one correspondence with the delta functions in (9), and that they cannot give rise to any extra

delta function able to affect the light cone.

We see that the light cone is in no way related to states with a specific structure of excitations

or a peculiar propagation mode. Equation (2) shows that in generic dimension the organization

in pairs arises only when the particle excitations do not interact. Interaction, on the other

hand, poses no difficulty once the quantum nature of the problem is taken into account: it is

the non-trivial connectedness structure of the matrix elements which produces the final result,

without assumptions on scattering properties.

This also makes theoretically clear that in one dimension the light cone is in no way related to

integrability, which in the heuristic picture seems necessary to reconcile diffusionless propagation

with interaction on the line. Actually, it was already shown in [10] that the non-equilibrium

setting substantially reduces the room for integrability. Indeed, in the field theory describing
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a quench, which in general allows for transmission of energy (and then of particle excitations)

from pre- to post-quench times, factorization of scattering amplitudes (and integrability with

it) is not compatible with particle interaction [10] (see also [15]). In other words, the non-trivial

conserved currents associated with integrability at equilibrium do not survive the quench if

the particle excitations interact3. Integrability in presence of interaction requires eliminating

transmission, namely giving up the notion of a pre-quench Hamiltonian H0 and going back to

the half plane space-time of [8, 16]. A recent survey [17] of results for spin chains confirms the

conclusions of [10] on integrability.

It is relevant that the deviation of the post-quench state from the structure with excitations

organized in pairs has measurable implications. It was shown in [10] that in one dimension the

state (2) with FΨ
1 6= 0 allows for undamped oscillations of one-point functions4, a feature which

does not easily fit within the usual expectations about relaxation in isolated one-dimensional

systems (see [5]). It was pointed out in [10] that the simplest realization of this phenomenon

arises when suddenly switching on a small longitudinal field starting from the paramagnetic

phase of the Ising spin chain. The predicted undamped oscillations of the order parameter have

been numerically observed in [18, 19]. The agreement between theory and numerical data is

further illustrated in [11].

In summary, the light cone spreading of correlations in quantum quenches near criticality

has been generally derived from first principles. The derivation fully incorporates quantum and

interaction effects, and disentangles light cone dynamics from assumptions on the properties of

the post-quench state.
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