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TRANSMISSION CONDITIONS OBTAINED BY HOMOGENISATION

GIANNI DAL MASO, GIOVANNI FRANZINA, AND DAVIDE ZUCCO

Abstract. We study the asymptotic behaviour of solutions to variational problems in perfo-
rated domains with Neumann boundary conditions. We consider perforations that in the limit

concentrate on a smooth manifold. We characterise the limits of the solutions and show that they
solve a variational problem with a transmission condition across the manifold. This is expressed

through a measure on the manifold, vanishing on sets of capacity zero. Then, we prove that every

such measure can be obtained by homogenising suitable perforations. Eventually, we provide an
asymptotic formula for this measure by using some auxiliary minimum problems.

Keywords. Γ-convergence, capacitary measures, Neumann sieve.

1. Introduction

This paper studies the asymptotic behaviour of the solutions uj to the equations

−∆uj + uj = h in Ω \Kj ,

with homogeneous Neumann boundary conditions on ∂(Ω\Kj). Here and henceforth Ω is a bounded
open set in Rn and (Kj) is a sequence of compact sets in Rn. We assume that there exists a compact
(n− 1)-dimensional C1 manifold M with boundary, contained in Ω, such that

(1.1) Kj ⊂
{
x ∈ Rn : dist(x,M) ≤ ρj

}
,

for a suitable sequence of positive numbers (ρj) with ρj → 0+ as j →∞.
It is well known that uj is the minimiser of the functional∫

Ω\Kj
|∇u|2dx+

∫
Ω\Kj

u2dx− 2

∫
Ω\Kj

hu dx ,

and this property will be the starting point of our analysis.
More in general, in this paper we will consider sequences of minimisers of functionals of the form

(1.2)

∫
Ω\Kj

f(∇u) dx+

∫
Ω\Kj

g(x, u) dx ,

where f and g are suitable functions satisfying standard convexity and growth conditions (see
Section 2.1 for details). A significant instance included in our analysis will be that of the functions
f(∇u) = |∇u|p with 1 < p <∞ and g(x, u) = |u− h(x)|q with 1 ≤ q <∞ and h ∈ Lq(Ω).

This kind of question is related with the so-called Neumann sieve problem that was proposed
by Sanchez and Palencia, who gave in [24] a formal asymptotic expansion of the solution. It was
then studied by Attouch, Damlamian, Murat, and Picard (see [5, 15, 21, 22]) in the case where
the perforations are composed of open balls periodically distribuited over the manifold. For related
studies on the asymptotic behaviour of periodically-perforated domains see [3, 4, 6, 7, 8, 16, 23, 25].
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TRANSMISSION CONDITIONS OBTAINED BY HOMOGENISATION 2

A slight modification (see Section 3) of the results of [9] shows that, under our general conditions,
there exists a subsequence of (Kj) (not relabelled) satisfying (1.1) such that the minimisers uj of
(1.2) converge in Lq(Ω) as j →∞ to the minimiser of a functional of the form

(1.3)

∫
Ω\M

f(∇u) dx+

∫
M

[u]p dµ+

∫
Ω\M

g(x, u) dx , u ∈ L1,p(Ω \M) ,

where µ is a suitable Borel measure on Ω, concentrated on M and vanishing on all Borel sets B
with C1,p(B) = 0 (see Section 2.2 for the definition of the p-capacity C1,p and Section 2.3 for details
on these p-capacitary measures). Here and henceforth L1,p denotes the Deny-Lions space, while the
jump of u is defined by [u] := |u+ − u−|, where u+ and u− are the measure-theoretic limits of u at
x on both sides of M (see again Section 2.2). The measure µ appearing in (1.3) is independent of
g and depends only on the sequence of compact sets (Kj) and on the energy density f .

In some special cases, a suitable choice of the sequence of compact sets (Kj) allows for an explicit
computation of the measure µ. For example, if Kj = Ø for all j, then one obtains in the limit the
measure µ defined for every Borel set B as

µ(B) =

{
0 , if C1,p(B ∩M) = 0 ,

∞ , otherwise.

In this case, the finiteness of the functional (1.3) implies that [u] = 0 on M so that (1.3) reduces to∫
Ω

f(∇u) dx+

∫
Ω

g(x, u) dx , u ∈ L1,p(Ω) .

Moreover, if Kj = {x ∈ Rn : dist(x,M) ≤ ρj}, then µ = 0 and the corresponding limit functional
(1.3) becomes ∫

Ω\M
f(∇u) dx+

∫
Ω\M

g(x, u) dx , u ∈ L1,p(Ω \M) .

From our point of view the most interesting case is when the limit measure is of the form
µ = θH n−1 M for a function θ ∈ Lp′(M,H n−1) where p′ = p/(p − 1) (see Section 4). In this
case, under suitable regularity assumptions on f the first order minimality conditions lead to a
partial differential equation in Ω\M with suitable transmission conditions across M . For instance,
when f(∇u) = |∇u|2 and g(x, u) = |u− h(x)|2 for some h ∈ L2(Ω), the minimiser of (1.3) satisfies

−∆u+ u = h , in Ω \M ,

∂νu = 0 , on ∂Ω,

(∂νu)+ = (∂νu)− = θ(u+ − u−) , on M ,

where ν is a unit normal. A particular case when θ is constant and M is a hyperplane has been
investigated in [2].

In this paper we prove a density result (see Section 4), which shows that every measure vanishing
on sets of p-capacity zero can appear in the limit problem (1.3). More precisely, given f , M , and µ,
we prove that there exists a sequence (Kj) of compact sets, satisfying (1.1), such that, for every g,
the minimisers of (1.2) converge in Lq(Ω) to the minimiser of (1.3). We also prove an asymptotic
formula which allows us to obtain the measure µ starting from some auxiliary minimum problems
which involve f and the Kj ’s (see Section 5). Moreover, for a given sequence (Kj) of compact sets
we provide necessary and sufficient conditions to establish when we have full convergence of the
minimisers of (1.2) to the minimiser of (1.3) (i.e., without passing to a subsequence).
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2. Technical tools

2.1. Assumptions. Throughout the paper, we fix a bounded open set Ω ⊂ Rn and a function
f : Rn → [0,∞) such that

f(·) is convex, even, and positively homogeneous of degree p;(2.1a)

λ|ξ|p ≤ f(ξ) ≤ Λ|ξ|p , for all ξ ∈ Rn,(2.1b)

for suitable constants 1 < p < ∞ and 0 < λ < Λ < ∞. We also fix a function g : Ω × R → [0,∞)
such that

g(·, s) is measurable for all s ∈ R;(2.2a)

g(x, ·) is continuous for a.e. x ∈ Ω;(2.2b)

c1|s|q − a1(x) ≤ g(x, s) ≤ c2(1 + |s|q + a2(x)) for a.e. x ∈ Ω and all s ∈ R,(2.2c)

for suitable constants 1 ≤ q <∞, 0 < c1 < c2 <∞, and functions a1, a2 ∈ L1(Ω).
Moreover, we fix a compact (n− 1)-dimensional C1 manifold M with boundary, contained in Ω,

and a sequence (Kj) of compact sets of Rn such that

(2.3) lim
j→∞

max
x∈Kj

dist(x,M) = 0 .

Eventually, Σ will denote a fixed compact (n−1)-dimensional C1 manifold with boundary, contained
in Ω, with M ⊂ Σ \ ∂Σ.

2.2. Some fine properties of Sobolev functions. Given an open set A ⊂ Rn, L0(A) stands
for the space of all (equivalence classes of) real valued measurable functions on A, endowed with
the topology of the convergence in measure. Note that the topological space L0(A) is metrisable
and separable. The Sobolev space W 1,p(A) consists, as usual, of all functions u ∈ Lp(A) whose
distributional gradient ∇u belongs to Lp(A;Rn). We shall also make use of the Deny-Lions space
L1,p(A), i.e., the set of all functions u ∈ L1

loc(A) whose distributional gradient ∇u belongs to
Lp(A;Rn). We recall that if A is locally the subgraph of a Lipschitz function near x ∈ ∂A,
then there exists an open neighbourhood A′ of x such that L1,p(A ∩ A′) = W 1,p(A ∩ A′). In
particular, L1,p(A) = W 1,p(A) whenever A is a bounded Lipschitz open set. It is also known that
{∇u : u ∈ L1,p(A)} is a closed subspace of Lp(A;Rn). For a more detailed account about these
spaces, the reader is referred to [17] and [20]. Here and henceforth, for every u, v ∈ L0(A) we set
(u ∧ v)(x) := min{u(x), v(x)} and (u ∨ v)(x) := max{u(x), v(x)}. For every u ∈ L0(Ω) and t > 0,
we denote the truncation of u at level t by ut := u ∧ t ∨ −t.

The p–capacity C1,p of a set E ⊂ Ω is defined as

C1,p(E) := inf
u∈U(E)

∫
Ω

|∇u|p dx ,

where U(E) is the set of all u ∈ W 1,p
0 (Ω) such that u ≥ 1 almost everywhere in an open neigh-

bourhood of E. Then, one says that a property holds p-quasi everywhere or equivalently for p-q.e.
x, both abbreviated to p–q.e., if the points where it fails form a set of p–capacity zero. The usual
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abbreviation a.e. for almost everywhere, if not specified, always refers to the Lebesgue measure.
Given a set E ⊂ Ω, a function u defined on E is said to be p–quasicontinuous if for every ε > 0
there exists a set E′ with C1,p(E

′) < ε such that the restriction of u to E \ E′ is continuous.
The notions of p-quasi upper and p-quasi lower semicontinuity are defined in a similar way. A set
U ⊂ Ω is said to be p-quasi open in Ω if for every ε > 0 there exists an open set A ⊂ Ω such that
C1,p(U4A) < ε, where 4 denotes the symmetric difference of sets. Given a p-quasi open set U in
Ω, for every ε > 0 there exists an open set V ⊂ Ω such that U ∪ V is open and C1,p(V ) < ε. The
definition of p-quasi closed is analogous and we have that U is p-quasi open in Ω if, and only if,
Ω\U is p-quasi closed. It is easily seen that a set U ⊂ Ω is p-quasi open (p-quasi closed) if and only
if its characteristic function 1U is p-quasi lower (p-quasi upper) semicontinuous. It can be proved
that a function f : Ω→ [−∞,∞] is p-quasi lower (p-quasi upper) semicontinuous if and only if the
sets {x ∈ Ω: f(x) > t} ({x ∈ Ω: f(x) ≥ t}) are p-quasi open (p-quasi closed) for all t ∈ R.

Given an open set A ⊂ Ω, for all u ∈ W 1,p(A) there exists a p–quasicontinuous function ũ that
coincides with u a.e., called the p–quasicontinuous representative of u; it is well known that ũ is
uniquely determined p-q.e. and that

(2.4) lim
ρ→0+

−
∫
Bρ(x)

|u(y)− ũ(x)| dy = 0 , for p-q.e. x ∈ A.

For a complete treatment of the notion of capacity and of the fine properties of Sobolev functions,
we refer to the books [18, 19, 20, 26].

Incidentally, under suitable assumptions the values of Sobolev functions can be made precise also
at p-q.e. boundary point. More precisely, if A ⊂⊂ Ω is an open set with Lipschitz boundary and
u ∈W 1,p(A) then there exists a p-quasicontinuous function on A, which we still denote by ũ, such
that

(2.5) lim
ρ→0+

1

ρn

∫
A∩Bρ(x)

|u(y)− ũ(x)| dy = 0 , for p–q.e. x ∈ A.

Indeed, the extension theory for Sobolev spaces implies that there exists v ∈ W 1,p(Ω) such that
v = u a.e. in A. Applying (2.4) to the p-quasi continuous representative ṽ of v we obtain that

lim sup
ρ→0+

1

ρn

∫
A∩Bρ(x)

|u(y)− ṽ(x)| dy ≤ lim
ρ→0+

1

ρn

∫
Bρ(x)

|v(y)− ṽ(x)| dx = 0 ,

for p-q.e. x ∈ A. It is now enough to define ũ as the restriction of ṽ to A. On the other hand, it is
clear that (2.5) uniquely determines ũ p-q.e. on A.

By standard properties of the traces of Sobolev functions (see, e.g., [1, Theorem 3.87], [18, Theo-
rem 2, p. 181]), (2.5) implies that ũ|∂A coincides H n−1–a.e. with the trace γ(u) of u on ∂A, where

H n−1 denotes the (n− 1)-dimensional Hausdorff measure. Moreover, ũ|∂A is p-quasicontinuous.

Since γ(u) ∈ W 1−1/p,p(∂A), it is possible to prove that ũ|∂A coincides with the quasicontinuous
representative of γ(u) with respect to the fractional capacity C1−1/p,p, for which we refer to [20,
Section 10.4] or [26, Section 2.6]. However, this last property will never be used in this paper.

From what noticed above a set U is p-quasi open if, and only if, there exists u ∈W 1,p(Rn) with
U = {x ∈ Rn : u(x) > 0}. Moreover, we have the following result.

Lemma 2.1. Let U be a p-quasi open set in Ω. Then there exists a sequence of compact sets (Qk)

with Qk ⊂ U and a monotonically non-decreasing sequence of functions (χk) with χk ∈ W 1,p
0 (Ω),

with 0 ≤ χk ≤ 1, χk = 0 in Ω \Qk, and χk → 1 p-q.e. in U .
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Proof. We take u ∈W 1,p(Rn) with U = {u > 0}. For every k > 0 we define uk ∈W 1,p(Rn) setting
uk =

(
(u− 1

k ) ∨ 0) · k
)
∧ 1. Clearly 0 ≤ uk ≤ 1 and out of the p-quasi closed set Uk := {u ≥ 1

k} we

have that uk = 0. For every k, let vk ∈W 1,p
0 (Ω), with 0 ≤ vk ≤ 1, be such that∫

Ω

|∇vk|p dx = C1,p(Vk) ,

where Vk is an open set, with C1,p(Vk) < 1
k , such that Uk \Vk is closed. It follows that the function

wk := uk∧(1−vk) belongs to W 1,p(Ω) and vanishes out of the compact set Qk := Uk\Vk. Moreover,
wk converges to 1 p-q.e. in U , since so does uk by construction. Therefore, the sequence defined by
recursion setting χ1 := w1, and χk := wk ∨ χk−1 for all k > 1, is a monotonically non-decreasing
sequence that satisfies the desired properties. �

We introduce a p–quasicontinuous version of the traces of a piecewise W 1,p function on both
sides of a manifold. We begin with the case of a graph of a C1 function. Given x0 ∈ Rn, ν0 ∈ Rn
with |ν0| = 1, and r0 > 0, we consider the cylinder defined by

(2.6a) Ω0 := {x ∈ Rn : |(x− x0) · ν0| < r0 , |x− x0 − ((x− x0) · ν0)ν0| < r0} .

We fix a function φ of class C1 defined on the (n−1)-dimensional disk Π0 = {x ∈ Ω0 : (x−x0)·ν0 = 0}
with values in

(
− r04 ,

r0
4

)
and vanishing at x0. Its graph is defined by

(2.6b) Σ0 := {x̄+ φ(x̄)ν0 : x̄ ∈ Π0} .

We now define the open sets Ω+
0 and Ω−0 by

(2.6c) Ω±0 = {x̄+ rν0 : x̄ ∈ Π0 , r ∈ (−r0, r0) , ±(r − φ(x̄)) > 0} ,

so that Ω0 = Ω+
0 ∪ Σ0 ∪ Ω−0 .

Lemma 2.2. Let Ω0, Σ0, and Ω±0 be defined by (2.6), and let ν be the continuous unit normal
to Σ0 such that ν(x0) = ν0. Then for every u ∈ W 1,p(Ω0 \ Σ0) there exist two p-quasicontinuous
functions u+ and u− defined on Σ0 such that

(2.7) lim
ρ→0±

−
∫
B±ρ,ν(x)

|u(y)− u±(x)| dy = 0 , for p-q.e. x ∈ Σ0,

where B±ρ,ν(x) := {y ∈ Bρ(x) : ± (y − x) · ν(x) > 0}.

Proof. Let u ∈ W 1,p(Ω0 \ Σ0) be fixed. The extension theorems for Sobolev functions imply that
that there exist v, w ∈ W 1,p(Ω0) such that v = u a.e. in Ω+

0 and w = u a.e. in Ω−0 . Let us set
u+(x) := ṽ(x) and u−(x) := w̃(x) for all x ∈ Σ0. Then for p-q.e. x ∈ Σ0 we have∫

Ω+
0 ∩Bρ(x)

|u(y)− u+(x)| dy =

∫
Ω+

0 ∩Bρ(x)

|v(y)− ṽ(x)| dy ≤
∫
Bρ(x)

|v(y)− ṽ(x)| dy

and a similar inequality holds when u+ and v are replaced by u− and w. Therefore, by (2.4)

lim
ρ→0+

−
∫

Ω±0 ∩Bρ(x)

|u(y)− u±(x)| dy = 0 .

It is easily seen that Ω±0 ∩ Bρ(x) can be replaced by B±ρ,ν(x) (see, e.g., [18, Corollary 1, p. 203])
and by this we can conclude. �
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Remark 2.3. Note that under the assumptions of Lemma 2.2 the functions u± coincide H n−1–a.e.
on Ω0∩Σ0 with the traces of u|

Ω
+
0

∈W 1,p(Ω+
0 ) and u|

Ω
−
0

∈W 1,p(Ω−0 ) in the sense of Sobolev spaces.

Moreover, since Ω+
0 and Ω−0 have Lipschitz boundary and Σ0 ⊂ ∂Ω+

0 ∩ ∂Ω−0 , by (2.5) the trace
u± concides p-q.e. on Σ0 with the restriction to Σ0 of the p-quasicontinuous representative of u|

Ω
+
0

on Ω+
0 and of u|

Ω
−
0

on Ω−0 .

In the following lemma we introduce the absolute value of the jump of a function across a
manifold.

Lemma 2.4. Let A be an open subset of Ω. Then for every u ∈ L1,p(A \ Σ) there exists a p-
quasicontinuous function [u] on A ∩ Σ such that for p-q.e. x ∈ A ∩ Σ

(2.8) [u](x) =

∣∣∣∣ lim
ρ→0+

−
∫
B+
ρ,ν(x)

u(y) dy − lim
ρ→0+

−
∫
B−ρ,ν(x)

u(y) dy

∣∣∣∣ ,
where ν is a unit normal to Σ at x.

Proof. For every point x0 ∈ A ∩ Σ there exists r0 > 0 such that the intersection of Σ with the
cylinder Ω0 defined in (2.6a) is the graph of a C1 function as in (2.6b). Therefore, by Lindelöf
Theorem A ∩ Σ can be covered by a sequence (Ωi) of such cylinders, each well contained in A so
that u ∈W 1,p(Ωi \ Σ).

By Lemma 2.2, for every i there exist two p-quasicontinuous functions u+
i and u−i on Ωi ∩ Σ

such that (2.7) holds. Note that for p-q.e. x ∈ Ωi ∩ Ωj ∩ Σ we have either u±i (x) = u±j (x) or

u±i (x) = u∓j (x), which implies that |u+
i (x)− u−i (x)| = |u+

j (x)− u−j (x)|. This allows us to define

[u](x) := |u+
i (x)− u−i (x)| , for p-q.e. x ∈ Ωi ∩ Σ.

It is then immediate to see that [u] is p-quasicontinuous and that (2.8) holds. �

Remark 2.5. Since the truncation u 7→ ut = u∧ t∨−t is Lipschitz continuous, it commutes with the
choice of a p-quasi continuous representative. Hence by Lemma 2.4 we can infer that [ut] converges
to [u], as t→∞, p-q.e. on A ∩ Σ.

2.3. Capacitary measures. In this subsection we introduce the class of measures which are in-
volved in the integral representation of the limit problem (1.3). In the sequel, for every open set
A ⊂ Rn the symbol A (A) denotes the collection of all open subsets of A, and for every Borel set
B ⊂ Rn by B(B) we denote the collection of all Borel subsets of B.

Definition 2.6. Given A ∈ A (Ω), the symbol Mp(A) denotes the class of measures µ : B(A) →
[0,∞] such that µ(B) = 0 for every B ∈ B(A) with C1,p(B) = 0. In addition, Mp(A;M) stands
for the subclass of measures µ ∈Mp(A) with µ(A \M) = 0.

Let A ∈ A (Ω). Since Ω is bounded, a Radon measure µ on Ω, considered as a distribution on

A, belongs to the dual space W−1,p′(A) of W 1,p
0 (A) if and only if there exists Ψ ∈ Lp′(A;Rn) with

µ = div Ψ in the sense of distributions, i.e.,∫
A

ϕdµ = −
∫
A

∇ϕ ·Ψ dx ,

for all ϕ ∈ C∞c (A). We will denote by 〈 · , · 〉 the duality pairing between W−1,p′(A) and W 1,p
0 (A)

(see [19, 26]).
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By this integral representation and Hölder inequality, all non-negative Radon measures on A
of class W−1,p′(A) belong to Mp(A). In particular, a Radon measure µ on A of class W−1,p′(A)
that is supported on M belongs to Mp(A;M). Another significant istance within this class is the
Hausdorff measure H n−1 (A ∩ M); more in general, the Radon measure H s E belongs to
Mp(A) whenever E is a subset of A such that H s(E) <∞ with s > n−p. Nevertheless, measures
in Mp(A;M) are required neither to be inner regular not to be locally finite. For example

(2.9) ∞E(B) :=

{
0 , if C1,p(B ∩ E) = 0 ,

∞ , otherwise,
for all B ∈ B(A),

defines a measure of class Mp(A) for all E ⊂ Ω, and clearly ∞E ∈Mp(A;M) if E ⊂M .

Definition 2.7. We say that two measures µ1, µ2 ∈Mp(Ω;M) are equivalent if

(2.10)

∫
M

[u]p dµ1 =

∫
M

[u]p dµ2

for all u ∈ L1,p(Ω \M).

It is easy to see that Definition 2.7 implies that

(2.11)

∫
A∩M

[u]p dµ1 =

∫
A∩M

[u]p dµ2 ,

for every A ∈ A (Ω) and for every u ∈ L1,p(A \M). In fact, for every ϕ ∈ C∞0 (A), ϕu can be
considered as an element of L1,p(Ω \M) for which (2.10) holds. To obtain (2.11) it is enough to
approximate 1A with an increasing sequence of functions in C∞0 (A).

In particular, two equivalent measures must agree on all open sets. We point out that this
necessary condition does not imply, in general, that they agree on all Borel sets (see Example 2.8),
unless at least one of them is a Radon measure; on the other hand, the coincidence on open sets
does not imply the equivalence according to Definition 2.10 (see Example 2.9).

Example 2.8. Let µ1 = ∞E be the measure defined in (2.9) where E = A ∩M , with A ∈ A (Ω)
fixed, and we define

µ2(B) =

{
0 , if H n−1(B ∩ E) = 0,

∞ , otherwise.
for all B ∈ B(A),

Then µ1 and µ2 are different but equivalent, because for a p-quasi continuous function v we have
that v = 0 holds H n−1-a.e. on A ∩M if and only if it holds p-q.e. on A ∩M .

Example 2.9. In this example, µ1 = ∞E1
and µ2 = ∞E2

for suitable sets E2 ⊂ E1 ⊂ M . We
first construct the set E1. Let x0 ∈ M \ ∂M and r0 > 0 be so small that Σ0 = M ∩ Ω0 admits a
representation of the form (2.6b) where Ω0 is the cylinder defined by (2.6a). Let also Ω±0 be as in
(2.6c). For every E ⊂ Σ0, we set

(2.12) κ(E) := inf
u∈U(E)

∫
Ω+

0

|∇u|p dx

where U(E) is the set of all functions u ∈ W 1,p(Ω+
0 ) such that u = 0 p-q.e. on E and u = 1 p-q.e.

on ∂Ω+
0 \M . We fix r1 ∈ (0, r0), we consider the cylinder Ω1 defined as in (2.6a) with r0 replaced

by r1, and we set E1 := M ∩ Ω1.
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To construct E2, we fix a sequence (xi) of points dense in E1 and

E2 :=
⋃
i∈N

(
Bρi(xi) ∩M

)
for a suitable choice of the radii ρi > 0. The first condition on ρi is that Bρi(xi) ∩M ⊂ E1. The
second one is the inequality κ(E1) > κ(E2), which can be obtained using the countable subadditivity
of κ(·) and the fact that

lim
ρ→0+

κ(Bρ(x)) = 0 for every x.

These two properties of κ(·) can be proved with the same arguments used for C1,p.
Since E1 and E2 are relatively open in M and E2 is dense in E1, for all A ∈ A (Ω) we have

C1,p(E1 ∩A) > 0 ⇐⇒ C1,p(E2 ∩A) > 0 .

This implies that µ1(A) = µ2(A) for every A ∈ A (Ω).
To prove that µ1 and µ2 are not equivalent, we observe that the inequality κ(E1) > κ(E2) implies

the existence of a function u ∈ W 1,p(Ω+
0 ), with u = 0 p-q.e. on E2 and u = 1 p-q.e. on ∂Ω+

0 \M ,
such that

(2.13)

∫
Ω+

0

|∇u|p dx < κ(E1) .

Let v ∈W 1,p(Ω \M) be such that v = u in Ω+
0 and v = 0 in Ω−0 . We claim that

(2.14)

∫
Ω

[v]p dµ1 =∞ and

∫
Ω

[v]p dµ2 = 0 .

To prove the first equality, by contradiction we assume that the first integral is finite. By the
definition of µ1 this implies that [v] = 0, hence u = 0, p-q.e. in E1. Thus u is a competitor for the
minimum problem (2.12) which defines κ(E1), contradicting (2.13). The second equality in (2.14)
follows from the fact that [v] = u = 0 p-q.e. on E2.

Lemma 2.10. Two measures µ1, µ2 ∈Mp(Ω;M) are equivalent if and only if they agree on p-quasi
open sets.

Proof. The criterion follows by repeating with obvious changes the arguments used in [12, Theorem
2.6]. �

The following lemma introduces a distinguished element in each equivalence class ofMp(Ω;M).

Lemma 2.11. For every µ ∈Mp(Ω;M), there exists a measure µ∗ ∈Mp(Ω;M), equivalent to µ,
with the property that

(2.15) µ∗(B) = inf
{
µ∗(U) : U p-quasi open and B ⊂ U ⊂ Ω

}
,

for all B ∈ B(Ω). Moreover, µ∗ ≥ ν whenever ν ∈Mp(Ω;M) is equivalent to µ.

Proof. Arguing as in [12, Theorem 3.9], it can be seen that

µ∗(B) := inf
{
µ(U) : U p-quasi open and B ⊂ U ⊂ Ω

}
, for all B ∈ B(Ω),

defines a Borel measure of class Mp(Ω;M) satisfying (2.15). By Lemma 2.10 µ∗ is equivalent to µ
and for any other measure ν within the equivalence class we have that

ν(B) ≤ inf
{
ν(U) : U p-quasi open and B ⊂ U ⊂ Ω

}
= µ∗(B) ,

for all B ∈ B(Ω). �
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The previous lemma states that any capacitary measure admits a maximal representative in its
equivalence class that is outer regular with respect to p-quasi open sets.

In the sequel we will sometimes need to represent µ by means of a measure which is absolutely
continuous with respect to an element of a dual Sobolev space.

Lemma 2.12. Every measure µ ∈Mp(Ω;M) is equivalent to a measure ψσ of the form

ψσ(B) =

∫
B∩M

ψ dσ , B ∈ B(Ω) ,

for a Borel function ψ : M → [0,∞] and a non-negative measure σ of class W−1,p′(Ω).

Proof. Let µ ∈ Mp(Ω;M). Let Ω0, Σ0, and Ω±0 be as in (2.6), let E0 be a Borel set of Σ0 and let
µ0 = µ E0 ∈Mp(Ω0,Σ0). By [11, Theorem 5.7], there exist a Borel function h : Ω0×R→ [0,∞],
increasing and lower semicontinuous in the second variable for all x ∈ Ω0, and a non-negative Radon
measure σ0 of class W−1,p′(Rn) such that

(2.16)

∫
A∩Σ0

(z̃ ∨ 0)pdµ0 =

∫
A∩Σ0

h(x, z̃) dσ0 ,

for all A ∈ A (Ω0) and z ∈ W 1,p(Ω0). The additional non-negative Borel measure ν appearing
in [11, Theorem 5.7] is not present here due to the obvious p-homogeneity property of the integral
in the left-hand side of (2.16). Clearly, by (2.16), for every t > 0 we have∫

A∩Σ0

h(x, tz̃) dσ0 = tp
∫
A∩Σ0

h(x, z̃) dσ0 .

Then by [13, Lemma 2.3], setting ψ0(x) := h(x, 1) for x ∈ Ω0, we deduce∫
A∩Σ0

h(x, z̃) dσ0 =

∫
A∩Σ0

(z̃ ∨ 0)pψ0 dσ0 .

Plugging this into (2.16) we obtain that

(2.17)

∫
A∩Σ0

z̃p dµ0 =

∫
A∩Σ0

z̃pψ0 dσ0 ,

for all A ∈ A (Ω0) and for all non-negative functions z ∈W 1,p(Ω0).
We now prove the equivalence of µ to some measure ψσ according to Definition 2.7. Let {Ei}

be a finite family of pairwise disjoint Borel sets of M such that M = E1 ∪ . . . ∪ Em for some
m ∈ N, every Ei is contained in a cylinder Ωi of the form (2.6a) and Σi = Σ ∩ Ωi admits a graph
representation as in (2.6b), for suitable radii ri > 0, centres xi ∈M , and axis νi ∈ Rn with |νi| = 1.

Let ψi : Σi → [0,∞] and σi ∈ W−1,p′(Ωi) satisfy (2.17) with Ω0, Σ0, µ0 replaced by Ωi, Σi,
µi = µ Ei. Then we fix a function u ∈ L1,p(A \M). For all indices i, the extension theorems for
Sobolev functions imply that there exist vi, wi ∈W 1,p(Rn) such that vi = u a.e. in Ω+

i and wi = u
a.e. in Ω−i , with Ω±i being defined as in (2.6c). Let zi = ṽi − w̃i so that [u] = |z̃i| for p-q.e. x ∈ Σi
and notice that zi = 0 on Σi \M . Hence by (2.17) we have∫

A∩M
[u]p dµ =

m∑
i=1

∫
A∩Σi

|zi|p dµi =

m∑
i=1

∫
A∩Σi

|zi|p ψi dσi =

∫
A∩M

[u]pψ dσ ,

where in the last equality we have set

σ =

m∑
i=1

σi , ψ =

m∑
i=1

1Eiψi .
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By linearity, it is clear that σ is a non-negative Radon measure of class W−1,p′(Rn) and that ψ is
a non-negative Borel function on M . The lemma is then proved. �

3. Γ-convergence

We prove in this section a compactness result about the Γ-convergence of a sequence of functionals
involving the compact setsKj and the function f . Then we discuss the convergence of the minimisers
of this sequence when it is perturbed by a functional involving the function g.

3.1. A compactness result. For every j ∈ N let FKj : L0(Ω)×A (Ω)→ [0,∞] be the functional
defined by

(3.1) FKj (u,A) :=


∫
A\Kj

f(∇u) dx , if u|A\Kj ∈ L
1,p(A \Kj),

∞ , otherwise,

with f satisfying (2.1) and (Kj) as in (2.3). Notice that for every u ∈ L0(Ω) the set functions
FKj (u, ·) are increasing on A (Ω) with respect to set inclusion.

Then, let F ′,F ′′ : L0(Ω)×A (Ω)→ [0,∞] be the functionals defined by

F ′(u,A) := inf

{
lim inf
j→∞

FKj (uj , A) : uj → u in L0(Ω)

}
,(3.2a)

F ′′(u,A) := inf

{
lim sup
j→∞

FKj (uj , A) : uj → u in L0(Ω)

}
.(3.2b)

We observe that the infima in (3.2) are achieved, see [10, Proposition 8.1]. Moreover, for every
u ∈ L0(Ω) the set functions F ′(u, ·) and F ′′(u, ·) are increasing on A (Ω) with respect to set
inclusion and for every A ∈ A (Ω) the functionals F ′(·, A) and F ′′(·, A) are lower semicontinuous
on L0(Ω).

Remark 3.1. Let u ∈ L0(Ω) and let (uj) converge to u in L0(Ω). For every t > 0 let utj = uj ∧ t∨−t
and ut = u ∧ t ∨ −t. Since the truncation is Lipschitz continuous, (utj) converges to ut in L0(Ω);

moreover, it is easily seen that FKj (u
t
j , A) ≤ FKj (uj , A) for all A ∈ A (Ω). Since ut = u for all

t ≥ ‖u‖∞, we deduce that for functions u ∈ L∞(Ω) it is not restrictive to assume the recovery
sequences in (3.2) to be uniformly bounded by ‖u‖∞ in L∞(Ω). Similarly, we also deduce that

(3.3) F ′(ut, A) ≤ F ′(u,A) and F ′′(ut, A) ≤ F ′′(u,A) ,

for every A ∈ A (Ω). Combining (3.3) with the lower semicontinuity of F ′ and F ′′ with respect to
the convergence of (ut) to u in L0(Ω), we get

(3.4) lim
t→∞

F ′(ut, A) = F ′(u,A) , and lim
t→∞

F ′′(ut, A) = F ′′(u,A) ,

for every A ∈ A (Ω).

Remark 3.2. Recall that a family of open sets R ⊂ A (Ω) is said to be rich if for every {At}t∈R ⊂
A (Ω) such that As ⊂⊂ At whenever s < t, the set {t ∈ R : At 6∈ R} is at most countable. In [10,
Theorem 15.18] it is proved that

sup
A′∈A (Ω)
A′⊂⊂A

F ′(u,A′) = sup
A′∈A (Ω)
A′⊂⊂A

F ′′(u,A′) ,
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for every u ∈ L0(Ω) and every A ∈ A (Ω) if and only if there exists a rich family R ⊂ A (Ω) such
that

F ′(u,A) = F ′′(u,A) ,

for every u ∈ L0(Ω) and every A ∈ R. Therefore, from [10, Theorem 16.9], the sequential character-
isation of the Γ-convergence and definitions (3.2), there exists a subsequence of (Kj), not relabelled,
and a rich family R ⊂ A (Ω) such that the sequence of functionals (FKj (·, A)) Γ-converges in L0(Ω)
whenever A ∈ R.

For every µ ∈Mp(Ω;M) let Fµ : L0(Ω)×A (Ω)→ [0,∞] be the functional defined by

(3.5) Fµ(u,A) =


∫
A\M

f(∇u) dx+

∫
A∩M

[u]p dµ , if u|A\M ∈ L1,p(A \M),

∞ , otherwise.

Lemma 3.3. Let µ ∈ Mp(Ω;M) and let A ∈ A (Ω). Then, the restrictions to Lq(Ω) of the
functionals (FKj (·, A)) defined by (3.1) Γ-converge in Lq(Ω) to the restriction to Lq(Ω) of Fµ(·, A)

if and only if (FKj (·, A)) Γ-converge in L0(Ω) to Fµ(·, A).

Proof. Assume that the restrictions Γ-converge in Lq(Ω) and let us prove the Γ-convergence in
L0(Ω). We fix u ∈ L0(Ω). As for the Γ-limsup inequality, we have to prove that

(3.6) Fµ(u,A) ≥ F ′′(u,A) .

Let t > 0. Since the truncated function ut ∈ Lq(Ω) by assumption there exists a sequence uj ∈
Lq(Ω) converging to ut in Lq(Ω) and such that Fµ(ut, A) ≥ lim supj FKj (uj , A). Moreover, since

convergence in Lq(Ω) implies convergence in L0(Ω), we have lim supj FKj (uj , A) ≥ F ′′(ut, A). By
(3.5), we have Fµ(u,A) ≥ Fµ(ut, A) and taking the limit as t → ∞ we obtain (3.6), thanks to
(3.4).

As for the Γ-liminf inequality, we have to prove that

(3.7) F ′(u,A) ≥ Fµ(u,A) .

Let (vj) be a sequence converging to u in L0(Ω), with F ′(u,A) = lim infj FKj (vj , A). By the
dominated convergence theorem, vtj converges to ut in Lp(Ω) for every given t > 0. Therefore, by
assumption and by Remark 3.1 we have

lim inf
j→∞

FKj (vj , A) ≥ lim inf
j→∞

FKj (v
t
j , A) ≥ Fµ(ut, A).

Taking the limit as t→∞ we get (3.7), thanks to Remark 2.5 and Fatou’s lemma.

Conversely, assume Γ-convergence in L0(Ω) and let us prove Γ-convergence in Lq(Ω). To this
aim we introduce the functionals F ′q(·, A) and F ′′q (·, A), defined on Lq(Ω) as in (3.2) with L0(Ω)
replaced by Lq(Ω). The proof is similar to that of [14, Lemma 7.2]. The Γ-liminf inequality is
immediate: for every u ∈ Lq(Ω) and for every sequence uj ∈ Lq(Ω) converging to u in Lq(Ω),
clearly uj converges to u in L0(Ω) too, hence by assumption lim infj FKj (uj , A) ≥ Fµ(u,A) which
implies that

F ′q(u,A) ≥ Fµ(u,A) .

As for the Γ-limsup inequality, we have to prove that for every u ∈ Lq(Ω) we have

(3.8) Fµ(u,A) ≥ F ′′q (u,A) .

Let t > 0. By assumption, there exists a sequence (vj), converging to the truncation ut in L0(Ω),
such that Fµ(ut, A) ≥ lim supj FKj (vj , A); by Remark 3.1 we may also assume that vj is bounded
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by t in L∞(Ω). Hence (vj) converges to ut in Lq(Ω) and consequently Fµ(ut, A) ≥ F ′′q (ut, A).

Since Fµ(u,A) ≥ Fµ(ut, A) we have Fµ(u,A) ≥ F ′′q (ut, A). Since ut → u in Lq(Ω) as t→∞, the
lower semicontinuity of F ′′q (·, A) implies (3.8). �

We now prove a compactness theorem ensuring Γ-convergence of the functionals (3.1) to a Γ-limit
with the integral representation given in (3.5)

Theorem 3.4. There exist a subsequence of (Kj), not relabelled, a measure µ ∈Mp(Ω;M) and a
rich family R ⊂ A (Ω) such that the sequence of functionals (FKj (·, A)) defined by (3.1) Γ-converges

in L0(Ω) to the functional Fµ(·, A) defined by (3.5) for all A ∈ R. The measure µ possibly depends
on f and on the subsequence (Kj) but not on R. Moreover, A ∈ R whenever C1,p(∂A ∩M) = 0,
thus Ω ∈ R.

Proof. By Remark 3.2 and by [9, Theorem 7.8, Remark 7.9 and Theorem 8.2], there exist a subse-
quence of (Kj), not relabelled, a measure µ ∈ Mp(Ω;M) and a rich family R ⊂ A (Ω) such that
the restrictions to Lp(Ω) of the functionals FKj (·, A) defined by (3.1) Γ-converge in Lp(Ω) to the
restriction to Lp(Ω) of the functional Fµ(·, A) for all A ∈ R. Hence the conclusion follows thanks
to Lemma 3.3. �

3.2. Convergence of minimisers. This subsection is devoted to the convergence of the minimisers
when the functionals FKj and Fµ appearing in Theorem 3.4 are perturbed with the functional

G : L0(Ω)×A (Ω)→ [0,∞] defined by

G (u,A) :=


∫
A

g(x, u) dx , if u ∈ Lq(A),

∞ , otherwise,

with g satisfying (2.2). A significant instance of a function satisfying (2.2) is g(x, s) = |s−h(x)|q for
some h ∈ Lq(Ω). Notice that the compactness in Lq(Ω) of sequences of minimisers is not immediate
even in this case, except when h is also bounded so that minimisers satisfy apriori uniform L∞

estimates and their convergence to a minimiser is a mere consequence of a Γ-convergence result (see
Proposition 3.6 below).

Theorem 3.5. Let µ ∈ Mp(Ω,M) and let A ∈ A (Ω). Assume that (FKj (·, A)) Γ-converge in

L0(Ω) to Fµ(·, A). Then every sequence (uj) of minimisers of the problems

(3.9) min
u∈L1,p(A\Kj)

{∫
A\Kj

f(∇u) dx+

∫
A

g(x, u) dx
}

has a subsequence which converges in Lq(Ω) to a minimiser of the problem

(3.10) min
u∈L1,p(A\M)

{∫
A\M

f(∇u) dx+

∫
A∩M

[u]p dµ+

∫
A

g(x, u) dx
}
.

Moreover, the minimum values of (3.9) converge to the minimum value of (3.10).

In order to prove Theorem 3.5, we need the following results about the Γ-convergence in L0(Ω)
of the functionals FKj + G to Fµ + G . Notice that the conclusion is not obvious because G is, in

general, not continuous in L0(Ω).

Proposition 3.6. Let µ ∈ Mp(Ω,M) and let A ∈ A (Ω). Assume that (FKj (·, A)) Γ-converge in

L0(Ω) to Fµ(·, A). Then, the sequence of functionals (FKj (·, A) + G (·, A)) Γ-converge in L0(Ω) to
the functional Fµ(·, A) + G (·, A).
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Proof. Let u ∈ L0(A). By assumption and by the lower semicontinuity of the functional G with
respect to the convergence in L0(Ω), which follows from Fatou’s Lemma, we have

Fµ(u,A) + G (u,A) ≤ inf
{

lim inf
j→∞

(
FKj (uj , A) + G (uj , A)

)
: uj → u in L0(Ω)

}
≤ inf

{
lim sup
j→∞

(
FKj (uj , A) + G (uj , A)

)
: uj → u in L0(Ω)

}
.

(3.11)

We claim that these inequalities are in fact equalities. Indeed, if u 6∈ Lq(A), by (2.2c) the left-hand
side in (3.11) is infinite and the conclusion is obvious. If instead u ∈ Lq(A) then by Lemma 3.3
and by the continuity of the functional G with respect to the strong convergence in Lq(Ω), we have
that

inf
{

lim sup
j→∞

(
FKj (uj , A) + G (uj , A)

)
: uj → u in Lq(Ω)

}
≤ Fµ(u,A) + G (u,A) .

Since clearly the convergence in Lq(Ω) implies the convergence in L0(Ω), we deduce the equalities
in (3.11). This concludes the proof. �

In order to deduce the convergence of minimisers in Lq(Ω), we also need the following result.

Proposition 3.7. Let A ∈ A (Ω), let u ∈ Lq(A), let (uj) be a sequence converging to u in L0(Ω)
and assume that

(3.12) lim
j→∞

∫
A

g(x, uj) dx =

∫
A

g(x, u) dx .

Then (uj) converges to u strongly in Lq(Ω).

Proof. By (2.2b), the convergence of (uj) to u in L0(Ω) implies that g(x, uj) → g(x, u) in L0(Ω).
Thus, by the generalised dominated convergence theorem, using (3.12) and the lower bound in
(2.2c) we deduce that

(3.13) lim
j→∞

∫
A

|uj |q dx =

∫
A

|u|q dx .

By using again the generalised dominated convergence theorem, (3.13) implies the strong conver-
gence in Lq(Ω) of (uj) to u. �

Proof of Theorem 3.5. Let uj ∈ L1,p(A\Kj) be a sequence of minimisers of the minimum problems
(3.9). By [10, Proposition 7.1], supj [FKj (uj , A) + G (uj , A)] <∞, hence by (2.1b) and (2.2c) there

exists a function u ∈ L1,p(A \ M) ∩ Lq(A) and a subsequence, not relabelled, (uj) converging
to u weakly in W 1,p(A \Mρ), for every ρ > 0, where Mρ = {x ∈ Ω: dist(x,Σ) ≤ ρ}. Therefore,
(uj) converges in L0(Ω) to a function u ∈ Lq(A). Moreover, as a general consequence of the
Γ-convergence result of Proposition 3.6, see [10, Corollary 7.20], u is a solution of the minimum
problem (3.10) and

(3.14) lim
j→∞

{∫
A\Kj

f(∇uj) dx+

∫
A

g(x, uj) dx
}

=

∫
A\M

f(∇u) dx+

∫
A∩M

[u]p dµ+

∫
A

g(x, u) dx .

Then, by the Γ-convergence assumption

(3.15)

∫
A\M

f(∇u) dx+

∫
A∩M

[u]p dµ ≤ lim inf
j→∞

∫
A\Kj

f(∇uj) dx .
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The lower semicontinuity of
∫
A
g(x, ·)dx with respect to the convergence in L0(Ω) implies

(3.16)

∫
A

g(x, u) dx ≤ lim inf
j→∞

∫
A

g(x, uj) dx .

Combining (3.15) with (3.16) we get∫
A\M

f(∇u) dx+

∫
A∩M

[u]p dµ+

∫
A

g(x, u) dx ≤ lim inf
j→∞

{∫
A\Kj

f(∇uj) dx+

∫
A

g(x, uj) dx
}
,

and by (3.14) all the inequalities are in fact equalities. Hence by (3.16) we have∫
A

g(x, u) = lim
j→∞

∫
A

g(x, uj) dx .

Thus, by Proposition 3.7 we can deduce that (uj) converges to u strongly in Lq(Ω), and this implies
the desired conclusion. �

4. Approximation of capacitary measures

This section is devoted to prove that all capacitary measures concentrated on smooth hypersur-
faces can be approximated by homogeneisation as described in Section 3. This density result means
that the class Lp(Ω;M) of limit measures, i.e., limit measures that can appear in the conclusion of
Theorem 3.4 (see the following definition), coincides with the whole class Mp(Ω;M) of capacitary
measures concentrated on M .

Definition 4.1. Let µ ∈Mp(Ω;M) and let A ∈ A (Ω). We say that µ ∈ Lp(A;M) if there exists a
sequence of compact sets (Kj) satisfying (2.3) and such that the sequence of functionals (FKj (·, A))

defined by (3.1) Γ-converge in L0(Ω) to the functional Fµ(·, A) defined as in (3.5). In this case, we
say that the sequence (Kj) is associated with µ.

4.1. Stability results. A sufficient condition for the stability of the class introduced in Defini-
tion 4.1 is the Γ-convergence of the corresponding functionals Fµ.

Lemma 4.2. Let A ∈ A (Ω). Let µk ∈ Lp(A;M) for every k ∈ N, and let µ ∈Mp(A;M). Assume

that (Fµk(·, A)) Γ-converge in L0(Ω) to Fµ(·, A). Then µ ∈ Lp(A;M).

Proof. Given a functional F : Lq(Ω)×A (Ω)→ [0,∞], for every A ∈ A (Ω) and for every τ > 0 we
define a Moreau-Yosida-type approximation of index τ of F (·, A) setting

YτF (u,A) = inf
{
F (v,A) + τ‖u− v‖qLq(A) : v ∈ Lq(A)

}
,

for all u ∈ Lq(A).
Since µk ∈ Lp(A;M), by Definition 4.1, there exists a sequence of compact sets (Kk

j ), with

max{dist(x,M) : x ∈ Kk
j } → 0+ as j → ∞, such that the sequence of functionals (FKk

j
(·, A))

defined by (2.3) Γ-converge in L0(Ω) to the functional Fµk(·, A). Possibly passing to a subsequence
we may assume max{dist(x,M) : x ∈ Kk

j } ≤ 1/j. By Theorem 3.5

(4.1) lim
j→∞

YτFKk
j
(u,A) = YτFµk(u,A) for every u ∈ Lq(A), τ > 0, and k ∈ N.

As in Lemma 3.3, by the Γ-convergence assumption we can prove that the restrictions to Lq(Ω)

of (Fµk(·, A)) Γ-converge in Lq(Ω) to the restriction to Lq(Ω) of Fµ(·, A). Then arguing as in
Theorem 3.5 we obtain

(4.2) lim
k→∞

YτFµk(u,A) = YτFµ(u,A) for every u ∈ Lq(A), τ > 0, and k ∈ N.
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Let (ui) be a countable dense sequence in Lq(A). By (4.1) for every k there exists jk ≥ k such that∣∣∣YτFKk
jk

(ui, A)− YτFµk(ui, A)
∣∣∣ ≤ 1/k ,

every i = 1, . . . , k and every τ = 1, . . . , k. By (4.2) this implies

lim
k→∞

YτFKk
jk

(ui, A) = YτFµ(ui, A) , for every i, τ ∈ N.

From [10, Theorem 9.16], using Lemma 3.3 again, we deduce that the sequence of functionals
(FKk

jk

(·, A)) Γ-converge in L0(Ω) to the functional Fµ(·, A). Hence to conclude that µ ∈ Lp(A;M),

it suffices to observe that max{dist(x,M) : x ∈ Kk
jk
} ≤ 1/jk ≤ 1/k for j large enough. �

A simple condition for the Γ-convergence of the functionals Fµ is provided by the following
lemma.

Lemma 4.3. Let A ∈ A (Ω). Let µk ∈ Mp(A;M) for every k ∈ N, and let µ ∈ Mp(A;M).
Assume that (µk) is monotone and that µ is the pointwise limit of the measures µk, defined as

µ(B) := limk→∞ µk(B) for every B ∈ B(A). Then (Fµk(·, A)) Γ-converges in L0(Ω) to Fµ(·, A).

Proof. In view of [10, Proposition 5.4] (see also [10, Remark 5.5]), if (µk(B)) is a monotone in-

creasing sequence for every B ∈ B(A) then the Γ-limit of the functionals Fµk coincides with the
pointwise monotone limit, which by assumption is given by Fµ. �

An immediate consequence of Lemma 4.2 and Lemma 4.3 is that a measure belongs to Lp(A;M)
whenever it can be written as the pointwise monotone limit of measures of class Lp(A;M).

The stability of the class introduced in Definition 4.1 holds also under convergence in dual Sobolev
spaces. To see this we need the following result about the lower semicontinuity of the integral of
the jump of u when both the measure and the function vary.

Lemma 4.4. Let Ω0 and Σ0 be defined by (2.6a) and (2.6b), respectively. Let (µk) be a sequence

of non-negative Radon measures in W−1,p′(Ω0) converging to µ strongly in W−1,p′(Ω0) and let (uk)
be a sequence of functions converging to u weakly in W 1,p(Ω0 \ Σ0). Then

(4.3)

∫
Σ0

[u]p dµ ≤ lim inf
k→∞

∫
Σ0

[uk]p dµk .

Proof. It suffices to prove that

(4.4)

∫
Σ0

|z̃|p dµ ≤ lim inf
k→∞

∫
Σ0

|z̃k|p dµk

for all sequences (zk) weakly converging to z in W 1,p(Ω0). Let (ϕi) be a sequence in C∞c (Ω0) such
that 0 ≤ ϕi ≤ ϕi+1 ≤ 1 for all i and ϕi(x) → 1 for all x. Let t > 0 and let ztk and zt be the

truncations of zk and z. Since µk converges to µ strongly in W−1,p′(Ω0), |ztk|p ϕi converges to

|zt|p ϕi weakly in W 1,p
0 (Ω0), and

〈µk, |ztk|pϕi〉 =

∫
Σ0

|z̃tk|p ϕi dµk, 〈µ, |zt|pϕi〉 =

∫
Σ0

|z̃t|p ϕi dµ ,

we obtain

(4.5)

∫
Σ0

|z̃t|p ϕi dµ ≤ lim inf
k→∞

∫
Σ0

|z̃tk|p ϕi dµk ≤ lim inf
k→∞

∫
Σ0

|z̃k|p dµk .

Letting i→∞ and t→∞, by the monotone convergence theorem we obtain (4.4) from (4.5).
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We now prove (4.3). Let Ω±0 the two connected components of Ω0 \Σ0, as in (2.6c). By applying
a linear extension operator we find vk, v, wk, w ∈W 1,p(Ω0) such that

u+
k = ṽk , u+ = ṽ , u−k = w̃k , u− = w̃ p-q.e. on Σ0.

Let zk = ṽk − w̃k and z = ṽ − w̃ so that

[uk] = |zk| and [u] = |z| p-q.e. on Σ0.

By linearity (zk) converges to z weakly in W 1,p
0 (Ω0), hence (4.3) follows from (4.4). �

We now prove the closure of the class Lp(Ω0;M) under strong convergence in dual Sobolev space.

Lemma 4.5. Let Ω0 be defined by (2.6a) and let Σ0 = Ω0 ∩ Σ be representable as in (2.6b).
Let µk ∈ Lp(Ω0;M) for every k ∈ N and let µ ∈ Mp(Ω0;M). Assume that (µk) is a sequence

of non-negative Radon measures in W−1,p′(Ω0) converging to µ strongly in W−1,p′(Ω0). Then
µ ∈ Lp(Ω0;M).

Proof. By Lemma 4.2, it suffices to prove the Γ-convergence in L0(Ω) of the sequence (Fµk(·,Ω0))

to Fµ(·,Ω0). Let F̂ ′ and F̂ ′′ be the Γ-liminf and Γ-limsup of Fµ in L0(Ω) of this sequence. Given
u ∈ L0(Ω) and t > 0 we consider the truncation ut. By extension theorems in Sobolev spaces we
may find functions v, w ∈W 1,p(Ω0) ∩ L∞(Ω0) satisfying

(ut)+ = ṽ and (ut)− = w̃ p-q.e. on Σ0.

This implies that ∫
Σ0

[ut]p dµk = 〈µk, |v − w|p〉 → 〈µ, |v − w|p〉 =

∫
Σ0

[ut]p dµ

which gives

F̂ ′′(ut,Ω0) ≤ lim
k→∞

Fµk(ut,Ω0) = Fµ(ut,Ω0) ≤ Fµ(u,Ω0).

Taking the limit as t → ∞ we obtain F̂ ′′(u,Ω0) ≤ Fµ(u,Ω0). On the other hand, we also

have Fµ(u,Ω0) ≤ F̂ ′(u,Ω0). This is an immediate consequence of Lemma 4.4 and of the lower
semicontinuity of the integral

∫
Ω0
f(∇u) dx. Combining the two inequalities we get the desired

Γ-convergence and we conclude. �

4.2. Density results. We begin by proving that the collection of all non-negative finite Radon
measures onM belonging toW−1,p′(Rn) is dense in the class of all capacitary measures concentrated
on M .

Lemma 4.6. Let µ ∈ Mp(Ω,M) and let A ∈ A (Ω). Then there exists a sequence (µk) of non-

negative finite Radon measures of class W−1,p′(Ω) such that (Fµk(·, A)) Γ-converges in L0(Ω) to
Fµ(·, A).

Proof. By Lemma 2.12 there exist a Borel function ψ : M → [0,∞] and a non-negative Radon

measure σ of class W−1,p′(Rn) such that

(4.6)

∫
A∩M

[u]p dµ =

∫
A∩M

[u]pψ dσ ,

for all u ∈ L1,p(A \M). Since the measure ψσ is the pointwise limit of the measures µk = (ψ ∧ k)σ

the Γ-limit of Fµk(·, A) is Fµ(·, A), thanks to Lemma 4.3 and (4.6). Clearly every µk is a finite

non-negative Radon measure of class W−1,p′(Rn). �
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In view of Lemmas 4.2 and 4.6, to prove that Lp(A;M) =Mp(A;M) it is enough to show that

every non-negative Radon measure belonging to W−1,p′(Rn) also belong to Lp(A,M). We first
prove this conclusion in the special case of hyperplanes.

Proposition 4.7. Assume that M and Σ are contained in a hyperplane. Let Ω0 be as in (2.6a) so
that Π0 = Ω0 ∩ Σ. Then Mp(Ω0,M) = Lp(Ω0;M).

Proof. We only have to prove the inclusion Mp(Ω0;M) ⊂ Lp(Ω0;M), the other being trivial by
Definition 4.1. It is known that the measures βH n−1 (A∩M) belong to the class Lp(Ω0;M) for
all β > 0 and for all A ∈ A (Ω0), see, e.g., [2, Theorem 3.3] (see also Remark 3.3(a) therein). Since
by Definition 4.1 the class Lp(Ω0;M) is closed under sum and multiplication by positive scalars,
we deduce that

h∑
i=1

βi1AiH
n−1 M ∈ Lp(Ω0;M)

for all pairwise disjoint relative open subsets A1, . . . , Ah of M , for all β1, . . . , βh > 0, and for all
h ∈ N. Since by standard density result simple functions are dense in Lp

′
(Ω0), by Lemma 4.5 we

can deduce that every measure of the form θH n−1 M , with θ ∈ Lp′(M ; H n−1) and θ ≥ 0, belongs

to Lp(Ω0;M). Indeed, if (θh) is a sequence converging to θ in Lp
′
(M,H n−1), then the sequence

of non-negative Radon measures θhH n−1 M converges to θH n−1 M in W−1,p′(Ω0), by Hölder
inequality and Sobolev trace theorem.

Next we prove that the linear space X := {θH n−1 M : θ ∈ C∞0 (Ω0)} is dense, with respect to the

strong topology of W−1,p′(Ω0), in the closed linear space Y := {F ∈ W−1,p′(Rn) : supp(F ) ⊂ M}.
If not, by Hahn-Banach theorem and by the reflexivity of W 1,p(Rn) there exists F0 ∈ Y \ X and

u0 ∈W 1,p
0 (Ω0) such that 〈F0, u0〉 6= 0 and 〈F, u0〉 = 0 for every F ∈ X . The last condition implies∫

M

u0 θ dH
n−1 = 0 , for all θ ∈ C∞0 (Rn).

In particular, u0 = 0 H n−1-a.e. on M . Then, u would be the limit in W 1,p(Ω0) of a sequence
(uε) ⊂ C∞0 (Ω0) such that supp(uε)∩M = Ø. Since F0 ∈ Y, then supp(F0) ⊂M , hence 〈F0, uε〉 = 0
for every ε. This implies that 〈F0, u0〉 = 0, and this contradiction concludes the proof of the density
of X in Y.

Using Lemma 4.5 again, from the density of X in Y we deduce, in particular, that all non-
negative Radon measures of class W−1,p′(Ω0) with support contained in M belong to Lp(Ω0;M).
Then, the desired conclusion follows by Lemma 4.2 and Lemma 4.6. �

The following lemma is another ingredient in the proof of the main result of this section: it
entails that every capacitary measure is sufficiently close to a measure of the class introduced in
Definition 4.1.

Lemma 4.8. Let η > 0, let Ω0 be a cylinder of the form (2.6a), let Σ0 = Ω0∩Σ be representable as
in (2.6b), and let Ψ: Ω0 → Ω0 be a C1 diffeomorphism with ‖Ψ− Id‖C1(Ω0) < η and Ψ(Σ0) = Π0,
where Id is the identity map. Let µ ∈Mp(Ω0;M). Then there exists σ ∈ Lp(Ω0;M) with

(4.7)

∣∣∣∣∫
Σ0

[u]p d(µ− σ)

∣∣∣∣ ≤ Cη ∫
Ω0\Σ0

f(∇u) dx, for all u ∈ L1,p(Ω0 \M),



TRANSMISSION CONDITIONS OBTAINED BY HOMOGENISATION 18

where C > 0 is a constant only depending on λ,Λ, p. In addition, if E,E′ are Borel subsets of Σ0

with µ(Σ0 \ E) = 0 and

(4.8) inf
E×E′

|x− y| > δ > 0,

then σ(E′) = 0.

Proof. We first observe that there exists a constant C > 0 only depending on λ,Λ, p such that

(4.9)

∣∣∣∣∣
∫

Ω0\K

[
f(∇u)− f

(
∇u(DΨ−1 ◦Ψ)

)
|detDΨ(x)|

]
dx

∣∣∣∣∣ ≤ C η
∫

Ω0\K
f(∇u) dx ,

for every closed set K ⊂ Σ0 and for every u ∈W 1,p(Ω0 \K) (with the convention that ∇u is a row
vector). Indeed, by (2.1a) and Euler’s identity we have

∇ξf(ξ) · v = lim
t→0+

f(ξ + t(v − ξ))− f(ξ)

t
+∇ξf(ξ) · ξ ≤ f(v) + (p− 1)f(ξ) ,

for a.e. ξ ∈ Rn, so that a standard homogeneity argument gives

|∇ξf(ξ) · v| ≤ pf(ξ)
p−1
p f(v)

1
p , for a.e. ξ ∈ Rn.

Since the restriction of f to a line is a convex function then it is differentiable a.e. w.r.t. the
one-dimensional Lebesgue measure. Hence, plugging in ξ = (1 − t)∇u(DΨ−1 ◦ Ψ) + t∇u with
0 < t < 1 and v = ∇u(I − DΨ−1 ◦ Ψ) in the last inequality and integrating, by the assumption
that ‖Ψ− I‖C1(Ω0) < η, we obtain∫

Ω0\K

∣∣∣f(∇u)− f(∇u(DΨ−1 ◦Ψ))
∣∣∣ dx ≤ Cη ∫

Ω0\K
f(∇u) dx ,

(where we also used the convexity of f again) with the constant being independent of f , H and η.
Using the assumption again, (4.9) follows.

Now, let u ∈ L1,p(Ω0 \M) and let π : B(Ω0)→ [0,∞] be the measure of Mp(Ω0;M) defined by

(4.10) π(B) := µ(Ψ−1(B) ∩ Ω0) , for all B ∈ B(Ω0).

Since ψ(M) ∩Ω0 is contained in Π0, by Proposition 4.7, π ∈ Lp(Ω0; Ψ(M)). Therefore, there exist
a sequence of compact sets (Hj) with max{dist(x,Ψ(M)) : x ∈ Hj} → 0+ as j →∞ and a sequence
(vj) of L1,p(Ω0 \Ψ(M)) converging to the function v = u ◦Ψ−1 ∈W 1,p(Ω0 \Ψ(M)) in L0(Ω), such
that

(4.11a) lim
j→∞

∫
Ω0\Hj

f(∇vj) dx =

∫
Ω0\Π0

f(∇v) dx+

∫
Π0

[v]p dπ .

Moreover, the sequence of compact sets (Kj) and of functions (uj) of W 1,p(Ω0 \M), defined by
composition, respectively, as Kj = Ψ−1(Hj) and uj = vj ◦ Ψ, are such that max{dist(x,M) : x ∈
Kj} → 0+ as j →∞ and uj converges to u in L0(Ω). Hence, by Theorem 3.4, up to subsequences
(not relabelled) there exists σ ∈ Lp(Ω0;M) such that

(4.11b) lim inf
j→∞

∫
Ω0\Kj

f(∇uj) dx ≥
∫

Ω0\Σ0

f(∇u) dx+

∫
Σ0

[u]p dσ .

Therefore, by combining (4.11) with (4.10) and by using Ψ to change variables in the volume
integrals, recalling (4.9), we deduce the estimate∫

Σ0

[u]p d(σ − µ) =

∫
Σ0

[u]p dσ −
∫

Π0

[v]p dπ ≤ Cη
∫

Ω0\Σ0

f(∇u) dx ,



TRANSMISSION CONDITIONS OBTAINED BY HOMOGENISATION 19

The estimate (4.7) then follows by estimating the integral
∫

Σ0
[u]p d(µ − σ) in a similar way, by

choosing a recovering sequence for Fσ(u,Ω) and by using Ψ to change variables with the estimate
(4.9).

As for the final part, from the assumption on µ and definition (4.10) we deduce that π is
concentrated on Ψ(E)∩Π0. Therefore, by Definition 4.1 we may assume the closed setsHj appearing
in (4.11a) to be contained in Ψ(E). Since Ψ is a diffeomorphism, every set Ψ−1(Hj) is contained
in E. Then the measure σ appearing in (4.11b) must be concentrated in {x ∈ Σ0 : dist(x,E) < δ},
which by (4.8) implies σ(E′) = 0. �

We are now in position to prove the main result of this section.

Theorem 4.9. The following equality holds: Lp(Ω;M) =Mp(Ω;M).

Proof. In view of Definition 4.1, we fix a measure µ ∈Mp(Ω;M) and we prove that µ ∈ Lp(Ω;M).

We can also assume µ to be a finite Radon measure of class W−1,p′(Rn), thanks to Lemma 4.2 and
Lemma 4.6. Let k > 0. We consider a finite family {Ei} of pairwise disjoint Borel sets of M such
that M = E0 ∪ E1 ∪ . . . ∪ Em for some m ∈ N, µ(E0) < 2−k, every Ei (with i ≥ 1) is contained in
a cylinder Ωi of the form (2.6a) and Σi = Σ ∩ Ωi admits a graph representation as in (2.6b), for
suitable radii ri > 0, centres xi ∈ Σ and axis νi ∈ Rn with |νi| = 1. Moreover, for i ≥ 1, the sets
Ei can be chosen to satisfy

min
1≤i<j≤m

inf
(x,y)∈Ei×Ej

|x− y| > 0 .

Let µi := µ Ei ∈W−1,p′(Ωi) for every i = 1, . . . ,m. By Lemma 4.8, there exists σki ∈ Lp(Ωi;M),
concentrated on Ei, such that

(4.12)

∣∣∣∣∫
Σi

[u]p d(µi − σki )

∣∣∣∣ ≤ C2−k
∫

Ωi\Σi
f(∇u) dx , for all u ∈W 1,p(Ωi \M).

The measure σk =
∑m
i=1 σ

k
i is a non-negative Borel measure that belongs to Lp(Ω;M), since

the summands are concentrated on pairwise disjoint Borel sets by construction. Therefore, since
µ(E0) < 2−k, from (4.12) we deduce that

(4.13)

∣∣∣∣∫
M

[u]p d(µ− σk)

∣∣∣∣ ≤ C[ ∫
Ω\M

f(∇u) dx+ 2tp
]
2−k ,

for all u ∈W 1,p(Ω \M) with ‖u‖L∞(Ω) ≤ t with t > 0, where we also used [u] = 0 p-q.e. on Σ \M .

By Lemma 4.2 again, it suffices to prove the Γ-convergence in L0(Ω) of the sequence (Fσk(·,Ω))

to Fµ(·,Ω). Let F̂ ′ and F̂ ′′ be the Γ-liminf and Γ-limsup of Fµ in L0(Ω) of this sequence. Given
u ∈ L0(Ω) and t > 0 we consider the truncation ut. The Γ-limsup is immediate. By (2.1b) we can
assume u ∈ L1,p(Ω \M) otherwise the inequality is trivial. Therefore, by (4.13) we have

F̂ ′′(ut,Ω) ≤ Fµ(ut,Ω) ≤ Fµ(u,Ω) .

Taking the limit as t → ∞ we obtain F̂ ′′(u,Ω) ≤ Fµ(u,Ω). On the other hand, for the Γ-liminf
inequality we have to prove that

(4.14) F̂ ′(u,Ω) ≥ Fµ(u,Ω) .

Let (uk) be a sequence converging to u in L0(Ω) with F̂ ′(u,Ω) = lim infk Fσk(uk,Ω). Moreover,
we can assume this sequence to be equibounded in L1,p(Ω \ M) so that (utk) converges, up to

subsequences (not relabelled), to u weakly in W 1,p(Ω \ M). Therefore, as Fσk(·,Ω) decreases
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under truncation, the estimate (4.13), the lower semicontinuity of the integral
∫

Ω0
f(∇u) dx and

Lemma 4.4 applied to each Ωi yields

lim inf
k→∞

Fσk(uk,Ω) ≥ lim inf
k→∞

Fσk(utk,Ω) ≥ Fµ(ut,Ω).

Taking the limit as t→∞ we get (4.14), thanks to Remark 2.5 and Fatou’s lemma. �

5. Construction of capacitary measures

In this section we provide a general procedure to construct the capacitary measure µ ∈Mp(Ω;M)
appearing in the conclusion of Theorem 3.4. This will be done by solving some auxiliary localised
minimum problems involving the function f and the sequence of compact sets Kj .

5.1. Formulas for capacitary measures. Let Ω0 be a cylinder of the form (2.6a) for some
x0 ∈ Rn, ν0 ∈ Rn with |ν0| = 1, and r0 > 0. Let Σ0 = Σ ∩ Ω0 be a graph representation as in
(2.6b). For every ρ ∈

(
0, r02

)
we introduce Σ±ρ := Σ0 ± ρν0 and

Sρ := {x̄+ rν0 : x̄ ∈ Π0 , |r − φ(x̄)| < ρ} .
Moreover, for every A ∈ A (Ω0) and every µ ∈Mp(Ω0;M) we set

(5.1) mρ(A,µ) := min
v∈Vρ(A)

∫
A∩Sρ\Σ0

f(∇v) dx+

∫
A∩Σ0

[v]p dµ ,

where Vρ(A) denotes the set of all functions v ∈ L1,p(A∩Sρ \Σ0) with v = 1 H n−1-a.e. on A∩Σ+
ρ

and v = 0 H n−1-a.e. on A∩Σ−ρ . The existence of a minimiser in (5.1) can be proved by the direct
methods of the Calculus of Variations. By truncation every minimiser of (5.1) is bounded by 0 and
1 and therefore it belongs to W 1,p(A∩Sρ \M). Clearly (5.1) defines a non-decreasing set function.
We claim that it is inner regular, i.e.,

(5.2) mρ(A,µ) = sup
A′∈A (Ω)
A′⊂⊂A

mρ(A
′, µ) .

The inequality ≥ is trivial by monotonicity of mρ with respect to set inclusion. To prove the reverse
inequality ≤, we may assume that the sup is finite. We consider an increasing sequence of open
sets Ai ⊂⊂ A along which the sup in (5.2) is achieved as a limit and ui ∈ Vρ(Ai) is chosen to attain
the minimum in (5.1) with A replaced by Ai. Let A′′ ∈ A (Ω) be fixed with A′′ ⊂⊂ A. Then, since
clearly A′′ ⊂ Ai for all large indices i, we have

sup
A′∈A (Ω)
A′⊂⊂A

mρ(A
′, µ) ≥ lim inf

i→∞

∫
A′′∩Σ0

f(∇ui) +

∫
A′′∩Σ0

[ui]
p dµ .

By construction (ui) converges (up to subsequences) to a function u in L0(Ω) (the functions ui are
extended by zero to the whole A) and (∇ui) converges to ∇u weakly in Lp(A∩Sρ \Σ0). By Fatou’s
lemma and by Lemma 4.4 we deduce that

sup
A′∈A (Ω)
A′⊂⊂A

mρ(A
′, µ) ≥

∫
A′′∩Sρ\Σ0

f(∇u) +

∫
A′′∩Σ0

[u]p dµ ,

which, by the arbitrariness of A′′ ⊂⊂ A and the monotone convergence theorem, implies

sup
A′∈A (Ω)
A′⊂⊂A

mρ(A
′, µ) ≥

∫
A∩Sρ\Σ0

f(∇u) +

∫
A∩Σ0

[u]p dµ .
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Since u ∈ Vρ(A), by the compactness of the trace operator, then it is admissible in the minimisation
problem (5.1) and (5.2) holds. Now for every p-quasi-open set U ⊂ Ω0 and every ρ ∈

(
0, r02

)
, we

also set

m̂ρ(U ;µ) := inf
A∈A (Ω0)
A⊃U

mρ(A;µ) .
(5.3)

In the following proposition we construct the measure on p-quasi open sets by squeezing ρ→ 0+

in (5.3). We point out that the set function m̂ρ(U, µ) is not sensitive to the change of the measure
inside its equivalence class, by its very definition (5.3). Hence, according to Lemma 2.10, the
conclusion of Proposition 5.1 cannot hold in general for a larger family than the collection of all
p-quasi open sets.

Proposition 5.1. Let µ ∈Mp(Ω0;M). Then for every p-quasi open set U ⊂ Ω0 we have

(5.4) µ(U) = sup
ρ>0

m̂ρ(U ;µ) .

Proof. Let U be a p-quasi open set. The inequality ≥ holds in (5.4) if for all fixed ρ > 0

(5.5) m̂ρ(U ;µ) ≤ Iρ(U ;µ) := inf
v,A

∫
U∩Sρ\Σ0

f(∇v) dx+

∫
U∩Σ0

[v]p dµ ,

where the infimum is taken among all pairs (v,A) where A is an open set containing U and v ∈
W 1,p(A∩Sρ \Σ0) is a non-negative function with v = 1 H n−1-a.e. on A∩Σ+

ρ and v = 0 H n−1-a.e.

on A∩Σ−ρ . Indeed, given ρ > 0 and an open set A containing U , if we plug in A and v = 1A∩Sρ in
the definition of Iρ(U, µ) from (5.5) we obtain that m̂ρ(U, µ) ≤ µ(U).

Then we prove (5.5). To do so, we fix η > 0. Then there exists an admissible competitor (v,A)
for the minimisation problem (5.5) with

(5.6)

∫
U∩Sρ\Σ0

f(∇v) dx+

∫
U∩Σ0

[v]p dµ < Iρ(U ;µ) + η .

Let δ > 0. Since U is p-quasi open, there exists an open set Vδ, with C1,p(Vδ) < δ, such that
Aδ = U ∪ Vδ is an open set. It is not restrictive to assume that Aδ ⊂ A. Then there exists
zδ ∈W 1,p

0 (Ω) with zδ = 1 on Vδ ∩ S ρ
2

and
∫

Ω
|∇zδ|p ≤ δ. Let also ϕ ∈ C∞0 (Ω) be a cut-off function

with ϕ = 1 in S ρ
2

and ϕ = 0 in Σ+
ρ and we define wδ = 1− ϕzδ. Then wδ = 0 on S ρ

2
∩ Vδ, wδ = 1

on Σ+
ρ and in addition

∫
Ω
|∇wδ|p ≤ ω(δ), where ω(δ)→ 0+ as δ → 0+. We choose δ small enough

so that ∫
Ω

|∇wδ|p ≤ η and

∫
Aδ∩Sρ\Σ0

f(∇v) dx ≤
∫
U∩Sρ\Σ0

f(∇v) dx+ η ,

where the last inequality follows from the fact that |Vδ| → 0+ as δ → 0+.
We observe that vδ = v ∧wδ ∈W 1,p(Aδ ∩Sρ \Σ0) is a non-negative function with vδ = 1 H n−1

a.e. on Σ+
ρ ∩Aδ and vδ = 0 H n−1 a.e. on Σ−ρ ∩Aδ. Then, by (5.3) we have

(5.7) m̂ρ(U ;µ) ≤
∫
Aδ∩Sρ\Σ0

f(∇vδ) dx+

∫
Aδ∩Σ0

[vδ]
p dµ .

As for the volume integral we observe that∫
Aδ∩Sρ\Σ0

f(∇vδ) dx ≤
∫
Aδ∩Sρ\Σ0

f(∇v) dx+

∫
Aδ∩Sρ\Σ0

f(∇wδ) dx ,

≤
∫
U∩Sρ\Σ0

f(∇v) dx+ (1 + Λ)η .

(5.8)
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As for the integral on Σ0 we notice that [vδ] ≤ [v] p-q.e. on U ∩ Σ0 and [vδ] = 0 p-q.e. on Vδ ∩ Σ0.
This implies that

(5.9)

∫
Aδ∩Σ0

[vδ]
p dµ ≤

∫
U∩Σ0

[v]p dµ .

By (5.6), (5.7), (5.8), and (5.9) we deduce that

m̂ρ(U ;µ) ≤ Iρ(U ;µ) + (2 + Λ)η .

Since η is arbitrary we get (5.5).
To prove the reverse inequality ≤ in (5.4), we fix an arbitrary sequence ρi → 0+. By (5.3), there

exists a sequence of open sets (Ai) containing U such that

(5.10) mρi(Ai, µ) < m̂ρi(U, µ) + ρi .

Let also ui ∈ Vρi(Ai) be such that

(5.11) mρi(Ai, µ) =

∫
Ai∩Sρi\Σ0

f(∇ui) dx+

∫
Ai∩Σ0

[ui]
p dµ .

Let ψ : Σ0 → [0,∞] be a Borel function and σ be a Radon measure of class W−1,p′(Ω0) such that
the measure ψσ is equivalent to µ. We recall that we can find such ψ and σ thanks to Lemma 2.12.
For all k > 0 the truncated measure ψkσ is a Radon measure of class W−1,p′(Ω0). Thus, given a

sequence zi converging to a function z weakly in W 1,p
0 (Ω0), for all fixed k > 0 we have that

(5.12) lim
i→∞

∫
Σ0

z̃iψ
k dσ = lim

i→∞
〈ψkσ, zi〉 = 〈ψkσ, z〉 =

∫
Σ0

z̃ψk dσ .

For every i we set

vi(x) =


ui(x) , if x ∈ Ai ∩ S+

ρi ,

ui(Rx) if x ∈ Ai ∩ S−ρi ,

1 , if x ∈ Ai \ Sρi ,
wi(x) =


ui(Rx) if x ∈ Ai ∩ S+

ρi ,

ui(x) , if x ∈ Ai ∩ S−ρi ,
0 , if x ∈ Ai \ Sρi ,

where

Rx := x− ν0((x− x0) · ν0) + 2φ(x− ν0((x− x0) · ν0))− (x− x0) · ν0

is the reflection about the disk Π0 = {x ∈ Ω0 : (x− x0) · ν0 = 0}, x0 and ν0 are the center and the
axis of the cylinder Ω0, and φ is the function describing Σ0 as a graph according to (2.6b).

We take a sequence of functions χk as in Lemma 2.1. Then zi,k = |vi − wi|pχk defines an

equibounded sequence in W 1,p
0 (Ω0). Indeed, by Lemma 2.1 the function zi,k vanishes out of a

compact set contained in U , hence in Ω0; moreover, both vi and wi are defined from ui by a
norm-preserving endomorphism of W 1,p(Ω0) and ui is equibounded in W 1,p(Ω0) by (2.1b), (5.10),
and (5.11). Therefore, by possibly passing to a subsequence (not relabelled) we may assume that

zi,k → χk, as i → ∞, weakly in W 1,p
0 (Ω0). Since the p-quasi continuous representative of zi,k is

[ui]
pχ̃k from (5.12) we deduce that

(5.13)

∫
U∩Σ0

χ̃kψ
k dσ = lim

i→∞

∫
Ai∩Σ0

[ui]
pχ̃kψ

k dσ ≤ lim
i→∞

∫
Ai∩Σ0

[ui]
p dµ ,

where we also used the fact that according to Lemma 2.1 χk = 0 p-q.e. in Ω0\U and the equivalence
of µ to ψσ.
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Combining (5.13) with (5.10) and (5.11), for every k > 0, we obtain∫
U∩Σ0

χ̃kψ
k dσ ≤ lim

i→∞
m̂ρi(U, µ) .

Since by Lemma 2.1 the sequence χk converges to 1 p-q.e. in U , letting k → ∞ in the above
inequality, by the monotone convergence theorem we deduce that

µ(U) ≤ lim
i→∞

m̂ρi(U, µ) ,

up to subsequences. The desired inequality follows from the arbitrariness of the infinitesimal se-
quence (ρi) and the proposition is proved. �

5.2. Equivalence with localised minimum problems. Let (Kj) be a sequence of compact
sets satisfying (2.3). We take ρj = max{dist(x,M) : x ∈ Kj}, so that ρj → 0+ as j → ∞. For
A ∈ A (Ω0), ρ ∈

(
0, r02

)
, and for all j with ρj < ρ we set

(5.14) mρ,j(A) := min
v∈Vρ,j(A)

∫
A∩Sρ\Kj

f(∇v) dx ,

where Vρ,j(A) is the set of all functions v ∈ L1,p(A∩Sρ \Kj) such that v = 1 H n−1-a.e. on Σ+
ρ ∩A

and v = 0 H n−1-a.e. on Σ−ρ ∩ A. The existence of the minimum in (5.14) follows by the direct
methods of the Calculus of Variations. By truncation every minimiser of (5.14) is bounded by 0
and 1 and then it belongs to W 1,p(A ∩ Sρ \Kj). Moreover, we set

(5.15) m′ρ(A) := lim inf
j→∞

mρ,j(A) and m′′ρ(A) := lim sup
j→∞

mρ,j(A) .

We have the following result.

Lemma 5.2. Let A′, A′′ ∈ A (Ω) with A′ ⊂⊂ A′′. Assume that (FKj (·, A′)) Γ-converge in L0(Ω)

to Fµ(·, A′) and (FKj (·, A′′)) Γ-converge in L0(Ω) to Fµ(·, A′′). Then, for every ρ > 0

m′ρ(A
′) ≥ mρ(A

′, µ) and m′′ρ(A′) ≤ mρ(A
′′, µ) .

Proof. To prove the first inequality, let (uj) ⊂ L1,p(A′ \ Kj) be a sequence of minimisers of the
minimum problems (5.14). By (2.1b) it is not restrictive to assume this sequence to be equibounded
in W 1,p(A′ \ Kj) ∩ L∞(A′). Then there exists a function u ∈ W 1,p(A′ \ M) ∩ L∞(A′) and a
subsequence of (uj), not relabelled, converging to u weakly in W 1,p(A′ \ Mr) for every r > 0,
where Mr = {x ∈ Ω: dist(x,Σ) ≤ ρ}. Therefore, (uj) converges in L0(Ω) to a function u ∈ L∞(A′).
Moreover, by the Γ-convergence assumption

m′ρ(A
′) = lim inf

j→∞

∫
A′∩Sρ\Kj

f(∇uj) dx ≥
∫
A′∩Sρ\M

f(∇u) dx+

∫
A′∩M

[u]p dµ .

Since the trace operator is compact, the function u belongs to Vρ(A′) and thus it is admissible in
the minimisation problem (5.1). This proves the first inequality.

To prove the the second inequality we assume mρ(A
′′, µ) to be finite and let u one of its min-

imisers. By the Γ-convergence assumption there exists a sequence (uj) ⊂W 1,p(A′′ \Kj)∩L∞(A′′)
converging to u in L0(Ω) such that

(5.16) mρ(A
′′, µ) = Fµ(u,A′′) = lim

j→∞

∫
A′′∩Sρ\Kj

f(∇uj) dx .

We consider now a cut-off function ϕ ∈ C∞c (Sρ) such that 0 ≤ ϕ ≤ 1, ϕ = 1 in Sρ/2, ϕ = 0 out of

Sρ, and |∇ϕ| ≤ C
ρ for a suitable constant C > 0. We consider the function vj = ϕuj + (1 − ϕ)u
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so that vj ∈ Vρ,j(A′) and ∇vj = (ϕ∇uj + (1− ϕ)∇u) + (uj − u)∇ϕ. By (5.14) and (2.1) for every
ε > 0 we obtain

mρ,j(A
′) ≤

∫
A′∩Sρ\Kj

f(∇vj) dx

≤ 1

(1− ε)p−1

∫
A′∩Sρ\Kj

f(ϕ∇uj + (1− ϕ)∇u) dx+
CpΛ

ρpεp−1

∫
A′∩Sρ\Kj

|uj − u|p dx .
(5.17)

Next, we osberve that by (2.1a) we have∫
A′∩Sρ\Kj

f(ϕ∇uj + (1− ϕ)∇u) dx ≤
∫
A′′∩Sρ\Kj

ϕf(∇uj) dx+

∫
A′′∩Sρ\Kj

(1− ϕ)f(∇u) dx ,

where we also used that A′ ⊂ A′′. Let now Â ∈ A(Ω) be a Lipschitz set with A′ ⊂ Â ⊂ A′′. Then,

uj converges to u in Lp(Â), hence

lim
j→∞

∫
Â∩Sρ\Kj

|uj − u|p dx = 0 .

Using the last two inequalities and the fact that ϕ ≤ 1, from (5.17) we obtain

lim sup
j→∞

mρ,j(A
′) ≤ 1

(1− ε)p−1

[
lim sup
j→∞

∫
A′′∩Sρ\Kj

f(∇uj) dx+

∫
A′′∩Sρ\M

(1− ϕ)f(∇u) dx
]
.

Since ϕ was arbitrary, by the monotone convergence theorem we deduce that

lim sup
j→∞

mρ,j(A
′) ≤ 1

(1− ε)p−1 lim sup
j→∞

∫
A′′∩Sρ\Kj

f(∇uj) dx .

This combined with (5.16) and the arbitrariness of ε provides the conclusion. �

Theorem 5.3. The following three conditions are equivalent.

a) (Γ-convergence in Ω). The sequence of functionals (FKj (·,Ω)) defined by (3.1) Γ-converge in

L0(Ω) to a functional F : L0(Ω)→ [0,∞].
b) (Γ-convergence on a rich family). There exist a measure µ ∈ Mp(Ω;M) and a rich family

R ⊂ A (Ω) such that the sequence of functionals (FKj (·, A)) defined by (3.1) Γ-converges in

L0(Ω) to the functional Fµ(·, A) defined by (3.5) for all A ∈ R.
c) (Equality condition of localized minimum problems). Let {Ωi} be an open covering of M con-

sisting of cylinders of the form (2.6a) for some xi ∈ M , νi ∈ Rn with |νi| = 1 and, ri > 0.
Then

(5.18) sup
A′∈A (Ω)
A′⊂⊂A

m′ρ(A
′) = sup

A′∈A (Ω)
A′⊂⊂A

m′′ρ(A′) ,

for every open set A ⊂ Ωi and every ρ ∈ (0, ri2 ). Here m′ and m′′ are defined by (5.15) with Ωi
in place of Ω0 and the graph Σi = Ω0 ∩ Σ defined as in (2.6b).

Proof. We assume (a) and prove (b). To this aim, we fix a subsequence (not relabelled) of compact
sets (Kj) and we consider the sequence of functionals (FKj ) defined by (3.1) accordingly. By
Theorem 3.4 there exist a measure µ ∈Mp(Ω;M) and a rich family R ⊂ A (Ω) such that for every
A ∈ R a subsequence of (FKj (·, A)) Γ-converge in L0(Ω) to the functional Fµ(·, A) defined by
(3.5). Thanks to the Urysohn property (see [10, Proposition 8.3]), to get the conclusion it is enough
to make sure that µ is independent on the subsequence chosen at the beginning. This follows since
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by assumption the Γ-limit of (FKj (·,Ω)) do not depend on the choice of the subsequence; hence
the measure µ is uniquely determined (up to equivalence).

We now assume (b) and prove (c). By Lemma 5.2 and (5.15) for every A ∈ A (Ω) and every
A′, A′′ ∈ R such that A′ ⊂⊂ A′′ ⊂⊂ A ⊂⊂ Ωi we have

mρ(A
′, µ) ≤ m′ρ(A′) ≤ m′′ρ(A′) ≤ mρ(A

′′, µ) ≤ mρ(A,µ).

These inequalities combined with (5.2) and [10, Remark 14.9 and 14.13] yield

mρ(A,µ) = sup
A′∈R
A′⊂⊂A

mρ(A
′, µ) ≤ sup

A′∈R
A′⊂⊂A

m′ρ(A
′) ≤ sup

A′∈R
A′⊂⊂A

m′′ρ(A′) ≤ mρ(A,µ) ,

so that these inequalities are in fact equalities and (5.18) holds.
We conclude the chain of implications by assuming c) and proving a). To this aim, we fix

a subsequence (not relabelled) of compact sets (Kj) and we consider the sequence of functionals
(FKj (·,Ω)) defined by (2.3) accordingly. By Theorem 3.4 there exist a measure µ ∈Mp(Ω;M) and

a rich family R ⊂ A (Ω) with Ω ∈ R such that a subsequence of (FKj (·, A)) Γ-converge in L0(Ω)
to the functional Fµ(·, A) for every A ∈ R. To get the thesis stated in a), by the Urysohn property
(see [10, Proposition 8.3]) it is again sufficient to prove that the measure µ is independent on the
subsequence chosen at the beginning. To see this first notice that, by arguing as in the previous
implication one deduces that mρ(A,µ) as defined in (5.1) coincides with (5.18) for all open sets
A ⊂ Ωi and all ρ ∈ (0, ri2 ). Moreover, passing to subsequences, the value m′ρ(A) can only increase
while m′′ρ(A) only decrease (see (5.15)). This with the fact that m′ρ(A) ≤ m′′ρ(A) implies that the
assumption (5.18) is not affected by the passage to subsequences and so also the measure µ. The
theorem is then proved. �

As a consequence of the results proved in this section we deduce a cell formula to construct every
limit measure appearing in the conclusion of Theorem 3.4.

Corollary 5.4. Let µ ∈ Mp(Ω;M). Assume that (FKj (·,Ω)) Γ-converge in L0(Ω) to Fµ(·,Ω).
Then there exists a rich family of open sets R ⊂ A (Ω) such that, for every p-quasi open set U ⊂ Ω0

with Ω0 a cylinder as in (2.6a) with x ∈M it holds

µ(U) = sup
ρ>0

inf
A∈A (Ω0)
A⊃U

sup
A′∈R
A′⊂⊂A

lim
j→∞

min
u∈Vρ,j(A′)

∫
A′∩Sρ\Kj

f(∇u) dx ,

where Vρ,j(A) denotes the set of all non-negative functions v ∈ L1,p(A ∩ Sρ \ Kj) with v = 1
H n−1-a.e. on A ∩ Σ+

ρ and v = 0 H n−1-a.e. on A ∩ Σ−ρ .

Proof. The result follows by Proposition 5.1 and by Theorem 5.3. �
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