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SHAPE TRANSITIONS IN A SOFT INCOMPRESSIBLE SPHERE
WITH RESIDUAL STRESSES

DAVIDE RICCOBELLI, PASQUALE CIARLETTA

MOX – Dipartimento di Matematica, Politecnico di Milano, Milano, Italy

Abstract. Residual stresses may appear in elastic bodies due to the forma-
tion of misfits in the micro-structure, driven by plastic deformations, thermal
or growth processes. They are especially widespread in living matter, result-
ing from the dynamic remodelling processes aiming at optimizing the overall
structural response to environmental physical forces. From a mechanical view-
point, residual stresses are classically modelled through the introduction of a
virtual incompatible state that collects the local relaxed states around each
material point. In this work, we instead employ an alternative approach based
on a strain energy function that constitutively depends only on the deforma-
tion gradient and the residual stress tensor. In particular, our objective is
to study the morphological stability of an incompressible sphere, made of a
neo-Hookean material and subjected to given distributions of residual stresses.
The boundary value elastic problem is studied with analytic and numerical
tools. Firstly, we perform a linear stability analysis on the pre-stressed solid
sphere using the method of incremental deformations. The marginal stability
conditions are given as a function of a control parameter, being the dimension-
less variable that represents the characteristic intensity of the residual stresses.
Secondly, we perform finite element simulations using a mixed formulation in
order to investigate the post-buckling morphology in the fully nonlinear regime.
Considering different initial distributions of the residual stresses, we find that
different morphological transitions occur around the material domain where
the hoop residual stress reaches its maximum compressive value. The loss
of spherical symmetry is found to be controlled by the mechanical and geo-
metrical properties of the sphere, as well as on the spatial distribution of the
residual stress. The results provide useful guidelines in order to design mor-
phable soft spheres, for example by controlling the residual stresses through
active deformations. They finally suggest a viable solution for the nondestruc-
tive characterization of residual stresses in soft tissues, such as solid tumors.

1. Introduction

Mechanical stresses may be present inside elastic solid materials even in the
absence of external forces: they are commonly known as residual stresses [1, 2].
These stresses result from the presence of micro-structural misfits, for example af-
ter plastic deformations (e.g. in metals), thermal processes (e.g. quick solidification
in glass) or differential growth within biological tissues [3]. Indeed, it is well ac-
knowledged that there exists a mechanical feedback in many biological processes,
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2 SHAPE TRANSITIONS IN A RESIDUALLY STRESSED SPHERE

e.g. in cell mitosis [4, 5]. Thus, living tissues can adapt their structural response
to the external mechanical stimuli by generating residual stresses either in physi-
ological conditions (e.g. within arteries or the gastro-intestinal tract [6, 7, 8]) or
pathological situations (e.g. solid tumors [9, 10, 11]). Moreover, residual stresses
can accumulate reaching a critical threshold beyond which a morphological transi-
tion is triggered, possibly leading to complex pattern formation, such as wrinkling,
creasing or folding [12, 13].

Several studies about mechanical instabilities in soft materials have been carried
out in the last decades. The stability of spherical elastic shells has been studied
with respect to the application of an external [14, 15] or internal pressure [16, 17].
More recently, the influence of residual stresses on stability in growing spherical
shells [18] as well as in spherical solid tumor [19] has been addressed.

Residual stresses are classically modeled by performing a multiplicative decom-
position of the deformation gradient [3]. The key point of this method is the
multiplicative decomposition of the deformation gradient F into two parts, being
F = FeFo, in which the tensor Fo defines the natural state of the material free of
any geometrical constraint, whereas Fe is the elastic deformation tensor restoring
the geometrical compatibility under the action of the external forces.

The main drawback of this method is the necessity of the a priori knowledge
of the natural state, since it is not often physically accessible. Indeed, from an
experimental viewpoint, its determination would require several cuttings (ideally
infinite) on the elastic body in order to release all the underlying residual stresses
[7, 8, 9, 11].

In this work, we employ an alternative approach based on a strain energy function
that constitutively depends on both the deformation gradient and the residual stress
tensor in the reference configuration [20]. In particular, our objective is to study
the morphological stability of an incompressible sphere, naturally made of a neo-
Hookean material and subjected to given distributions of residual stresses.

The work is organized as follows. Firstly, we introduce the hyperelastic model for
a pre-stressed material, defining the constitutive assumptions as a function of given
distributions of residual stresses. Secondly, we apply the theory of incremental
deformations in order to study the linear stability of a pre-stressed solid sphere
with respect to the underlying residual stresses. Finally, we implement a numerical
algorithm using the mixed finite element method in order to approximate the fully
non-linear elastic solution. In the last section we discuss the results of the linear
and non-linear analysis, together with some concluding remarks.

2. The elastic model

Let us consider a soft residually-stressed solid sphere composed of an incom-
pressible hyperelastic material in a reference configuration Ω ⊂ E3, where E3 is the
three-dimensional Euclidean space. We use a spherical coordinate system in the
reference configuration so that the material position vector is given by

X = (R sin(Θ) cos(Φ), R sin(Θ) sin(Φ), R cos(Θ))

where R is the radial coordinate, Θ is the polar angle and Φ is the azimuthal angle.
We define the domain Ω as the set such that

Ω =
{
X ∈ E3 | R < Ro

}
,
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so that Ro is the radius of the solid sphere. We indicate with eR, eΘ and eΦ the
local orthonormal vector basis.

2.1. Constitutive assumptions. Indicating with x = ϕ(X) the spatial position
vector, so that ϕ is the deformation field, we assume that the strain energy density
of the body ψ is a function depending on both the deformation gradient F = Gradϕ
and the Cauchy stress Σ in the reference configuration (i.e. the residual stress [1]):

(1) ψ = ψ(F, Σ),

as previously proposed in [20].
Hence, the first Piola–Kirchhoff stress tensor S and the Cauchy stress tensor T

are given by

(2) S(F, Σ) =
∂ψ

∂F
(F, Σ)− pF−1, T(F, Σ) = FS

where p is the Lagrangian multiplier that enforces the incompressibility constraint
det F = 1.

Hence, the fully non-linear problem in the quasi-static case reads

(3) Div S = 0.

where Div denotes the divergence operator in material coordinates; the boundary
conditions are

(4) STeR = 0 when R = Ro

where u(X) = ϕ(X)−X is the displacement vector field.
When we evaluate the Piola–Kirchhoff stress in the reference configuration, we

obtain the residual stress Σ, i.e. setting F equal to the identity tensor I in Eq. (2),
we get

(5) Σ =
∂ψ

∂F
(I, Σ)− p0I;

this relation represents the initial stress compatibility condition [20, 21, 22], where
p0 is a scalar field corresponding to the pressure field in the unloaded case.

Moreover, since Σ is the Cauchy stress tensor in the reference configuration, the
balance of the linear and the angular momentum impose

(6) Div Σ = 0, Σ = ΣT in Ω,

together with the following boundary conditions

(7) ΣRR = ΣΘR = ΣΦR = 0 for R = Ro.

From Eqs. (6)-(7), it is possible to prove that [2]∫
Ω

Σ dL3(X) = 0,

so that the residual stress field must be inhomogeneous, with zero mean value.
We also assume that the strain energy density depends on the choice of the

reference configuration only through the functional dependence on Σ. Thus, we
impose the initial stress reference independence (see [21, 22] for further details),
reading

(8) ψ (F1F2, Σ) = ψ (F1, T (F2, Σ)) .
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The Eq. (8) must hold for all second order tensor F1, F2 with positive determi-
nant and for all the symmetric tensors Σ.

The general material with a strain energy given by Eq. (1), such that the material
behaviour is isotropic in absence of residual stress, i.e. for Σ = 0, may depend up
to ten independent invariants [20].

A simple possible choice for the strain energy density which satisfies both the
initial stress compatibility condition and the initial stress reference independence
is the one corresponding to an initially stressed neo–Hookean material. The strain
energy of such material is constructed so that if a virtual relaxed state exists [23],
then it naturally behaves as a neo–Hookean material with a given shear modulus
µ. In the following we briefly sketch how this strain energy is obtained (see [21] for
a detailed derivation).

Let us introduce the following five invariants:

I1 = tr C, J1 = tr (ΣC) , IΣ1 = tr Σ, IΣ2 =
(tr Σ)2 − tr Σ2

2
, IΣ3 = det Σ,

where C = FTF is the right Cauchy–Green tensor.
Assuming that the material behaves as an incompressible neo-Hookean body, its

strain energy density is given by

(9) ψ(F, Σ) =
µ

2
(tr(B̃C)− 3),

here C is the right Cauchy-Green strain tensor, F̃ is the deformation gradient from
the virtual unstressed state to the reference configuration, B̃ = F̃F̃T and µ is the
shear modulus of the material in absence of residual stresses.

So, substituting Eq. (9) in Eq. (2), the initial stress Σ is given by

(10) Σ = µB̃− p̃I.

Imposing the incompressibility constraint on the deformation gradient F̃, we get
det(µB̃) = µ3 = det(Σ + p̃I). Thus, p̃ is the real root of the following polynomial:

(11) p̃3 + p̃2IΣ1 + p̃IΣ2 + IΣ3 − µ3 = 0.

Hence, multiplying Eq. (10) by C on the right and taking the trace on both sides,
we obtain

(12) tr(S̃C) = µ tr(B̃C)− p̃I1.

Substituting Eq. (12) in Eq. (9), we obtain the strain energy of an initially
stressed Neo–Hookean body:

(13) ψ (I1, J1, IΣ1, IΣ2, IΣ3) =
1

2
(J1 + p̃I1 − 3µ).

where p̃ is the only real root of Eq. (11). It is given by [21]

p̃ =
1

3

[
T3 +

T1

T3
− IΣ1

]
,
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Figure 1. Plot of the radial (solid line) and hoop (dashed line)
residual stress components normalized with respect to α µ when
f(R) is given by Eq. (15) (left) f(R) is given by Eq. (16) (right).
Both the dimensionless parameters β and γ are set equal to 2.

where

T1 = I2
Σ1 − 3IΣ2,

T2 = I3
Σ1 −

9

2
IΣ1IΣ2 +

27

2

(
IΣ3 − µ3

)
,

T3 =
3

√√
T 2

2 − T 3
1 − T2.

In this setting, it is possible to prove that the pressure field in the reference
configuration is given by p = p̃ [21].

In the following, we use symmetry arguments to discuss a few possible choices
for the distribution of the residual stresses.

2.2. Residual stress distribution. We assume that the residual stress Σ depends
only on the variable R. Hence the system of equations given by Eq. (6) reduces to

(14)


∂ΣRR
∂R

+
2

R
(ΣRR − ΣΘΘ) = 0,

ΣRΘ = ΣRΦ = ΣΘΦ = 0;
.

Then, being f(R) the radial component of the residual stress, the tensor Σ is
given by

Σ = diag

(
f(R),

R

2
f ′(R) + f(R),

R

2
f ′(R) + f(R),

)
where f : [0, Ro] → R is such that f(Ro) = 0 in order to satisfy automatically
Eq. (14).

In the following, we will focus on two possible choices for the function f :

case (a) : f(R) = αµ
Rβ −Rβo
Rβo

,(15)

case (b) : f(R) = αµ

(
R

Ro

)γ
log

(
R

Ro

)
,(16)

where α, β and γ are real dimensionless parameters with β, γ > 1. The correspond-
ing residual stress components are depicted in Fig. 1.
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In the next section we apply the theory of incremental deformations in order to
study the stability of the residually stressed configuration with respect to the mag-
nitude of the underlying residual stresses expressed by the dimensionless parameters
α, β and γ.

3. Incremental problem and linear stability analysis

3.1. Structure of the incremental equations. In order to study the linear
stability of the undeformed configuration with respect to the intensity of the residual
stresses, we use the method of the incremental elastic deformations [24]. We denote
with δu the incremental displacement vector and with Γ the gradient of the vector
field δu, namely Γ = Grad δu.

The linearized incremental Piola–Kirchhoff stress tensor reads

(17) δS = A1
0 : Γ + pΓ− qI

where q is the increment of the Lagrangian multiplier p and(
A1

0 : Γ
)
ij

:= A1
0ijhkΓkh =

∂ψ

∂Fji∂Fkh

∣∣∣∣
F=I

Γkh,

with A0 being the fourth order tensor of the elastic moduli, and summation over
repeated subscripts is assumed.

From Eq. (13) and following [20], we get

A1
0ijhk = δjk(2ψ,I1 δih + Σih),

where δij is the Kronecker delta the comma denotes the partial derivative.
Hence, the incremental equilibrium equation is given by

(18) Div δS = 0,

and the boundary conditions read

(19) δSTeR = 0 at R = Ro.

The incompressibility of the incremental deformation is given by the constraint

(20) tr Γ = 0.

We assume an axis-symmetric incremental displacement vector given by

δu = u(R, Θ)eR + v(R, Θ)eΘ.

This choice is motivated by the fact that, imposing a general incremental displace-
ment vector, the resulting governing equations in the azimuthal direction decouple
[14, 15], thus not influencing the linearized bifurcation analysis.

Hence, the incremental displacement gradient is given by

Γ =


u,R

u,Θ−v
R

0

v,R
u+ v,Θ
R

0

0 0
u+ cot(Θ)v

R

 .
In order to build a robust numerical procedure to solve the incremental boundary

value problem, we first rewrite Eqs. (18)-(20) using a more convenient form, known
as Stroh formulation.
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3.2. Stroh formulation. Since the residually stressed material is inhomogeneous
only in the radial direction, we study the bifurcation problem by assuming variable
separation for the incremental fields [25], namely

u(R, Θ) = U(R)Pm(cos Θ),(21)

v(R, Θ) = V (R)
1√

m(m+ 1)

dPm(cos Θ)

dΘ
,(22)

δSRR(R, Θ) = sRR(R)Pm(cos Θ),(23)

δSRΘ(R, Θ) = sRΘ(R)
1√

m(m+ 1)

dPm(cos Θ)

dΘ
,(24)

where Pm(Θ) denotes the Legendre polynomial of order m.
In order to write the incremental boundary value problem Eqs. (18)-(20) in the

Stroh formulation, we introduce the displacement-traction vector η, defined as

η(R) =

[
U(R)
R2T (R)

]
, where U(R) =

[
U(R)
V (R)

]
, T (R) =

[
sRR(R)
sRΘ(R)

]
.

An expression for q is found by substituting Eq. (17) in Eq. (23), so that

(25) q = Pm(cos(Θ)) (U ′(R) (2ψ,I1 +f(R) + p)− δSRR(R)) .

Thus, using a well established procedure [26], we can use the definition of the
linearized incremental Piola–Kirchhoff given by Eq. (17), the incremental equilib-
rium equations given by Eq. (18) and the linearized incompressibility constraint
Eq. (20) to obtain a first order system of ordinary differential equations, namely

(26)
dη

dR
=

1

R2
Nη,

where N(R) is the Stroh matrix which has the following structure

N =

(
N1 N2

N3 −NT
1

)
,

where the sub-blocks read:

N1 =

( −2R
√
m(m+ 1)R

−
√
m(m+1)pR

f(R)+2ψ,I1

pR
f(R)+2ψ,I1

)
,

N2 =

(
0 0
0 1

f(R)+2ψ,I1

)
, N3 =

(
ν1 ν2

ν2 ν3

)
.

The expressions for the coefficients ν1, ν2 and ν3 are given by:

ν1 =
R2((2ψ,I1 +f(R))(4(m2 +m+ 6)ψ,I1 +(m2 +m+ 2)Rf ′(R)

2(2ψ,I1 +f(R))
+

+
2(m2 +m+ 6)f(R) + 12p)− 2m(m+ 1)p2)

2(2ψ,I1 +f(R))
,

ν2 =
R2
√
m(m+ 1)

(
p2 −

(
2ψ,I1 +f(R)

) (
8ψ,I1 +Rf ′(R) + 4f(R) + 3p

))
2ψ,I1 +f(R)

,

ν3 =
R2
(
2ψ,I1 +f(R)

) (
m(m+ 1)

(
8ψ,I1 +Rf ′(R) + 4f(R)

)
+ 2(2m(m+ 1)− 1)p

)
2
(
2ψ,I1 +f(R)

) +

−
2R2p2

2
(
2ψ,I1 +f(R)

) .
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In the next section, we solve the Eq. (26) by using the impedance matrix method.

3.3. Impedance matrix method. Let us briefly sketch the main theoretical as-
pects of this method [27, 28]. We define a linear functional relation between U and
T , namely

(27) R2T = ZU .

where Z is the so called surface impedance matrix.
By substituting Eq. (27) in Eq. (26), we obtain

dU

dR
=

1

R2
(N1U + N2ZU),(28)

dZ

dR
U + Z

dU

dR
=

1

R2
(N3U + N4ZU).(29)

Thus, by substituting Eq. (28) in Eq. (29), a Riccati differential equation is found
for Z, being

(30)
dZ

dR
=

1

R2

(
N3 − NT

1 Z− ZN1 − ZN2Z
)
.

Let now us define M as the solution to the following problem

(31)


d

dR
M(R, Ro)−

N

R2
M(R, Ro) = 0

M(Ro, Ro) = I.

where the matricant M(R, Ro) is a 4× 4 matrix, called the conditional matrix.
Since M is the solution of the problem given in Eq. (31), from Eq. (26) it is

straightforward to show that

(32) η(R) = M(R, Ro)η(Ro).

Let us split the conditional matrix into four blocks as

(33) M =

[
M1(R, Ro) M2(R, Ro)
M3(R, Ro) M4(R, Ro)

]
.

We can use two possible ways to construct the surface impedance matrix, either
the conditional impedance matrix Zc(R, Ro) or the solid impedance matrix Zs(R)
[29].

In fact, considering that T (Ro) = 0 and by using the Eqs. (32)-(33), we can
define the conditional impedance matrix as Zc(R, Ro) := M3(R, Ro)M−1

1 (R, Ro).
Such a matrix is called conditional since it depends explicitly on its value at R = Ro.

Conversely, the solid impedance matrix does not depend explicitly on its value
at one point, but instead it ensures that the surface impedance matrix is well posed
at the origin.

Following [29], we consider a Taylor series expansion of the solid impedance
matrix Zs(R) around R = 0, namely

(34) Zs(R) = Z0 + Z1R+ o(R),

where Z0 is called central impedance matrix.
From the Eq. (30), the solid impedance matrix is well posed at the origin only

if the central impedance matrix satisfies the following algebraic Riccati equation:

N3(0)− NT
1 (0)Z0 − Z0N1(0)− Z0N2(0)Z0 = 0;
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whose general solution is given by

(35) Z0 = δe1 ⊗ e1, δ ∈ R.
By substituting Eq. (34) in Eq. (30) and setting R = Rc � 1, we obtain the

following algebraic Riccati equation

(36)
0 = N3(Rc)− NT

1 (Rc)Z0 − Z0N1(Rc)− Z0N2(Rc)Z0 −R2
cZ1N2(Rc)Z1+

−RcZ1

(
N1(Rc) + N2(Rc)Z0 +

Rc
2

I

)
−Rc

(
NT

1 (Rc) + Z0N2(Rc) +
Rc
2

I

)
Z1

whose stable solution is the only one such that the eigenvalues of

−Rc
(

N1(Rc) + N2(Rc)Z0 +
Rc
2

I

)
−R2

cN2(Rc)Z1

are all negative [30].
In summary, the surface impedance method allows us to avoid the direct reso-

lution of the boundary value problem given by Eqs. (18)-(20) by using a numerical
integration of the Riccati equation given by Eq. (30).

3.4. Numerical procedure and results of the linear stability analysis. The
aim of this section is to implement a robust numerical procedure to analyze the
onset of a morphological transition as a function of the dimensionless parameters
α, β and γ representing the magnitude and the spatial distribution of the residual
stresses.

The solution of the incremental boundary value problem can be obtained by a
numerical integration of the differential Riccati equation (30) using two different
procedures.

First, the differential Riccati equation in Eq. (30) can be integrated from Rc to
Ro with starting value

(37) Zs(Rc) = Z0 +RcZ1,

given by the solid impedance matrix in Eq. (34).
Using Eq. (37), we numerically solve Eq. (30) by iterating on the value α in

Eqs. (15)-(16), starting from 0 until the stop condition

(38) det Zs(Ro) = 0,

is reached, namely when the impedance matrix is singular and the incremental
Eqs. (18) and (20) admit a non-null solution that satisfies Eq. (19).

A second approach consists in integrating Eq. (30) by using the conditional
impedance matrix Zc(R, Ro). Since from Eq. (32) it can be shown that M(Ro, Ro) =
I, the definition of the conditional impedance matrix given by Eq. (31) allows us to
set the following initial condition:

(39) Zc(Ro, Ro) = 0.

Analogously, we iteratively integrate Eq. (30) until the stop condition

(40) det(Zc(Rc, Ro)− Z0 − Z1Rc) = 0

is reached. This condition corresponds to the existence of non-null solutions for
the variable U by imposing the continuity of the incremental stress vector T at
R = Rc.

In both cases, in order to find the incremental displacement field, we perform a
further integration of Eq. (28) using the procedure described in [31].
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Figure 2. Marginal stability curves for the residually stressed
sphere where f(R) is given by the Eq. (15), showing the critical α
vs. the wavenumber m (left) and the critical wavenumber mcr vs.
β (right).
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Figure 3. Solution of the linearized incremental problem for β =
3 and m = mcr = 7 where f(R) is given by the Eq. (15). The
amplitude of the incremental deformation has been arbitrarily set
0.15Ro for the sake of graphical clarity.

The two numerical schemes were implemented by using the softwareMathematica
11.0 (Wolfram Research, Champaign, IL, USA) in order to identify the marginal
stability curves as function of the dimensionless parameters α, β and γ.

3.4.1. Case (a): exponential polynomial case. Let us first consider the case in which
the expression of f(R) is the exponential polynomial given by Eq. (15). We use the
initial condition given by Eq. (37).

We find out that the stop condition given by Eq. (38) is satisfied only for negative
values of α, namely we can find an instability only if the hoop residual stress
is tensile close to the center and compressive near the boundary of the sphere.
Moreover, the results are independent on the choice of the δ in Eq. (35).
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Figure 4. Marginal stability curves for the residually stressed
sphere where f(R) is given by the Eq. (16), showing the critical
positive α vs. the wavenumber m (left) and the critical wavenum-
ber mcr vs. γ (right).

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

Figure 5. Solution of the linearized incremental problem for γ =
2 and m = mcr = 10 where f(R) is given by the Eq. (16). The
amplitude of the incremental deformation has been arbitrarily set
0.15Ro for the sake of graphical clarity.

For fixed β and m, let αm be the first value such that the stop condition Eq. (38)
is satisfied, we define the critical wavenumber mcr as the wavenumber with mini-
mum |αm| and we denote such a critical value with αcr. In Fig. 2 (left) we depict
several marginal stability curves for various β whilst in Fig. 2 (right) we plot the
critical wavenumber vs. β. We highlight that, as we increase the parameter β, the
critical wavenumber mcr also increases with a nearly linear behavior.

In Fig. 3 we plot the solution of the linearized incremental problem for β = 3
where m = mcr = 7 (see Fig. 2 (right)) and we observe that wrinkles appear in the
outer shell of the sphere, where the hoop residual stress is compressive.

3.4.2. Case (b): logarithmic case. Let us now consider the case in which f(R) is
given by Eq. (16). We find that the residually stressed sphere is unstable for both
positive and negative values of α.
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Figure 6. Marginal stability curves for the residually stressed
sphere where f(R) is given by the Eq. (16), showing αm vs. the
wavenumber m (left) and γ (right). The black dashed curves on
the right is the plot of the αcr vs. γ.
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Figure 7. Solution of the linearized incremental problem for γ =
2 and m = mcr = 3 where f(R) is given by the Eq. (16). The
amplitude of the incremental deformation has been arbitrarily set
0.15Ro for the sake of graphical clarity.

When we consider positive values for the control parameter α, we integrate
the differential Riccati equation given by Eq. (30) from R = Ro, using the initial
condition given by Eq. (39), and using the stop condition at R = Rc given by
Eq. (40).

On the other hand, when α is negative, we use as the initial condition the
Eq. (37) and as stop condtion the Eq. (38). This means that we integrate the
Riccati equation from the interior to the exterior.

Let us first consider the case in which α is negative, namely when the hoop stress
is compressive at the boundary (see Fig. 1). In this framework in Fig. 4 (left), we
depict several marginal stability curves for various γ, whereas in Fig. 4 (right) we
plot the values of the critical wavenumber vs. the parameter γ. As previously
observed, by increasing γ, also the critical wavenumber mcr increases with a nearly
linear dependence.
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In Fig. 5 we plot the solution of the linearized incremental for γ = 2, where
m = mcr = 7 (see Fig. 4, right); as in the polynomial case, we can notice how
wrinkles appear in the outer rim of the domain, where the hoop residual stress is
compressive.

We perform the same calculations for the case in which α is positive. In Fig. 6
we depict the resulting marginal stability curves for various γ and m.

In Fig. 7 we plot the solution of the linearized incremental problem for γ = 2
and m = mcr = 3. We highlight that the displacement is localized in the center of
the sphere whereas the exterior part remains almost undeformed.

Also in this case, we found that all the results exposed are independent of the
chosen value of δ in Eq. (35).

In the next section, we implement a finite element code in order to investigate
the fully non-linear evolution of the morphological instability.

4. Finite element implementation and post-buckling analysis

4.1. Mixed finite element implementation. We use a mixed variational for-
mulation of the problem implemented with the open source project FEniCS [32].
Let B be a semicircle and B̂ = (0, 1) × (0, π) as depicted in Fig. 8. We define
g : B → B̂ as the mapping that associates each point in B with the point in R2

such that the two components are the normalized radial distance R/Ro and the
polar angle Θ. Hence, denoting by X1 and X2 the first and the second coordinates
respectively and by e1 and e2 the canonical unit basis vectors, we get that

(41) X1 =
R

Ro
, X2 = Θ.

We solve the nonlinear problem using a triangular mesh B̂h obtained through the
discretization of the set B̂. The mesh is composed of 14677 elements, 7519 vertices
and the maximum diameter of the cells is 0.033.

Figure 8. Representation of the conformal mapping between the
physical domain B and its conformal image B̂, defined through the
coordinate transformation in Eq. (41).
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We use the Taylor–Hood elements P 2-P1, discretizing the displacement field by
using piecewise quadratic functions and the pressure field by piecewise linear func-
tions. The Taylor-Hood element is numerically stable for linear elasticity problems
[33] and has been used in several applications of non-linear elasticity [34].

In order to study the behavior of the bifurcated solution in the post-buckling
regime, we impose a small imperfection on the mesh at the boundary [35] with the
form given by Eqs. (21)-(22), where m is the critical wavenumber obtained from
the linear stability analysis and the amplitude is of the order of 10−4.

We impose as boundary conditions

(42)


uh = 0 if X1 = 0,

uh · e2 = 0 and e1 · SThe2 = 0 if X2 = 0 or X2 = π,

SThe1 = 0 if X1 = 1;

where uh is the discretized displacement field and Sh the discretized first Piola–
Kirchhoff stress tensor.

The problem is solved by using an iterative Newton–Raphson method whilst
adaptively incrementing the control parameter α. The code automatically adjusts
the increment of this parameter either near the marginal stability threshold or when
the Newton method does not converge.

Each step of the Newton–Raphson method is performed using PETSc as a linear
algebra back-end and then the linear system is solved through an LU decomposition.

4.2. Results of the finite element simulations.

4.2.1. Case (a): exponential polynomial case. We first show the results for the case
in which f(R) is given by Eq. (15). We denote by Enum the total strain energy of
the deformed material, and by Etheor the theoretically computed strain energy of
the undeformed sphere, namely in the reference configuration. We remark that the
strain energy density in the undeformed reference configuration may not be zero.
Indeed, setting F = I in (13), it is easy to check that the energy density vanishes
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Figure 9. Plots of the ratio Enum/Etheor (left) and the normalized
buckling amplitude ∆r/Ro (right) versus the control parameter α.
The numerical results are in good agreement with the theoretical
instability threshold αcr = −4.9084 (red square marker).
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Figure 10. Comparison between the ratios Enum/Etheor vs. the
wavenumber m. The squares denote the thresholds αm computed
in the previous section.
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Figure 11. Plot of the deformed configuration when f(R) is given
by Eq. (15), β = 1.1, α = −5.62 andm = mcr = 2 (top); α = −5.55
and m = 4 (bottom). The color bars indicate the norm of the
displacement ‖uh‖ (left) and the trace of the Cauchy stress tensor
normalized with respect to the shear modulus µ (right). On the
right we depict a 3D representation of the deformed sphere.

only if Σ = 0. Thus, the presence of pre–stresses is physically related to the fact
that some mechanical energy is already stored inside the material.

In Fig. 9 (left) we plot the ratio between Enum and Etheor vs. α when β = 1.1;
the mode of the imperfection applied on the mesh is the critical one mcr = 2, we
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also computed the amplitude of the pattern, defined as

∆r := max
Θ∈[0,π]

rh(Ro, Θ)− min
Θ∈[0,π]

rh(Ro, Θ),

where rh is the discretized deformation field in the radial direction (Fig. 9 (right)).
We observe that there is a smooth increase of such an amplitude when the control
parameter is lower than αcr. When performing a cyclic variation of the control
parameter, decreasing α first and then increasing it to zero, both the amplitude
of the wrinkling and the energy ratio do not encounter any discontinuity and they
both follow the same curve in both directions.

Since αcr is very close to the other values αm, in Fig. 10 we compare the energy
ratio also for the cases in which the wavenumber of the imperfection is not the
critical one, specificallym = 3 andm = 4. We can observe that there is a continuous
decrease of such a ratio when the threshold αm is reached. From the picture we
can also notice that there is no intersection of the curves that represent the ratio
of the energies, thus suggesting the absence of secondary bifurcations.

Setting β = 1.1, in Fig. 11 we depict the deformed configuration of the sphere
when α = −5.62, when m = mcr = 2 (top) and α = −5.55 when m = 4 (bottom),
with the color bar we indicate the norm of the displacement ‖uh‖ (left) and the
trace of the Cauchy stress tensor Th normalized with respect to the shear modulus
µ (right).

4.2.2. Case (b): logarithmic case. We performed the same numerical procedure for
simulating the logarithmic case.

We considered the case in which α is positive. From the linear stability analysis
we expect that the instability is localized in the interior part of the sphere (Fig. 7).

Let γ = 1.1, in Fig. 12 we plot the ratio Enum/Etheor at varying α. We per-
formed a cyclic variation of the control parameter α, first increasing it and then
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Figure 12. Ratio between Enum/Etheor versus the control param-
eter α(Left) when f(R) is given by Eq. (16) for γ = 1.1 and
m = mcr = 2. We performed a cyclic variation of the control
parameter α (right), first increasing it beyond the linear stabil-
ity threshold (green solid line) and then decreasing it down to the
initial value (orange dashed line). In both plots, the red squares
denote the threshold α2 = 48.60 computed in the previous section.
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Figure 13. Plot of the deformed configuration when f(R) is given
by Eq. (16), γ = 1.1, α = 58.8 and m = mcr = 2. The color bars
indicate the norm of the displacement ‖uh‖ (left) and the trace
of the Cauchy stress tensor (right). On the right we depict a 3D
representation of the deformed sphere.

decreasing it down to zero Fig. 12 (right). We highlight the presence of both a
jump across the linear threshold and hysteresis, thus highlighting the presence of a
subcritical bifurcation. The linear stability threshold is in good agreement with the
theoretical prediction, given that subcritical bifurcations have a higher sensitivity
to imperfection than supercritical ones.

In Fig. 13 we show the deformed configuration of the sphere when α = 58.8 for
γ = 1.1, where the color bars indicate the norm of the displacement ‖uh‖ and the
trace the Cauchy stress tensor Th normalized with respect to the shear modulus µ.

We remark that we obtain small numerical oscillations of the displacement field
near the center of the sphere in the fully nonlinear post-buckling regime. These
errors eventually get amplified during the computation of the stress field, and the
numerical solution no longer converges. In some cases, we observed that the Newton
method failed to converge for some different values of the parameter γ when α is
just beyond the marginal stability threshold αcr. The improvement of the numerical
continuation method is outside the scope of this work, but we acknowledge that
a different approach, e.g. using scalable iterative solvers and preconditioners [36],
could improve the stability of the numerical solution in the post-buckling regime.

5. Discussion and concluding remarks

This work investigated the morphological stability of a soft elastic sphere sub-
jected to residual stresses.

In the first part, we modeled the sphere as a hyperelastic material by introduc-
ing a strain energy depending explicitly on the deformation gradient and on the
initial stress [21, 22]. In this way, we can avoid the classical deformation gradient
decomposition [3] which has the drawback of requiring the a priori knowledge of a
virtual relaxed state.

Secondly, we described the residual stress fields by using a function f(R) that
denotes the radial component of the residual stress. This function depends on the
dimensionless parameters α, β and γ, where α is the normalized intensity of the
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residual stress whereas β and γ describe the spatial distribution of the residual
stress components within the sphere.

We investigate two possible distributions of the radial residual stress f(R), one
based on a polynomial function, the other on a logarithmic one. We denote these
two choices as case (a) and (b) respectively.

We performed the linear stability analysis in both cases by using the theory
of incremental deformations superposed on the undeformed, pre-stressed configu-
ration. In order to solve the incremental boundary value problem, we used the
Stroh formulation and the surface impedance matrix method to transform it into
the differential Riccati equation given by Eq. (30) [25] .

We integrated numerically the resulting incremental initial value problem by
iterating the control parameter until a stop condition is reached, in order to find
the marginal stability thresholds. We found out that the morphological transition
occurs in the region where the hoop residual stress reaches its maximum magnitude
in compression.

In the case (a) we find an instability only for α < 0, whilst in case (b) we find an
instability for both α positive and negative. In this latter case, when α is positive
the instability occurs in the inner region of the sphere whereas if α is negative it is
localized in the external region. The results of such analysis are reported in Figures
2-7.

Finally, we implemented a numerical procedure by using the mixed finite element
method in order to approximate the fully non-linear problem. After the validation
of the numerical simulations obtained by the comparison with the results of the
linear stability analysis, we analyzed the resulting morphology in the fully non-
linear regime.

In the case (a), the instability is localized in the external part of the sphere where
the hoop residual stress is compressive. The continuous transition from the initial
configuration to the buckled state indicates that the bifurcation is supercritical.

In the case (b), the instability is localized near the center of the sphere when the
parameter α > 0. In contrast to the previous case, the bifurcation is found to be
subcritical, thus suffering a jump across the linear stability threshold. The results
of these simulations are reported in Figures 9-13.

Future efforts will be directed to improve the proposed analysis either by imple-
menting of a fully 3D numerical model in order to study the secondary bifurcation
that might appear in the azimuthal direction or by accounting for the presence
of material anisotropy, a major determinant for the residual stress distribution in
living matter, e.g. tumor spheroids [10].

In summary, this work proposes a novel approach that may prove useful guide-
lines for engineering applications. For example, it may be of interest for achiev-
ing a nondestructive determination of the pre–stresses in soft spheres. Whilst the
currently used method consists in cutting the material and inferring the resid-
ual stresses through the resulting deformation [9], the proposed model explicitly
correlates both the mechanical response of the material and its morphology with
the underlying distribution of pre-stresses. Moreover, the proposed static analysis
based on the Stroh formulation can be easily adapted to solve the corresponding
elasto–dynamic problem in a solid sphere [37]. Thus, it would be possible to derive
the dispersion curves governing the propagation of time-harmonic spherical waves
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of small amplitude as a function of the residual stress components. This theoreti-
cal prediction may feed a nonlinear inverse analysis for determining the pre–stress
distribution using elastic waves, e.g. by ultrasound elastography [38, 39].

Furthermore, our results prove useful insights for designing mechanical meta-
materials with adaptive morphology. Indeed, it would be possible to fabricate soft
spheres in which the magnitude of the pre-stresses can be controlled by external
stimuli, such as voltage in dielectic elastomers [40] or solvent concentration in soft
gels [41]. Digital fabrication techniques offer a low cost alternative for printing
materials with a targeted distribution of residual stresses [42]. Thus, morphable
spheres can be obtained by modulating the residual stresses around the critical value
of marginal stability. Dealing with pre–stressed neo-Hookean materials, this work
is particularly relevant for controlling the transient wrinkles that form and then
vanish during the drying and swelling of hydrogels [43, 44]. Other applications
range from adaptive drag reduction [45] to the pattern fabrication on spherical
surfaces [46, 47].
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