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� Understanding neural codes requires information measures

How do you communicate� A moderately bright extra�terrestrial� who were to investigate the
codes you use� would reasonably conclude that you mainly communicate verbally� Our E�T�
might further describe verbal codes as strings of chunks of variable length� that you appear to
call words� which can be uttered as collections of phonemes or else written as nearly isomorph
collections of letters� and so on with further details� If however E�T� were exceptionally bright�
or needed to write a grant application on this investigation� it would probably �discover� that
in some situations you also communicate a lot just with your grimace� or with the clothes you
have chosen to wear� or in a thousand other ways�

Neurons are vastly simpler than human beings� but the metaphor is not completely silly�
because it illustrates the volatility of the notion of neural codes� Nobody in the right of his
or her mind would think that nature has designed a unique way for neurons to communicate�
and in fact they interact� or a�ect each other� in a thousand di�erent ways� In certain speci	c
situations neurons may tell each other a lot with the way they compete for peptides� for example�
or with the way they couple in ephaptic interactions� Yet a 	rst understanding of the opera�
tion of neural networks in the brain requires that we try to describe the main� usual form 
or
forms� of communication� We should take the approach of the moderately bright investigator�
and leave the discovery of exceptional facts for later on� Further� we should try to quantify
how much is communicated in each situation� because only a quantitative comparison allows to
assess di�erent codes� especially if they share part of the content of what is being communi�
cated� Information theory �� has been developed precisely to quantify communication� and is
therefore quintessential to an appraisal of neural codes� Applying information theory to neural
activity 
rather than to the synthetic communication systems for which it was developed� is
however riddled with practical problems and subtleties� which must be clari	ed before reporting
experimental results�

In this chapter� we do not consider other means of neuronal communication than the emission
of action potentials� or spikes� and regard them as selfsimilar all�or�none events whose only





distinctive features are the time of emission and the identity of the emitting neuron� Thus we
restrict ourselves to information being represented� across a given population of neurons� by
strings fti�kg� where i � � � � � � C labels the emitting neuron and k indexes successive spikes
in a prescribed time window� This is still a rather general and potentially very rich language�
which in many situations can be reduced to considerably simpler forms� For example� most
of the information might be carried simply by the total number of spikes� ni� emitted by each
neuron in the window� irrespective of their timing within the window� Although the spike count
is an integer� it becomes a 
positive� real number when averaged over several repetitions or even
when calculated� in more general terms� by convolving the spike train with a given time kernel�
Therefore� it is more convenient to consider� instead� the 	ring rate� ri� which� being divided by
the time window� or the integral of the kernel� is also relatively invariant across window lengths
for quasi stationary processes� The extent to which the 	ring rates of a population of neurons
may or may not carry most of the information represented in the complete list of spike emission
times is� of course� a question to be addressed experimentally� in any given situation� This has
been done� with some success� mostly at the level of single neurons� as will be discussed later�
First� we must consider what information we can set out to measure� given the di�culties and
subtleties of measuring it in neuronal activity� For simplicity of notation� we shall think of such
information as being represented in the rates� although the arguments of the next section apply
equally to information represented in the complete list of spike emission times�

� Sampling with limited populations� correlates and repetitions

The activity of a population A of neurons represents both information and noise� The part
that can be considered� in general� to contain information� is the part that varies together with
something else� such as the activity of another population B� or some external correlate� It is
measured by what is usually called mutual information
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Note that frj�Bg could stand for the activity of the same population A� but at a di�erent
time� Or� it could stand for the parameters of some external correlates� Whatever the case�
for the present discussion it is useful to consider that neither set of variables may be easily
manipulated by the experimenter� Then� to evaluate the transmission of information from B to
A 
or viceversa� mutual information is symmetric and does not re�ect causality� one should let
the coupled system do what it normally does� in �ecological conditions�� for the very long time
needed to sample accurately the joint probability distribution p
fri�Ag� frj�Bg�� Since we are
usually interested in the way the neural system operates� and not just in individual neurons�
ideally we would need to record the activity of all cells in A and B� CA and CB� The time
required would be exponential in CA � CB 
times� e�ectively� the logarithm of the number of
discriminable 	ring levels of each cell�� i�e� much longer than the age of this and all preceding
universes� Practical limitations on the number of cells that can be recorded simultaneously

a few hundreds� now� make the time required for a single measure less apocaliptic� but still
way from a�ordable� In practice� a direct measure of mutual information has to be based on
the recording of the activity of only a handful of cells� This implies that we are forced to
hope that those cells are in some sense �typical�� but it also forces us to overlook potentially
important coding schemes that could only be revealed� quantitatively� by taking into account
the simultaneous activity of many neurons� Substituting computer simulations for real recording



experiments only alleviates the constraint by a tiny bit� while an analytical evaluation of mutual
information is sometimes possible with formal models of large populations� in which however
the result is in�built in the structure of the models� Thus� a 	rst restriction on the applicability
of information measures to neural activity is in the size of the population that can be sampled�
and e�ectively in the dimensionality of the codes that can be investigated�

A second restriction emerges when considering the content of the information being repre�
sented� The content is determined by the set of external 
or internal� correlates of the activity
in populations A and B� Ideally� they should reproduce the ecological working condition of the
neural system being studied� In practice this is hard to do� in the lab� in a reasonable time� also
because what this �ecological condition� is may be unknown or ill�determined 
except perhaps
for peripheral neural systems tightly coupled to speci	c dimensions of the sensory environment
����� A common strategy� when studying the CNS� is instead to select a discrete set of elements�
S� representative of interesting correlates� and to quantify the mutual information not between
A and B� but between A and S
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where the capital P denotes a real probability� rather than a probability density� This is con�
ceptually a di�erent quantity� which� since S is an object of much reduced complexity than the
activity in B� is much easier to measure� In particular� if S includes S equiprobable elements�
its entropy log� S will be an upper limit on the mutual information� no matter how large CA�
the population of neurons encoding the set of correlates� Eq� � quanti	es how much the activity
of population A allows us to discriminate between elements in S� Eq�  quanti	es how much it
tells us about the activity of another population B� One may wonder then� what the measur�
able quantity in Eq� � tells us about the impractical�to�measure quantity of Eq� � Curiously�
this question seems to have been disregarded in the literature� with the exception of Frolov
and Murav�ev ���� who consider two quantities analogous to  and �� which they denote as I�
and I�� and conclude that the total information that can be extracted from neural activity is
the sum I� � I�� Our recent analyses 
Samengo and Treves� to be published� lead to a rather
di�erent conclusion� I
fri�Ag� fs � Sg�� far from being a term to be added to I
fri�Ag� frj�Bg��
provides a good estimate of it� at least when many di�erent correlates are used� and few enough
cells are sampled that one is far from the regime approaching the saturation value at log� S�
While the numbers� and the quality of the estimate� depend on the exact details of the network
to be analysed� our result justi	es a posteriori the common practice of extracting measures of
I
fri�Ag� fs � Sg�� We shall see later on how� when sampling more than a handful of cell� the
common practice is to adopt a further simpli	cation along this path� and to extract yet another�
distinct information measure� the information about S recovered by a decoding procedure�

The third major sampling limitation with information measures is intimately 
but inversely�
related to the other two� and touches directly on a core concern of any scienti	c measure� that
of reproducibility� It is the limitation arising from the limited availability of repetitions of the
same observation� Mutual information measures� as they depend on the joint probability of two
variables� always require many repetitions� To sample adequately a set of S elements and a
	ring rate vector which can take of the order of R �
max spikes per cell�C values� one needs of
the order of S�R repetitions ���� In recording experiments� especially in the CNS of mammals�
this requirement is di�cult to meet� Since mutual information depends non linearly on joint
probabilities� a measure based on insu�cient repetitions is not only imprecise� but also� in prin�
ciple� biased� that is a�ected by systematic errors� Usually the procedure is to simply substitute
observed frequencies for the underlying probabilities 
a so called �frequentist� approach�� and



usually the e�ect of undersampling the joint probability 
upstairs in the logarithm of Eq��� is
much more serious than that of undersampling its marginals 
downstairs in the log�� Since
mutual information is supralinear in the joint probability� its undersampling typically leads to
an upward bias� or mean 
systematic� error in the measure� Various techniques ��� �� have been
developed to estimate and subtract� or otherwise neutralise� this bias� but their limited e�cacy
makes limited repetition sampling the most stringent constraint� in practice� on measuring in�
formation carried by neural activity in the CNS of mammals� Since the problem is exacerbated
when many cells and large sets of correlates are considered� the most reliable measures so far
have been obtained with very limited sets of correlates and at the single cell level� and it is to
these that we turn next�

� What code is used by single cells�

Animals interact� via their sensory and motor nervous systems� with a continuously changing
world� and it is obvious that also activity in their central nervous system should re�ect� in
the time dimension� this continuous change� Some investigators have been curiously excited by
	nding evidence of such strict coupling between the CNS and the outside world� Richmond�
Optican and colleagues� instead� have addressed the question of temporal coding� at the single
cell level� in the correct conceptual framework� They have asked whether individual neurons
in the CNS make non�trivial use of the time dimension� by recording the responses of cortical
visual neurons to static visual stimuli� A stimulus that is� after its sudden onset� constant in
time� may elicit in a given neuron activity that varies in time only in a generic fashion ����
or that varies in time in a way speci	c to the stimulus itself� In the latter case� the neuron
has used time to code something about the static stimulus� something which was not its time
dependence� Quantitatively� this would appear as mutual information� between the stimulus
used and a descriptor of the response that is sensitive to the timing of spikes� much higher than
the information present in a descriptor insensitive to spike timing� like the 	ring rate or spike
count� Note that the quantitative di�erence would have to be substantial� because a higher�
dimensional descriptor will always be able to convey something that any single� prescribed low
dimensional descriptor misses out�

The approach taken by Optican and Richmond ��� quickly gained acceptance as a sound
basis for revealing temporal codes� and their claim that the time course of single neuron activity
carries between � and � times more information than the spike count had a considerable impact�
It was unfortunate for them to discover� in the following years� that this early result was entirely
an artifact of the limited number of trials per stimulus they had used� Limited sampling a�ects
di�erentially the information extracted from descriptors of di�erent dimensionality� and with
the time course descriptor it resulted in an upward bias much larger than with the spike count�
Having introduced some form of correction for limited sampling ���� the evidence for temporal
coding weakened and eventually all but evaporated ��� � ��� A replication with a similar
experiment in Edmund Rolls� lab ��� has further suggested that part of the residual di�erence
in mutual information could be due to di�erential onset latency� which could still be called
temporal coding� but of a less interesting nature�

To date� no report has appeared that demonstrates substantial non�trivial usage of time by
single cortical neurons ��� ��� The one apparent exception is the so�called phase precession in
rat hippocampal place cells ���� The 	ring of these 
principal� cells is modulated by the Theta
rhythm� which is expressed mainly in the 	ring of local interneurons� When a rat runs through
the place 	eld of a given cell� this cell tends to 	re towards the end of a Theta period as it enters
its 	eld� and progressively earlier in phase as it goes through it� The e�ect can be understood as



a simple emergent property� whereby a cell that needs more recurrent activation to complement
a weakish a�erent input� tends to 	re later than cells with a stronger extrinsic drive ���� On
a linear track� place 	elds tend to be directional� that is to be associated with only one of the
two directions in which the 	eld can be traversed� Therefore� the phase of 	ring can be used to
extract some additional information on the exact location of the rat� on top of what is available
from� say� the number of spikes emitted over a Theta period� In an open 	eld� however� in which
the rat can traverse the same place 	eld along an arbitrary trajectory� and elicit 	ring in the
same cell� the phase information cannot be used for absolute localization� independent of the
trajectory� and the postulated temporal coding through phase precession reveals itself as a mere
epiphenomenon ����

Nevertheless� the body of experiments addressing temporal coding at the single cell level has
stimulated the development of information extraction procedures� among them those addressing
limited sampling ��� �� � �� ��� that turn out to be crucial also in measuring the information
conveyed by populations of cells�

� Is a neuron conveying information only when it �res�

The intuition of many neurophysiologists is that central neurons transmit information simply
when they 	re� In the extreme� a spike is regarded as a quantum of information� and even
confused with a bit 
which in fact is just a unit� and implies no quantization at all�� No matter
how crude� this intuition is reinforced by the lack of evidence for sophisticated coding schemes�
cortical neurons appear uninterested in the game of transcribing stationary signals into fancy
temporal waveforms� Yet� one could think of other non�trivial coding schemes� which do not
involve the time dimension� but just clever manipulation� by the neuron� of its conditional 	ring
probability� For example� certain connectionist models assume that a unit active at its maximum
level reports the presence of its own preferred correlate 
e�g�� the sight of one�s grandmother��
while any intermediate level of activation would be elicited by other correlates� with partially
shared attributes ����� A neuron behaving according to such model might be expected to reliably
	re at top rate� say � spikes in �� ms� when detecting the grandmother� and to 	re between
� and � spikes when detecting other senior ladies� Each of them in some of the repetitions of
the experiment may resemble more the true grandmother� and thus evoke more spikes� than in
other repetitions� Then P 
rjgranma� would be strongly peaked at �� Hz� while P 
rjladyX�
would be more broadly distributed between � and �� Hz� The meaning of� say� � spikes in close
succession would be rather di�erent depending on whether there are � more close by� or just ��

Nothing of this sort has ever been observed with neurons� Neurons appear to use spikes in a
simple�minded fashion� Moreover� neurons can be as informative when they fail to 	re as they
are when they do 	re� Roughly speaking� the only information they provide is in the extent to
which their current 	ring level is above or below their mean 	ring level� One way to con	rm
this is to compute the quantity

I�
s� �

Z
drp
rjs� log�

p
rjs�
p
r�

� 
��

which depends on the probability of each 	ring rate conditional on the correlate s and� when
averaged over correlates� yields the mutual information� We have mistakenly called this quantity
�information per stimulus�� or �stimulus�speci	c information� ���� along with others� Recently
DeWeese and Meister ���� have correctly pointed out that I�
s� is not additive� as any information



quantity should be� while the similar quantity
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in fact is additive� I�
s� also averages to the mutual information� which is positive de	nite� but
as a function of s I�
s� takes also negative values� I�
s� is not additive but positive de	nite� and
should be called the �stimulus�speci	c surprise�� as proposed by DeWeese and Meister ����� In
any case� the interest in I�
s� is not so much in quantifying information� but rather in illustrating
the simplicity of the 	ring rate code� This can be appreciated by 	rst taking the limit of a very
brief time window �t ����� In such a window the cell may emit at most a single spike� with
probability rs�t � �t

R
drp
rjs�r� and I�
s� reduces to its limit� the �stimulus�speci	c surprise
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where x � rs� r 
see Fig�  and Ref� ������ This universality is intimately related to the availability
of a single �symbol�� the spike� in the neural alphabet� at least in the limit of short times� when
the emission of more spikes has negligible probability� Over a longer time window� instead� I�
s�
is not constrained to follow the universal �
s� curve� and a departure from it could reveal a
more sophisticated code� For example� DeWeese and Meister ���� remind us that for an optimal
code that saturates the channel capacity� the speci	c surprise should be constant across di�erent
correlates� This is far from what has been observed in the very few cases when this issue has been
probed� The speci	c surprise appears to follow the universal curve ���� �� ���� indicating that
the 	ring rate code is likely to remain as simple as it is forced to be for short times� In agreement
with this� typically 	ring rates elicited by repetitions of the same stimulus� or correlate� have a
variance monotonic in the mean rate rs� and a simple distribution around the mean� between
Poisson and normal� again not hinting at any clever manipulation of the conditional probabilities
P 
rjs� �����

Related evidence� though not in terms of conditional probabilities� comes from the observa�
tion of spike count distributions produced by cortical neurons in their normal operating regime�
It has been suggested by Levy and Baxter ���� that an exponential spike count distribution would
reveal optimal coding� subject to a metabolic constraint on the energy consumption associated
with each spike� This would be an example of a clever design principle implemented in the
brain� An attempt to search for such exponential distributions by subjecting visual neurons to
more or less ecological stimulation has only shown exponential tails ����� not fully exponential
distributions� while it has been shown that the observed distributions can be explained as the
result of an elementary random process ����� which has nothing to do with optimising the neural
code�

Currently available evidence on single neurons thus indicates that the simple neurophysi�
ologists� intuition is� essentially� accurate� Cortical neurons appear not only unable to make
creative use of time� but also unable to alter the mapping between the input they receive and
the spikes they produce� on the basis of any coding optimization principle� If this is correct� the
equivalent of the old �tuning curve�� that is the distribution of mean 	ring rates to each correlate�
is all that is necessary to characterize adequately the activity of a single cortical neuron� If the
relevant correlates are simple one�dimensional parameters� such as orientation in V� then the
tuning curve is simply described by giving e�g� preferred orientation� width� baseline and peak
value 
and the informational aspects are usually quanti	ed by just the Fisher information� whose
relation to mutual information is discussed by Brunel and Nadal ���� see also the chapter by
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Figure � The stimulus�speci	c surprise from real data follows the universal curve valid in the
t � � limit� Real data from an inferior temporal cortex cell responding to �� face stimuli over
��� ms ���� The curve is the surprise rate� expressed as bits per �� msec� for a mean 	ring
rate of �� Hz� The main di�erence between limit curve and real data is just a rescaling� roughly
by the factor � implicit in the graph�



Fukumizu in this book�� If the relevant correlates are embedded in a less transparent domain
set� such as faces or fractals ����� then in principle the mean rate rs to each correlate should
be given 
the variance being largely determined by the mean ������ However the gross feature
of the distribution of rates can be still conveniently described with fewer parameters� such as
overall mean rate� spontaneous rate and sparsity ���� of the distribution� To such parameters we
turn at the end of this chapter� before� we should consider the possibilities o�ered by population
coding�

� Are neighbouring neurons telling the same story�

The studies cited above show that� in roughly ecological conditions� single cortical neurons
typically can transmit up to a fraction of a bit� about stationary correlates� over a few hundreds
of ms 
with instantaneous information rates occasionally a bit higher�� This is clearly way below
the behavioural discrimination capability of the animal� Therefore� we are brought to consider
the transmission of information by populations of neurons� One crucial question is the extent
to which the information provided by di�erent neurons is the same� that is� redundant�

This issue has been addressed� perhaps for the 	rst time at a quantitative level� by Gawne
and Richmond ����� Recording from pairs of inferior temporal cortex neurons in the monkey�
responding to a set of �� simple visual stimuli 
Walsh patterns�� they have compared the infor�
mation obtained by considering both responses to the sum of that obtained for each response
alone� On average across several pairs� they have found an information �overlap� y � ��� shared
by a pair� e�g� a single cell information I
� � ���� bits and for the pair I
�� � ��� bits
� I
� � I
�
 � y�� This seems to imply that as much as ��! of what the second cell has to
say is fresh information� not yet reported by the 	rst cell � not much redundancy� Gawne and
Richmond have� however� noted that even such limited redundancy would have drastic e�ects
if it held among arbitrary pairs of cells in a local population� They have considered a simple
model� which assumes that if a fraction � y of the information conveyed by the second cell is
novel� then a third cell would on average convey a fraction 
� y�� of novel information 
and a
fraction y
� y� shared with each preceding cell� and y� with both�� the ith cell recorded would
contribute a fraction 
� y�i�� novel information� and adding up all contributions one ends up
with I
�� � I
��y� or just �� bits in their experiment� Since � bits are necessary to discrim�
inate �� stimuli� they have concluded that even an in	nitely large population of cells with that
apparently limited level of redundancy would not be able to code for their small stimulus set�
and therefore that the mean redundancy among neurons farther away� than those they recorded
from� should decrease considerably� towards zero� to account for the fact that behaviourally the
animal is obviously able to discriminate�

A similar warning� that even small redundancies can have drastic e�ects on the representa�
tional capacity of a population� was put forward by Zohary� Shadlen and Newsome ����� They
looked at the correlated discharge of MT neurons to randomly moving dots� where a single 
uni�
dimensional� parameter was used as correlate� the average motion of the dots� Their perspective
was di�erent from that of Gawne and Richmond� but the result seemed to imply� again� that
adding more and more cells adds little to the accuracy of neural codes�

What appeared important� then� was to go beyond what could be extrapolated from the
shared information between pairs of cells� and measure directly the information that could
be extracted from large populations� Going for large populations requires two changes in the
approach� The 	rst� experimental� is that many cells have to be recorded simultaneously� and
thus with multiple electrodes� Alternatively� separately recorded cells can be considered� but
the results should be later checked against those obtained with simultaneous recordings� because



these are needed to record trial�to�trial correlations� and their possible e�ects on information�
The second change� in the analysis� is brought about by the exponential explosion of the �response
space� spanned by fri�Ag� when i � � � � � � C and C becomes large� The explosion makes it
impossible to sample adequately the space� and thus to measure directly the mutual information
in Eq��� A standard procedure is to use a decoding algorithm� that converts the vector ri�A into a
prediction of which correlate s� elicited it� or else assigns probabilities P 
s�jri�A� to each possible
correlate� The result is that one measures the decoded information

I
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X
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Inasmuch as decoding is done correctly� that is the functions s�
ri�A� or P 
s�jri�A� do not contain
any a priori knowledge on the actual correlate s� the decoded information is less or equal to
the original mutual information� just in the same way that any mapping from a variable 
here
ri�A� to another� e�g� to a regularized variable� can only degrade� or at most preserve� but not
improve� the correlation between the original variable and a third one� Decoding can be done
in a variety of ways� and it is not possible to quantify the information loss resulting from each
particular algorithm� Still� experience with most commonly used algorithms� and comparisons�
when possible� with direct measures� suggest that in many cases the information loss is minor�
In particular� very simple decoding algorithms� like those that may conceivably be implemented
in the brain� appear often to lose only slighly more information than sophisticated algorithms
based on Bayesian models �����

Using non simultaneous recordings from up to �� cells in the monkey temporal cortex� S � �
stimuli� and a simple decoding algorithm� Gochin et al� ���� proposed to investigate the scaling
of I
fs � Sg� fs� � Sg� with the number of cells used for decoding� They expressed their result
in terms of the novelty in the information conveyed by C cells� de	ned as the ratio of such
information with the sum of that provided by each cell alone� They found that the novelty
scaled as �

p
C� intermediate between the �C behaviour corresponding to no new information

being provided by additional cells� and the trend to a constant� if at least a 	nite part of what
each cell contributed� were novel� The �

p
C behaviour seemed appealing in that it vaguely

matched noise suppression by C independent processes carrying the same signal� unfortunately�
it was likely an artefact� generated by determining a curve on the basis of just � points� by failing
to correct for limited sampling� and most importantly by neglecting to consider the ceiling e�ect�
at I � log� S � ���� bits� just � times above the average single cell information� I � ���� bits�

Our replications of this type of measure� with decoding algorithms based simply on the
	ring rates of simultaneously or non simultaneously recorded cells� have exposed a di�erent
scaling behaviour� in all cases investigated ���� ��� ��� 
cf� Fig� ��� This is a linear increase
I
C� � C� eventually saturating towards the ceiling at Imax � log� S� The crucial point is
that the saturation level depends on the set of correlates used� and mainly on their number�
and it has nothing to do� in principle� with the coding capacity of the population of cells� A
simple empirical model describing rather well the whole scaling from linear to saturating is an
extension of the Gawne and Richmond model� which in addition assumes that their �overlap�
y also represents the average fraction of Imax conveyed by single cells 
as an overlap it would
presumably be lower� when measured across distant pairs� than when measured� as in their
experiment� only across pairs of nearby cells�� Two cells then overlap over a fraction y of the
fraction yImax each conveys� that is the essential assumption of the model is that overlapping
areas are randomly distributed across �information space�� The information carried by C cells
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Figure �� The information extracted from a population of cells saturates at the entropy of the
stimulus set� Real data from up to � non�simultaneously recorded inferior temporal cortex cells
responding to �� face stimuli over ��� ms� adapted from Ref� ����� The intermediate and lower
data points correspond to reduced sets of � and � stimuli� respectively� The curve is the simple
exponential saturation model of Eq� ��



is found� with an easy derivation� to be� according to this random model

I
C� � Imax

h
� 
� y�C

i
� 
��

or� in words� a simple exponential saturation to the ceiling� This simple scaling has now been
derived analytically� and found to apply exactly in quite general cases 
Samengo and Treves� to be
published�� The important element� assumed true in the analytical derivation and apparently
approximately holding also in the experimental recordings� is the lack of correlation in the
activity of di�erent cells� Correlations can be of two main types� sometimes referred to as �signal�
and �noise� correlations� those appearing across repeated trials with the same correlate 
denoted
�ij
s� in the following section�� and those between the average �tuning curves� of several cells�
that is between their activity distribution across correlates� once averaged over many repetitions
of each 
denoted �ij�� Neither type of correlation is considered in the analytical derivation�
In the experiments� signal correlations would indeed have an e�ect� if substantial� while noise
correlations would be unlikely to be ever able to e�ect a departure from the behaviour described
by Eq��� even with simultaneous recordings� decoding algorithms based just on 	ring rates would
likely miss out any in�uence of such correlations� What is needed then� in order to go beyond
Eq�� and address the potential role of correlations� is an alternative approach that does not rely
on decoding�

	 Can the e
ect of correlations be quanti�ed�

The role of correlations in producing redundancy� or alternatively synergy� among neural signals
has been investigated both outside ���� and within ��� the context of population coding� While
redundancy is� in common intuition� the default outcome of correlated signals� it is easy to
devise situations in which correlations lead to synergy� Consider the toy case of Fig� � with �
cells responding to � stimuli� Synergy may result from a positive noise correlation 
in the trial
to trial variability�� if the mean rates to di�erent stimuli are anticorrelated� and viceversa from a
negative noise correlation� if the mean rates to di�erent stimuli are positively correlated� When
signal and noise correlation are of the same sign� the result is always redundancy� The impact of
correlations on redundancy is probably minimal when the mean responses are weakly correlated
across the stimulus set 
perhaps the �natural condition���� Given this realm of possibilities�
it is desirable to take an approach� applicable to real data� that enables separating out the
information transmitted by individual spikes� emitted by single neurons within an ensemble�
from positive or negative contributions due to correlations in 	ring activity among neurons�
One such approach focuses on short time windows ���� ���

We shall see now how in the limit of what is transmitted over very short windows� a simple
formula quanti	es the corrections to the instantaneous information rate 
determined solely by
mean 	ring rates� which result from correlations in spike emission between pairs of neurons� Pos�
itive corrections imply synergy� while negative corrections indicate redundancy� The information
carried by the population response can be expanded in a Taylor series ���� ���

I
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�
Itt � � � � 
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The 	rst time derivative depends only on the mean rates�

It �
CX
i��

�
ri
s� log�

ri
s�

hri
s��is�

�
s


��



3

Stimuli
A B C

Correlated Anticorrelated

A
n
ti

c
o
rr

e
la

te
d

C
o
rr

e
la

te
d

S
IG

N
A

L

NOISE

Probability

Joint probability
Probability

Sp
ik
es
 fr

om
 c
el
l 2

Spikes from cell 1
0 1 2 43

0

2

4

1

Figure �� A toy case illustrating possibilities for synergy and redundancy� adapted from Fig� � of
Ref� ����� A quick calculation shows that signal and noise both correlated� or both anticorrelated�
result in redundancy� while the other two situations produce� given the responses indicated in
the 	gure� synergy�



and it is purely a sum of all single cell contributions� each of the form earlier described by
Skaggs and McNaughton ���� and Bialek et al� ��� for single cells� The formula clari	es how
misguided it is to link a high information rate to a high signal�to�noise ratio� which is the
conceptual framework tacitly implied in Refs� ���� and ����� The rate� that is the 	rst derivative
of the mutual information� only re�ects the extent to which the mean responses of each cell are
distributed across stimuli� it does not re�ect anything of the variability of those responses� that
is of their noisiness� nor anything of the correlations among the mean responses of di�erent cells�

The e�ect of 
pairwise� correlations begins to be felt in the second derivative� instead� and it
is convenient then to introduce appropriate measures of such correlations� Pairwise correlations
in the response variability 
�noise� correlation� can be quanti	ed by

�ij
s� �
ri
s�rj
s�

ri
s�rj
s�
� � 
��

i�e� the amount of trial by trial concurrent 	ring� compared to that expected in the uncorrelated
case� The degree of similarity in the mean response pro	les of the cells to di�erent stimuli

�signal� correlation� can instead be quanti	ed by

�ij �
� ri
s�rj
s� 	s

� ri
s� 	s� rj
s� 	s

� � 
�

The second derivative� Itt� breaks into � components� The 	rst term of Itt depends only on the
mean rates and on their correlations�
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the second term is non�zero only when correlations are present in the noise� even if stimulus�
independent
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the third term contributes only if correlations are stimulus�dependent
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This decomposition still has to be applied extensively to simultaneously recorded neural
data� The limited evidence in our hands has not yet revealed a situation in which correlations
clearly play a prominent role� Extensive data produced in the laboratories of Eckhorn ����
and Singer ����� which qualitatively point at the importance of correlations� have not� to our
knowledge� been analysed in these terms� despite pioneering applications of information theory
���� ��� ���� A very interesting recent 	nding ���� could not be quanti	ed properly in terms of
information due to the limited sampling available� and it could be reanalysed with the help of
this expansion� The expansion has recently being re	ned in a way that it allow now to assess also
the importance of timing relations in pairwise correlations ���� The crucial question� however�



is how soon does the expansion� based on the short time limit� break down� When this occurs�
higher order terms in the expansion 
starting from those dependent on three�way correlations�
and so on� cannot be neglected any longer� The time range of validity of the expansion is thus
limited by the requirement that second order terms be small with respect to 	rst order ones�
and successive orders be negligible� Since at order n there are Cn terms with C cells� obviously
the applicability of the short time limit contracts� in practice� for larger populations� This can
be seen in the example from the rat barrel cortex� in Fig� �� Still� one may ask whether the
expansion� at least restricted to second order terms� may a�ord some insight on neural coding
as expressed by large populations of cell�

� Synergy and redundancy in large populations

Obviously with a few cells� all cases of synergy or redundancy are possible if the correlations
are properly engineered " in simulations " or the appropriate special case is recorded " in
experiments� The outcome of the information analysis will simply re�ect the particularity of
each case� With large populations� one may hope to have a better grasp of generic� or typical�
cases� more indicative of conditions prevailing at the level of� say� a given cortical module� One
may begin by considering a �null� hypothesis� i�e� that pairwise correlations are purely random�
and small in value�

In this null hypothesis� the signal correlations �ij have zero average� while ��ij could still di�er
from zero if the ensemble of stimuli used is limited� since a random walk would typically span
a range of size

p
S� Then the mean ��ij would decrease with S as �S� The noise correlations

might be thought to arise from stimulus independent terms� �ij� which need not be small� and
stimulus dependent contributions 
�ij
s�� which might be expected to get smaller when more
trials per stimulus are available� and which on averaging across stimuli would again behave as a
random walk�

The e�ect of such null hypothesis correlations on information transmission can be gauged
by further expanding Itt in the small parameters �ij and 
�ij
s�� i�e� assuming j�ij j� ��  and
j
�ij
s�j� �� � We consider here a simpli	ed case� in which� for example� all cross terms like
�ij
�ij are taken to vanish� the full derivation will be published elsewhere 
Bezzi� Diamond and

Treves� to be published�� In this case the leading terms in the expansion of I
���
tt � I

���
tt are those

quadratic in �ij
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i�e�� contributions to the mutual information which are always negative 
indicating redudancy��

The leading terms in the expansion of I
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the average over stimuli weighted by the product of the normalized 	ring rate ri
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�ij
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that is� contributions to the mutual information which are always positive 
indicating synergy��
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Figure �� The short�time limit expansion breaks down sooner� the larger the population consid�
ered� Cells in rat somatosensory barrel cortex responding to � stimuli to the vibrissae� Compo�
nents of the transmitted information with � 
top� left�� � 
top� right�� � 
bottom� left� and �
cells 
bottom� right�� The 	rst three cases are averaged over � sets of cells� Time window� ����
ms� The initial slope 
i�e�� It� is roughly proportional to the number of cells� The e�ects of the
second order terms� quadratic in t� are visible over the brief times between the linear regime and
the break down of the expansion� Among several similar data sets analysed� this is close to the
worst case� in terms of how soon in time the expansion breaks down�



Thus the leading contributions of the new Taylor expansion are of two types� both coming as
C
C � ��� terms proportional to hri
s�is hrj
s�is� the 	rst type� Eq� 
��� induces redundancy�
and might scale as �S in our null hypothesis� the second type� Eq� 
��� induces synergy�
and might scale inversely with the number of trials per stimulus in our null hypothesis� These
leading contributions to Itt can be compared to 	rst order contributions to the original Taylor
expansion in t 
i�e�� to the C terms in It� in di�erent time ranges� For times t 	 ISI�C� that
is t � r 		 �C� 	rst order terms sum up to be of order one bit� while second order terms
are negligible� provided enough stimuli are used and enough trials are available� This occurs
however over a time range that becomes shorter as more cells are considered� and the total
information conveyed by the population remains of order  bit only# For times of the order of
the mean interspike interval� t � ISI� 	rst order terms are of order C� while second order ones
are of order C� � �� 	 
with a minus sign� signifying redundancy� and C� � 

��� 	 
with a
plus sign� signifying synergy�� respectively� If � �� 	 and � 

��� 	 are not su�ciently small to
counteract the additional C factor� these �random� redundancy and synergy contributions will
be substantial� Moreover� over the same time ranges also leading contributions to Ittt and to
the next terms in the Taylor expansion in time may be expected to be substantial�

We are therefore led to a surprising conclusion� applying to what is likely the minimum
meaningful time range for information transmission� that is the time it takes the typical cell to
emit a spike� The conclusion is that a large population of cells� which has not been designed to
code stimuli in any particular cooperative manner� may still show large e�ects of redundancy
or synergy� arising simply from random correlations among the 	ring of the di�erent cells�
Such a conclusion reinforces the need for careful experimental studies of the actual correlations
prevailing in the neural activity of di�erent parts of the brain� However� it also indicates the
importance of considering information decoding along with information encoding� real neurons
may not care much for the synergy and redundancy encoded in a multitude of variables they
cannot read out� such as the �ij �s and �ij�s�

� Parameters that matter in neuronal representations

What are� then� the variables that real neurons are directly a�ected by� Clearly� the 	ring rates
ri� of the neurons they receive inputs from� comprise an important group� Most theoretical
analyses of neural networks are grounded on the assumption that the quintessential processing
carried out by a single neuron is a dot product operation between the vector of input 	ring rates
and the vector of synaptic weights 
cf� ������ It is the modi	ability of individual synaptic weights�
and the consequent variance among the synaptic weight vectors of di�erent processing units�
that makes individual 	ring rates important� as even very simpli	ed formal models illustrate�
If synaptic weights were taken to be uniform across inputs� the enormous fan�in of cortical
connectivity would reduce to a mere device for large sampling� If they were taken to be non�
uniform but 	xed in time� no new input�output transforms could be established for a given
population of cells� so in practice the connectivity would� again� subserve just sampling� except
for a few in�built operations� The modi	ability of individual synaptic weights� according to
so�called Hebbian rules ���� or otherwise� is the cornerstone of the theory of neuron�like parallel
distributed processing� Thus� quantitative constraints on memory storage are set by the number
of synapses available for individual modi	cation� and in fact they are expressed usually in terms
of bits$synapse� In the real brain neurons and synapses operate in vastly more complicated
ways than summarized by notions like dot products and synaptic weights� Still� maximising
memory storage through maximal synaptic density has been considered by Braitenberg ���� a
crucial principle of cortical design�



Individual 	ring rates are therefore central to neuronal coding because of 
long�term� synap�
tic plasticity� but as there is more to cortical plasticity than synaptic plasticity� so there is likely
more to neural codes than individual 	ring rates� Recently� for example� much attention has
been devoted to the exquisite re	nement of local inhibitory circuitry in the neocortex 
Henri
Markram� personal communication� and see ����� Inhibitory interneurons appear to cluster into
some � di�erent classes� discriminable on the basis of a combination of morphological� electro�
physiological and short�term plasticity properties� Synapses to and from inhibitory interneurons
are found to demonstrate long�term plasticity as well� Their connectivity patterns are di�eren�
tiated also in terms of cortical layers� Although the total numbers of inhibitory neurons and
the number and location of their synapse appear unsuitable to make them individually involved
in information processing� there is no doubt that they provide for a modulation of cortical dy�
namics that turns certain collective variables into important parameters of neuronal codes� For
example� the average degree of synchronization of an a�erent volley to a given cortical patch
might be crucial in determining the dynamics of feedforward and feedback inhibition� and con�
sequently the time�course of activation of the pyramidal cells in the patch� This is in contrast to
the exact degree of synchronization between any two axons 
the dynamical equivalent of a single
�ij�� which would itself be relevant only if there were a corresponding modi	able parameter
capable of modulating its e�ects�

At present� our theoretical understanding of neural networks is underdeveloped to deal with
such cortical complexities� which are themselves still in the process of being investigated� espe�
cially in their dynamical aspects� Despite some promising attempts ����� these are still early
days for the elaboration of the appropriate conceptual tools and the identi	cation of the crucial
mechanisms and most relevant quantities� At a very basic� and non�dynamical� level� however�
it is already clear that the gross statistical features of the distribution of neuronal activity bear
a direct import on the e�ciency of neuronal codes and of information storage� In the late eight�
ies� a considerable debate between neurophysiologists and modelers centered on the issue of the
observed mean level of activity in the cortex� and whether this would make popular models of
memory storage totally inappropriate as models of cortical networks ����� This issue� touching
on the 	rst and most basic moment of an abstract �typical distribution of cortical activity�� even�
tually evaporated when it appeared to be closely linked to the modeling of neurons as binary
or sigmoidal units� The second moment of such a typical distribution� instead� has a relevance
which does not simply stem from crude modelling technology� It was long recognized that the
so�called sparseness of the 	ring� roughly the proportion of cells highly activated at any one
time� is a primary determinant of the capacity for memory storage ���� ���� For non binary
units� in particular for real neurons� a generalized measure of the sparseness of their activity can
be de	ned as

a �
� ri 	

�

� 
ri�� 	

��

���� ���� The more sparse a set of representations expressed by a population of cells 
a � ���
the less the representational capacity and the larger the memory capacity of that population�
and consistently a is generally found to decrease approaching central memory systems from the
sensory periphery ����� Sparseness is thus a basic and important statistic of neuronal repre�
sentations� which however does not re�ect their interrelationships� To probe the ways in which
di�erent representations relate to one another� one must consider other statistics� that go beyond
sparseness� and that in fact are linked to information measures�



 Quantifying the structure of neuronal representations

The structure of neural representations of the outside world has been studied in detail in some
simple situations� Typically these are situations in which a well de	ned correlate of neuronal
activity 
i�e� a stimulus� a response� or even a behavioural state� is characterized by one or a
few parameters that are made to vary continuously or in steps� Examples are the Hubel and
Wiesel ���� description of orientation selectivity in cat visual cortex� the O�Keefe ���� 	nding of
place cells in the rat hippocampus� the mitral cell coding of n�aliphatic acid hydrocarbon length
in the olfactory system ����� the coding of the direction of movement in �D�space in the primate
motor cortex �����

In many interesting situations� though� especially in those parts of the brain which are more
remote from the periphery� external correlates� or� for simplicity� stimuli� do not vary 
either
continuously� or in steps� along any obvious physical dimension� Often� in experiments� the
set of stimuli used is just a small ensemble of a few disparate individual items� arbitrarily
selected and di�cult to classify systematically� Examples for the ventral visual system are
faces ���� simple or complex ���� abstract patterns� or the schematic objects reached with the
reduction procedure of Tanaka et al ����� In such situations� the resulting patterns of neuronal
activity across populations of cells can still provide useful insight on the structure of neuronal
representations of the outside world� but such insight has to be derived independently of any
explicit correlation with a natural� physical structure of the stimulus set�

The only obvious a priori metric of the stimulus set� in the general case� is the trivial
categorical metric of each element s being equal to itself� and di�erent from any other element
in the set� A posteriori� the neuronal 	ring patterns embed the stimulus set into a potentially
metric structure de	ned by the similarities and di�erences among the patterns� or response
vectors� corresponding to the various elements� A truly metric structure can be extracted by
quantifying such similarities and di�erences into a notion of distance 
among 	ring patterns� that
satis	es the � required relations� positivity� symmetry� the triangle inequality� At a more basic
level� though� the overall amount of structure� i�e� the overall importance of relations of similarity
and di�erence among 	ring patterns� can be quanti	ed even independently of any notion of
distance� just from a matrix Q
sjs�� characterizing the similarity or confusability of s� with s� a
matrix which need not be symmetrical� Q
sjs�� can be simply derived from neuronal recordings�
after decoding the 	ring patterns� as the conditional probability P 
s� s���P 
s��� Whatever the
decoding procedure used� Q
sjs�� is essentially a measure of the similarity of the current response
vector to s� with the mean response vector to s� It is however important to notice that Q
sjs�� can
also be derived from other measures� for example from behavioural measures of error or confusion
in recognition or classi	cation� Behavioural measures of the similarity or confusability of s� with
s do not access the representation of the two stimuli directly� but indirectly they re�ect the
multiplicity of neural representations that are important in generating that particular behaviour�
If some of these representations are damaged or lost� as in brain�damaged patients� the resulting
behavioural measures can be indicative of the structure of the surviving representations �����

The amount of structure can be quanti	ed by comparing the mutual information� which in
terms of the matrix Q
sjs�� reads

I �
X

s�s��S

Q
sjs��P 
s�� log�
Q
sjs��P

s�Q
sjs��P 
s��

��

with its minimum and maximum values Imin and Imax ���� corresponding to a given percent
correct fcor �

P
sQ
sjs�P 
s�� The lowest information values compatible with a given fcor are

those attained when equal probabilities 
or equal frequencies of confusion� result for all stimuli



s 
� s�� In this case one 	nds

Imin � log� S � fcor log� fcor � 
� fcor� log��
� fcor��
S � ��� 
���

Conversely� maximum information for a given fcor is contained in the confusion matrix when
stimuli are confused only within classes of size �fcor� and the individual stimuli within the
class are allocated on a purely random basis 
for analytical simplicity we consider only unbiased
decoding� such that Q
sjs�� � Q
s�js��� and assume that each class may contain a non integer
number of elements�� It is easy to see that then

Imax � log� S � log� fcor� 
��

Interpreting the similarity� or probability of confusion� as a monotonically decreasing function of
some underlying distance 
e�g� as discussed above�� the 	rst situation can be taken to correspond
to the limit in which the stimuli form an equilateral simplex� or equivalently the stimulus set
is drawn from a space of extremely high dimensionality� In the Euclidean d � � limit� points
drawn at random from a 	nite e�g� hyperspherical region tend to be all at the same distance
from each other� and from the point of view of the metric of the set this is the trivial limit
mentioned above� The second situation can be taken to correspond to the ultrametric limit�
instead� in which all stimuli at distance less than a critical value from each other form clusters
such that all distances between members of di�erent classes are above the critical value� This is
a non�Euclidean structure 
although it could be embedded in a Euclidean space of su�ciently
large dimension�� and it is a 	rst example of the possible emergence of non�Euclidean aspects
from a quantitative analysis that does not rely on a priori assumptions�

Intermediate situations between the two extremes are easy to imagine� and can be parametrized
in a number of di�erent ways� A convenient parameter that simply quanti	es the relative amount
of information in excess of the minimum� without having to assume any speci	c parametrization
for the Q
sjs�� matrix� is

� �
I � Imin

Imax � Imin

���

which ranges from � to  
for unbiased confusion� it can be above  if confusion is biased� and
can be interpreted as measuring the metric content of the matrix� What is quanti	ed by � can
be called the metric content not in the sense that it requires the introduction of a real metric�
but simply because it gives the degree to which relationships of being close or di�erent 
distant��
among stimuli� emerge in the Q
sjs�� matrix� For � � � such relationships are irrelevant� to the
point that if confusion occurs� it can be with any 
wrong� stimulus� For � �  close stimuli are
so similar as to be fully confused with the correct one� whereas other stimuli are �maximally
distant� and never mistaken for it�

In summary� the metric content index � quanti	es the dispersion in the distribution of �er�
rors�� from maximal� � � �� to minimal� � � � The �errors� may be actual behavioural errors in
identifying or categorizing stimuli or in producing appropriate responses� or simply calculated
from the similarity in the response vectors of a population of cells to di�erent stimuli� Two
examples of application of the metric content index� in the second situation� are illustrated in
Fig� �� The analyses summarized in the graphs of Fig� � point at two important aspects of the
metric content index� its being a relatively intrinsic property of a representation 
invariant across
the number of cells sampled� within sampling precision� and its variation from one population
or cortical area to another� The neuronal recordings are described elsewhere 
continuous simul�
taneous recordings of �� rat hippocampal CA cells� with the rat running a triangular maze�
divided in windows ��� msec long ����� and continuous but not simultaneous recordings of ��
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Figure �� The information decoded from di�erent cell populations vs� the corresponding percent
correct� in the rat 
left� and monkey 
right� hippocampus� In both cases di�erent data points
with the same symbol correspond to increasing the number of cells included in each population�
thus raising percent correct and information� Imin and Imax are indicated� The rat example illus�
trate how metric content is a relatively invariant measure 
the third curve is for � � ����� across
population sizes� The monkey example indicates quantitative di�erences among neighbouring
populations 
the � curves are for � � ���� and � � ����� datapoints are for populations of CA�

��� CA 
triangles�� parasubiculum 
squares� and parahippocampal gyrus cells 
diamonds��



monkey cells from the � regions indicated� with the monkey freely locomoting in the laboratory�
divided in windows �� msec long ���� �����

It should be noted that the similarity matrix is based on response vectors quite di�erent from
Georgopoulos� population vectors ����� which live in the physical �D or �D movement space
rather than in the space of dimensionality equal to the number of cells included� and which
correspond to a continuous rather than a discretized correlate� One can see from the 	gure
the extent to which metric content� considering the imprecision with which cells are sampled�
their activity is recorded and the information measurss are extracted� is still a relatively stable
index� This allows some comparisons to be made even among the metric content characterizing
vectors of di�erent dimensionality� For each given cortical area� as more cells are considered�
both percent correct and decoded information grow� and the relation between the two� expressed
as metric content� varies somewhat� but in a limited band of values characterizing each cortical
area� These data� particularly those obtained in the monkey� are not fully adequate� on at least
two accounts� First� the number of cells recorded and the number of trials available for each
cell and each spatial view were not su�ciently large to safely avoid limited sampling e�ects�
Second� the monkey recordings were not simultaneous� Both inadequacies can be removed with
parallel recording from several cells at once� as has become now standard practice in a number
of laboratories�

Within these limits� one possible interpretation of the di�erent metric content in the CA�
area� with respect to the other � areas sampled� lies in the di�erent pattern of connectivity�
whereby in CA� recurrent collateral connections are the numerically dominant source of inputs
to pyramidal cells� and travel relatively long distance� to form an extended network connected
by intrinsic circuitry� Considerations based on simpli	ed network models suggest that such a
connectivity pattern would express memory representations with a di�erent metric structure
from those expressed by networks of di�erent types� The di�erence could be further related
to the qualitative nature of the memory representation� which might be characterized as being
more episodic in CA� and more structured in the other areas� The metric content depends also
on the average sparseness of these representations� though� and further analyses are required to
dissociate the e�ects of connectivity 
and of representational structure� from those purely due
to changes in sparseness� In particular� it has been shown that in the short�time limit the metric
content becomes a transparent function of sparseness ����� and it is possible that even over the
��� msec windows used for the rat� the structure revealed re�ects mainly the sparseness of the
coding�

The monkey recordings were from neighbouring areas in the temporal lobes� and it is possible
that any di�erence among memory representations will be more striking when more distant areas
are compared� In addition� it is possible that any di�erence may be more striking when the
correlate considered does not have its own intrinsic metric� as with spatial views� but instead lives
in a high dimensional space� as e�g� with faces� thereby letting more room for arbitrary metric
structures to be induced in the neural representations by the learning process� For both reasons�
it is interesting to extend this analysis to entirely di�erent experiments� sharing with these only
the generic requirement that di�erent populations of cells are recorded in their response to the
same set of stimuli� or in general correlates� It is also interesting to deepen the analysis of the
structure of representations by looking at subtler aspects� such as the ultrametric content �����
that depends on the mutual relations of triplets� rather than pairs� of representations�

Finally� possible changes in the representations that develop with time can examined by
recording from the same populations " not the same cells " over periods during which some
behaviourally relevant phenomenon may have occured� such as new learning� forgetting� or a
modulation of the existing representations� One speci	c such modulation of interest for the case



of human patients is the one resulting from localized lesions to another cortical area� which may
a�ect the structure of the representations in surviving areas of the cortex�
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