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1 Understanding neural codes requires information measures

How do you communicate? A moderately bright extra-terrestrial, who were to investigate the
codes you use, would reasonably conclude that you mainly communicate verbally. Our E.T.
might further describe verbal codes as strings of chunks of variable length, that you appear to
call words, which can be uttered as collections of phonemes or else written as nearly isomorph
collections of letters, and so on with further details. If however E.T. were exceptionally bright,
or needed to write a grant application on this investigation, it would probably ”discover” that
in some situations you also communicate a lot just with your grimace, or with the clothes you
have chosen to wear, or in a thousand other ways.

Neurons are vastly simpler than human beings, but the metaphor is not completely silly,
because it illustrates the volatility of the notion of neural codes. Nobody in the right of his
or her mind would think that nature has designed a unique way for neurons to communicate,
and in fact they interact, or affect each other, in a thousand different ways. In certain specific
situations neurons may tell each other a lot with the way they compete for peptides, for example,
or with the way they couple in ephaptic interactions. Yet a first understanding of the opera-
tion of neural networks in the brain requires that we try to describe the main, usual form (or
forms) of communication. We should take the approach of the moderately bright investigator,
and leave the discovery of exceptional facts for later on. Further, we should try to quantify
how much is communicated in each situation, because only a quantitative comparison allows to
assess different codes, especially if they share part of the content of what is being communi-
cated. Information theory [1] has been developed precisely to quantify communication, and is
therefore quintessential to an appraisal of neural codes. Applying information theory to neural
activity (rather than to the synthetic communication systems for which it was developed) is
however riddled with practical problems and subtleties, which must be clarified before reporting
experimental results.

In this chapter, we do not consider other means of neuronal communication than the emission
of action potentials, or spikes, and regard them as selfsimilar all-or-none events whose only



distinctive features are the time of emission and the identity of the emitting neuron. Thus we
restrict ourselves to information being represented, across a given population of neurons, by
strings {¢;r}, where ¢ = 1,...,C labels the emitting neuron and %k indexes successive spikes
in a prescribed time window. This is still a rather general and potentially very rich language,
which in many situations can be reduced to considerably simpler forms. For example, most
of the information might be carried simply by the total number of spikes, n;, emitted by each
neuron in the window, irrespective of their timing within the window. Although the spike count
is an integer, it becomes a (positive) real number when averaged over several repetitions or even
when calculated, in more general terms, by convolving the spike train with a given time kernel.
Therefore, it is more convenient to consider, instead, the firing rate, r;, which, being divided by
the time window, or the integral of the kernel, is also relatively invariant across window lengths
for quasi stationary processes. The extent to which the firing rates of a population of neurons
may or may not carry most of the information represented in the complete list of spike emission
times is, of course, a question to be addressed experimentally, in any given situation. This has
been done, with some success, mostly at the level of single neurons, as will be discussed later.
First, we must consider what information we can set out to measure, given the difficulties and
subtleties of measuring it in neuronal activity. For simplicity of notation, we shall think of such
information as being represented in the rates, although the arguments of the next section apply
equally to information represented in the complete list of spike emission times.

2 Sampling with limited populations, correlates and repetitions

The activity of a population A of neurons represents both information and noise. The part
that can be considered, in general, to contain information, is the part that varies together with
something else, such as the activity of another population B, or some external correlate. It is
measured by what is usually called mutual information

I({riea};{rjes}) = / H drz-/ H drjp({ri},{r;}) log, [M] ) (1)

i€A jeB p({ri})p({r;})

Note that {rjcp} could stand for the activity of the same population A, but at a different
time. Or, it could stand for the parameters of some external correlates. Whatever the case,
for the present discussion it is useful to consider that neither set of variables may be easily
manipulated by the experimenter. Then, to evaluate the transmission of information from B to
A (or viceversa: mutual information is symmetric and does not reflect causality) one should let
the coupled system do what it normally does, in ”ecological conditions”, for the very long time
needed to sample accurately the joint probability distribution p({rica},{rjeB}). Since we are
usually interested in the way the neural system operates, and not just in individual neurons,
ideally we would need to record the activity of all cells in A and B, C'4 and Cp. The time
required would be exponential in Cy + Cp (times, effectively, the logarithm of the number of
discriminable firing levels of each cell), i.e. much longer than the age of this and all preceding
universes. Practical limitations on the number of cells that can be recorded simultaneously
(a few hundreds, now) make the time required for a single measure less apocaliptic, but still
way from affordable. In practice, a direct measure of mutual information has to be based on
the recording of the activity of only o handful of cells. This implies that we are forced to
hope that those cells are in some sense ”typical”, but it also forces us to overlook potentially
important coding schemes that could only be revealed, quantitatively, by taking into account
the simultaneous activity of many neurons. Substituting computer simulations for real recording



experiments only alleviates the constraint by a tiny bit, while an analytical evaluation of mutual
information is sometimes possible with formal models of large populations, in which however
the result is in-built in the structure of the models. Thus, a first restriction on the applicability
of information measures to neural activity is in the size of the population that can be sampled,
and effectively in the dimensionality of the codes that can be investigated.

A second restriction emerges when considering the content of the information being repre-
sented. The content is determined by the set of external (or internal) correlates of the activity
in populations A and B. Ideally, they should reproduce the ecological working condition of the
neural system being studied. In practice this is hard to do, in the lab, in a reasonable time, also
because what this ”ecological condition” is may be unknown or ill-determined (except perhaps
for peripheral neural systems tightly coupled to specific dimensions of the sensory environment
[2]). A common strategy, when studying the CNS, is instead to select a discrete set of elements,
S, representative of interesting correlates, and to quantify the mutual information not between
A and B, but between A and S

o _ N 1) log, | LUTiES)
I(rieakifsesp = [ 1L dri 3 piiri}, o) log; [mm})P(s)]' .

where the capital P denotes a real probability, rather than a probability density. This is con-
ceptually a different quantity, which, since S is an object of much reduced complexity than the
activity in B, is much easier to measure. In particular, if § includes S equiprobable elements,
its entropy log, S will be an upper limit on the mutual information, no matter how large C}y,
the population of neurons encoding the set of correlates. Eq. 2 quantifies how much the activity
of population A allows us to discriminate between elements in S. Eq. 1 quantifies how much it
tells us about the activity of another population B. One may wonder then, what the measur-
able quantity in Eq. 2 tells us about the impractical-to-measure quantity of Eq. 1. Curiously,
this question seems to have been disregarded in the literature, with the exception of Frolov
and Murav’ev [3], who consider two quantities analogous to 1 and 2, which they denote as I,
and I;, and conclude that the total information that can be extracted from neural activity is
the sum I; + I5. Our recent analyses (Samengo and Treves, to be published) lead to a rather
different conclusion. I({rjca};{s € S}), far from being a term to be added to I({rica};{rjcB}),
provides a good estimate of it, at least when many different correlates are used, and few enough
cells are sampled that one is far from the regime approaching the saturation value at log, S.
While the numbers, and the quality of the estimate, depend on the exact details of the network
to be analysed, our result justifies a posteriori the common practice of extracting measures of
I({rica};{s € S}). We shall see later on how, when sampling more than a handful of cell, the
common practice is to adopt a further simplification along this path, and to extract yet another,
distinct information measure, the information about S recovered by a decoding procedure.
The third major sampling limitation with information measures is intimately (but inversely)
related to the other two, and touches directly on a core concern of any scientific measure, that
of reproducibility. It is the limitation arising from the limited availability of repetitions of the
same observation. Mutual information measures, as they depend on the joint probability of two
variables, always require many repetitions. To sample adequately a set of S elements and a
firing rate vector which can take of the order of R =(max spikes per cell)® values, one needs of
the order of S x R repetitions [4]. In recording experiments, especially in the CNS of mammals,
this requirement is difficult to meet. Since mutual information depends non linearly on joint
probabilities, a measure based on insufficient repetitions is not only imprecise, but also, in prin-
ciple, biased, that is affected by systematic errors. Usually the procedure is to simply substitute
observed frequencies for the underlying probabilities (a so called ”frequentist” approach), and



usually the effect of undersampling the joint probability (upstairs in the logarithm of Eq.2) is
much more serious than that of undersampling its marginals (downstairs in the log). Since
mutual information is supralinear in the joint probability, its undersampling typically leads to
an upward bias, or mean (systematic) error in the measure. Various techniques [5, 6] have been
developed to estimate and subtract, or otherwise neutralise, this bias, but their limited efficacy
makes limited repetition sampling the most stringent constraint, in practice, on measuring in-
formation carried by neural activity in the CNS of mammals. Since the problem is exacerbated
when many cells and large sets of correlates are considered, the most reliable measures so far
have been obtained with very limited sets of correlates and at the single cell level, and it is to
these that we turn next.

3 What code is used by single cells?

Animals interact, via their sensory and motor nervous systems, with a continuously changing
world, and it is obvious that also activity in their central nervous system should reflect, in
the time dimension, this continuous change. Some investigators have been curiously excited by
finding evidence of such strict coupling between the CNS and the outside world. Richmond,
Optican and colleagues, instead, have addressed the question of temporal coding, at the single
cell level, in the correct conceptual framework. They have asked whether individual neurons
in the CNS make non-trivial use of the time dimension, by recording the responses of cortical
visual neurons to static visual stimuli. A stimulus that is, after its sudden onset, constant in
time, may elicit in a given neuron activity that varies in time only in a generic fashion [7],
or that varies in time in a way specific to the stimulus itself. In the latter case, the neuron
has used time to code something about the static stimulus, something which was not its time
dependence. Quantitatively, this would appear as mutual information, between the stimulus
used and a descriptor of the response that is sensitive to the timing of spikes, much higher than
the information present in a descriptor insensitive to spike timing, like the firing rate or spike
count. Note that the quantitative difference would have to be substantial, because a higher-
dimensional descriptor will always be able to convey something that any single, prescribed low
dimensional descriptor misses out.

The approach taken by Optican and Richmond [8] quickly gained acceptance as a sound
basis for revealing temporal codes, and their claim that the time course of single neuron activity
carries between 2 and 3 times more information than the spike count had a considerable impact.
It was unfortunate for them to discover, in the following years, that this early result was entirely
an artifact of the limited number of trials per stimulus they had used. Limited sampling affects
differentially the information extracted from descriptors of different dimensionality, and with
the time course descriptor it resulted in an upward bias much larger than with the spike count.
Having introduced some form of correction for limited sampling [9], the evidence for temporal
coding weakened and eventually all but evaporated [10, 11, 12]. A replication with a similar
experiment in Edmund Rolls’ lab [13] has further suggested that part of the residual difference
in mutual information could be due to differential onset latency, which could still be called
temporal coding, but of a less interesting nature.

To date, no report has appeared that demonstrates substantial non-trivial usage of time by
single cortical neurons [14, 15]. The one apparent exception is the so-called phase precession in
rat hippocampal place cells [16]. The firing of these (principal) cells is modulated by the Theta
rhythm, which is expressed mainly in the firing of local interneurons. When a rat runs through
the place field of a given cell, this cell tends to fire towards the end of a Theta period as it enters
its field, and progressively earlier in phase as it goes through it. The effect can be understood as



a simple emergent property, whereby a cell that needs more recurrent activation to complement
a weakish afferent input, tends to fire later than cells with a stronger extrinsic drive [17]. On
a linear track, place fields tend to be directional, that is to be associated with only one of the
two directions in which the field can be traversed. Therefore, the phase of firing can be used to
extract some additional information on the exact location of the rat, on top of what is available
from, say, the number of spikes emitted over a Theta period. In an open field, however, in which
the rat can traverse the same place field along an arbitrary trajectory, and elicit firing in the
same cell, the phase information cannot be used for absolute localization, independent of the
trajectory, and the postulated temporal coding through phase precession reveals itself as a mere
epiphenomenon [18].

Nevertheless, the body of experiments addressing temporal coding at the single cell level has
stimulated the development of information extraction procedures, among them those addressing
limited sampling [9, 19, 11, 5, 6], that turn out to be crucial also in measuring the information
conveyed by populations of cells.

4 Is a neuron conveying information only when it fires?

The intuition of many neurophysiologists is that central neurons transmit information simply
when they fire. In the extreme, a spike is regarded as a gquantum of information, and even
confused with a bit (which in fact is just a unit, and implies no quantization at all). No matter
how crude, this intuition is reinforced by the lack of evidence for sophisticated coding schemes:
cortical neurons appear uninterested in the game of transcribing stationary signals into fancy
temporal waveforms. Yet, one could think of other non-trivial coding schemes, which do not
involve the time dimension, but just clever manipulation, by the neuron, of its conditional firing
probability. For example, certain connectionist models assume that a unit active at its maximum
level reports the presence of its own preferred correlate (e.g., the sight of one’s grandmother),
while any intermediate level of activation would be elicited by other correlates, with partially
shared attributes [20]. A neuron behaving according to such model might be expected to reliably
fire at top rate, say 10 spikes in 100 ms, when detecting the grandmother, and to fire between
0 and 9 spikes when detecting other senior ladies. Each of them in some of the repetitions of
the experiment may resemble more the true grandmother, and thus evoke more spikes, than in
other repetitions. Then P(r|granma) would be strongly peaked at 100 Hz, while P(r|ladyX)
would be more broadly distributed between 0 and 90 Hz. The meaning of, say, 3 spikes in close
succession would be rather different depending on whether there are 7 more close by, or just 6.

Nothing of this sort has ever been observed with neurons. Neurons appear to use spikes in a
simple-minded fashion. Moreover, neurons can be as informative when they fail to fire as they
are when they do fire. Roughly speaking, the only information they provide is in the extent to
which their current firing level is above or below their mean firing level. One way to confirm
this is to compute the quantity

1(s) = [ arptrls)tog, 2171, ®)

which depends on the probability of each firing rate conditional on the correlate s and, when
averaged over correlates, yields the mutual information. We have mistakenly called this quantity

‘information per stimulus’, or ‘stimulus-specific information’ [21], along with others. Recently
DeWeese and Meister [22] have correctly pointed out that I1(s) is not additive, as any information



quantity should be, while the similar quantity

Ir(s) = / drp(r|s) logy p(r|s) — / drp(r) log, p(r) (4)

in fact is additive. I5(s) also averages to the mutual information, which is positive definite, but
as a function of s I5(s) takes also negative values. I(s) is not additive but positive definite, and
should be called the ‘stimulus-specific surprise’, as proposed by DeWeese and Meister [22]. In
any case, the interest in I (s) is not so much in quantifying information, but rather in illustrating
the simplicity of the firing rate code. This can be appreciated by first taking the limit of a very
brief time window At [23]. In such a window the cell may emit at most a single spike, with
probability rsAt = At [ drp(r|s)r; and I1(s) reduces to its limit, the ‘stimulus-specific surprise
per spike’ x(s) = (1/7)dli(s)/dt. Relative to the overall mean rate 7 = > P(s)rs, x(s) is a
universal curve, .

x(x) :xlog2m+@(l—x), (5)
where x = ry/7 (see Fig. 1 and Ref. [24]). This universality is intimately related to the availability
of a single ‘symbol’, the spike, in the neural alphabet, at least in the limit of short times, when
the emission of more spikes has negligible probability. Over a longer time window, instead, I;(s)
is not constrained to follow the universal x(s) curve, and a departure from it could reveal a
more sophisticated code. For example, DeWeese and Meister [22] remind us that for an optimal
code that saturates the channel capacity, the specific surprise should be constant across different
correlates. This is far from what has been observed in the very few cases when this issue has been
probed. The specific surprise appears to follow the universal curve [25, 21, 26], indicating that
the firing rate code is likely to remain as simple as it is forced to be for short times. In agreement
with this, typically firing rates elicited by repetitions of the same stimulus, or correlate, have a
variance monotonic in the mean rate rz, and a simple distribution around the mean, between
Poisson and normal, again not hinting at any clever manipulation of the conditional probabilities
P(r|s) [27].

Related evidence, though not in terms of conditional probabilities, comes from the observa-
tion of spike count distributions produced by cortical neurons in their normal operating regime.
It has been suggested by Levy and Baxter [28] that an ezponential spike count distribution would
reveal optimal coding, subject to a metabolic constraint on the energy consumption associated
with each spike. This would be an example of a clever design principle implemented in the
brain. An attempt to search for such exponential distributions by subjecting visual neurons to
more or less ecological stimulation has only shown exponential tails [29], not fully exponential
distributions, while it has been shown that the observed distributions can be explained as the
result of an elementary random process [30], which has nothing to do with optimising the neural
code.

Currently available evidence on single neurons thus indicates that the simple neurophysi-
ologists’ intuition is, essentially, accurate. Cortical neurons appear not only unable to make
creative use of time, but also unable to alter the mapping between the input they receive and
the spikes they produce, on the basis of any coding optimization principle. If this is correct, the
equivalent of the old ‘tuning curve’, that is the distribution of mean firing rates to each correlate,
is all that is necessary to characterize adequately the activity of a single cortical neuron. If the
relevant correlates are simple one-dimensional parameters, such as orientation in V1, then the
tuning curve is simply described by giving e.g. preferred orientation, width, baseline and peak
value (and the informational aspects are usually quantified by just the Fisher information, whose
relation to mutual information is discussed by Brunel and Nadal [31], see also the chapter by
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Figure 1: The stimulus-specific surprise from real data follows the universal curve valid in the
t — 0 limit. Real data from an inferior temporal cortex cell responding to 20 face stimuli over
500 ms [21]. The curve is the surprise rate, expressed as bits per 100 msec, for a mean firing
rate of 50 Hz. The main difference between limit curve and real data is just a rescaling, roughly
by the factor 5 implicit in the graph.



Fukumizu in this book). If the relevant correlates are embedded in a less transparent domain
set, such as faces or fractals [32], then in principle the mean rate ry to each correlate should
be given (the variance being largely determined by the mean [27]). However the gross feature
of the distribution of rates can be still conveniently described with fewer parameters, such as
overall mean rate, spontaneous rate and sparsity [33] of the distribution. To such parameters we
turn at the end of this chapter; before, we should consider the possibilities offered by population
coding.

5 Are neighbouring neurons telling the same story?

The studies cited above show that, in roughly ecological conditions, single cortical neurons
typically can transmit up to a fraction of a bit, about stationary correlates, over a few hundreds
of ms (with instantaneous information rates occasionally a bit higher). This is clearly way below
the behavioural discrimination capability of the animal. Therefore, we are brought to consider
the transmission of information by populations of neurons. One crucial question is the extent
to which the information provided by different neurons is the same, that is, redundant.

This issue has been addressed, perhaps for the first time at a quantitative level, by Gawne
and Richmond [34]. Recording from pairs of inferior temporal cortex neurons in the monkey,
responding to a set of 32 simple visual stimuli (Walsh patterns), they have compared the infor-
mation obtained by considering both responses to the sum of that obtained for each response
alone. On average across several pairs, they have found an information ‘overlap’ y = 0.2 shared
by a pair, e.g. a single cell information I(1) ~ 0.23 bits and for the pair I(2) ~ 0.41 bits
~ [(1) + I(1)(1 — y). This seems to imply that as much as 80% of what the second cell has to
say is fresh information, not yet reported by the first cell - not much redundancy. Gawne and
Richmond have, however, noted that even such limited redundancy would have drastic effects
if it held among arbitrary pairs of cells in a local population. They have considered a simple
model, which assumes that if a fraction 1 — y of the information conveyed by the second cell is
novel, then a third cell would on average convey a fraction (1 —y)? of novel information (and a
fraction y(1 — y) shared with each preceding cell, and y? with both); the i** cell recorded would
contribute a fraction (1 —y)*~! novel information, and adding up all contributions one ends up
with I(oco0) = I(1)/y, or just 1.15 bits in their experiment. Since 5 bits are necessary to discrim-
inate 32 stimuli, they have concluded that even an infinitely large population of cells with that
apparently limited level of redundancy would not be able to code for their small stimulus set;
and therefore that the mean redundancy among neurons farther away, than those they recorded
from, should decrease considerably, towards zero, to account for the fact that behaviourally the
animal is obviously able to discriminate.

A similar warning, that even small redundancies can have drastic effects on the representa-
tional capacity of a population, was put forward by Zohary, Shadlen and Newsome [35]. They
looked at the correlated discharge of MT neurons to randomly moving dots, where a single (uni-
dimensional) parameter was used as correlate, the average motion of the dots. Their perspective
was different from that of Gawne and Richmond, but the result seemed to imply, again, that
adding more and more cells adds little to the accuracy of neural codes.

What appeared important, then, was to go beyond what could be extrapolated from the
shared information between pairs of cells, and measure directly the information that could
be extracted from large populations. Going for large populations requires two changes in the
approach. The first, experimental, is that many cells have to be recorded simultaneously, and
thus with multiple electrodes. Alternatively, separately recorded cells can be considered, but
the results should be later checked against those obtained with simultaneous recordings, because



these are needed to record trial-to-trial correlations, and their possible effects on information.
The second change, in the analysis, is brought about by the exponential explosion of the ‘response
space’ spanned by {rjca}, when i = 1,...,C and C becomes large. The explosion makes it
impossible to sample adequately the space, and thus to measure directly the mutual information
in Eq.2. A standard procedure is to use a decoding algorithm, that converts the vector r;c 4 into a
prediction of which correlate s’ elicited it, or else assigns probabilities P(s'|r;c4) to each possible
correlate. The result is that one measures the decoded information

{ P(s,s") }

I{seSy{s'eSH =33 P(s,s)log, P(s)P(s")

SESs'eS

(6)

Inasmuch as decoding is done correctly, that is the functions s'(r;c 4) or P(s'|ric4) do not contain
any a priori knowledge on the actual correlate s, the decoded information is less or equal to
the original mutual information; just in the same way that any mapping from a variable (here
rica) to another, e.g. to a regularized variable, can only degrade, or at most preserve, but not
improve, the correlation between the original variable and a third one. Decoding can be done
in a variety of ways, and it is not possible to quantify the information loss resulting from each
particular algorithm. Still, experience with most commonly used algorithms, and comparisons,
when possible, with direct measures, suggest that in many cases the information loss is minor.
In particular, very simple decoding algorithms, like those that may conceivably be implemented
in the brain, appear often to lose only slighly more information than sophisticated algorithms
based on Bayesian models [36].

Using non simultaneous recordings from up to 58 cells in the monkey temporal cortex, S =5
stimuli, and a simple decoding algorithm, Gochin et al. [37] proposed to investigate the scaling
of I({s € §};{s' € §}) with the number of cells used for decoding. They expressed their result
in terms of the novelty in the information conveyed by C' cells, defined as the ratio of such
information with the sum of that provided by each cell alone. They found that the novelty
scaled as 1/v/C, intermediate between the 1/C behaviour corresponding to no new information
being provided by additional cells, and the trend to a constant, if at least a finite part of what
each cell contributed, were novel. The 1/4/C behaviour seemed appealing in that it vaguely
matched noise suppression by C independent processes carrying the same signal; unfortunately,
it was likely an artefact, generated by determining a curve on the basis of just 3 points, by failing
to correct for limited sampling, and most importantly by neglecting to consider the ceiling effect,
at I =logy, S = 2.32 bits, just 9 times above the average single cell information, I = 0.26 bits.

Our replications of this type of measure, with decoding algorithms based simply on the
firing rates of simultaneously or non simultaneously recorded cells, have exposed a different
scaling behaviour, in all cases investigated [38, 36, 26] (cf. Fig. 2). This is a linear increase
I(C) x C, eventually saturating towards the ceiling at I,,4, = logy S. The crucial point is
that the saturation level depends on the set of correlates used, and mainly on their number,
and it has nothing to do, in principle, with the coding capacity of the population of cells. A
simple empirical model describing rather well the whole scaling from linear to saturating is an
extension of the Gawne and Richmond model, which in addition assumes that their ‘overlap’
y also represents the average fraction of I,,4, conveyed by single cells (as an overlap it would
presumably be lower, when measured across distant pairs, than when measured, as in their
experiment, only across pairs of nearby cells). Two cells then overlap over a fraction y of the
fraction yl,q; each conveys, that is the essential assumption of the model is that overlapping
areas are randomly distributed across ‘information space’. The information carried by C cells
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Figure 2: The information extracted from a population of cells saturates at the entropy of the
stimulus set. Real data from up to 14 non-simultaneously recorded inferior temporal cortex cells
responding to 20 face stimuli over 500 ms, adapted from Ref. [36]. The intermediate and lower
data points correspond to reduced sets of 9 and 4 stimuli, respectively. The curve is the simple
exponential saturation model of Eq. 7.



is found, with an easy derivation, to be, according to this random model

I(C) = Iz [1 = (1 = )°], (7)

or, in words, a simple exponential saturation to the ceiling. This simple scaling has now been
derived analytically, and found to apply exactly in quite general cases (Samengo and Treves, to be
published). The important element, assumed true in the analytical derivation and apparently
approximately holding also in the experimental recordings, is the lack of correlation in the
activity of different cells. Correlations can be of two main types, sometimes referred to as ‘signal’
and ‘noise’ correlations: those appearing across repeated trials with the same correlate (denoted
i (s) in the following section); and those between the average ‘tuning curves’ of several cells,
that is between their activity distribution across correlates, once averaged over many repetitions
of each (denoted v;;). Neither type of correlation is considered in the analytical derivation.
In the experiments, signal correlations would indeed have an effect, if substantial, while noise
correlations would be unlikely to be ever able to effect a departure from the behaviour described
by Eq.7: even with simultaneous recordings, decoding algorithms based just on firing rates would
likely miss out any influence of such correlations. What is needed then, in order to go beyond
Eq.7 and address the potential role of correlations, is an alternative approach that does not rely
on decoding.

6 Can the effect of correlations be quantified?

The role of correlations in producing redundancy, or alternatively synergy, among neural signals
has been investigated both outside [39] and within [15] the context of population coding. While
redundancy is, in common intuition, the default outcome of correlated signals, it is easy to
devise situations in which correlations lead to synergy. Consider the toy case of Fig. 3 with 2
cells responding to 3 stimuli. Synergy may result from a positive noise correlation (in the trial
to trial variability), if the mean rates to different stimuli are anticorrelated, and viceversa from a
negative noise correlation, if the mean rates to different stimuli are positively correlated. When
signal and noise correlation are of the same sign, the result is always redundancy. The impact of
correlations on redundancy is probably minimal when the mean responses are weakly correlated
across the stimulus set (perhaps the ‘natural condition’?). Given this realm of possibilities,
it is desirable to take an approach, applicable to real data, that enables separating out the
information transmitted by individual spikes, emitted by single neurons within an ensemble,
from positive or negative contributions due to correlations in firing activity among neurons.
One such approach focuses on short time windows [40, 41].

We shall see now how in the limit of what is transmitted over very short windows, a simple
formula quantifies the corrections to the instantaneous information rate (determined solely by
mean firing rates) which result from correlations in spike emission between pairs of neurons. Pos-
itive corrections imply synergy, while negative corrections indicate redundancy. The information
carried by the population response can be expanded in a Taylor series [23, 40]

2
It =th+ In+... (8)

The first time derivative depends only on the mean rates:

I o= Z<Fi(3)l(’g2%>s (9
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Figure 3: A toy case illustrating possibilities for synergy and redundancy, adapted from Fig. 4 of
Ref. [40]. A quick calculation shows that signal and noise both correlated, or both anticorrelated,
result in redundancy, while the other two situations produce, given the responses indicated in
the figure, synergy.



and it is purely a sum of all single cell contributions, each of the form earlier described by
Skaggs and McNaughton [42] and Bialek et al. [2] for single cells. The formula clarifies how
misguided it is to link a high information rate to a high signal-to-noise ratio, which is the
conceptual framework tacitly implied in Refs. [35] and [37]. The rate, that is the first derivative
of the mutual information, only reflects the extent to which the mean responses of each cell are
distributed across stimuli; it does not reflect anything of the variability of those responses, that
is of their noisiness, nor anything of the correlations among the mean responses of different cells.

The effect of (pairwise) correlations begins to be felt in the second derivative, instead, and it
is convenient then to introduce appropriate measures of such correlations. Pairwise correlations
in the response variability (‘noise’ correlation) can be quantified by

ri(s)rj(s)
Ti(s)7;(s)

i.e. the amount of trial by trial concurrent firing, compared to that expected in the uncorrelated
case. The degree of similarity in the mean response profiles of the cells to different stimuli
(‘signal’ correlation) can instead be quantified by

Yij(8) = -1, (10)

< Ti(s)Tj(s) >

<Ti(s) >e< () >s L (11)

Vij =

The second derivative, Iy, breaks into 3 components. The first term of I;; depends only on the
mean rates and on their correlations:

¢

= T X N B, [+ () 12

the second term is non-zero only when correlations are present in the noise, even if stimulus-
independent

1 = 33 [, e (13

i=1j=1 Vij

the third term contributes only if correlations are stimulus-dependent

(1 +5(s8)) (Ti(s")7;(s"))
(Fi(s)75(s") (1 +')’z'j(3,))>s"| >S' 14

This decomposition still has to be applied extensively to simultaneously recorded neural
data. The limited evidence in our hands has not yet revealed a situation in which correlations
clearly play a prominent role. Extensive data produced in the laboratories of Eckhorn [43]
and Singer [44], which qualitatively point at the importance of correlations, have not, to our
knowledge, been analysed in these terms, despite pioneering applications of information theory
[45, 46, 47]. A very interesting recent finding [48] could not be quantified properly in terms of
information due to the limited sampling available, and it could be reanalysed with the help of
this expansion. The expansion has recently being refined in a way that it allow now to assess also
the importance of timing relations in pairwise correlations [41]. The crucial question, however,



is how soon does the expansion, based on the short time limit, break down. When this occurs,
higher order terms in the expansion (starting from those dependent on three-way correlations,
and so on) cannot be neglected any longer. The time range of validity of the expansion is thus
limited by the requirement that second order terms be small with respect to first order ones,
and successive orders be negligible. Since at order n there are C™ terms with C' cells, obviously
the applicability of the short time limit contracts, in practice, for larger populations. This can
be seen in the example from the rat barrel cortex, in Fig. 4. Still, one may ask whether the
expansion, at least restricted to second order terms, may afford some insight on neural coding
as expressed by large populations of cell.

7 Synergy and redundancy in large populations

Obviously with a few cells, all cases of synergy or redundancy are possible if the correlations
are properly engineered — in simulations — or the appropriate special case is recorded — in
experiments. The outcome of the information analysis will simply reflect the particularity of
each case. With large populations, one may hope to have a better grasp of generic, or typical,
cases, more indicative of conditions prevailing at the level of, say, a given cortical module. One
may begin by considering a ‘null’ hypothesis, i.e. that pairwise correlations are purely random,
and small in value.

In this null hypothesis, the signal correlations v;; have zero average, while V% could still differ
from zero if the ensemble of stimuli used is limited, since a random walk would typically span
a range of size V/S. Then the mean I/Z-Qj would decrease with S as 1/S. The noise correlations
might be thought to arise from stimulus independent terms, -;;, which need not be small, and
stimulus dependent contributions d+;;(s), which might be expected to get smaller when more
trials per stimulus are available, and which on averaging across stimuli would again behave as a
random walk.

The effect of such null hypothesis correlations on information transmission can be gauged
by further expanding I; in the small parameters v;; and dv;;(s), i.e. assuming |1/ij|2 << 1 and
|67i;(s)|> << 1. We consider here a simplified case, in which, for example, all cross terms like
v;;07;; are taken to vanish; the full derivation will be published elsewhere (Bezzi, Diamond and
Treves, to be published). In this case the leading terms in the expansion of It(tl) + It(f ) are those
quadratic in v;;

1 c C
I+ 17 = == 30 3 @2+ ) (Fals)), (Fi(9)), v (15)
i=17=1

i.e., contributions to the mutual information which are always negative (indicating redudancy).

(3)

The leading terms in the expansion of I};”, if we denote

1

=3 T s (16)

i=1 (Fi(S)FJ (S)>

(f [5’Yij(3)]>{i,j},s =

the average over stimuli weighted by the product of the normalized firing rate 7;(s)7;(s), and
take (6%3-(3)){”} , to vanish, are

c C VU+1 - ,
1 MZZH% N Tl (rg(8)) (17)

i=1j=1

that is, contributions to the mutual information which are always positive (indicating synergy).
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Figure 4: The short-time limit expansion breaks down sooner, the larger the population consid-
ered. Cells in rat somatosensory barrel cortex responding to 2 stimuli to the vibrissae. Compo-
nents of the transmitted information with 3 (top, left), 6 (top, right), 9 (bottom, left) and 12
cells (bottom, right). The first three cases are averaged over 4 sets of cells. Time window: 5—40
ms. The initial slope (i.e., I;) is roughly proportional to the number of cells. The effects of the
second order terms, quadratic in ¢, are visible over the brief times between the linear regime and
the break down of the expansion. Among several similar data sets analysed, this is close to the
worst case, in terms of how soon in time the expansion breaks down.



Thus the leading contributions of the new Taylor expansion are of two types, both coming as
C(C —1)/2 terms proportional to (7;(s)), (7;(s)),: the first type, Eq. (15), induces redundancy,
and might scale as 1/S in our null hypothesis; the second type, Eq. (17), induces synergy,
and might scale inversely with the number of trials per stimulus in our null hypothesis. These
leading contributions to Iy can be compared to first order contributions to the original Taylor
expansion in ¢ (i.e., to the C terms in I;) in different time ranges. For times ¢ ~ ISI/C, that
ist <T >~ 1/C, first order terms sum up to be of order one bit, while second order terms
are negligible, provided enough stimuli are used and enough trials are available. This occurs
however over a time range that becomes shorter as more cells are considered, and the total
information conveyed by the population remains of order 1 bit only! For times of the order of
the mean interspike interval, ¢ ~ ISI, first order terms are of order C', while second order ones
are of order C? < v? > (with a minus sign, signifying redundancy) and C? < (§7)? > (with a
plus sign, signifying synergy), respectively. If < v2 > and < (§7)? > are not sufficiently small to
counteract the additional C factor, these ‘random’ redundancy and synergy contributions will
be substantial. Moreover, over the same time ranges also leading contributions to Iy; and to
the next terms in the Taylor expansion in time may be expected to be substantial.

We are therefore led to a surprising conclusion, applying to what is likely the minimum
meaningful time range for information transmission, that is the time it takes the typical cell to
emit a spike. The conclusion is that a large population of cells, which has not been designed to
code stimuli in any particular cooperative manner, may still show large effects of redundancy
or synergy, arising simply from random correlations among the firing of the different cells.
Such a conclusion reinforces the need for careful experimental studies of the actual correlations
prevailing in the neural activity of different parts of the brain. However, it also indicates the
importance of considering information decoding along with information encoding: real neurons
may not care much for the synergy and redundancy encoded in a multitude of variables they
cannot read out, such as the v;;’s and ;;’s.

8 Parameters that matter in neuronal representations

What are, then, the variables that real neurons are directly affected by? Clearly, the firing rates
r;, of the neurons they receive inputs from, comprise an important group. Most theoretical
analyses of neural networks are grounded on the assumption that the quintessential processing
carried out by a single neuron is a dot product operation between the vector of input firing rates
and the vector of synaptic weights (cf. [24]). It is the modifiability of individual synaptic weights,
and the consequent variance among the synaptic weight vectors of different processing units,
that makes individual firing rates important, as even very simplified formal models illustrate.
If synaptic weights were taken to be uniform across inputs, the enormous fan-in of cortical
connectivity would reduce to a mere device for large sampling. If they were taken to be non-
uniform but fixed in time, no new input-output transforms could be established for a given
population of cells, so in practice the connectivity would, again, subserve just sampling, except
for a few in-built operations. The modifiability of individual synaptic weights, according to
so-called Hebbian rules [49] or otherwise, is the cornerstone of the theory of neuron-like parallel
distributed processing. Thus, quantitative constraints on memory storage are set by the number
of synapses available for individual modification, and in fact they are expressed usually in terms
of bits/synapse. In the real brain neurons and synapses operate in vastly more complicated
ways than summarized by notions like dot products and synaptic weights. Still, maximising
memory storage through maximal synaptic density has been considered by Braitenberg [50] a
crucial principle of cortical design.



Individual firing rates are therefore central to neuronal coding because of (long-term) synap-
tic plasticity, but as there is more to cortical plasticity than synaptic plasticity, so there is likely
more to neural codes than individual firing rates. Recently, for example, much attention has
been devoted to the exquisite refinement of local inhibitory circuitry in the neocortex (Henri
Markram, personal communication, and see [51]). Inhibitory interneurons appear to cluster into
some 15 different classes, discriminable on the basis of a combination of morphological, electro-
physiological and short-term plasticity properties. Synapses to and from inhibitory interneurons
are found to demonstrate long-term plasticity as well. Their connectivity patterns are differen-
tiated also in terms of cortical layers. Although the total numbers of inhibitory neurons and
the number and location of their synapse appear unsuitable to make them individually involved
in information processing, there is no doubt that they provide for a modulation of cortical dy-
namics that turns certain collective variables into important parameters of neuronal codes. For
example, the average degree of synchronization of an afferent volley to a given cortical patch
might be crucial in determining the dynamics of feedforward and feedback inhibition, and con-
sequently the time-course of activation of the pyramidal cells in the patch. This is in contrast to
the exact degree of synchronization between any two axons (the dynamical equivalent of a single
vij), which would itself be relevant only if there were a corresponding modifiable parameter
capable of modulating its effects.

At present, our theoretical understanding of neural networks is underdeveloped to deal with
such cortical complexities, which are themselves still in the process of being investigated, espe-
cially in their dynamical aspects. Despite some promising attempts [52], these are still early
days for the elaboration of the appropriate conceptual tools and the identification of the crucial
mechanisms and most relevant quantities. At a very basic, and non-dynamical, level, however,
it is already clear that the gross statistical features of the distribution of neuronal activity bear
a direct import on the efficiency of neuronal codes and of information storage. In the late eight-
ies, a considerable debate between neurophysiologists and modelers centered on the issue of the
observed mean level of activity in the cortex, and whether this would make popular models of
memory storage totally inappropriate as models of cortical networks [53]. This issue, touching
on the first and most basic moment of an abstract ‘typical distribution of cortical activity’, even-
tually evaporated when it appeared to be closely linked to the modeling of neurons as binary
or sigmoidal units. The second moment of such a typical distribution, instead, has a relevance
which does not simply stem from crude modelling technology. It was long recognized that the
so-called sparseness of the firing, roughly the proportion of cells highly activated at any one
time, is a primary determinant of the capacity for memory storage [54, 55]. For non binary
units, in particular for real neurons, a generalized measure of the sparseness of their activity can
be defined as )

o= T (18)

< (r;)? >

[33, 24]. The more sparse a set of representations expressed by a population of cells (a — 0),
the less the representational capacity and the larger the memory capacity of that population,
and consistently « is generally found to decrease approaching central memory systems from the
sensory periphery [56]. Sparseness is thus a basic and important statistic of neuronal repre-
sentations, which however does not reflect their interrelationships. To probe the ways in which
different representations relate to one another, one must consider other statistics, that go beyond
sparseness, and that in fact are linked to information measures.



9 Quantifying the structure of neuronal representations

The structure of neural representations of the outside world has been studied in detail in some
simple situations. Typically these are situations in which a well defined correlate of neuronal
activity (i.e. a stimulus, a response, or even a behavioural state) is characterized by one or a
few parameters that are made to vary continuously or in steps. Examples are the Hubel and
Wiesel [57] description of orientation selectivity in cat visual cortex, the O’Keefe [58] finding of
place cells in the rat hippocampus, the mitral cell coding of n-aliphatic acid hydrocarbon length
in the olfactory system [59], the coding of the direction of movement in 3D-space in the primate
motor cortex [60].

In many interesting situations, though, especially in those parts of the brain which are more
remote from the periphery, external correlates, or, for simplicity, stimuli, do not vary (either
continuously, or in steps) along any obvious physical dimension. Often, in experiments, the
set of stimuli used is just a small ensemble of a few disparate individual items, arbitrarily
selected and difficult to classify systematically. Examples for the ventral visual system are
faces [61], simple or complex [32] abstract patterns, or the schematic objects reached with the
reduction procedure of Tanaka et al [62]. In such situations, the resulting patterns of neuronal
activity across populations of cells can still provide useful insight on the structure of neuronal
representations of the outside world, but such insight has to be derived independently of any
explicit correlation with a natural, physical structure of the stimulus set.

The only obvious a priori metric of the stimulus set, in the general case, is the trivial
categorical metric of each element s being equal to itself, and different from any other element
in the set. A posteriori, the neuronal firing patterns embed the stimulus set into a potentially
metric structure defined by the similarities and differences among the patterns, or response
vectors, corresponding to the various elements. A truly metric structure can be extracted by
quantifying such similarities and differences into a notion of distance (among firing patterns) that
satisfies the 3 required relations: positivity, symmetry, the triangle inequality. At a more basic
level, though, the overall amount of structure, i.e. the overall importance of relations of similarity
and difference among firing patterns, can be quantified even independently of any notion of
distance, just from a matrix Q(s|s’) characterizing the similarity or confusability of s’ with s, a
matrix which need not be symmetrical. Q(s|s’) can be simply derived from neuronal recordings,
after decoding the firing patterns, as the conditional probability P(s,s’)/P(s’). Whatever the
decoding procedure used, Q(s|s’) is essentially a measure of the similarity of the current response
vector to s’ with the mean response vector to s. It is however important to notice that Q(s|s’) can
also be derived from other measures, for example from behavioural measures of error or confusion
in recognition or classification. Behavioural measures of the similarity or confusability of s’ with
s do not access the representation of the two stimuli directly, but indirectly they reflect the
multiplicity of neural representations that are important in generating that particular behaviour.
If some of these representations are damaged or lost, as in brain-damaged patients, the resulting
behavioural measures can be indicative of the structure of the surviving representations [63].

The amount of structure can be quantified by comparing the mutual information, which in
terms of the matrix Q(s|s’) reads

1= Y Q)P @)
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with its minimum and maximum values Ip,;, and I, [64] corresponding to a given percent
correct feor = > s Q(8|s)P(s). The lowest information values compatible with a given f., are
those attained when equal probabilities (or equal frequencies of confusion) result for all stimuli



s # s'. In this case one finds

Linin =108y S + feor 1083 feor + (1 — feor) 10ga[(1 — feor) /(S —1)]. (20)

Conversely, maximum information for a given f., is contained in the confusion matrix when
stimuli are confused only within classes of size 1/fcor, and the individual stimuli within the
class are allocated on a purely random basis (for analytical simplicity we consider only unbiased
decoding, such that Q(s|s’) < Q(s'|s'), and assume that each class may contain a non integer
number of elements). It is easy to see that then

Imam = 10g2 S+ 10g2 fcor- (21)

Interpreting the similarity, or probability of confusion, as a monotonically decreasing function of
some underlying distance (e.g. as discussed above), the first situation can be taken to correspond
to the limit in which the stimuli form an equilateral simplex, or equivalently the stimulus set
is drawn from a space of extremely high dimensionality. In the Euclidean d — oo limit, points
drawn at random from a finite e.g. hyperspherical region tend to be all at the same distance
from each other, and from the point of view of the metric of the set this is the trivial limit
mentioned above. The second situation can be taken to correspond to the wltrametric limit,
instead, in which all stimuli at distance less than a critical value from each other form clusters
such that all distances between members of different classes are above the critical value. This is
a non-Euclidean structure (although it could be embedded in a Euclidean space of sufficiently
large dimension), and it is a first example of the possible emergence of non-Euclidean aspects
from a quantitative analysis that does not rely on a priori assumptions.

Intermediate situations between the two extremes are easy to imagine, and can be parametrized
in a number of different ways. A convenient parameter that simply quantifies the relative amount
of information in excess of the minimum, without having to assume any specific parametrization
for the Q(s|s’) matrix, is
I—- Imm

Imam - Imin

A= (22)
which ranges from 0 to 1 (for unbiased confusion; it can be above 1 if confusion is biased) and
can be interpreted as measuring the metric content of the matrix. What is quantified by A can
be called the metric content not in the sense that it requires the introduction of a real metric,
but simply because it gives the degree to which relationships of being close or different (distant),
among stimuli, emerge in the Q(s|s’) matrix. For A = 0 such relationships are irrelevant, to the
point that if confusion occurs, it can be with any (wrong) stimulus. For A = 1 close stimuli are
so similar as to be fully confused with the correct one, whereas other stimuli are ‘maximally
distant’ and never mistaken for it.

In summary, the metric content index A quantifies the dispersion in the distribution of ‘er-
rors’, from maximal, A = 0, to minimal, A = 1. The ‘errors’ may be actual behavioural errors in
identifying or categorizing stimuli or in producing appropriate responses, or simply calculated
from the similarity in the response vectors of a population of cells to different stimuli. Two
examples of application of the metric content index, in the second situation, are illustrated in
Fig. 5. The analyses summarized in the graphs of Fig. 5 point at two important aspects of the
metric content index: its being a relatively intrinsic property of a representation (invariant across
the number of cells sampled, within sampling precision) and its variation from one population
or cortical area to another. The neuronal recordings are described elsewhere (continuous simul-
taneous recordings of 42 rat hippocampal CA1 cells, with the rat running a triangular maze,
divided in windows 250 msec long [38]; and continuous but not simultaneous recordings of 27
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Figure 5: The information decoded from different cell populations vs. the corresponding percent
correct, in the rat (left) and monkey (right) hippocampus. In both cases different data points
with the same symbol correspond to increasing the number of cells included in each population,
thus raising percent correct and information. I,,,;, and I 4, are indicated. The rat example illus-
trate how metric content is a relatively invariant measure (the third curve is for A = 0.36) across
population sizes. The monkey example indicates quantitative differences among neighbouring
populations (the 2 curves are for A = 0.25 and A = 0.15): datapoints are for populations of CA3
(x), CA1 (triangles), parasubiculum (squares) and parahippocampal gyrus cells (diamonds).



monkey cells from the 4 regions indicated, with the monkey freely locomoting in the laboratory,
divided in windows 100 msec long [26, 65]).

It should be noted that the similarity matrix is based on response vectors quite different from
Georgopoulos’ population vectors [60], which live in the physical 3D or 2D movement space
rather than in the space of dimensionality equal to the number of cells included, and which
correspond to a continuous rather than a discretized correlate. One can see from the figure
the extent to which metric content, considering the imprecision with which cells are sampled,
their activity is recorded and the information measurss are extracted, is still a relatively stable
index. This allows some comparisons to be made even among the metric content characterizing
vectors of different dimensionality. For each given cortical area, as more cells are considered,
both percent correct and decoded information grow, and the relation between the two, expressed
as metric content, varies somewhat, but in a limited band of values characterizing each cortical
area. These data, particularly those obtained in the monkey, are not fully adequate, on at least
two accounts. First, the number of cells recorded and the number of trials available for each
cell and each spatial view were not sufficiently large to safely avoid limited sampling effects.
Second, the monkey recordings were not simultaneous. Both inadequacies can be removed with
parallel recording from several cells at once, as has become now standard practice in a number
of laboratories.

Within these limits, one possible interpretation of the different metric content in the CA3
area, with respect to the other 3 areas sampled, lies in the different pattern of connectivity,
whereby in CA3 recurrent collateral connections are the numerically dominant source of inputs
to pyramidal cells, and travel relatively long distance, to form an extended network connected
by intrinsic circuitry. Considerations based on simplified network models suggest that such a
connectivity pattern would express memory representations with a different metric structure
from those expressed by networks of different types. The difference could be further related
to the qualitative nature of the memory representation, which might be characterized as being
more episodic in CA3 and more structured in the other areas. The metric content depends also
on the average sparseness of these representations, though, and further analyses are required to
dissociate the effects of connectivity (and of representational structure) from those purely due
to changes in sparseness. In particular, it has been shown that in the short-time limit the metric
content becomes a transparent function of sparseness [66], and it is possible that even over the
250 msec windows used for the rat, the structure revealed reflects mainly the sparseness of the
coding.

The monkey recordings were from neighbouring areas in the temporal lobes, and it is possible
that any difference among memory representations will be more striking when more distant areas
are compared. In addition, it is possible that any difference may be more striking when the
correlate considered does not have its own intrinsic metric, as with spatial views, but instead lives
in a high dimensional space, as e.g. with faces, thereby letting more room for arbitrary metric
structures to be induced in the neural representations by the learning process. For both reasons,
it is interesting to extend this analysis to entirely different experiments, sharing with these only
the generic requirement that different populations of cells are recorded in their response to the
same set of stimuli, or in general correlates. It is also interesting to deepen the analysis of the
structure of representations by looking at subtler aspects, such as the ultrametric content [64],
that depends on the mutual relations of triplets, rather than pairs, of representations.

Finally, possible changes in the representations that develop with time can examined by
recording from the same populations — not the same cells — over periods during which some
behaviourally relevant phenomenon may have occured, such as new learning, forgetting, or a
modulation of the existing representations. One specific such modulation of interest for the case



of human patients is the one resulting from localized lesions to another cortical area, which may
affect the structure of the representations in surviving areas of the cortex.

Acknowledgments

The analyses and procedures discussed in this chapter have been developed together with

several colleagues, as evident from the citations, among them Stefano Panzeri, Edmund Rolls
and William Skaggs. Collaborations were supported by the European Commission and the
Human Frontier Science Program.

References

[1]

2]

C. E. Shannon. A mathematical theory of communication. AT T Bell Labs. Tech. J.,
27:379-423, 1948.

W. Bialek, F. Rieke, R. R. de Ruyter van Steveninck, and D. Warland. Reading a neural
code. Science, 252:1854-1857, 1991.

A.A. Frolov and I.P. Murav’ev. Informational characteristics of neural networks capable of
associative learning based on hebbian plasticity. Network, 4:495-536, 1993.

A. Treves and S. Panzeri. The upward bias in measures of information derived from limited
data samples. Neural Comp., 7:399-407, 1995.

S. Panzeri and A. Treves. Analytical estimates of limited sampling biases in different
information measures. Network, 7:87-107, 1996b.

D. Golomb, J.A. Hertz, S. Panzeri, A. Treves, and B.J. Richmond. How well can we estimate
the information carried in neuronal responses from limited samples? Neural Comp., 9:649—
655, 1997.

M. W. Oram and D. I. Perrett. Time course of neuronal responses discriminating different
views of face and head. J. Neurophysiol., 68:70-84, 1992.

L. M. Optican and B. J. Richmond. Temporal encoding of two-dimensional patterns by
single units in primate inferior temporal cortex: Tii information theoretic analysis. J. Neu-

rophysiol., 57:162-178, 1987.

L. M. Optican, T. J. Gawne, B. J. Richmond, and P. J. Joseph. Unbiased measures of
transmitted information and channel capacity from multivariate neuronal data. Biological
Cybernetics, 65:305-310, 1991.

E.N. Eskandar, B.J. Richmond, and L.M. Optican. Role of inferior temporal neurons in
visual memory: I. temporal encoding of information about visual images, recalled images,
and behavioural context. J. Neurophysiol., 68:1277-1295, 1992.

T. W. Kjaer, J. A. Hertz, and B. J. Richmond. Decoding cortical neuronal signals: networks
models, information estimation and spatial tuning. J. Comput. Neurosci., 1:109-139, 1994.

J. Heller, J. A. Hertz, T. W. Kjaer, and B. J. Richmond. Information flow and temporal
coding in primate pattern vision. J. Comput. Neurosci., 2:175-193, 1995.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. J. Tovée, E. T. Rolls, A. Treves, and R. J. Bellis. Information encoding and the responses
of single neurons in the primate temporal visual cortex. J. Neurophysiol., 70:640-654, 1993.

F. Mechler, J. D. Victor, K. P. Purpura, and R. Shapley. Robust temporal coding of contrast
by v1 neurons for transient but not for steady-state stimuli. J. Neurosci., 18:6583-6598,
1998.

M. W. Oram, M. C. Wiener, R. Lestienne, and B. J. M. Richmond. Stochastic nature
of precisely timed spike patterns in visual system neuronal responses. J. Neurophysiol.,
81:3021-3033, 1999.

J. O’Keefe and M. L. Recce. Phase relationship between hippocampal place units and the
eeg theta rhythm. Hippocampus, 3:317-330, 1993.

M. V. Tsodyks, W. E. Skaggs, T. J. Sejnowski, and B. L. McNaughton. Population dynamics
and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model.
Hippocampus, 6:271-280, 1996.

W. E. Skaggs, B. L. McNaughton, M. A. Wilson, and C. A. Barnes. Theta phase pre-
cession in hippocampal neuronal populations and the compression of temporal sequences.
Hippocampus, 6:149-172, 1996.

M.-N. Chee-Orts and L. M. Optican. Cluster method for analysis of transmitted information
in multivariate neuronal data. Biol. Cybern., 69:29-35, 1993.

M. Page. Connectionist modeling in psychology: a localist manifesto. Behavioral Brain
Sciences, 23:in press, 2000.

E. T. Rolls, A. Treves, M. J. Tovée, and S. Panzeri. Information in the neuronal represen-
tation of individual stimuli in the primate temporal visual cortex. J. Comput. Neurosci.,

4:309-333, 1997b.

M. R. DeWeese and M. Meister. How to measure the information gained from one symbol.
Network, 11:in press, 2000.

S. Panzeri, G. Biella, E. T. Rolls, W. E. Skaggs, and A. Treves. Speed, noise, information
and the graded nature of neuronal responses. Network, 7:365-370, 1996a.

E. T. Rolls and A. Treves. Neural Networks and Brain Function. Oxford University Press,
Oxford, UK, 1998.

E.T Rolls, H.D. Critchley, and A. Treves. Representation of olfactory information in the
primate orbitofrontal cortex. J. Neurophysiol., 75:1982-1996, 1996.

E. T. Rolls, A. Treves, R. G. Robertson, P. Georges-Francois, and S. Panzeri. Information
about spatial views in an ensemble of primate hippocampal cells. J. Neurophysiol., 79:1797—
1813, 1998.

E. D. Gershon, M. C. Wiener, P. E. Latham, and B. J. Richmond. Coding strategies in
monkey V1 and inferior temporal cortices. J. Neurophysiol., 79:1135-1144, 1998.

W. B. Levy and R. A. Baxter. Energy efficient neural codes. Neural Comp., 8:531-543,
1996.



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. J. Baddeley, L. F. Abbott, M. Booth, F. Sengpiel, T. Freeman, E. A. Wakeman, and
E. T. Rolls. Responses of neurons in primary and inferior temporal visual cortices to natural
scenes. Proc. R. Soc. Lon. Ser. B, 264:1775-1783, 1997.

Alessandro Treves, Stefano Panzeri, Edmund T Rolls, Michael C A Booth, and Edward A
Wakeman. Firing rate distributions and efficiency of information transmission of inferior
temporal cortex neurons to natural visual stimuli. Neural Comp., 11:611-641, 1999.

N. Brunel and J. P. Nadal. Mutual information, fisher information and population coding.
Neural Comp., 10:1731-1757, 1998.

Y. Miyashita and H. S. Chang. Neuronal correlate of pictorial short-term memory in the
primate temporal cortex. Nature, 331:68-70, 1988.

A. Treves and E. T. Rolls. What determines the capacity of autoassociative memories in
the brain. Network, 2:371-397, 1991.

T. J. Gawne and B. J. Richmond. How independent are the messages carried by adjacent
inferior temporal cortical neurons? .J. Neurosci., 13:2758-2771, 1993.

E. Zohary, M. N. Shadlen, and W. T. Newsome. Correlated neuronal discharge rate and
its implication for psychophysical performance. Nature, 370:140-143, 1994.

E. T. Rolls, A. Treves, and M. J. Tovée. The representational capacity of the distributed
encoding of information provided by populations of neurons in the primate temporal visual
cortex. Exp. Brain Res., 114:149-162, 1997a.

P. M. Gochin, M. Colombo, G. A. Dorfman, G. L. Gerstein, and C. G. Gross. Neural
ensemble encoding in inferior temporal cortex. J. Neurophysiol., 71:2325-2337, 1994.

Alessandro Treves, William E Skaggs, and Carol A Barnes. How much of the hippocampus
can be explained by functional constraints? Hippocampus, 6:666-674, 1996b.

N. Brenner, S. P. Strong, R. Koberle, and W. Bialek. Synergy in a neural code. Neural
Comp., 12:in press, 2000.

Stefano Panzeri, Simon R Schultz, Alessandro Treves, and Edmund T Rolls. Correlations
and the encoding of information in the nervous system. Proc. Roy. Soc. B, 266:1001-1012,
1999.

Stefano Panzeri and Simon R Schultz. A unified approach to the study of temporal, corre-
lational and rate coding. Physics arXiv.org, page 9908027, 1999.

W E Skaggs and B L McNaughton. Quantification of what it is that hippocampal cell firing
encodes. In Soc. Neurosci. Abstr., page 1216, 1992.

R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H.J. Reitboeck.
Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol. Cybern.,
60:121-130, 1988.

C.M. Gray, P. Konig, A.K. Engel, and W. Singer. Oscillatory responses in cat visual cortex
exhibit inter-columnar synchronization which reflects global stimulus properties. Nature,
338:334-337, 1989.



[45]

[46]

[47]

48]

[49]
[50]

[51]

[52]

[53]

R. Eckhorn and B. Popel. Rigorous and extended application of information theory to the
afferent visual system of the cat. i. basic concepts. Kybernetik, 16:191-200, 1974.

R. Eckhorn and B. Popel. Rigorous and extended application of information theory to the
afferent visual system of the cat. ii. experimental results. Kybernetik, 17:7-17, 1975.

R. Eckhorn, O-J. Griisser, J. Kroller, K. Pellnitz, and B. Popel. Efficiency of different
neural codes: information transfer calculations for three different neuronal systems. Biol.
Cybern., 22:49-60, 1976.

E. M. Maynard, N. G. Hatsopoulos, C. L. Ojakangas, B. D. Acuna, J. N. Sanes, R. A.
Normann, and J. P. Donoghue. Neuronal interactions improve cortical population coding
of movement direction. J. Neurosci., 19:8083-8093, 1999.

D. O. Hebb. The Organization of Behavior. Wiley, New York, 1948.

V. Braitenberg and A. Shiiz. Anatomy of the Cortex: Statistics and Geometry. Springer
Verlag, Berlin, 1991.

Y. Wang, A. Gupta, and H. Markram. Anatomical and functional differentiation of gluta-
matergic synaptic innervation in the neocortex. Journal of Physiology (Paris), 93:305-317,
1999.

R. J. Douglas and K. A. Martin. A functional microcircuit for cat visual cortex. Journal
of Physiology (London), 440:735-769, 1991.

Daniel J Amit and Alessandro Treves. Associative memory neural network with low tem-
poral spiking rates. Proceedings of the National Academy of Sciences of the USA, 86:7871—
7875, 1989.

M. V. Tsodyks and M. V. Feigel’'man. The enhanced storage capacity in neural networks
with low activity level. Furophysics Letters, 6:101-105, 1988.

J. Buhmann, R. Divko, and K. Schulten. Associative memory with high information content.
Physical Review, A 39:2689-2692, 1989.

Edmund T Rolls and Alessandro Treves. The relative advantages of sparse versus distributed
encoding for associative neuronal networks in the brain. Network, 1:407-421, 1990.

D.H. Hubel and T.N. Wiesel. Sequence regularity and geometry of orientation columns in
the monkey striate cortex. Journal of Comparative Neurology, 1582:267-294, 1974.

J. O’Keefe. A review of the hippocampal place cells. Progress in Neurobiology, 13:419-439,
1979.

S.L. Sullivan and L. Dryer. Information processing in mammalian olfactory system. Journal
of Neurobiology, 30:20-36, 1996.

A. P. Georgopoulos, A. Schwartz, and R. E. Kettner. Neural population coding of movement
direction. Science, 233:1416-1419, 1986.

E. T. Rolls. Neurophysiological mechanisms underlying face processing within and beyond
the temporal cortical visual areas. Philosophical Transactions of the Royal Society (London),
B 335:11-21, 1992.



[62]
[63]

K. Tanaka. Neuronal mechanisms of object recognition. Science, 262:685-688, 1993.

Rosapia Lauro-Grotto, Carolina Piccini, Francesca Borgo, and Alessandro Treves. What
remains of memories lost in Alzheimer and herpetic encephalitis. Society for Neuroscience
abstract 754.2, 23:1889, 1997.

A. Treves. On the perceptual structure of face space. BioSystems, 40:189-196, 1997.

Alessandro Treves, Pierre Georges-Francois, Stefano Panzeri, Robert G Robertson, and
Edmund T Rolls. The metric content of spatial views as represented in the primate hip-
pocampus. In V Torre and J Nicholls, editors, Neural Circuits and Networks, NATO Asi
Series F', Computer and Systems Sciences, Vol 167, pages 239-247, Berlin, 1998. Springer.

Stefano Panzeri, Alessandro Treves, Simon R Schultz, and Edmund T Rolls. On decoding
the responses of a population of neurons from short time windows. Neural Comp., 11:1553—
1577, 1999.



