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Abstract

The time evolution of the entanglement entropy in non-equilibrium quantum systems
provides crucial information about the structure of the time-dependent state. For quan-
tum quench protocols, by combining a quasiparticle picture for the entanglement spread-
ing with the exact knowledge of the stationary state provided by Bethe ansatz, it is pos-
sible to obtain an exact and analytic description of the evolution of the entanglement
entropy. Here we discuss the application of these ideas to several integrable models.
First we show that for non-interacting systems, both bosonic and fermionic, the exact
time-dependence of the entanglement entropy can be derived by elementary techniques
and without solving the dynamics. We then provide exact results for interacting spin
chains that are carefully tested against numerical simulations. Finally, we apply this
method to integrable one-dimensional Bose gases (Lieb-Liniger model) both in the at-
tractive and repulsive regimes. We highlight a peculiar behaviour of the entanglement
entropy due to the absence of a maximum velocity of excitations.
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1 Introduction

In recent years, understanding the entanglement structure of out-of-equilibrium many-body
quantum systems has become an emerging research theme at the crossroad between statis-
tical physics, condensed matter physics, quantum field theory, and quantum information. In
one dimension, the growth of entanglement has been related to the capability of a classi-
cal computer to simulate non-equilibrium quantum systems with matrix product states (see,
e.g., [1–5]). Moreover, the thermodynamic entropy in a stationary state has been interpreted
as the asymptotic entanglement of a large subsystem [6–10].

One of the prototype protocols for driving a system out-of-equilibrium is the quantum
quench [11–18]: An isolated system is initially prepared at t = 0 in a given pure state |ψ0〉
(usually the ground state of a quantum many-body hamiltonian H0) and for t > 0 the uni-
tary dynamics is governed by a hamiltonian H (with [H, H0] 6= 0 e.g., at t = 0 a parame-
ter of the hamiltonian is suddenly changed). Besides the theoretical interest, in recent years
it has become possible to investigate quantum quenches experimentally with cold-atom sys-
tems [19–30]. Since the post-quench dynamics is unitary, the full system never reaches station-
ary behaviour, which, instead, can arise locally. The central object to define local equilibration
is the reduced density matrix. Given a subsystem A of the full system, the reduced density
matrix ρA is defined as

ρA ≡ TrB|ψ〉〈ψ|, (1)

where the trace is over the degrees of freedom of the complement B of the subsystem A, and
|ψ〉 ≡ e−iH t |ψ0〉 is the time-dependent state of the system.

For quantum quenches in generic models, the stationary behaviour of local and quasilo-
cal observables is described by the Gibbs (thermal) ensemble [31–37]. In contrast integrable
models possess an extensive number of conserved quantities, besides the hamiltonian, which
highly constrain the post-quench dynamics. As a consequence, integrable systems fail to ther-
malise, meaning that the reduced density matrix for long times is not thermal. Remarkably,
a statistical description of local properties of the steady state is possible in terms of a Gen-
eralised Gibbs Ensemble (GGE) [12, 16, 17, 38–65], which is obtained by complementing the
Gibbs ensemble with all the local and quasilocal conserved quantities [55,66].
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The problem of understanding how entanglement spreads after a quench is deeply inter-
twined with that of equilibration and thermalisation. The standard measure of the entangle-
ment is the entanglement entropy [67] which is defined as the von Neumann entropy of the
reduced density matrix (1):

S ≡ −TrρA lnρA. (2)

The out-of-equilibrium dynamics of the entanglement entropy following quantum quenches
has been the focus of intense research during the last decade [6, 10, 68–89]. Remarkably, in
recent years it has become possible to measure entanglement and its evolution in cold-atom
experiments [9,87,92].

For a wide variety of global quenches, the quasiparticle picture of Ref. [6] provides an
understanding of the main qualitative features of the entanglement dynamics. In the quasi-
particle picture, the pre-quench initial state is a source of pairs of excitations with opposite
momentum that travel ballistically through the system. Let us assume that there is only one
type of excitations (quasiparticles) identified by their quasi-momentum λ, and moving with
group velocity v(λ). The main assumption of the quasiparticle picture is that excitations that
are created far apart from each other are incoherent, whereas those emitted at the same point
in space are entangled (more precisely, quasi-particles emitted within the initial correlation
length, but this refinement just provides a subleading correction to the result [90] and will
be ignored in what follows). As the quasiparticles propagate, larger regions of the system get
entangled. At time t the entanglement entropy of a subsystem A is proportional to the total
number of quasiparticles that after being emitted from the same point in space are shared be-
tween subsystem A and its complement. Specifically, for an interval A of length ` embedded in
an infinite one-dimensional system, by counting the quasiparticles with a given weight s(λ),
one obtains [6]

S(t) = 2t

∫

2|v(λ)|t<`

dλv(λ)s(λ) + `

∫

2|v(λ)|t>`

dλs(λ). (3)

Here the function s(λ) depends on the production rate of quasiparticles with quasimomentum
±λ and on their individual contribution to the entanglement entropy. Formula (3) holds true
in the space-time scaling limit t,` → ∞ with the ratio t/` fixed. Notice that (3) does not
take into account O (1) terms, which are subleading in the scaling limit. When a maximum
quasiparticle velocity vM exists, such that |v(λ)| ≤ vM (e.g., as a consequence of the Lieb-
Robinson bound [91]), Eq. (3) predicts that for t ≤ `/(2vM ), S grows linearly in time because
the second term in (3) vanishes. In contrast, for t � `/(2vM ), only the second term contributes
and the entanglement is extensive in the subsystem size, i.e., S∝ `. Eq. (3) describes the light-
cone spreading of the entanglement evolution which has been analytically confirmed in few
free models [68–72] and also verified in several numerical studies (see e.g. [76–80]).

However, in order to give some predictive power to (3), we should have a way to fix the
entropy density s(λ) and the velocity of the entangling quasiparticles v(λ). Yet, determin-
ing s(λ) ab-initio from the dynamical problem is a formidable task even for free models (see
e.g. [68]); furthermore, for interacting integrable models, also the identification of the veloc-
ity v(λ) is a non-trivial issue. A major breakthrough in this respect has been achieved in [10]
where it has been shown that, at least for certain classes of quenches in integrable models,
the function s(λ) can be conjectured from the equivalence between the entanglement and the
thermodynamic entropy in the stationary state. The latter can be straightforwardly calculated
with equilibrium techniques from the GGE describing the stationary state. In this way Eq. (3)
becomes a quantitative analytic conjecture for the entanglement evolution which can be ob-
tained only from the stationary state without solving the many-body dynamics. Suggestively, we
can state that the main idea of Ref. [10] is to reconstruct the entanglement evolution going back
in time from the stationary state. Physically, Eq. (3) highlights the transformation during the
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dynamics of the entanglement into the thermodynamic entropy. This transformation happens
for non-integrable systems as well, but in that case, the entanglement entropy becomes the
thermal entropy [7,9,93].

In a generic interacting integrable model there are several families of quasiparticles. The
generalization of (3) is obtained by summing all the contributions of the different species. The
final result of Ref. [10] for the entanglement dynamics is

S(t) =
∑

n

�

2t

∫

2|vn|t<`

dλvn(λ)sn(λ) + `

∫

2|vn|t>`

dλsn(λ)
�

, (4)

where the index n labels the different families of elementary quasiparticles present in a generic
integrable model, and λ is their associated momentum label. The sum over the quasiparticle
families and momenta reflects the presence in integrable models of well-defined excitations
with an infinite lifetime. According to the ideas of Ref. [10] outlined above, in Eq. (4), sn(λ)
can be conjectured from the contribution of the individual quasiparticles to the thermodynamic
entropy of the GGE describing the steady state. Furthermore, the velocities vn(λ) are assumed
to be the group velocities of the low-lying excitations around the steady state. The validity
of (4) has been checked numerically for several quenches in the Heisenberg XXZ chain [10].
A generalisation of (4) has been provided to describe the entanglement evolution after inho-
mogeneous quenches in the XXZ chain [94].

In this work we discuss in detail several applications of (4). We start focusing on free
fermionic and free bosonic models for which we provide generic results valid for a wide class
of quenches. We show that it is possible to recover, in an elementary manner, the known result
for the entanglement dynamics after a generic quench in the transverse field Ising chain [68].
For the bosonic case, the quasiparticle picture provides new exact results for the entanglement
dynamics in the harmonic chain (the lattice discretisation of the one-dimensional Klein-Gordon
field theory). This result is remarkable also because its ab initio derivation is not available yet,
although we are dealing with a free model. Then, we turn to discuss the entanglement dy-
namics in the anisotropic Heisenberg chain (XXZ chain). We provide several new theoretical
predictions, which complement the results already presented in [10]. For instance, we provide
exact results for the post-quench dynamics of the mutual information between two intervals
starting from several initial states. This is important because the mutual information is a use-
ful tool to probe the validity of the quasiparticle picture, in which well-defined quasiparticles
entangle different regions of the system, so that the mutual information exhibits a peak at
intermediate times. An alternative picture is the information scrambling scenario [95–99],
which should apply to many non-integrable models such as irrational 1+1 conformal field the-
ories. In the scrambling scenario the quasiparticles loose coherence during the dynamics, due
to scattering. As a consequence, for large time the mutual information vanishes independently
of the separation of the intervals. Conversely, in integrable models, well-defined quasiparti-
cles exist, and the the mutual information in the space-time scaling limit has a peak also at
large times for large enough separation of the intervals, ruling out the scrambling scenario.
Numerical evidence supporting the validity of the quasiparticle picture for the mutual infor-
mation has been provided in [10] considering the quench from the Néel state in the XXZ chain.
Moreover, in this work we investigate the signatures of composite excitations (multi-particle
bound states) in the mutual information dynamics. An interesting result is that the presence
of bound states leads to an anomalous decay of the mutual information at late times and, for
some quenches, to multi-peak structures (as already highlighted for other models in [100]).

Another main result obtained here is a quasiparticle prediction for the entanglement dy-
namics in the one-dimensional Bose gas. We focus on the quench from the Bose-Einstein
condensate (BEC), considering both the attractive and repulsive Lieb-Liniger model. In both
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cases, at short times the von Neumann entropy exhibits a non-linear increase with time due
to the fact there is no maximum velocity of propagation of excitations. Nevertheless, at long
times the entanglement entropy saturates. An important difference between attractive and
repulsive interactions, is that while for repulsive interactions only one species of quasiparti-
cles is present, for attractive ones multi-boson bound states appear. Interestingly, for weak
interactions, bound states contribute significantly to the entanglement dynamics. Moreover,
similar to the XXZ chain, their presence is reflected in a slow vanishing behaviour of the mutual
information between two intervals at late times.

The outline of the paper is as follows. Section 2 is devoted to the entanglement dynamics
after quantum quenches in free-fermion and free-boson models. In section 3, we detail the
approach of [10] for the entanglement dynamics in a generic Bethe ansatz integrable model.
In section 4 we provide several results for the entanglement dynamics in the XXZ chain. In
section 5 we present the quasiparticle results for the entanglement dynamics after the quench
from the Bose-Einstein condensate in the Lieb-Liniger model. In the last section we discuss
several points and developments which deserve further investigation.

2 Entanglement dynamics in free models

In this section we employ the quasiparticle scenario of [10] to derive analytically the entan-
glement dynamics in free-fermion and free-boson models after rather generic quenches. We
test these results against exact analytical and numerical results for the entanglement dynamics
after a global quench in the transverse field Ising/XY chain and in the harmonic chain. These
models can be mapped onto a system of free fermions and free bosons, respectively. For the
Ising model our result agrees with the ab initio derivation in [68], providing a further bench-
mark of the ideas pursued in this paper and in [10]. For the harmonic chain our results have
been anticipated in [101] and appeared, for a similar bosonic model, also in [102].

2.1 Models of free fermions

If a translational invariant fermionic model is free, it means that the hamiltonian in momentum
space can be mapped into (apart from an unimportant additive constant)

H =
∑

k

εk b†
k bk, (5)

where bk are fermionic mode occupation operators satisfying standard anticommutation rela-
tions and εk is the energy of the mode k (i.e. the dispersion relation).

For all these models, the GGE built with local conservation laws is equivalent to the one
built with the mode occupation numbers n̂k = b†

k bk since they are linearly related [45, 49].
Thus the local properties of the stationary state are captured by the GGE density matrix

ρGGE ≡
e−

∑

k λk n̂k

Z
, (6)

where Z = Tre−
∑

k λk n̂k ensures the normalisation TrρGGE = 1.
The thermodynamic entropy of the GGE is obtained by elementary methods, leading, in

the thermodynamic limit, to

STD = L

∫

dk
2π

H(nk) , (7)

where nk ≡ 〈n̂k〉GGE = Tr(ρGGEn̂k) and the function H is

H(n) = −n ln n− (1− n) ln(1− n) . (8)
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The interpretation of Eq. (7) is obvious: the mode k is occupied with probability nk and empty
with probability 1− nk. Given that n̂k is an integral of motion, one does not need to compute
explicitly the GGE (6), but it is sufficient to calculate the expectation values of n̂k in the initial
state 〈ψ0|n̂k|ψ0〉 which, by construction, equals nk = 〈n̂k〉GGE.

At this point, following [10], we identify the stationary thermodynamic entropy with the
density of entanglement entropy to be plugged in Eq. (3), obtaining the general prediction

S(t) = 2t

∫

2|ε′k|t<`

dk
2π
ε′kH(nk) + `

∫

2|ε′k|t>`

dk
2π

H(nk), (9)

where ε′k = dεk/dk is the group velocity of the mode k. This formula is generically valid for
arbitrary models of free fermions with the crucial but rather general assumption that the initial
state is writable in terms of pairs of quasiparticles. More general and peculiar structures of
initial states can be also considered, see [103,104].

2.1.1 Test for the transverse field Ising chain

Eq. (9) can be tested against available exact analytic results for the transverse field Ising chain
with hamiltonian

H = −
L
∑

j=1

[σx
j σ

x
j+1 + hσz

j ], (10)

whereσx ,z
j are Pauli matrices and h is the transverse magnetic field. We use periodic boundary

conditions in (10).
The hamiltonian (10) is diagonalised by a combination of Jordan-Wigner and Bogoliubov

transformations, leading to Eq. (5) where the single-particle energies are

εp = 2
Æ

1+ h2 − 2h cos p. (11)

We focus on a quench of the magnetic field in which the chain is initially prepared in the
ground state of (10) with h0 and then, at t = 0 the magnetic field is suddenly changed from
h0 to h. As in the general analysis above, the steady-state is determined by the fermionic
occupation numbers nk given by [45,105]

nk =
1
2
(1− cos∆k), (12)

where ∆k is the difference of the pre- and post-quench Bogoliubov angles [105]

∆p =
4(1+ hh0 − (h+ h0) cos p)

ε(p)ε0(p)
, (13)

where ε0(p) and ε(p) stand for pre- and post-quench dispersion relations respectively.
The quasiparticle prediction for the entanglement dynamics after the quench is then Eq.

(9) with nk in (12). This coincides with the ab initio derivation performed in [68]. The same
derivation is valid also for a generic quench in the XY chain reported in [68].

2.2 Free bosonic models

For a free bosonic model, the hamiltonian can be written after some suitable transformations
as (apart from a unimportant additive constant)

H =
∑

k

εka†
kak. (14)
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with [ak, a†
k′] = δk,k being bosonic mode operators.

The stationary values of local observables can be described by a generalised Gibbs ensemble
(GGE) constructed from the mode occupation numbers n̂k = a†

kak with the GGE density matrix

ρGGE = Z−1e−
∑

k λk n̂k , (15)

where λk are Lagrange multipliers and Z is a normalisation. The Lagrange multipliers λk in
(15) are fixed by imposing that the expectation value of n̂k in the initial state coincides with
its GGE average. The initial value nk ≡ 〈ψ0|n̂k|ψ0〉 is easily calculated from the initial state.
The GGE expectation value of n̂k is obtained as

〈n̂k〉GGE = Tr[n̂kρGGE] = −
∂

∂ λk
ln Z , (16)

with

Z = Tre−
∑

k λk n̂k =
∏

k

∞
∑

nk=0

e−λknk =
∏

k

1
1− e−λk

. (17)

Thus, one has

〈n̂k〉GGE =
∂

∂ λk

∑

k

ln(1− e−λk) =
1

eλk − 1
. (18)

After imposing the conservation of n̂k, i.e., that (18) equals nk = 〈ψ0|n̂k|ψ0〉, one obtains λk
as

eλk = 1+ n−1
k . (19)

At this point, calculating the thermodynamic entropy is a trivial exercise in statistical
physics:

SGGE = −TrρGGE lnρGGE = −Tr
e−

∑

k λk n̂k

Z
ln

e−
∑

k λk n̂k

Z
(20)

= Tr
�

ρGGE

�∑

k

λk n̂k + ln Z
��

=
∑

k

−λk
∂ ln Z
∂ λk

+ ln Z . (21)

Using that Z =
∏

k(1− e−λk)−1 (cf. Eq. (17)), we obtain

SGGE =
∑

k

λk

eλk − 1
+ ln(1− e−λk) =

∑

k

(nk + 1) ln(nk + 1)− nk ln nk, (22)

where we used nk = 1/(eλk − 1), cf. (19). In the thermodynamic limit the sum over the
momenta becomes an integral and (22) becomes

SGGE = L

∫ π

−π

dk
2π
[(nk + 1) ln(nk + 1)− nk ln nk]≡ L

∫ π

−π
dks(k) , (23)

where in the rightmost side of the equation we introduced the entropy contribution s(k) of the
quasiparticle with momentum k as

2πs(k) = (nk + 1) ln(nk + 1)− nk ln nk. (24)

At this point, we are ready to use the fact that the entanglement entropy is the stationary
thermodynamic entropy (23) so that the quasiparticle picture for the entanglement evolu-
tion (4) gives

SA(t) = t

∫

2|vk|t<`

dks(k)2|vk|+ `
∫

2|vk|t>`

dks(k), (25)

where the entropy density s(k) is given by (24) and vk = dεk/dk.
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2.2.1 Tests for the harmonic chain

Here we focus on one of the simplest bosonic models with an exactly solvable non-equilibrium
dynamics, i.e., the harmonic chain defined by the hamiltonian

H =
1
2

N−1
∑

n=0

�

π2
n +m2φ2

n + (φn+1 −φn)
2
�

, (26)

with periodic boundary conditions. Eq. (26) defines a chain of N harmonic oscillators with
frequency (mass) m and with nearest-neighbour quadratic interactions. Here φn and πn are
the position and the momentum operators of the n-th oscillator, with equal time commutation
relations

[πm,πn] = iδnm , [φn,φm] = [πn,πm] = 0 . (27)

In the context of quench dynamics the harmonic chain was first discussed in [11] to which
we refer for a detailed analysis; here we only report the results relevant for our aims. The har-
monic chain is easily diagonalised in momentum space where it assumes the standard diagonal
form (14) with dispersion relation

ε2
k = m2 + 2 (1− cos k) . (28)

We now consider the quantum quench in which the harmonic chain is initially prepared
in the ground-state |ψ0〉 of (26) with m = m0, and at time t = 0 the mass is quenched to a
different value m 6= m0. We use the notation ε0

k for the dispersion relation in the initial state
and εk for the one for t > 0.

In order to give predictive power to Eq. (25) we just need to fix the conserved value
nk = 〈ψ0|n̂k|ψ0〉 which is obtained by elementary methods [12]

nk = 〈ψ0|n̂k|ψ0〉= 〈ψ0|a
†
kak|ψ0〉=

1
4

�

εk

ε0
k

+
ε0

k

εk

�

−
1
2

. (29)

Also the group velocity from (28) is

vk =
dεk

dk
=

sin k
p

m2 + 2(1− cos(k))
. (30)

The quasiparticle prediction (cf. (25)) for the entanglement dynamics after the mass
quench in the harmonic chain is reported in Figure 1. The Figure shows the entropy den-
sity S(t)/` plotted versus the rescaled time t/`, with ` the size of subsystem A. The different
curves in the Figure correspond to quenches with different values of m, namely m = 2 (con-
tinuous line), m = 3 (dashed-dotted line), m = 5 (dotted line). The pre-quench value of the
mass is fixed to m0 = 1. The results are obtained using (25).

The entanglement entropy exhibits the expected linear behaviour at short times followed
by a saturation at asymptotically long times. Clearly, the steady-state value of the entangle-
ment entropy increases with m. In the limit m� m0, the steady-state entropy at the leading
order in 1/m is S ≈ ln m. The crossover time from the linear to the saturation regime in-
creases with m, because the maximum velocity vM decreases upon increasing m, as it is clear
from (30).

2.2.2 Numerical checks

We now provide numerical checks of the validity of (25). The entanglement dynamics after
a global quench in the harmonic chain has been studied numerically in several papers [70,
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0.6

S/ℓ

m
0
=1 m=2

m
0
=1 m=3

m
0
=1 m=5

Figure 1: Entanglement dynamics after a mass quench in the harmonic chain: Theoretical pre-
diction using the quasiparticle picture. The entropy density S/` is plotted against the rescaled
time t/`, with ` the size of A. Different lines are results for quenches with different values of
the chain mass m. The pre-quench value of the mass m0 = 1 is the same for all the quenches.

0 1 2 3 4 5 6

t/ℓ

0

0.05

0.1

0.15

S/ℓ

m
0
=1 m=2 (theory)

ℓ=10
ℓ=20
ℓ=100

0 1 2 3 4 5 6

t/ℓ

0

0.1

0.2

0.3

0.4

m
0
=1 m=3 (theory)

ℓ=10
ℓ=20
ℓ=100

(a) (b)

Figure 2: Entanglement dynamics after a mass quench in the harmonic chain: Comparison
between the quasiparticle picture and finite-chain results. In both panels the entropy density
S/` is plotted against the rescaled time t/`, with ` the size of A. Panels (a) and (b) show results
for the quenches with final mass m = 2 and m = 3, respectively. The pre-quench value of the
mass is m0 = 1. In both panels dotted, dashed, and continuous lines are finite-size results for
a chain with L = 1000 sites and subsystem sizes `= 10,20, 100. The dashed-dotted line is the
prediction obtained using the quasiparticle picture in the space-time scaling limit.

83, 84]. These papers focused on the critical (m→ 0) and continuum limit, in which several
simplifications occur because there is a single velocity of excitations. The quasi-particle pre-
diction turned out to be correct, but with additive logarithmic corrections due to the presence
of a zero mode [84]. In the following we focus on the massive regime that so far received only
little attention.

For systems of free bosons, at any time after the quench the entanglement entropy of
a finite subsystem can be calculated effectively [106, 107] from the time-dependent two-
point correlation functions reported in [12]. In Figure 2 we present numerical results for the
entanglement entropy S(t) after a mass quench in the harmonic chain. The results are for a
chain with L = 1000 sites and subsystems sizes ` = 10, 20,100. We numerically checked that
for these values of ` the effect of the finite L is negligible. The two panels (a) and (b) show
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results for the quenches with m = 2 and m = 3, respectively. The pre-quench value of the
mass m0 = 1 is the same for both quenches. The theoretical prediction obtained using the
quasiparticle picture (cf. (25)) is reported in the Figure as dashed-dotted line. For any finite
` scaling corrections are expected because Eq. (25) holds only in the space-time scaling limit
with `, t →∞, at t/` fixed. These corrections are clearly visible in the data. However, they
rapidly decrease upon increasing `, and the results for ` = 100 are almost indistinguishable
from the thermodynamic limit predictions.

3 Entanglement dynamics in a generic Bethe ansatz integrable
model

In this section, following the ideas of [10], we show how the quasiparticle prediction (4) can
be applied to a generic Bethe ansatz integrable model. In order to do so, in the next two
subsections we provide explicit conjectures for the values of sn(λ) and vn(λ) to be plugged in
(4). As explained in the introduction, sn(λ) can be read off from the thermodynamic entropy
in the stationary state that can be worked out in the thermodynamic Bethe ansatz framework.
For vn(λ), we will instead use the velocity of low-lying particle-hole excitations built on top of
the stationary state. In the following subsections, we will show how to derive these velocities
by Bethe ansatz techniques following Ref. [108].

3.1 The thermodynamic Bethe ansatz

In a Bethe anstaz integrable model of length L, with N elementary particles, and with peri-
odic boundary conditions, the eigenstates are in one to one correspondence with a set of N
complex quasi-momenta λ j (known as rapidities) which satisfy model dependent quantisation
conditions denoted as Bethe equations (here we focus on models with an “elementary” Bethe
ansatz; there are models with more than one type of rapidities leading to the so-called nested
Bethe ansatz [109]; in that case the modification of (4) is straightforward because one has just
to perform a further sum on the types of the rapidities, see [100] for an illustrative example).
The prototype integrable model that we consider here is the XXZ spin-1/2 chain in the regime
with ∆> 1, although the TBA results that we will discuss can be generalized to the case with
∆ < 1 and to other integrable models with minor modifications. In the thermodynamic limit
and for a generic translational invariant model, the vast majority of the solutions of the Bethe
equations obey the string hypothesis [110]. Specifically, solutions of the Bethe equations form
string patterns in the complex plane. Rapidities forming a n-string are parametrised as [110]

λ j
n,γ = λn,γ + i

η

2
(n+ 1− 2 j) +δ j

n,γ, (31)

where η is an interaction parameter, j = 1, . . . , n labels the different string components, λn,γ is

the “string centre”, and δ j
n,γ are the string deviations, which for the majority of the eigenstates

are δ j
n,γ = O (e−L), implying that they can be neglected in the thermodynamic limit (string

hypothesis [110]). Physically, a n-string corresponds to a bound state of n elementary particles.
For the XXZ chain with ∆ < 1 the structure of the string solutions is more complicated [110]
than (31), although major simplifications occur for ∆ = ∆k ≡ − cos(π/k) with k = 1,2, . . .
(roots of unity).

Within the framework of the string hypothesis, the string centres λn,γ are obtained by
solving the Bethe-Gaudin-Takahashi (BGT) equations [110]

Lπn(λn,α) = 2πIn,α +
∑

(n,α)6=(m,β)

Θn,m(λn,α −λm,β). (32)
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Here In,α are (integer or half-integer) quantum numbers,πn(x) are model dependent functions
for the string momentum. The scattering phases for the bound states Θn,m(λ) can be written
as

Θn,m(λ)≡ (1−δn,m)θ|n−m|(λ) + 2θ|n−m|+2(λ) + · · ·+ θn+m−2(λ) + θn+m(λ), (33)

in terms of a model dependent elementary phase shift θn(λ). Each different choice of In,α
identifies a different set of solutions of (32), which correspond to a different eigenstate of the
considered integrable model. The corresponding eigenstate energy E and total momentum P
are obtained by summing over all the BGT rapidities [110] as

E =
∑

n,α

εn(λn,α), P =
∑

n,α

πn(λn,α) =
∑

n,α

zn(λn,α), (34)

where εn(λ) is the model dependent string energy, while zn(λn,α) = 2πIn,α/L so that the total
momentum P depends only on the In,α.

In the thermodynamic limit the solutions of the BGT equations (32) become dense on
the real axis. The central quantities to describe local properties of the system are then the
rapidity densities ρn(λ) (n labelling different string types) which are formally defined in the
thermodynamic limit as

ρn(λ)≡ lim
L→∞

1
L(λn,γ+1 −λn,γ)

. (35)

To fully specify the thermodynamic state of the system, the densities ρ(h)n (λ) of the n-string
holes, i.e., of the unoccupied string centres are also required. Finally, it is also custom [110]
to introduce the total densities ρ(t)n (λ) ≡ ρn(λ) +ρ(h)n (λ). Some TBA relations are written in
a more compact form in terms of the ratio

ηn(λ)≡
ρ(h)n (λ)

ρn(λ)
, (36)

that we introduce for future convenience.
The ρ(h)n (λ) and ρn(λ) are obtained via the thermodynamic version of the BGT equations

ρ(h)n (λ) +ρn(λ) = bn(λ)−
∞
∑

m=1

(anm ? ρm)(λ), (37)

which are obtained from (32) by taking the thermodynamic limit. The symbol f ? g denotes
the convolution between two functions as

( f ? g) (λ) =

∫ π/2

−π/2
dµ f (λ−µ)g(µ) . (38)

The functions bn(λ) and anm(λ) are related to πn(λ) and Θnm(λ) as

bn(λ)≡
1

2π
dπn(λ)

dλ
, anm(λ)≡

1
2π

dΘnm(λ)
dλ

. (39)

In the thermodynamic limit, the expectation values of local conserved quantities are func-
tionals of the densities ρn(λ); for example the particle and energy densities are

N
L
=
∞
∑

n=1

n

∫

dλρn(λ), (40)

E
L
=
∞
∑

n=1

∫

dλεn(λ)ρn(λ). (41)

11

https://scipost.org
https://scipost.org/SciPostPhys.4.3.017


SciPost Phys. 4, 017 (2018)

The set of rapidity densities ρρρ ≡ {ρn}∞n=1 defines a thermodynamic macrostate, which
encodes all the expectation values of local or quasi-local observables in the thermodynamic
limit. A generic thermodynamic macrostate corresponds to an exponentially large (with L)
number of microscopic eigenstates of the model, all leading to the same set of rapidity densities
in the thermodynamic limit. The total number of possible choices is eSY Y , with SY Y the Yang-
Yang entropy [111]

SY Y [ρρρ]≡ L
∞
∑

n=1

∫

dλ
�

ρ(t)n lnρ(t)n −ρn lnρn −ρ(h)n lnρ(h)n

�

. (42)

The Yang-Yang entropy represents the thermodynamic entropy of a given macrostate, as it
should be clear from a generalised microcanonical argument. For example, it has been proved
that for systems in thermal equilibrium SY Y coincides with the thermal entropy [110]. Our
conjecture for the time evolution of the entanglement starts from the Yang-Yang entropy since
we assume that at long times the entanglement entropy is the thermodynamic one. Further-
more, we also assume that the Bethe quasiparticles are the one entangling the system and
appearing in (4). Thus it is natural to identify sn(λ) with the integrand in (42), i.e.

sn(λ) = ρ
(t)
n lnρ(t)n −ρn lnρn −ρ(h)n lnρ(h)n . (43)

Here the three sets of root densities ρn, ρ(h)n , and ρ(t)n refer to the macrostate that describes the
stationary state. This is in principle calculable by Bethe ansatz techniques from the overlaps
of the initial state with the Bethe states [112,113] or equivalently from the GGE [55].

3.2 Group velocities over a macrostate

Having identified sn(λ) in Eq. (4), the other crucial ingredient for the quasiparticle picture
for the entanglement dynamics is the group velocity of the entangling quasiparticles. In the
approach of [10] the entangling quasiparticles are identified with the low-lying excitations
(particle-hole excitations) around the thermodynamic macrostate describing the steady state.

The low-lying excitations over a given macrostate can be constructed explicitly in the
framework of TBA as originally pointed out for the stationary state after a quench in [108]
and only briefly summarised in the following. The first step is to choose, among the equivalent
eigenstates of the macrostate identified by the densities ρn,ρ(h)n , one representative microstate
at finite, but large, volume L. This corresponds to a particular set of BGT quantum numbers
In,α in (32) chosen in such a way that the resulting rapidities from the BGT equations are a
discretisation of the desired macrostate. A particle-hole excitation in each n-string sector is
obtained by replacing In,h→ In,p, where In,p(In,h) is the BGT number of the new added particle
(hole). Due to interactions, this local change in quantum numbers implies a rearrangement of
all the rapidities. The excess energy of the particle-hole excitation is easily calculated as

δEn = en(λn,p)− en(λn,h). (44)

Remarkably, apart from the dressing of the “single-particle” energy e(λ) (44) is the same as
for free models. Similarly, the change in the total momentum is obtained from (54) as

δKn = zn(λn,p)− zn(λn,h). (45)

Finally, the group velocity of the particle-hole excitations is by definition

vn(λ)≡
δEn

δKn
=
∂ en

∂ zn
=

e′n(λ)

z′n(λ)
=

e′n(λ)

2πρn(1+ηn(λ))
. (46)
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Here we used that dzn(λ)/dλ = 2πρ(t)n , with ρ(t)n ≡ ρn(1 + ηn). The function e′n(λ) is de-
termined by solving an infinite system of Fredholm integral equations of the second kind as

e′n(λ) +
1

2π

∞
∑

m=1

∫

dµe′m(µ)
Θ′m,n(µ−λ)

1+ηm(µ)
= ε′n(λ). (47)

Equations (47) are routinely solved numerically by truncating the system, i.e., considering
n ≤ nmax and checking convergence with varying nmax . The method outlined above for cal-
culating the group velocities has been introduced in [108] in order to study velocity of the
spreading of correlation after a quench from a thermal state. Very recently it has also been
used to study transport properties in integrable models [114–117].

At this point, we have a Bethe ansatz procedure to calculate the velocities of the entangling
quasiparticles and we are ready to use the conjecture (4) to provide quantitative predictions
for the entanglement spreading in generic integrable systems.

4 Entanglement dynamics in Heisenberg spin chains

In this section we focus on the spin-1/2 anisotropic Heisenberg chain (XXZ chain). The goal
of this section is to provide a thorough discussion of some results that have been already
presented in [10] and to extend them in several directions.

The XXZ chain is defined by the hamiltonian

H =
L
∑

i=1

�1
2
(S+i S−i+1 + S+i S−i+1) +∆

�

Sz
i Sz

i+1 −
1
4

��

. (48)

Here Sαi are spin-1/2 operators acting at site i of the chain, and∆ is the anisotropy parameter.
Periodic boundary conditions are used in (48).

We focus on the non-equilibrium dynamics ensuing from several low-entangled initial
states, namely the tilted Néel state

|ϑ,↗↙ ·· · 〉 ≡ eiϑ
∑

j S y
j |↑↓ · · · 〉 , (49)

the Majumdar-Ghosh (dimer) state

|MG〉 ≡ ((|↑↓〉 − |↓↑〉)/2)⊗L/2, (50)

and the tilted ferromagnet

|ϑ,↗↗〉 ≡ eiϑ
∑

j S y
j |↑↑ · · · 〉 , (51)

Here ϑ is the tilting angle.
The results that we obtain here build on a large literature about the integrable quench

dynamics of the XXZ chain [52–55,118–129] to which we refer for completeness.

4.1 Bethe ansatz solution of the X X Z chain

In the Bethe ansatz solution of the X X Z chain, the eigenstates of (48) can be labeled by
the total number of down spins (particles). Eigenstates in the sector with M particles are in
correspondence with a set of M rapidities λ j . The rapidities are obtained by solving a set of
non linear algebraic equations (Bethe equations) as [110]

�

sin(λ j + i η2 )

sin(λ j − i η2 )

�L

= −
M
∏

k=1

sin(λ j −λk + iη)

sin(λ j −λk − iη)
, (52)

13

https://scipost.org
https://scipost.org/SciPostPhys.4.3.017


SciPost Phys. 4, 017 (2018)

where η ≡ arccosh(∆). In the thermodynamic limit the vast majority of the solutions of the
Bethe equations (52) organise according to the string hypothesis (31). For the XXZ spin-chain,
physically, a n-string corresponds to a bound states of n down spins. The BGT equations are
given in (32) in which one should identify

θn(λ) = πn(λ) = 2arctan
� tan(λ)

tanh(nη/2)

�

. (53)

For ∆ > 1, the string centres are in the interval [−π/2,π/2). The eigenstate energy E and
total momentum P are given by Eq. (34) with string energy

εn(λ)≡ −
sinh(η) sinh(nη)

cosh(nη)− cos(2λ)
, (54)

The thermodynamic version of the BGT equations are given by (37).
We also consider the XXZ chain in the limit ∆ = 1 (XXX chain). The Bethe ansatz results

for the XXX chain can be obtained from those for the XXZ chain by taking an appropriate
scaling limit. The first step is to rewrite the formulas for the XXZ chain in terms of the rescaled
rapidities µ defined as

µ≡
λ

η
. (55)

As η → 0, i.e., for ∆ → 1, the rescaled rapidities µ are now defined in the whole real axis
[−∞,∞]. Moreover, the spacing along the imaginary axis between different string compo-
nents is i/2. Using (54) one obtains that for the XXX chain εn(µ) is

εn(µ) =
2n

4µ2 + n2
. (56)

4.2 Thermodynamic Bethe ansatz for global quenches

In the TBA approach for quantum quenches, local and quasilocal properties of the post-quench
steady state are described by an appropriate thermodynamic macrostate [112, 113]. This
macrostate is fully characterised by its rapidity densities ρn(λ) and ρ(h)n (λ) (or equivalently
ηn(λ)). For all initial states considered here (cf. (49) (50)(51)) the macrostate densities satisfy
the recursive relations

ηn(λ) =
ηn−1(λ− i η2 )ηn+1(λ+ i η2 )

1+ηn−2(λ)
− 1, (57)

ρ(h)n (λ) = ρ
(t)
n−1(λ+ i

η

2
) +ρ(t)n−1(λ− i

η

2
)−ρ(h)n−1(λ), (58)

with initial conditions η0 = 0 and ρ(h)0 = 0. The information on the pre-quench initial state is

encoded in the densities ρ(h)1 and η1.
For completeness, we report the results for the quenches considered in this work. For the

tilted ferromagnet one has [126]

η1(λ) = −1+
T1

�

λ+ i η2
�

φ
�

λ+ i η2
�

T1

�

λ− i η2
�

φ̄
�

λ− i η2
� , (59)

ρ
(h)
1 (λ) =

sinhη
π

�

1
cosh(η)− cos(2λ)

(60)

−
2sin2(ϑ)

�

2 sin2(ϑ) + cosh(η) [(cos(2ϑ) + 3) cos(2λ) + 4]
	

sinh2(η) [cos(2ϑ) + 3]2 sin2(2λ) +
�

2sin2(ϑ) + cosh(η) [(cos(2ϑ) + 3) cos(2λ) + 4]
	2

�

,
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where

T1(λ) = cos(λ)
�

4cosh(η)− 2 cos(2ϑ) sin2λ+ 3 cos(2λ) + 1
�

, (61)

φ(λ) = 2 sin2 ϑ sinλ cos
�

λ+ i
η

2

�

sin
�

λ− i
η

2

�

, (62)

φ̄(λ) = 2 sin2 ϑ sinλ cos
�

λ− i
η

2

�

sin
�

λ+ i
η

2

�

. (63)

For the tilted Néel state one has [120–122,126]

η1(λ) = −1+
T1

�

λ+ i η2
�

φ
�

λ+ i η2
�

T1

�

λ− i η2
�

φ̄
�

λ− i η2
� , (64)

ρ
(h)
1 (λ) =

sinh(η)
π [cosh(η)− cos(2λ)]

− X1

�

λ+ i
η

2

�

− X1

�

λ− i
η

2

�

, (65)

where now one has

T1(λ) = −
1
8

cot(λ)
�

8 cosh(η) sin2(ϑ) sin2(λ)− 4 cosh(2η)

+(cos(2ϑ) + 3)(2cos(2λ)− 1) + 2 sin2(ϑ) cos(4λ)
�

, (66)

φ(λ) =
1
8

sin(2λ+ iη)
�

2sin2(ϑ) cos(2λ− iη) + cos(2ϑ) + 3
�

, (67)

φ̄(λ) =
1
8

sin(2λ− iη)
�

2sin2(ϑ) cos(2λ+ iη) + cos(2ϑ) + 3
�

, (68)

and

X1(λ) = −(4 sinh(η) sin2(ϑ) cos(2λ) + sinh(2η)(cos(2ϑ) + 3))

×
�

2π
�

8cosh(η) sin2(ϑ) sin2(λ)− 4 cosh(2η) + (cos(2ϑ) + 3)(2 cos(2λ)− 1)

+ 2 sin2(ϑ) cos(4λ)
�

�−1
. (69)

Finally, for the Majumdar-Ghosh state one has [123]

η1 =
cos(4λ)− 2cosh(2η)

cos2(λ)(cos(2λ)− cosh(2η))
− 1, (70)

ρ
(h)
1 =

sinh(η)
π [cosh(η)− cos(2λ)]

− X1

�

λ+ i
η

2

�

− X1

�

λ− i
η

2

�

, (71)

where

X1 = sinh(η)
4 cos(2λ)(sinh2(η)− cosh(η)) + cosh(η) + 2 cosh(2η) + 3cosh(3η)− 2

8π(cosh(2η)− cos2(2λ))
. (72)

Having explicit expressions for all the root densities, we are ready to calculate the conjec-
ture (4) for all these quenches. The functions sn(λ) are just straightforwardly obtained from
the Yang-Yang entropy (43). For the velocity instead we have to solve numerically the set of
coupled integral equations (47). The numerical results for the group velocities vn for several
quenches in the XXZ chain are reported in Figure 3. The Figure shows the group velocities for
a quench in the XXZ chain with ∆ = 2 plotted as a function of rapidity λ. Panels in different
rows are for quenches from different initial states. Only results for string index n ≤ 3 (pan-
els on different columns) are shown. For all considered quenches and for all values of λ, vn
decreases with the string index n. Interestingly, the maximum velocity is vM ≈ 2 for both the
quenches from the Néel state and the dimer state, whereas it is vM ≈ 1 for the quench from
the tilted ferromagnet. In the limit ∆→∞ the solutions of the system (47) can be obtained
analytically as a power series in 1/∆ (see [10] for some analytical results).
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Figure 3: Group velocities of the low-lying excitations around the steady-state after a quench in
the XXZ chain. All results are for chain anisotropy ∆= 2. Group velocities are plotted against
rapidity λ. Panels on different rows are for quenches from different initial states, namely the
Néel state, the dimer state, and the tilted ferromagnet (ϑ is the tilting angle). Different rows
correspond to bound states of different sizes (strings) n = 1,2, 3. For all quenches the maxi-
mum velocity is obtained for n= 1 and the group velocity typically decreases upon increasing
n.
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Figure 4: Quasiparticle prediction for the entanglement dynamics after a global quench in the
XXZ chain. In all panels the entanglement entropy density S/` is plotted against the rescaled
time vM t/`, with ` the size of A and vM the maximum velocity. Different panels correspond to
different initial states, namely the Néel state (a), tilted ferromagnet (b), tilted Néel (c), and
dimer state (d). Different curves correspond to different values of the chain anisotropy ∆> 1
and tilting angles ϑ.
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Figure 5: Quasiparticle contribution to the stationary entanglement entropy density
S(t =∞)/` and to the entanglement production rate S′(t)/` as function of the quasiparticle
rapidity. In all panels the different curves correspond to bound states (strings) of different
size n = 1, 2,3. Panels (a)(b) show the results for the quench from the tilted ferromagnet
with tilting angle ϑ = π/10 and chain anisotropy ∆ = 2. Notice in both cases the peaks at
λ ≈ ±π/2, which signal a large contribution of the slow quasiparticle to the entanglement
dynamics. Panels (c)(d) show results for the quench from the Néel state in which the largest
contributions correspond to λ with small, but non-zero, value. Similar results are obtained
for the quench from the dimer state and the tilted Néel. The contribution of the bound states
with n> 1 are always much smaller than that for n= 1.

4.3 Entanglement dynamics

Let us repeat here the quasiparticle prediction (4) for the entanglement dynamics

S(t) =
∑

n

�

2t

∫

2|vn|t<`

dλvn(λ)sn(λ) + `

∫

2|vn|t>`

dλsn(λ)
�

, (73)

where the sum is over the quasiparticle families n (strings of different length), vn(λ) is the
velocity of the entangling quasiparticles numerically calculated above, and sn(λ) denotes the
contribution of each quasiparticle to the Yang-Yang entropy of the steady state in Eq. (43).

The exact numerical results obtained using (73) are illustrated in Figure 4. The different
panels are for quenches from different initial states in the XXZ chain and several values of
∆. For the quenches from the tilted Néel and ferromagnetic states ϑ is the tilting angle. In all
panels the entropy density S/` is plotted versus the rescaled time vM t/`with vM the maximum
velocity, which is extracted from the Bethe ansatz. In all panels the expected behaviour with a
linear increase at short times followed by an asymptotic saturation is observed. Interestingly,
for all the quenches the larger steady-state entanglement is obtained for the smaller ∆. The
largest amount of entanglement is produced in the quench from the tilted Néel state (panel
(c)). For the Néel quench the entropy vanishes in the limit ∆→∞, which follows from the
fact that the Néel state is the ground state of the XXZ chain in that limit, whereas it is finite
for all other initial states. Finally, as already noticed in [10], for the quench from the tilted
ferromagnet (see panel (b)) the linear regime seems to extend for vM t/` > 1. However, the
true linear regime extends only up to vM t/` = 1. The behaviour observed in panel (b) is due
to the large contributions to the entanglement entropy of slow quasiparticles (see [10]).
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Figure 6: Anisotropy dependence of the entanglement after a global quench in the XXZ chains.
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correspond to different initial states. Panel (b). Steady-state entanglement entropy density
S(t =∞)/` after the quench. The entanglement is identically zero in the limit ∆→∞ for
the quench from the Néel state and for ∆→ 1 for the quench from the tilted ferromagnet.

A lot of important information is extracted by looking at the contribution to the entangle-
ment dynamics of the individual quasiparticles. This is investigated in Figure 5 focusing on
the steady-state entropy density S/` (panels (a,c)) and on the slope of the linear growth at
short times (b,d) S′/` (we denote with entanglement production rate the quantity S′(t)/` for
t < `/(2vM ) when it does not depend on time). Both quantities are plotted against the quasi-
particles rapidity λ. All the results are for the quench in the XXZ chain with ∆= 2. Panels (a)
and (b) are for the quench from the tilted ferromagnet (with tilting angle ϑ = π/10). Remark-
ably, the largest contribution to the steady-state entropy and to the entanglement production
rate is in the region with large λ, which correspond to slow quasiparticles (see Figure 3). Also,
the largest contribution is in the sector with n= 1 (continuous line in the Figure). The contri-
butions of higher strings are negligible (the dotted line in Figure 5 (a) (b) is the contribution
of the two-particle bound states). A striking different behaviour is observed for the quench
from the Néel state (panels (c) and (d) in the Figure); now the largest contribution to the sta-
tionary entanglement and to the entanglement production rate is the region with small (but
non-zero) rapidities, corresponding to fast quasiparticles. Similar to the quench from the tilted
ferromagnet, the bound state contribution to the entanglement dynamics decays rapidly with
their size.

Finally, we discuss the dependence of the stationary entropy and of the entanglement pro-
duction rate on the chain anisotropy ∆. This is shown in Figure 6. Clearly, for the quench
from the Néel state the entropy is vanishing in the limit ∆ →∞, as already discussed. On
the other hand, it remains finite for all the other quenches. Moreover, for the quench from the
Néel state and the dimer state, both the steady-state entropy and the entanglement production
rates exhibit their maximum value for ∆ ≈ 1. In contrast, they vanish in the limit ∆→ 1 for
the quench from the tilted ferromagnet. This is expected because at∆= 1 the tilted ferromag-
net becomes an eigenstate of the XXZ chain for any tilting angle. The large ∆ behaviour can
be understood analytically using perturbative methods. Here we discuss the behaviour of the
steady-state entropy, although similar results can be derived for the entanglement production
rate. It is straightforward to show that for the quench from the Néel state, in the limit∆→∞,
the stationary entropy is

S
`
=

ln∆
∆

2

+ o(∆−2). (74)
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Figure 7: Post-quench dynamics of the von Neumann entanglement entropy in the XXZ spin
chain: Comparison with tDMRG results. Here the entanglement entropy density S/`, with `
the subsystem size, is plotted against the rescaled time vM t/`, with vM being the maximum
velocity in the system. All the results are for the quench from the Néel state. Panel (a).
Results for ∆ = 1. Continuous lines are tDMRG results for a chain with L = 40. Different
lines correspond to different block sizes `= 5−20. The dashed line is the Bethe ansatz result
in the scaling limit t,`→∞ with x/t fixed. The diamonds are the numerical extrapolations
(see panel (c)) in the thermodynamic limit. Panel (b). The same as in (a) for ∆ = 2. Panel
(c). Numerical extrapolations of the tDMRG results in (a) in the thermodynamic limit. The
panel plots S/` versus 1/` for several values of vM t/` (different symbols). The curves are fits
to a+ b/`+ c/`2 with a, b, c fitting parameters.

For the quench from the Majumdar-Ghosh state one has

S
`
= −

1
2
+ ln2+ o(∆−1). (75)

On the other hand, for the quenches from the tilted states the dependence of the root densities
ρn,ρ(h)n on the tilting angle is non-trivial even in the limit ∆ → ∞, implying a non-trivial
dependence for the entanglement entropy as well.

4.4 Numerical checks

In this section, using tDMRG simulations [130–132], we provide numerical evidence support-
ing our main result (73). Numerical results are presented in Figure 7. Panels (a) and (b) show
tDMRG simulations for the quench from the Néel state in the XXZ chain at ∆ = 1 and ∆ = 2,
respectively. The results in panel (b) are the same as in [10]. Both panels plot the entropy
density S/`, with ` the size of subsystem A, as a function of the rescaled time vM t/`, where vM
is the maximum velocity calculated using the Bethe ansatz (see section 3.2). The continuous
curves are tDMRG results for a chain with L = 40 sites and `= 5−20. The dashed-dotted line
is the theoretical result (73) in the scaling limit. For both∆= 1 and∆= 2 scaling corrections
are visible. The diamonds are extrapolations to the thermodynamic limit. These are obtained
by fitting the data at fixed vM t/` to

S
`
= s∞ +

a
`
+

b
`2

, (76)

where s∞, a, b are fitting parameters. The quality of the fits for the quench with ∆= 1 (panel
(a)) is illustrated in panel (c), plotting S/` at fixed values of vM t/` (different symbols) as
function of 1/`. The dotted lines are fits to (76).
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Figure 8: Entanglement production rate after a global quench in the XXZ spin chain. The
panels plot S′(t) as function of time. Different panels are for different initial states, namely
the tilted Néel state (a), the dimer state (b), the Néel state (c), and the tilted ferromagnet (d).
The curves are iTEBD numerical data for different anisotropy ∆ and different tilting angles
ϑ. The horizontal segments are the predictions using the quasiparticle picture in the scaling
limit.

We now turn to discuss further checks of (73) using the infinite Time-Evolving Block Dec-
imation (iTEBD) [133] which works directly in the thermodynamic limit. Our results are dis-
cussed in Figure 8 (some results have been already reported in [10]). Different panels in the
figure show the entanglement production rate S′(t) plotted as a function of time for quenches
with different initial states in the XXZ chain. The data shown in Figure 8 are the entangle-
ment entropies for the half-infinite chain. Although no finite-size corrections are expected,
finite-time corrections are visible in the Figure. The data exhibit a non-trivial dynamics at
short times, often with oscillating behaviour. Interestingly, already at t ≈ 10 for most of the
quenches the data exhibit stationary behaviour. The horizontal lines in the Figure mark the
quasiparticle prediction

S′ = 2
∑

n

∫ π/2

−π/2
dλvn(λ)sn(λ). (77)

The agreement between (77) and the iTEBD data is spectacular for all the quenches. Note that
in the vicinity of ∆= 1 a slower relaxation to the stationary behaviour takes place, especially
for the quenches from the Néel state and from the tilted ferromagnet: longer times would be
needed in order to provide a more robust check of (77).

4.5 Mutual information

In this section we focus on the post-quench dynamics of the mutual information between two
blocks. Considering the tripartition A1∪A2∪B (with A1 and A2 two intervals of equal length `
and at distance d and B the rest of the chain), the von Neumann mutual information is defined
as

IA1:A2
≡ SA1

+ SA2
− SA1∪A2

, (78)

with SA1(2)
and SA1∪A2

being the entanglement entropies of A1(2) and A1 ∪ A2, respectively.
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Figure 9: Post-quench dynamics of the mutual information IA1:A2
between two intervals A1

and A2 after a quench in the XXZ chain. Panel (a) shows IA1:A2
for the quench from the Néel

state for ∆ = 4. Here A1 and A2 are two disjoint intervals of equal length ` = 10 at distance
d = 10 in units of the lattice spacing. Different curves correspond to the contributions of
bound states of different size n. The continuous (red) line is obtained by summing over all
the bound states. Panel (b) is the same as in (a) for the quench from the Majumdar-Ghosh
state for the XXZ chain with ∆ = 2. Panel (c). Post-quench dynamics of IA1:A2

for the quench
from the tilted ferromagnet in the XXZ chain with∆= 4. Here A1 and A2 are two equal-length
intervals with ` = 10 at distance d = 0. Note the second peak at t ≈ 30 resulting from the
contribution of the two-particle bound states.

Using the quasiparticle picture, it is straightforward to derive a prediction for the mutual
information. When only one type of quasiparticles is present with fixed group velocity v (as
in a conformal field theory), the prediction for the mutual information is simply obtained by
counting the quasiparticles arriving to each interval, obtaining [6]

IA1:A2
∝−2max((d + `)/2, vt) +max(d/2, vt) +max((d + 2`)/2, vt). (79)

Formula (79) predicts IA1:A2
= 0 for vt ≤ d/2, followed by a linear increase for

d/2 < vt ≤ (d + `)/2 and a linear decrease up to vt = (d + 2`)/2. The first region corre-
sponds to A1 and A2 being entangled with the environment B but not mutually entangled. At
time t = d/(2v) quasiparticles originated at the same point in space start to connect A1 and
A2. The linear increase up to t = (d+`)/(2v) correspond to entangled quasiparticles traveling
in the two subsystems. At time t = (d + `)/(2v) the entangled quasiparticles start leaving the
two subsystems. Finally, at t = (d+2`)/(2v) there are no entangled quasiparticles connecting
A1 and A2 and the mutual information vanishes again.

In the presence of different species of quasiparticles with different velocities, one has to
integrate (79) over the full quasiparticle content to obtain

IA1:A2
=
∑

n

∫

dλsn(λ)
�

− 2 max((d + 2`)/2, vn(λ)t)

+max(d/2, vn(λ)t) +max((d + 4`)/2, vn(λ)t)
�

, (80)

which is valid for infinite systems. For a finite chain, (80) applies before the revival time.
The exact numerical results for IA1:A2

obtained using (80) for quenches in the XXZ chain
are shown in Figure 9. Panel (a) shows results for the quench from the Néel state in the XXZ
chain with ∆ = 4. The result for IA1:A2

(full line in the Figure) is for two disjoint intervals
of equal length ` = 10 at distance d = 10. Clearly, one has that for d/(2vM ), with vM ≈ 2
the maximum velocity, the mutual information is zero. A linear behaviour is clearly visible at
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larger times up to (d+`)/(2vM ), where the mutual information reaches a maximum. A linear
decrease is subsequently observed. Interestingly, the presence of slow quasiparticles leads to a
slow decay of the mutual information at long times, instead of a sudden vanishing behaviour
at t = (d + 2`)/(2vM ). A similar slow decay has been numerically observed in free bosonic
models [83].

It is also interesting to investigate the effects of the bound states on the mutual information
dynamics. The dotted and dashed lines in Figure 9 denote the contributions of the two-particle
and three-particle bound states, respectively. Interestingly, the contributions of the bound
states rapidly decay with their size. Moreover, the bound-state contributions are shifted at
longer times, reflecting their smaller group velocities (see Figure 3). Similar qualitative results
are observed for the quench from the dimer state (reported in Figure 9 (b)). Finally, Figure 9
shows results also for the quench from the tilted ferromagnet. The data are for ∆ = 4 and
tilting angle ϑ = π/2. The results are for two adjacent equal-length intervals with ` = 10.
In contrast with panels (a) and (b), an additional second peak is observed in the mutual
information. As it is clear from the Figure, this is due to the contribution of the two-particle
bound states (dashed line). This last result suggests that the mutual information, at least in
some case, can be used to reveal the bound state content of integrable models. This idea has
already been put forward in [100] during the study of quenches in the spin-1 Lai-Sutherland
model.

5 Entanglement dynamics in the Lieb-Liniger model

In this section we provide exact results for the entanglement dynamics after the quench from
the Bose-Einstein condensate (BEC) in the Lieb-Liniger model. We discuss both the Lieb-Liniger
model with repulsive interactions, as well as with attractive ones. Quantum quenches in the
Lieb-Liniger model have been the focus of intensive investigations [134–160] and here we will
largely use the results from Refs. [140] and [155] for repulsive and attractive cases respectively.
We should mention that, in contrast with the XXZ chain, here we cannot provide a numerical
check of our preditions. This is due to the fact that as of now for models in the continuum
there are no efficient numerical methods, such as tDMRG.

5.1 Lieb-Liniger model and its Bethe Ansatz solution

The Lieb-Liniger model consists of a system of N interacting bosons on a ring of length L. The
model is defined by the hamiltonian

H = −
ħh2

2m

N
∑

j=1

∂ 2

∂ x2
j

+ 2c
∑

j<k

δ(x j − xk), (81)

where m is the mass of the bosons and c is the interaction strength. In the following we set
ħh= 2m= 1. In second quantisation (81) reads

H =

∫ L

0

d x
¦

∂xΨ
†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)

©

, (82)

with Ψ(x) bosonic fields satisfying the standard commutation relations
[Ψ(x),Ψ†(y)] = δ(x − y). In the limit c → ∞, (82) becomes equivalent to a system
of hard-core bosons. For any value of c, the Lieb-Liniger model can be solved using Bethe
ansatz [161]. In this work we consider both the repulsive regime with c > 0, as well as the
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attractive one with c < 0. We define c̄ ≡ |c|. We also introduce the dimensionless coupling γ
as

γ≡
|c|
D

, with D ≡
N
L

. (83)

The Bethe equations for the Lieb-Liniger model are [110,161]

2πI j

L
= λ j + sgn(c)

2
L

N
∑

k=1

arctan
�λ j −λk

c̄

�

. (84)

The eigenstates energy E and total momentum P are given as

E =
∑

j

λ2
j , P =

∑

j

λ j =
2π
L

∑

j

I j . (85)

The structure of the solutions of the Bethe equations depends dramatically on the sign
of the interactions. Specifically, for c > 0, i.e., for repulsive interactions, only real solutions
of (84) are present. Consequently (84) is of the form (32) for the only species of particles
after the straightforward identification of the various functions. In the thermodynamic limit
the solutions of the BGT equations become dense on the real axis and, since there are no bound
states, there is a single particle density ρ and hole density ρ(h), with ρ(t) = ρ + ρ(h) which
is a major simplification compared to the standard case. The Bethe equations for these root
densities (84) are

1
2π
+

∫ ∞

−∞
dλ′K(λ−λ′)ρ(λ′) = ρ(t)(λ), (86)

where the kernel K is given as K(λ) = c/[π(λ2 + c2)]
For attractive interactions c < 0, the eigenstates of the model contain non-trivial multi-

particle bound states that, as usual, can be understood with the string hypothesis, i.e. they
have the form (31) with η = c̄. The Bethe-Gaudin-Takahashi (BGT) equations for the Lieb-
Liniger gas are of the form (32) with πn(λ) = nλ and elementary kernel θn(λ) given by [110]

θn(λ) = 2arctan
�2λ

nc̄

�

. (87)

For the attractive Lieb-Liniger the energy and momentum in (85) can be rewritten as (34) with

εn(λ) = nλ2 −
c2

12
n(n2 − 1). (88)

In the thermodynamic limit, there are infinite particle densities {ρn}∞n=1, hole densities
{ρ(h)n }

∞
n=1, and total densities {ρ(t)n }

∞
n=1 as the sum of the other two. The thermodynamic

version of the BGT equations (32) takes the explicit form

n
2π
−
∞
∑

m=1

∫ ∞

−∞
dλ′Kn,m(λ−λ′)ρm(λ

′) = ρ(t)n , (89)

with

Kn,m(λ) = (1−δn,m)a|n−m|(λ) + 2a|n−m|+2(λ) + · · ·+ 2an+m−2(λ) + an+m(λ), (90)

and

an(λ) =
2

π|c|n
1

1+ ( 2λ
n|c|)

2
. (91)
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Figure 10: Group velocities of the low-lying excitations around the steady-state after the
quench from the Bose condensate (BEC) in the Lieb-Liniger model. Panel (a). Results for the
repulsive Lieb-Liniger. The different curves are the group velocities v plotted as a function
of the rapidity λ for several values of the interaction strength γ. Panel (b) reports the group
velocities for the attractive Lieb-Liniger model with γ = −2. The different curves are for
the different bound states. Notice that in both cases, the velocities are unbounded and grow
linearly as λ→±∞.

5.2 Quench from the Bose condensate

Here we briefly detail the TBA treatment for the quantum quench from the Bose condensate
state in the Lieb-Liniger model. In the BEC the bosons are uniformly distributed in the interval
[0, L]. The steady state arising at infinite time after the quench is fully described by a particular
thermodynamic macrostate.

5.2.1 Repulsive case

The quench action solution for the quench in the repulsive Lieb-Liniger has been provided
in [140]. The thermodynamic macrostate describing the post-quench steady-state is identified
by the densities ρ(λ),η(λ) [140]:

ρ(λ) =
1

2π
τ

2
da(λ/c)

dτ
, η(λ) =

1
a(λ/c)

, (92)

written in terms of the the auxiliary function

a(λ)≡
2πτ

λ sinh(2πλ)
I1−2iλ(4

p
τ)I1+2Iλ(4

p
τ). (93)

Here τ= 1/γ and Iα(x) are the modified Bessel functions of the first kind.
The calculation of the group velocities of the low-lying excitations around the macrostate

that describes the steady-state follows the general derivation of section 3.2 with the major
simplification of having a single set of rapidities. Figure 10 (a) shows numerical results for the
group velocities of the low-lying excitations around the post-quench steady state for several
values of the interaction strength γ (different curves in the Figure). At large |λ| the interactions
are negligible and the linear behaviour v ∝ 2λ is observed, reflecting the “free” dispersion
E = λ2 and the absence of a maximum velocity. We anticipate that this fact will have striking
consequences in the behaviour of the entanglement entropy (see 5.3).

24

https://scipost.org
https://scipost.org/SciPostPhys.4.3.017


SciPost Phys. 4, 017 (2018)

5.2.2 Attractive case

We now consider the quench from the Bose condensate in the attractive gas for which the ther-
modynamic macrostate describing the steady state is identified by the set of densities {ρn}∞n=1
and {ηn}∞n=1. The solution for this problem has been provided in [155]. The densities ηn
satisfy the recursion relations [155]

ηn(x) =
ηn−1(x −

i
2)ηn+1(x +

i
2)

1+ηn−2(x)
− 1, (94)

with x ≡ λ/c and

η1(x) =
x2(1+ 4τ+ 12τ2 + (5+ 16τ)x2 + 4x4)

4τ2(1+ x2)
. (95)

The particle densities ρn(x) are [155]

ρn(x) =
τ

4π
1

1+ηn(x)
d1/ηn(x)

dτ
. (96)

The group velocities of the low-lying excitations around the macrostate describing the
steady-state can be calculated following the general derivation of Sec. 3.2. Figure 10 (b)
shows numerical results for these group velocities vn for the different multi-particle bound
states as a function of λ. The results are for fixed γ = −2. As for the repulsive case, at large
momenta, the interactions are negligible and the free-like behaviour v∝ 2λ is found.

5.3 Entanglement dynamics in the Lieb-Liniger model

We now turn to discuss the post-quench dynamics of the entanglement entropy for the repul-
sive Lieb-Liniger model as given by the quasiparticle prediction (4). In the present case, (4)
greatly simplifies because of the presence of a single species of quasiparticles and it can be
written as

S(t) = 2t

∫

2|v|t<`

dλv(λ)s(λ) + `

∫

2|v|t>`

dλs(λ), (97)

where v(λ) is the group velocity of the entangling quasiparticles of the previous section, and
s(λ) is the thermodynamic Yang-Yang entropy of the steady state.

The dynamics of the entanglement entropy obtained from (97) is shown in Figure 11.
Panel (a) in the Figure plots the entropy density S/` versus the rescaled time t/`. The differ-
ent curves in the Figure correspond to different values of the repulsive interaction strength.
Interestingly, for all values of γ the entropy exhibits a non-linear growth with time, even at
short times, and it saturates at asymptotically long times. The non linear behaviour at short
times is due to the absence of a maximum velocity (see Figure 10). The almost linear be-
haviour of the entanglement entropy for small values of γ is due to the very low weight of
fast quasiparticles, as it should be clear from Fig. 10. Anyhow, at a closer analysis, a strictly
linear behaviour never takes place for any value of γ. The maximum stationary entanglement
entropy is obtained in the limit γ →∞, when the system is equivalent to a system of hard-
core bosons. In this limit, we find S/` = 2, as already known [73]. In order to understand
the saturation behaviour at long times it is useful to investigate the quasiparticle contribution
to the steady-state entanglement entropy. This is reported in Figure 11 (b) which shows the
entropy density S/` contribution versus the quasiparticle rapidity λ. The different curves cor-
respond to different values of the interaction strength. For all values of γ the quasiparticles
contributions decay rapidly as λ→∞. Upon increasing γ, quasiparticles with larger rapidity
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Figure 11: Entanglement entropy dynamics in the repulsive Lieb-Liniger model after the
quench from the Bose condensate (BEC). (a) Quasiparticle picture prediction for S/` plotted
versus the rescaled time t/`. The different curves correspond to different values of the inter-
action strength γ. Notice the absence of the linear regime at short times. (b). Contributions
of the quasiparticles of rapidity λ to the stationary entanglement. The different curves are for
different values of γ (same as in (a)).
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Figure 12: Steady-state entanglement entropy density S/` after the quench from the Bose
condensate in the repulsive Lieb-Liniger model as function of the interaction strength γ. For
infinite repulsion γ→∞, the result S/`= 2 for hard-core bosons is recovered.

contribute more significantly to the steady-state entropy, which is one of the factors explaining
why the stationary entropy increases with γ. This is better shown in Figure 12 that reports
the entropy density S/` versus γ. The entropy density monotonically increases with γ and it
vanishes for γ→ 0, i.e. in the absence of a quench. In the limit γ→∞ the result S/`= 2 [73]
for hard-core bosons is recovered.

We now turn to discuss the entanglement dynamics after the quench from the Bose con-
densate in the attractive Lieb-Liniger model. In this case, all the multi-boson bound states
contribute to the entanglement which is then described by (4) that we repeat here for conve-
nience:

S(t) =
∑

n

�

2t

∫

2|vn|t<`

dλvn(λ)sn(λ) + `

∫

2|vn|t>`

dλsn(λ)
�

. (98)

Numerical results for the entanglement evolution obtained using (98) are shown in Figure 13.
Panel (a) shows results for S/` for the quench with γ= −2 plotted as a function of the rescaled
time t/`. The different curves in the panel are the entanglement entropies in which the differ-
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Figure 13: Entanglement dynamics after the quench from the Bose condensate in the attrac-
tive Lieb-Liniger model. Panel (a) shows the entropy density S/` plotted versus the rescaled
time t/`. The curves are Bethe ansatz results for fixed interaction strength γ= −2 in which all
the bound states with size up to n have been included in the sum (98). Panel (b). Contribu-
tions of the different bound states to the steady-state entanglement entropy. S/` is plotted as
a function of the quasiparticle rapidity λ. Different lines correspond to different bound-state
sizes n.

ent multi-boson bound states up to size n have been taken into account in the sum (98). Only
results for n≤ 5 are shown. We verified that for this value of γ and in the time window reported
in the plot, the contributions of the bound states with n> 5 are negligible. As for the repulsive
case (cf. Figure 11) there is no linear increase in the short time regime. The contribution of
bound states with different rapidity is investigated in Figure 13 (b) plotting S/` as a function
of rapidity λ for different values of n. Interestingly, the maximum contribution of the bound
states increases with their size, although the support of S/` as a function of λ shrinks with
increasing n. As a consequence of this very peculiar velocity distribution, we have that the
larger bound states have a dominant velocity that is smaller and smaller as n increases. Thus
their effect will manifest at longer times. This is already clear from the panel (a) in Fig. 13
where we can notice that the contributions with n = 3,4, 5 have a visible effect some time
after the quench. Consequently, we expect that larger bound states can have non-negligible
contributions at some larger time not displayed in the figure.

We turn now to discuss the steady-state entropy as a function of the interaction strength.
Clearly, the entropy density increases with γ, similar to the repulsive case (see Figure 13). The
behaviour in the limit γ →∞ can be understood analytically. In the limit γ →∞, one has
that the support of the root densities ρn(λ) and ρ(h)n (λ) shrinks around λ= 0. Specifically, in
the limit τ→ 0 one has that

ρ1(x)≈
2τ2

π(x2 + 4τ2)
, ρ

(h)
1 (x)≈

x2

2π(x2 + 4τ2)
, (99)

ρ2(x)≈
16τ4

π(x2 + 16τ4)
, ρ

(h)
2 (x)≈

x2

π(x2 + 16τ4)
, (100)

ρ3(x)≈
96τ6

π(9x2 + 64τ6)
, ρ

(h)
3 (x)≈

27x2

2π(9x2 + 64τ6)
, (101)

ρ4(x)≈
128τ8

π(81x2 + 64τ8)
, ρ

(h)
4 (x)≈

162x2

π(81x2 + 64τ8)
, (102)

where x ≡ λ/c̄. Interestingly, Eq. (99) implies that

ρ
(t)
1 ≈

1
2π

, (103)
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Figure 14: Non-equilibrium dynamics of the mutual information IA1:A2
between two disjoint

intervals A1 and A2 after the quench from the BEC to the attractive Lieb-Liniger with γ = −2.
IA1:A2

(continuous line) is plotted as function of the time after the quench. Results are for two
intervals of length ` = 10 at distance d = 10. The contributions of the different multiparticle
bound states of different sizes n are also reported.

i.e. that in the limit of infinite attractive interaction the quasiparticles with n = 1 behave as
free fermions. For generic n, the total density ρ(t)n is consistent with the ansatz

ρ(t)n (λ) =
n

2π
. (104)

Crucially, from (99)-(102) it is clear that the support of the higher densities ρn and ρ(h)n for
n> 1 shrinks faster, i.e., with a higher power of τ, in the limit τ→ 0, implying that the multi
boson bound states do not contribute to the leading behaviour of the steady-state entanglement
entropy. Also, we should remark that, although the functional form of the densities in the limit
γ→∞ appear to be simple, we were not able to generalize the results (99)-(102) to arbitrary
n.

We can derive the average energy and particle density using (99)-(102). The boson density
in the limit γ→∞ is determined by the strings with n= 1 and it is given as

|c|
∫ ∞

−∞
d x

2τ2

π(x2 + 4τ2)
= D, (105)

as it should. Using (99)-(102), it is straightforward to check that the contributions of the bound
states are vanishing as ∝ τn−1. On the other hand, for the energy density the contribution
of each bound state diverges in the limit γ→∞ as expected because the energy of the post-
quench hamiltonian calculated on the BEC state diverges as γ→∞.

Using (103), (99), and (100) in the definition of the Yang-Yang entropy, the stationary
entanglement in the limit τ→ 0 is determined by the strings with n= 1, and it is given as

S = 2`+ o(`). (106)

Interestingly, Eq. (106) is the same as for the BEC quench in the repulsive Lieb-Liniger [73].

5.3.1 Mutual information

Finally, we investigate the behaviour of the mutual information between two intervals. The
quasiparticle formula for the mutual information is the same as that for the XXZ chain (80).
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Figure 14 shows IA1:A2
for two disjoint intervals with equal length ` = 10 at distance d = 10

for the Lieb-Liniger gas with γ = −2. The continuous line denotes IA1:A2
while the other

curves are the individual contributions of the bound states with n = 1, 2,3. Interestingly, the
mutual information exhibits a peak at short times, which is followed by a quite slow vanishing
behaviour as t →∞. This slow relaxation is due to the significant contributions of the multi-
bosons bound states. For all the bound states, a peak is observed at relatively short times,
followed by a vanishing behaviour at long times. However, the position of the peak is shifted
to longer times for the larger bound states.

6 Conclusions

In this paper we provided a thorough analysis of the framework put forward in [10] for the
time evolution of the entanglement entropy which combines the quasiparticle picture of [6]
with the exact knowledge of the stationary state coming from integrability. This approach
is expected to hold in generic one-dimensional integrable systems. Here, we provided pre-
dictions, valid under rather general conditions, for arbitrary free systems, both bosonic and
fermionic. These results have been tested against exact computations for the Ising and the har-
monic chains. We also provided new results for the Heisenberg anisotropic spin chain (XXZ
chain), which was the only model analysed in [10]. We finally derived theoretical predictions
for the entanglement dynamics in the Lieb-Liniger model which have not been checked against
numerical simulations, although it would be very interesting to do so. Specifically, it would be
useful to verify the non-linear behaviour of the entropy at short times. A promising direction
to perform this check is to extend the framework of continuous matrix product states [162]
to simulate non-equilibrium systems. Alternatively, one could study the non-equilibrium dy-
namics of a very dilute Bose Hubbard model (as done in [163]), but this is computationally
demanding.

A crucial observation is that Eq. (4) has been conjectured on the basis that the initial
state acts as a source of pair of quasiparticle excitations with opposite momentum. In Bethe
ansatz language, this assumption reflects the property that only parity-invariant eigenstates
(as defined in [137, 140]) have non zero-overlap with the initial state. Recently, there is a
broad consensus emerging about the idea that only quenches from these initial states are
exactly solvable for genuinely interacting integrable models, as first proposed in the context
of quantum field theory [164] and later for lattice integrable models [165]. However, states
with non-zero overlap with generic eigenstates do exist and it is fundamental to understand
how (4) generalises. In this respect, free models can be a useful playground because they
can be solved even relaxing this assumption. Examples of exact results for quenches from
non parity invariant states have been provided recently for the Hubbard chain with infinite
repulsion [103] (which is mappable to free fermions), and the entanglement dynamics can be
described by a suitable generalisation of (3) [104].

A main open problem is the generalisation of the approach of this paper to Rényi entan-
glement entropies. While in Refs. [166–168] it has been shown how to derive analytically the
stationary value of these entanglement monotones, a complete quasiparticle description for
their full-time evolution is still lacking. On the same line of thoughts, it would be important
to provide a semiclassical picture for more complex entanglement measures, such as the neg-
ativity [169–171], which quantify the entanglement also in mixed states. In this respect, a
promising direction is to study the dynamics of the negativity in the harmonic chain, for which
exact calculations are possible [83].
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