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BlackNUFFT: modular customizable black box hybrid

parallelization of type 3 NUFFT in 3D

Nicola Giuliania

aSISSA — International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy

Abstract

Many applications benefit from an efficient Discrete Fourier Transform (DFT)
between arbitrarily spaced points. The Non Uniform Fast Fourier Transform re-
duces the computational cost of such operation from O(N2) to O(N logN) exploit-
ing gridding algorithms and a standard Fast Fourier Transform on an equi-spaced
grid. The parallelization of the NUFFT of type 3 (between arbitrary points in
space and frequency) still poses some challenges: we present a novel and flexi-
ble hybrid parallelization in a MPI-multithreaded environment exploiting existing
HPC libraries on modern architectures. To ensure the reliability of the developed
library, we exploit continuous integration strategies using Travis CI. We present
performance analyses to prove the effectiveness of our implementation, possible
extensions to the existing library, and an application of NUFFT type 3 to MRI
image processing.

Keywords: NUFFT type 3, TBB, MPI, FFT, modularity, extensibility, C++,
MRI Image processing.
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Solution method: Use of hybrid shared distributed memory paradigm to achieve high
level of efficiency. We exploit existing HPC library following best practices in scientific
computing (as continuous integration via TravisCI) to reach higher complexities and
guarantee the accuracy of the solution proposed.

1. Introduction

The standard Fast Fourier algorithm relies on a distribution of the points on
a regular equispaced grid. However, many applications benefit from an accurate
and reliable Fourier transform between N arbitrarily spaced points. Many image
reconstruction techniques, such as Magnetic Resonance Imaging, are based on a
non Cartesian grid in the frequency domain [1, 2, 3]. In [4, 5] the authors propose
accelerated convolution techniques based on the discrete Fourier Transform be-
tween arbitrary points in both space and frequency domains. The computational
cost of the standard discrete transform increases quadratically, quickly becoming
unbearable even on modern computational platforms.

A solution to this problem is the Non Uniform Fast Fourier Transform (NUFFT)
developed by Dutt and Rokhlin [6]. The authors provide a deep theoretical analysis
to approximate the Fourier transform using the classical Fast Fourier Transform
algorithm. Another description of such algorithm has been addressed by Leslie
Greengard and June-Yub Lee in [7]. In the literature there are 3 different types
of NUFFT: type 1 operating between arbitrary points in space and a regular grid
in frequency, type 2 correlating a regular grid in space and arbitrary points in
frequency, and type 3 dealing with arbitrary points in both spaces.

The key idea of NUFFT is to transfer the non equi-spaced data on a uni-
form grid to be used with standard FFT algorithms. In [7] the authors use fast
convolutions with a Gaussian function to create a uniform grid where standard
Fast Fourier Transform algorithms can be used. This is a key step to retrieve the
solution in an affordable time, since Gaussian convolutions can be efficiently com-
puted by means of Fast Gaussian Gridding, reducing the overall computational
time. Another possible solution is the usage of Kaiser-Bessel window or the min-
max interpolator. In recent years the latter has been efficiently implemented in the
library PNFFT [8]. In [9] the authors propose a parallelization of type 1 NUFFT
based on the P3DFFT [10]. Type 3 NUFFT, developed in [7], has been successfully
applied in fast numerical convolutions [4], and has applications in many fields of
engineering. Several parallelizations have been performed for such an algorithm:
in [11, 12] highly scalable optimisation of the library on modern multicore systems
are proposed, in [13] the authors use the hardware to accelerate the NUFFT, while
in [14] the multicore architecture of GPUs is used to tune and optimize NUFFT.
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While the previous implementations have proved to be effective, they are ex-
tremely hardware specific and optimized. Moreover, their modification is far from
trivial from the user’s perspective. We propose an OpenSOURCE flexible paral-
lelization strategy of the type 3 NUFFT algorithm based on existing High Per-
formance Computing libraries: we call such a library BlackNUFFT [15]. We use
Intel Threading Building Blocks (TBB) for shared memory parallelism [16, 17],
together with the standard Message Passing Interface (MPI) for distributed paral-
lelism. High modularity is a key aspect of our implementation, allowing the user to
plug-in new algorithms for each aspect of NUFFT. We use a black box approach for
FFT on the fine grid, making it possible to interchange back-end libraries for the
FFT algorithm. We provide a first implementation that uses by default FFTW [18]
as back-end FFT. This choice is mainly due to the extensive documentation and
high reliability of such a library. We also propose a second implementation using
PFFT [19] as back-end FFT library. In this way we improve the parallel efficiency
of our library and we show the advantages of using a black-box modular approach
that allows the interchanging of its building blocks. We compare the presented
BlackNUFFT with the library developed by Lee and Greengard which is freely
available under GPL license [20]. We use existing implementations of distributed
vectors provided by existing OpenSOURCE libraries. In particular we refer to the
implementation of the deal.II library [21, 22, 23], which provides both high per-
formance on modern architectures and the possibility of easily switching between
32 and 64 bits indexing. This capability is a keystone to reach higher compu-
tational complexity. We present a performance analysis considering multithread
and multiprocessor environments for the current implementation of the library.
BlackNUFFT is available under LGPL license on github [15].

The work is organized as follows: in Section 2 we collect some considerations
on theoretical aspects of the NUFFT [7, 6] and we describe the actual structure
of the algorithm. In Section 3 we exploit shared memory parallelism to achieve a
first multicore parallel analysis. In Section 4 we combine shared and distributed
memory paradigms to reach higher levels of scalability. Section 5 describes the
coupling with the parallel pruned library PFFT [19]. In Section 6 we briefly
describe the application of BlackNUFFT to the reconstruction of MRI images.
Section 7 describes possible procedures to expand BlackNUFFT capabilities.

2. NUFFT type 3

2.1. Mathematical background

We follow [6, 7] to introduce the main aspects of NUFFT of type 3. Given a
set of N complex values in the three dimensional space f(x) we define its discrete
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Fourier transform (DFT) to a set of N points in the frequency space as

F (k) =
1

N

N−1∑
i=0

f(x)e−ix·k, (1)

with k = (k1, k2, k3) and x = (x1, x2, x3). We also have that −N/2 ≤ k1, k2, k3 <
N/2− 1. We can define also the inverse DFT as

f(x) =

N/2−1∑
i=−N/2

F (k)eix·k. (2)

DFTs defined in (1) and (2) are characterized by a computational cost O(N2).
NUFFT algorithms are based on an interpolation scheme of the arbitrary points in
real and frequency space to a regular grid on which we can apply the standard FFT
algorithm. In the present work we use the so-called Gaussian Gridding algorithm
to perform this interpolation, see [7]. An alternative gridding techniques is the
min-max interpolator, which has proved to be very efficient especially when the
dimensionality of the operation increases [8]. In the case of Gaussian Gridding
we exploit the following one dimensional estimate to approximate the exponential
eikx function on the regular grid∣∣∣∣∣∣eicx − ebx2

c+q/2∑
l=c−q/2

1

2
√
bπ
e−(c−l)2/4beilx

∣∣∣∣∣∣ < ebx
2

e−bπ
2

(4b+ q) = ε, (3)

where c represents the nearest point to k on the regular grid, q is usually referred
to as spreading and b is a scaling constant. Estimate (3) straighforwardly extends
to the three dimensional case. We need to set variables b, q in order to assure that
the estimate fulfills the accuracy ε for any points in our arbitrary distribution.
The fact that we can a priori set the accuracy of the computation is a key point
of the entire algorithm, and in general of all efficient fast accelerated method [24].
The summation in (3) can be seen as a convolution like δ(x − x̄) ∗ gx̄(x) where
gx̄(x) represents a Gaussian like function centered in x̄. Such a convolution can
be efficiently performed using the Fast Gaussian Gridding (FGG) depicted in [7].
For the sake of clarity we consider a forward 1D transformation from a space x
to s, we let X,S represent the bounding boxes for the two spaces, we denote msp

as the number of points on the regular grid to which we extend the influence of
each non uniform point. Given the exponential decay of the Gaussian kernel msp

is easily and safely controlled. We define

∆x ≤
π

S

1

R
, (4)
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and

∆s ≤
π

X +msp∆x

1

R
, (5)

where R represents the oversampling parameter, both R and msp can be optimized
to fulfill the a priori accuracy requirement (3). We follow the optimized imple-
mentation of NUFFT type 3 developed by Greengard et al. [7]. The oversampling
ratio R varies from

√
2.2 to 3 depending on the requested accuracy. Then the

Gaussian spreading is computed as

msp = − log ε

π ∗ (R− 1)/(R− 0.5)
+ 0.5, (6)

where ε is again the required tolerance. Finally the fine grid size is

Mr =
2π

∆s∆x

, (7)

this 1D estimate can easily be extended to each 3D coordinate. Once we have
obtained a regular grid we apply a FFT to obtain a transformed regular array, and
apply again an interpolation to retrieve the result on an arbitrary output grid. We
do this with another FGG using again (3) to have an accurate computation.

2.2. Algorithm key-steps

The algorithm consists of 4 key-steps:

1. Computation of the bounding box for the arbitrary grids, and set up of
the griddings in order to retrieve the requested accuracy. This operation
is not demanding from a computational point of view since it only sets up
the spreading constants for the griddings and the dimension of the fine grid
array.

2. Transfer of the original data on the uniform grid. Since we have chosen Fast
Gaussian Gridding we have:

• Fast Gaussian Gridding of the original data to the regular fine grid.

• Scaling to correct the gridding on the fine grid array.

3. FFT on the regular grid: basically a 3d FFT pruning the border values (thus
saving computational time) that represent convolution errors, a data shift
keeps the low frequencies at the center of the spectrum.

4. Transfer of the transformed data from the uniform grid to the output points.
Since we have chosen Fast Gaussian Gridding we have:

• Fast Gaussian Gridding from the fine grid to the output data.
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• Scaling on the output array to correct errors introduced by the second
gridding.

The algorithm uses two griddings between the input data and the uniform grid and
between the uniform grid and the output data. As preliminary choice we use Fast
Gaussian Gridding to perform both. These operations can be highly optimized
by means of a Fast Convolution algorithm, making its implementation not trivial
even on a single core. We designed the parallelization to work with any parallel
implementation of the FFT. We require the chosen library to provide a suitable
3D subdivision of the fine grid array. In particular we use the three dimensional
implementation of FFTW. Even the single griddings can be easily interchanged,
we just need to guarantee the creation of the fine grid array. In Section 7 we
describe the procedure to introduce such new features inside our library. Figure 1
depicts the structure of our library.

Bounding Box
Computations

Fast Gaussian
Gridding

on the fine
grid array

Rescaling
of the fine
grid array

Black Box 3D
parallel FFT

Circular
Data Shift

Fast Gaussian
Gridding

on the
output array

Rescaling
of the

output array

Input
Gridding

Output
Gridding

FFT

Figure 1: Flow diagram depicting the structure of the library. It can be roughly
subdivided in three main parts, and we stress that each of them can be substitute and
customized by the user.

6



Table 1: Profiling of a serial run of BlackNUFFT application.

Function Time (sec) %
FGG on Inputs 60.1 45
Scaling on Inputs 4.25 3.2
FFTW 3D 18.7 14
Circular Shifting 3.13 2.4
FGG on Outputs 39.8 30
Scaling on Outputs 2.14 1.6

3. Shared memory parallelism

All modern CPUs support multicore shared memory parallelism. We use Intel
Threading Building Block [16] to exploit this possibility and achieve higher effi-
ciency. This tool has been successfully adopted in many high performing library,
as ASPECT [25], or the deal.II library [26]. Moreover it introduces the use of the
TaskScheduler concept that allows for higher level of optimization in our library.
We follow the shared memory parallelization strategies introduced in [16, 17] and
we apply it to all NUFFT key-steps.

3.1. Implementation

We profiled our serial library on the following test case scenario, a single forward
NUFFT from an array of 221 = 2097152 points to another array of 221 = 2097152
points. We consider sine cosine distributions both in space and in frequency, as
depicted in [20] and we consider an accuracy of ε = 1×10−5. It is well known that
the spreading constant for the determination of the fine uniform grid are influenced
both by the input and the output array, thus for the sake of clarity we consider the
following relationship between the maximum frequency Kmax and the maximum
spreading Rmax in the original space,

RmaxKmax

π
= 100. (8)

We get a fine grid array of 373248000 points, requiring approximately 6 GB of
memory. The profiling is reported in Table 1. The most demanding functions are
the two griddings (64.35 and 41.94 seconds respectively) together with the three
dimensional FFT (23.7 seconds).
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Gridding on Input. The most demanding part of the algorithm is the Fast Gaussian
Gridding. We focused on this particular algorithm for the extensive literature
and high accuracy it can guarantee [7]. The study of different efficient griddings,
especially the min-max algorithm [8], is undergoing. The first gaussian gridding
is in essence a convolution through a Gaussian kernel. We perform it exploiting
the Fast Gaussian Gridding (FGG) algorithm developed in [7]. This part of the
algorithm presents several race conditions in the writing of the fine grid array,
therefore we expect some parallelization issues. A subdivision of the fine grid
array reduces the synchronization requirements. The accuracy ε we prescribed
settles the span of the Gaussian kernel to be used in the FGG: ε defines the
number of point q that a generic input point can influence through the gridding.
We subdivide, in any direction we prefer, the fine array in sections of span 2q, and
we consequently create index sets for the input array that contain the elements
that have the nearest fine point in each subdivision. We compute alternate odd-
even subdivisions without race conditions between different even-even or odd-odd
subsets. We manage the scheduling of the different threads using the standard
parallel loop described in [16]. We split the array along its second dimension,
leaving the first one to set up the MPI parallelization described in Section 4. A
summary of the required steps for the shared memory parallelization follows.

• Subdivision of the fine array along one single dimension. We sketch the
subdivision in Figure 2. If we consider a gridding radius q we can split the
fine grid array using 2q to identify elements that will not have any racing
conditions. In Figure 2 we see that all the region with the same color can be
written at the same time.

• Subdivision of the input array between different subdivisions.

• Gridding of all the even, colored in yellow in Figure 2, subdivisions using
TBB in each subset.

• Gridding of all the odd, shown in blue in Figure 2, subdivisions using TBB
in each subset.

We don’t expect an optimal scalability for two main issues: the setting of the
parallelization introduces a slight overhead, and, since we consider an oversampled
FFT, there are empty sets at the boundaries. This situation unbalances the work-
load between different threads, introducing suboptimality. In Section 5 we show
that the usage of a pruned FFT mitigates this kind of work unbalance.

To complete the gridding of the inputs we need a scaling of the fine grid array.
With this operation we satisfy equation (3), that is, we need a scaling to correct
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y

z

2q

x

Figure 2: Subdivision for the shared memory parallelization. Even subsets in yellow
and odd subsets in blue.

the gridding on the input array. This is a pointwise multiplication by a factor ebx
2
,

not presenting any parallelization issue.

Compute 3D FFT and Data Shift. We perform a FFT on the fine grid array
exploiting the back-end HPC library of our choice. We enable the multithreading
in the external FFT library, so we simply need to set the number of threads to be
used. It is common to shift the data in order to have the lowest values at the center
of the grid. We apply a standard circular shift, which is a local embarrassingly
parallel operation. We just need to apply the transformation depicted in (9) to
the transformed three dimensional matrix F (i, j, k), namely

F (i, j, k)shift = −1i+j+kF (i, j, k) i, j, k = 0 . . . N1 − 1, N2 − 1, N3 − 1, (9)

where N1, N2, N3 represent the dimension of the fine grid. We stress that shifting
the input fine matrix would be unbearable especially in distributed memory as in
Section 4, where we would need to communicate GigaBytes of data.

Output Gridding. This operation is the adjoint of the first input gridding. We
need to recover the data on the output array starting from the fine grid represen-
tation, and we use TBB to exploit the multicore parallelism. Since we only have
concurrency in reading we expect almost an optimal behavior for this step and we
don’t need any particular subdivision strategy for the parallelization.

We scale the data to correct the Gaussian gridding we have performed on the
output array. This is still a pointwise operation so we use a simple shared memory
implementation with no race condition handling.
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3.2. Strong scaling analysis up to 16 threads

For the analysis of the strong scalability of our pure TBB parallelization we
run the computations on a single node, with a Intel(R) Xeon(R) CPU E5-2650 v2
@ 2.60GHz processor with 16 hyperthreaded cores. We consider the same NUFFT
setting we aforementioned in Section 3.1, and present the scalability results in the
left plot of Figure 3. On the right we plot the relative importance, in terms of
computational time, of each function composing the NUFFT algorithm.
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Figure 3: Performance analysis of the pastoralization using shared memory paradigms.
Single NUFFT operation on 2097152 arbitrary points, fine grid array of 373248000 points
(6 GB of RAM memory). Left figure: timings of all the functions, FGG on input
(green with square), scaling on input (red with triangles), 3D FFT (orange with full
circles), shift (cyan with stars), FGG on output (magenta with triangles), scaling on
output (black with squares), total time (blue with circles), linear scalability (dashed),
reference algorithm (dotted). Right figure: relative importance plot of the different
functions, FGG on input (green with square), scaling on input (red with triangles), 3D
FFT (orange with full circles), shift (cyan with stars), FGG on output (magenta with
triangles), scaling on output (black with squares). We let the number of threads vary
from 1 to 16.

We see that the fast gridding on the output array, the two scaling operations,
and the shift after the FFT show a nearly optimal behavior. This is expected
since these are local operations and almost no write racing condition occurs. How-
ever, we see that the parallelization of the fast gridding from the input array is
suboptimal. This is due to the setting up time of the parallelization strategy
which we have sketched in Figure 2. To reduce the number of racing conditions
we need to carefully subdivide the input array in the different subsets, and this
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operation introduces a slight overhead. Moreover, since we are considering an over-
samplig, there will be some empty sets at the boundaries of the fine grid array.
These empty subdivisions, together with the setting up time, unbalance the overall
workload between different threads inducing the suboptimality. We see that the
three dimensional FFT, which has a multithreaded parallelism enabled, behaves
almost optimally. Since multithreaded performance relies on appropriate choices
for the number of tasks, the granularity, and probability of task stealing, we are
currently testing different choices of the granularity in our parallelized loops. The
overall time required by BlackNUFFT is greater than the time required by the
reference serial FORTRAN library only if we require less than 8 threads. Fortran
has strict aliasing semantics compared to C++ and has been aggressively tuned
for numerical performance, for this reason we expect some performance advantage
for the reference library if we don’t exploit any parallelization.

To better understand the actual importance of each function we draw in the
right plot of Figure 3 their relative impact from a computational point of view.
We note that the TBB parallelization drastically reduces the computational time
of all functions. The gridding on the input array is the real bottleneck of the al-
gorithm since it shows the least optimal behavior. To reach higher computational
complexities and reduce even further the computational time, we implement a par-
allelization strategy based on hybrid shared and distributed memory environment
that reduces the overall computational time without loosing the benefits of the
shared memory parallelization introduced so far. A hybrid parallelization, com-
bining MPI and TBB, effectively reduces the overall computational time while
maintaining a good overall scalability.

4. Distributed memory parallelism

We use the standard Message Passing Interface between different processors to
obtain distributed memory parallelism, and to overcome the two main bottlenecks
of the multicore parallelization: the input gridding (through FGG) and the three
dimensional execution of the FFT on the fine grid. We start by presenting the cod-
ing paradigm we have followed and we explain in details each function of NUFFT,
and finally we analyze the scaling performances of our new implementation.

4.1. Parallel index set creation

The 3D FFT is the core of the algorithm and we let the back-end FFT library
determine the unknown splitting by different MPI processors. We adopt the same
unknown splitting over the NUFFT process. We focused our attention on the
use of the three dimensional parallel implementation of FFTW and we computed
the unknown splitting required by the FFTW MPI routine. This is a simple
one dimensional domain decomposition along the coarsest dimension (see Figure
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4), and we let the library itself determine the decomposition among the coarsest
coordinate of our domain. Subsequently such decomposition is used as a starting
point of the overall parallelization. We determine the workbalance among different
processors according to the back-end FFT library, and assign the input and output
array entries to each processor depending on where their nearest points are placed
on the overall fine grid.

y

z
x

Figure 4: Subdivision for the distributed memory parallelization.

The Gaussian gridding we use has a span q determined by the requested toler-
ance, and we use this spread to determine the ghost levels of the domain decom-
position. In this way we create the distributed array representing the fine grid on
which we perform the three dimensional FFT. We represent the fine grid arrays as
a distributed ghosted vector subdivided using a mono dimensional decomposition
along the coarsest variable. We need to determine two index sets representing the
elements owned by a processor and its ghost elements. In this way we handle the
ghost cell communications. We need two more sets to complete the necessary MPI
pattern. We need to divide the input and output vectors, we do so exploiting the
known FFT repartition. More precisely an element of these vectors belongs to the
processor if its nearest element on the fine grid belongs to the processor. The ghost
cells are already properly set to account for this subdivision. The communications
are standard MPI_Send, MPI_Recv, which are wrapped in the chosen distributed
parallel vector [21, 22].

4.2. Implementation

We repeat the breakdown for the MPI-TBB implementation
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4.2.1. Input Gridding

We compute the first gaussian gridding from the input array to the fine grid only
on those elements that are in the index set we computed following Section 4.1. We
don’t expect an optimal behavior since we are dealing with an oversampled grid,
just as we explained in Section 3.1. If we use a high number of processors some of
them will remain idle. At the end we need to communicate the elements eventually
added in the ghost cells. This is a suboptimal yet very simple strategy, alternative
strategies are currently being developed to prevent processors to become idle.
Then we perform the correcting scaling for the first gridding. This is a pointwise
operation, and we apply shared memory parallelization directly on all locally owned
elements of the fine array. We apply the shift depicted in Section 3.1. We need to
check if the elements are stored locally. At the end of the shift we communicate
the values updated by the FFT on the fine grid array to the ghost elements of the
other processors.

4.2.2. Compute 3D FFT and Data Shift

We simply let the underlying FFT library perform the three dimensional trans-
formation and then we apply standard circular shift to the computed array on the
locally owned elements.

Output Gridding. We use TBB as we did for the input, checking that each element
of the output vector is on the index set of the current processor. Finally we correct
the gridding using a scaling. This is still a pointwise operation so we deal with
it with a simple shared memory parallelization after we have checked that the
elements are stored locally. At the end we perform a reduction to reconstruct
the entire output vector starting from its distributed representation. For the sake
of clarity we maintain serial vectors as input-output of BlackNUFFT, since this
choice introduces an overhead we are looking for different data structures.

4.3. Strong scaling analysis up to 16 processors

We analyze the characteristic of the MPI parallelization alone, considering a
single thread per processor, and compare it with the results obtained with TBB in
Section 3.2. We consider the same simulation setting, NUFFT from 221 = 2097152
to 221 = 2097152 points. We plot our scalability results in Figure 5. For the time
being we use a single computing node with an Intel(R) Xeon(R) CPU E5-2650
v2 @ 2.60GHz processor. From Figure 5 we see that the most time demanding
functions behave similarly. We see how their slope resemble the 3D FFT one.
This is due to the communication overhead and to the sub optimality of our
Domain Decomposition strategy. However, we see that both the shift function
and the scaling on the output vector, which were two functions with optimal TBB
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Figure 5: Performance analysis of the parallelization using distributed memory
paradigms. Single NUFFT operation on 2097152 arbitrary points, fine grid array of
373248000 points (6 GB of RAM memory). Left figure: timings of all the functions,
FGG on input (green with square), scaling on input (red with triangles), 3D FFT (or-
ange with full circles), shift (cyan with stars), FGG on output (magenta with triangles),
scaling on output (black with squares), total time (blue with circles), linear scalabil-
ity (dashed), reference algorithm (dotted). Right figure: relative importance plot of
the different functions, FGG on input (green with square), scaling on input (red with
triangles), 3D FFT (orange with full circles), shift (cyan with stars), FGG on output
(magenta with triangles), scaling on output (black with squares). We let the number of
MPI processors vary from 1 to 16.

scalability (see the left plot of Figure 3) present some issues. In particular both of
them do not scale at all with more than 8 processors, however we highlight that we
may still use TBB to reduce their timings and that they take less than the 5 % of
the overall time. We stress that, for the choices we have made, we can’t expect a
better overall scalability that the one of the underlying FFT library (FFTW in the
present Section), which is the core of our algorithm. From the comparison with the
reference FORTRAN library we see that the distributed memory parallelization
achieves a performance gain on the original implementation with a number of
processors greater than 8.

In the right plot of Figure 3 we report the breakdown of the computational cost
of the MPI algorithm. The most demanding functions are almost parallel straight
lines, this fact evidences that our parallelization strategy has the same efficiency
on all of them. We believe that a coupling of the algorithm with a parallel pruned
FFT algorithm, see [8], would significantly reduce the computational cost needed
by the FFT on the fine grid array. We are currently addressing this issue.
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4.4. MPI TBB comparison

In Sections 3.2 and 4.3 we analyzed separately the two different kinds of par-
allelism we adopted. In the present Section we perform a comparison between
the shared memory and distributed memory paradigms on the same test case sce-
nario introduced in Section 3.2. We fix the overall number of parallel application
(processors or threads) and we let the number of MPI processors go from 1 to 16.
This provides insights on which parallelization strategy is more convenient, vary-
ing from a pure TBB environment (1 processor, with 16 threads) to a pure MPI
one (16 processors, each with 1 thread). We use a single socket composed by an
Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz processor. In the left plot of Figure
6 we draw the timings of our algorithm. We stack all the actual timings to get
a clearer representation of the different parallelization efficiencies. Looking to the
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Figure 6: Comparison between the parallelization using different memory paradigms.
memory paradigms. Single NUFFT operation on 2097152 arbitrary points, fine grid
array of 373248000 points (6 GB of RAM memory). Left figure: timings of all the
functions, FGG on input (green with square), scaling on input (red with triangles),
3D FFT (orange with full circles), shift (cyan with stars), FGG on output (magenta
with triangles), scaling on output (black with squares), total time (blue with circles),
reference algorithm (dotted). Right figure: relative importance plot of the different
functions, FGG on input (green with square), scaling on input (red with triangles), 3D
FFT (orange with full circles), shift (cyan with stars), FGG on output (magenta with
triangles), scaling on output (black with squares). We let the number of MPI processors
vary from 1 to 16 while keeping fixed to 16 the number of overall threads and processors.

overall timing we see that as we begin increasing the number of MPI processors we
experience a slight performance gain. We reach a minimum computational time
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when we consider 4 MPI processors with 4 threads per processor. This behavior
is mainly due to the performances of the hybrid MPI-TBB parallelization of the
FGG and FFT algorithms. The other functions behave almost optimally in a pure
shared memory environment and this explains the slight increase of the computa-
tional time as we required too many MPI processors. In all cases we considered
in the present Section our implementation has better performances than the serial
reference one.

In the right plot of Figure 6 we draw the relative importances of all the func-
tions varying the number of MPI processors. In this plot a decreasing or flat
line means that the MPI implementation behaves better than the TBB one, since
the overall time is not varying too much. From the Figure we see that only the
input gridding has a performance gain coming from the MPI parallelization. How-
ever, we highlight that the possibility of combining shared and distributed memory
paradigms is of paramount importance to reach higher complexities that require
more than a single computing node as described in Section 4.5.

4.5. 64 bits indices Compatibility

The experimental setting we have considered up to now creates a fine grid array
of 373248000 complex values (746496000 actual doubles in the array). However we
know that the limit of the 32 bits indexing in C++ is of 4294967296, this means
that if we require more data in space or frequency we may overcome such limit.
More specifically if we simply consider

RmaxKmax

π
= 200, (10)

keeping all the other settings fixed, we get 5971968000 complex elements in the fine
grid, and even indexing such an array becomes an issue. We provide BlackNUFFT
with the possibility of using 64 bits indexing. We believe that this possibility
widens the range of application of the presented library. The only requirement is
that the local indexing remains confined to 32 bits indexing. This is required to
proper handle local memory, and it does not seem to be a limitation because when
we deal with an array of more than 232 elements we unlikely use a single processor.
We need to consider that an array of 5971968000 elements can be indexed using
64 bits but, if we consider double precision floating point elements, it needs 48
GigaBytes of RAM memory to be stored. Such a requirement often forces the
usage of more than a single computational node and, consequently, more than a
single MPI processor.

Analysis up to 32 processors. In Figure 7 we analyse the time needed by each
functions of the library to retrieve the results with the computation settings we
aforementioned and that guarantee a fine grid array beyond the 32 bits limit, using
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8, 16, 32 MPI processors. We use 2 nodes composed by an Intel(R) Xeon(R) CPU
E5-2650 v2 @ 2.60GHz socket. The increased dimension of the fine grid worsen
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Figure 7: Timing of the functions needed for a single NUFFT operation using a fine
grid array exceeding the 32 bits limit: FFT (orange with full circles), FGG on the input
array (green with squares), scaling on the input array (red with triangles), shift (cyan
with stars), FGG on the output array (magenta with triangles), scaling on the output
array (black with squares), total (blue with circles), ideal scalability (dashed).

the performance of the MPI parallelization, this is mostly due to the increased
communication overhead. We see that FFTW maintains a good scalability with
64 bit indexing, and we also see that this is the most demanding part of the
algorithm. This is induced by the increased number of communications needed
by a computation with 64 bits indexing. The scaling on the output vector is not
efficient at all and this is due to kind of vector we are requiring as output. We have
chosen not to use distributed vector as input-output vectors, therefore we need to
recreate the entire array from the distributed memory framework we are using for
the NUFFT. This reconstruction requires some communication and this explains
the suboptimality. A possible solution to ease the communication effort might be
intranode communication if we can exploit a single computational node fulfilling
the memory requirements. However we stress that in many cases we cannot require
such a node, therefore we need to account for extranode communication if we need
to store very big distributed arrays. From Figure 7 we see that the cost of the FFT
becomes the major part of the overall computational cost. A possible solution to
this issue is the coupling with a parallel pruned FFT algorithm as the one proposed
in [8].

17



Different job scheduling. Using more than a single computational node may lead
to another advantage since we are able to use more TBB threads, while keeping
the number of MPI processes fixed. We analyze this case scenario comparing the
timings of three different executions, exploiting the advantages of both shared and
distributed memory parallelizations. We report our results in Table 2

Table 2: Performance comparison with 32 overall parallel processors. We compare
three different job scheduling on 32 cores divided in two different nodes. We compute
the transformation between 2097152 arbitrary points constructing a fine grid array of
5971968000 complex values. We consider two computing nodes with up to 16 processor
per node. We try 2 MPI processors with 16 TBB threads each, 4 processors with 8
threads, 8 processors with 4 threads, 16 processors with 2 threads and 32 MPI processors.

Function
2 MPI
16 TBB

4 MPI
8 TBB

8 MPI
4 TBB

16 MPI
2 TBB

32 MPI
1 TBB

Total 85.1 58.2 40.2 65.7 45.7
Input Gridding 7.56 6.38 8.58 17.1 14.4
FFT 71 45.6 24.8 39 19.5
Data Shift 1.65 1.88 1.96 2.87 3.9
Output Gridding 1.36 1.44 2.32 4.13 4.93

From Table 2 we see that the major benefit of the pure MPI parallelization
comes from the FFT routine. However we see that if we require 16 MPI processors
with 2 threads per processor the performance of the FFT are worse than if we
require 8 processors with 4 threads or 32 MPI processors. This is probably due
to the overhead required to spawn the threads with too many MPI processors.
Moreover some routines, as the gridding on the input, get advantages also from
the hybrid parallelization strategy. All these different effects make the simulation
with 8 MPI processors and 4 threads per processor the most convenient from a
computational point of view.

5. Coupling with a parallel pruned FFT

We prove the effective modularity of BlackNUFFT interchanging the back-end
FFT library. In particular we provide an interface to PFFT [19], which is a gener-
alization of FFTW to pruned FFT. This is straightforward given the modularity
of the BlackNUFFT software. Once the back-end library is properly compiled and
linked, the modifications required by BlackNUFFT are minimal and mainly regard
the peculiarity of using a pruned FFT library instead of a classical FFT. We be-
lieve that the usage of such a library improves the performances of BlackNUFFT
especially for what concerns the two griddings. The major benefit lies in the fact
that the MPI subdivision, which is the one required by the FFT library, is focused
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on the meaningful part of the fine grid disregarding completely the oversampling
regions. This prevents the stalling of some processors when the number of MPI
processors increases, as we pointed out in Section 4.3. With the usage of this
library the ghost cell managing and communication strategy of BlackNUFFT is
comparable with other library dealing with non uniform FFT as PNFFT [8] which
is actually based on PFFT [19] as back-end FFT library.

We test the MPI performances of our implementation on the same test case of
Section 4.3, and we report the result in Figure 8. On the left we report the analy-
sis concerning BLackNUFFT with PFFT while on the right we report the timings
for the standard BlackNUFFT implementation using FFTW. We see that the two
griddings (green squares and magenta triangles) present a more regular scaling
using PFFT than using FFTW. This is due to the more efficient implementation
of the corresponding index sets that are computed disregarding the oversampling
regions. We also note that the overall performance of the NUFFT is comparable
and this is due to the great optimization of FFTW that allows for a faster compu-
tation of the 3D FFT on the considered grid. However we would like to stress that
the better handling of the griddings is a major advantage because it prevents any
processor to be idle, as it happens when using FFTW and more than 4 processors.
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Figure 8: Performance analysis comparison of the parallelization using distributed
memory paradigms and different back-end FFT libraries. On the left we analyze the
performances using PFFT, on the right we show the performances using FFTW. We
report the timings of all the major functions, FGG on input (green with square), scaling
on input (red with triangles), 3D FFT (orange with full circles), shift (cyan with stars),
FGG on output (magenta with triangles), scaling on output (black with squares), total
time (blue with circles), linear scalability (dashed), reference algorithm (dotted). We let
the number of MPI processors vary from 1 to 16.
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We highlight that the overall performance of the griddings is deeply influence
by work unbalance between the processors, to better remark the advantages of
using PFFT we present another test case where we consider input and output
data displaced on a line, so that to erase any kind of work unbalance. We report
these results in Figure 9 where we compare the timings of BlackNUFFT and PFFT
on the left with the timings of BlackNUFFT coupled with FFTW on the right. We
see that the performances of the two grddings greatly increases as a consequence
of the pruned FFT library, moreover PFFT behaves more linearly than FFTW on
this particular test case. We maintain FFTW as default FFT back-end library to
ease the use of BlackNUFFT, FFTW is extremely easy to install (and even already
install on many clusters) on any kind of architecture and its usage is supported
by a very extensive and complete documentation. The PFFT wrappers can be
eventually turned on by the user.
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Figure 9: Performance analysis comparison of the parallelization using distributed
memory paradigms and different back-end FFT libraries on data distributed along a
line. On the left we analyze the performances using PFFT, on the right we show the
performances using FFTW. We report the timings of all the major functions, FGG on
input (green with square), scaling on input (red with triangles), 3D FFT (orange with
full circles), shift (cyan with stars), FGG on output (magenta with triangles), scaling on
output (black with squares), total time (blue with circles), linear scalability (dashed).
We let the number of MPI processors vary from 1 to 16.

6. Image reconstruction from MRI non uniform data

In this Section we describe a possible application of the presented library. The
raw data of Magnetic Resonance Imaging (MRI) is measured in the domain of
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spatial frequency (k-space). Such data needs to be transformed into an image in
the space domain (r-domain) for diagnosis purposes. While the space domain can
be assumed to be a Cartesian grid, the k-space data is usually sampled following
non uniform schemes like spiral or radial scans. Such sampling trajectories benefits
from non uniform FFT as the one proposed in this work.

We call the sampling frequencies kj with j = 0, . . . ,M − 1, we denote the
corresponding k-space values as s(kj), therefore we can introduce an approximation
of the image in the space domain, see [1, 3], as

p(r) ∼
M−1∑
j=0

s(kj)e
−2πirkjwj, (11)

where wj are weights that compensate the local variations of the sampling density.
Following [1] we introduce the operator AH and the diagonal matrix W represent-
ing the weights,

AHtj = e−2πirtkj , (12)

Wjj = wj, (13)

that allows us to write (11) as
p ∼ AHWs. (14)

Following the notation introduced in equation (12) we can introduce the operator
representing the forward Fourier transform as

Atj = e2πirjkt . (15)

Equation (14) provides an approximation of the image corresponding to the avail-
able sampling in the frequency domain. The bi-dimensional Shepp-Logan phan-
tom, see Figure 10, is a well known benchmark for MRI algorithms [2]. We re-
construct such phantom on a 256 × 256 Cartesian grid. We consider different
samplings of the phantom in the k-space domain and we analyze the results of the
reconstruction using a single NUFFT operation. One of the most used sampling
strategies is given by the Archimedian spiral, namely

k = π

√
j

2
√
M1

(cos(ωj), sin(ωj)), (16)

where ωj = 8π/5
√
j with j = 0, . . . ,M − 1, we consider M = 65536 sampling

points. Another possibility is given by a standard radial sampling trajectory,
namely

k = π(−1)r
( r
R
− 0.5

)(
cos

πp

P
, sin

πp

P

)
, (17)
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Figure 10: The bi-dimensional Shepp-Logan phantom

where p = 0, . . . , P − 1, and r = 0, . . . , R − 1, we consider P = R = 256. We also
consider a sampling density placed on a bi-dimensional Gauss-Legendre quadrature
rule composed by 65536 points in [−π, π]2. Figure 11 reports the three different
k-space densities considering 49 samplings for the sake of clarity.
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Figure 11: Sampling locations in the k-space domain. On the left we consider the
Archimedian spiral, in the middle a radial sampling, and on the left a two dimensional
Gauss quadrature.

Following [1] we compute the weights for the spiral and radial case approximat-
ing the area of the Voronoi cell around each sampling density. For the sampling
following the Gauss-Legendre quadrature rule the weights are the standard bi-
dimensional gaussian weights. We use BlackNUFFT to compute (11) considering
the three aforementioned samplings. Figure 12 presents the results. We see that
the reconstruction is particularly good if we consider the Gauss-Legendre sampling
in the k-space domain. The L2 norm of the error is 23% for the radial sampling,
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24% for the spiral sampling and only 9% for the Gauss-Legendre rule.

Figure 12: Images obtained using a single backward NUFFT. On the left the image
obtained using the samplings using the Archimedean spiral, in the middle the recon-
struction using the radial distribution and on the right the image obtained using the
Gaussian sampling.

The non uniform sampling, see [1], in the k-space causes

AHWA 6= I. (18)

To improve the image recovering of Figure 12 we can use a larger sampling in
the k-space domain and then perform an iterative method to improve the results.
In [1] the authors propose a conjugate gradient method to solve

AHWAp = AHWs. (19)

We adopt this strategy to improve the spiral sampling reconstruction, we double
the sampling in the frequency domain and we use two conjugate gradient steps.
The error of the final image is 9.8%. Figure 13 reports the reconstruction using
the enriched spiral sampling and the conjugate gradient method.

The conjugate gradient method we applied is particularly effective if we choose
W to be the identity matrix. In Table 3 we report the convergence of the CG
method using the aforementioned enriched spiral sampling for both the weighting
technique considered, namely using the Voronoi approximation or the identity.
We see that the iterative method reduces the error below 10% for both weighting
techniques.
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Figure 13: Image obtained using 2 steps of the conjugate gradient method proposed
in [1] starting from an enriched spiral sampling.

Table 3: Convergence of the conjugate gradient method starting from an enriched spiral
sampling. We compare the convergence using the Voronoi weights are a unitary matrix.

Weights / Iteration 0 1 2
None 38% 9.9% 9.8%
Voronoi 11% 9.8% 9.8%

Over the last decade other iterative method have been proposed to improved
the reconstruction of MRI images. In [2] the authors propose the use of NUFFT
transformation to approximate either the sinc or the sinc2 kernel to obtain optimal
compensation weights. The study of both such techniques is undergone at the
moment.

To further test the capabilities of the NUFFT algorithm of type 3 we recon-
struct the Shepp Logan phantom on a non regular grid. We consider a ball centered
in (5, 5, 0) and having radius 50 and consisting of 7825 points. For such a non stan-
dard grid NUFFT of type 2 is not sufficient and we necessarily need a NUFFT of
type 3. We consider the same frequency sampling of the previous test case, the
resulting image is plotted in Figure 14. We see that the details are well recovered
proving that the NUFFT of type 3 we present is not only capable to recover the
standard results of [1, 3] but it can also be applied to extend the possibilities of
image reconstruction to non standard output grids. We also remarks that the
NUFFT type 3 algorithm could be used to reconstruct the frequency sampling
given partial image reconstructions as reported in [20].
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Figure 14: Deatail of the Shepp Logan phantom obtained using a type 3 NUFFT from
arbitrary point in frequency to arbitrary point in space. Image reconstructed on a ball
centered in (5, 5, 0) and having radius 50.

7. Introducing new features in the BlackNUFFT framework

This Section demonstrates how new features can be incorporated into the
BlackNUFFT framework. We focus our attention on the 2 most time demand-
ing algorithms of the library, the griddings and the three dimensional FFT. Both
options are selected through the initializing function init_nufft through two dif-
ferent string options provided by the main function.

Introducing a new FFT back-end library. As we showed in Section 5, once the
new FFT library has been compiled and properly linked, or included, to the
BlackNUFFT library we can easily modify the FFT depending functions using
the modularity of our implementation.

• create_index_sets: since we have chosen to adopt the MPI redistribution
of the back-end FFT library we must provide BlackNUFFT with the proper
data distribution coming from the MPI requirements of the external library.

• compute_fft_3d: the second change required is the actual call for the back-
end FFT library when the fine grid array has been properly set up.

Introducing a new Gridding. We briefly describes how to modify the gridding re-
quired by the NUFFT algorithm, thanks to the modularity we have provided this
change can easily be achieved by providing new options to the corresponding func-
tions.

• compute_tolerance_infos: since each gridding routine determines how the
prescribed tolerance is used this function must be set to the specific gridding
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requirement. It is sufficient to implement the new case providing a new
identifying string.

• input_gridding: it is only required to provide the new gridding function.
If required it is also possible to split the routine in more functions as we did
for the default Fast Gaussian Gridding scheme.

• output_gridding: lastly the gridding on the output vector must be modified
accordingly to the new chosen gridding.

8. Conclusions

In this work we presented BlackNUFFT, a parallelization of three-dimensional
type 3 NUFFT, from arbitrary points in space to different arbitrary points in fre-
quency and viceversa. We have shown that such an algorithm can be easily applied
to MRI imaging reconstruction techniques as the ones proposed in [1, 2]. We have
implemented the library in C++ and then parallelized it using a hybrid paradigm
combining MPI and Intel Threading Building Blocks. We have followed [16, 17]
for the shared memory part. The combination of MPI and TBB has already
been successfully exploited in [27, 26, 22]. The library is constantly tested using
Continuos Integration via TravisCI. We maintained all the characteristics of the
algorithm in terms of accuracy of the library by Greengard and Lee [7]. We fol-
lowed [6] to make sure that the user-required tolerance is respected. We propose
two different back-end FFT libraries: FFTW [18] that we consider state-of-the-
art, and PFFT [19] that extends FFTW to pruned FFTs. We have implemented
Fast Gaussian Gridding on both input and output vectors as a preliminary test
of our parallel implementation. However we point out that our approach, thanks
to the modularity it applies, allows for a straightforward interchange of the FFT
library and of the gridding functions. We saw that a shared memory paradigm, as
Intel Threading Building Block, offers some advantages but a distributed memory
paradigm is necessary to reach higher efficiency and complexity. We have moved
to a distributed memory paradigm, MPI, using the domain decomposition of the
fine grid provided by the back-end parallel 3D FFT library. By so doing we gain
a significant performance edge with respect to the TBB implementation. We have
shown that there is an optimum balance between MPI and TBB depending on all
the settings of the NUFFT. We provided the opportunity of using 64 bits indexing.
We believe this to be an essential feature if we want to tackle input and output
arrays that are widely spread in space or frequency. The spreading of these arrays
determines the number of elements in the fine grid array (that we use for the stan-
dard 3D FFT), the indexing of such a vector can easily exceed the 32 bit limit.
We have found that the communication overhead due to extranode communication
may justify the reduction of MPI processors with respect to the number of TBB
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threads. However this highly depends on the infiniband connections between differ-
ent nodes, and on the memory requirements of the computation. We are currently
studying the implementation of different gridding and FFT function [8, 9, 10], as
well as the application of the developed library to fast convolution methods, and
in particular to boundary element method acceleration [4, 5, 28, 29, 30, 31, 32].
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