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Abstract

Behavior in its general form can be defined as a mapping between sensory inputs and
a pattern of motor actions that are used to achieve a goal. Reinforcement learning
in the last years emerged as a general framework to analyze behavior in its general
definition. In this thesis exploiting the techniques of reinforcement learning we study
several phenomena that can be classified as search, navigation and foraging behaviors.
Regarding the search aspect we analyze random walks forced to reach a target in a
confined region of the space. In this case we can solve analytically the problem that
allows to find a very efficient way to generate such walks. The navigation problem
is inspired by olfactory navigation in homing pigeons. In this case we propose an
algorithm to navigate a noisy environment relying only on local signals. The foraging
instead is analyzed starting from the observation that fossil traces show the evolution
of foraging strategies towards highly compact and self-avoiding trajectories. We show
how this optimal behavior can emerge in the reinforcement learning framework.
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Chapter 1

Introduction

General framework and a synopsis for the impatient reader

The role of a paradigm in science is to provide the scientific community with a sort
of guiding principle to approach unexplored problems. Marr’s levels of analysis [1, 2]
proposed in the 1970s is one of these paradigms and it provided the idea that the
understanding of a complex information-processing system necessarily passes through
different levels of investigation:

Computational level closely linked to an abstract framework regarding what
is the computational problem to be solved and why

Algorithmic level related to what are the sets of rules solving the abstract
problem stated in the previous level

Implementational level describing how the rules of the algorithmic level are
effectively implemented in the system under examination.

At that time D. Marr and T. Poggio were considering the brain and in particular
the vision as the goal of their paradigmatic analysis but over the years this three-
levels “manifesto” became a useful conceptual tool to investigate and understand
something that we can generally call a decision-making system or an agent as it will
be useful in the following.

To understand its range of influence let us consider a biomimetic example. Imag-
ine to have to design an agent capable of localizing a source of chemical in a turbulent
atmosphere. This is the general goal and it can be placed at the abstract level of
computation. Among all the organisms capable of localizing odor sources without
any doubt a moth is a very indicated organism to mimic. The very faint pheromone
signal emitted upwind by the female is transported and distorted by turbulence,
mixed with other odors but nonetheless can be used by the exquisitely sensitive ol-
factory system of the male to locate very quickly the source [3, 4]. At this stage



the agent we want to design and the organism taken as an example share the same
abstract capabilities and purpose.

At the algorithmic level we would like to ask how the agent represents the input
to describe the current situation and map it into an output command.

It is clear that this level is intimately related to behavior that in its general form can
be defined as a mapping between sensory inputs and a pattern of motor actions which
then are used to achieve a goal. Moths are known to proceed upwind by alternating
extended zigzagging behavior and upwind straight lines, thought to correlate with
low and high rates of pheromone detection.

Algorithmically a given behavior can be obtained as a byproduct of the fact that the
goal has been quantitatively specified in a precise way (e.g. the case of Infotaxis' [5])
or just hard-coding fixed action patterns related to plausible biological assumptions
(see [6] and references therein). A crucial aspect at this stage regards how the agent
represents the surrounding environment. A general criticism raised for Infotaxis, for
example, is that it is unlikely that simple insects have the capabilities required by
the algorithm. Nonetheless this algorithm represented the starting point to inspire
a lot of research about olfactory robots. This aspect brings us to the the third level.

The level of implementation addresses the step connecting the idea given by the
algorithm to the actual way in which the instructions are implemented. Even if a
moth could not have the sufficient cognitive substrate to support Infotaxis a robot
with modern technology easily can, and in the last years growing interest has been
devoted to the design of bio-inspired robots capable of searching in condition in which
odors are very dilute (for a review see [7]).

One thing that is not made explicit in Marr’s diagram but is somehow present
at the intersection between the computational and algorithmic level is the idea of
learning. In the past few decades in particular Reinforcement Learning (RL) [§]
emerged as the natural framework to study situations in which an entity called an
agent repeatedly interacts with an environment to achieve a goal. At this stage we
purposely keep abstract the definitions of agents, tasks and environment. Learning
by reinforcement has its origin in classical and operant conditioning experiment by
[.Pavlov, B.F.Skinner and E.Thorndike [9] that were focusing on learning by trial
and error in animal behavior. Now it encloses disciplines as varied as psychology,
computer science, neuroscience and ethology. In its generality RL is at the same
time a problem (i.e. the agent has a goal) and a class of solution methods (i.e. how
the agent makes decisions to achieve the goal). The evolution of this research field
can be described thinking about two tracks that were running in parallel. One track
that originated naturally at the intersection of animal behavior and computer sci-
ence giving rise to the quest for artificial intelligence [10]. On the other track the
theory of optimal control became popular in the 1950s thanks to the work of Richard

In Infotaxis moth-like trajectories are not obtained hard coding the actions but asking the
agent to locate the source mathematically formulated as a local maximization of the expected rate
of information gain about the source position.



Bellman [11, 12] that formalized the problem of designing a controller to maximize
or minimize some proxy for the system’s behavior over time. Bellman formalized
this concept into what now is called the Bellman equation that at the beginning did
not involve the concept of learning but then became a central object in modern RL.
Indeed, the track of learning and the one of optimal control remained separated until
it was realized that the Bellman equation could be cast into a particular algorithmic
but still very general form and solved using what are now called temporal difference
learning algorithms[8, 13]. This shift made learning and optimal control to inter-
sect giving rise to a set of ideas and methods characterizing the modern theory of
Reinforcement Learning.

The mathematical framework enclosing all the ideas about RL will be presented
in the next chapter. Here instead, to navigate the extended landscape of tools and
concepts used in Reinforcement Learning it is useful to refer to figure 1.1 that will
visually guide us. Figure 1.1 shows the typical scheme of perception-action cycle
typical of a Reinforcement Learning problem. An agent chooses actions to maximize
a given performance measure using its own perception of the surrounding environment
and receiving from it a feedback on the performance.

The goal of a decision-making system is to maximize the long term return, es-

sentially the sum of rewards. Experiments on animal behavior suggest the reward
as a prize, for example in terms of food, to reinforce particular good actions but
in recent years the concept of reward acquired wider definitions. For example to
highlight its abstract structure studies focusing on the goal of intrinsic motivation
(e.g. “curiosity”) suggest that agents have to maximize the reduction of uncertainty
about rewards in the environment [14] and in general also information (as defined in
information theory) enters in this broader definition of rewards [15, 16].
Alongside the goal of maximizing reward it is important at this level to think about
how the agent represents the task or, more precisely how it represents the environ-
ment with which it is interacting. Given the same task the goal could turn out to
be very easy or very hard depending on the different representations chosen by the
agent. Moreover representation of the environment as we have highlighted before
in the example of the moth acts also as a principle to discriminate the biological
plausibility of different algorithms.

Given the computational goal RL provides multiple algorithmic solutions to solve
the problem. The correctness and efficacy of different RL algorithms depends criti-
cally on the quality of the percept highlighting again the centrality of the represen-
tation problem in this context.

Figure 1.1 shows a general classification of the different approaches in the space
of quality of the percept vs. knowledge of the environment where

Quality of the percept is related to how well the agent is able to represent
the state of the environment

Knowledge of the environment connects to how well the agent can predict
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Figure 1.1: Agent-environment interaction. An agent capable to take actions interacts
with the environment that returns a percept containing the information necessary to rep-
resent the state of the environment and the feedback (reward) on the agent’s performance.
The quality of the percept and how much the agent knows about the environment define
a space of the algorithms in the reinforcement learning framework.

successive states upon taking a given action.

On the top-right corner there is the class of Markov Decision Processes (MDP)
and the algorithms dedicated to this case go under the name of Dynamic Program-
ming. In this case the agent has perfect knowledge of the states of the environment
and knows also what is the effect of an action on the transition between states. This
is a purely computational problem and does not require any form of learning.

If the agent receives poorer information from the environment (e.g. it just has a
belief of which is the state of the environment) then we are in the bottom-right corner
of Partially Observable Markov Decision Processes (POMDP). As we will see in the
next chapter the cost to pay to keep the Markovian structure unaltered is that they
POMDP must be solved in the continuous space of belief distributions. Algorithms
facing this high complexity often look for approximate solution methods [17].

The last class, in the bottom-left corner, represents the full Reinforcement Learn-
ing problem. In this case the agent has a limited representation of the environment
and does not know the effect of actions on the environment. For this reason it is
forced to repeatedly interact with it. This aspect reveals the true nature of reinforce-
ment learning and make two fundamental problems arise

Temporal credit assignment that is to determine which past actions deserve
credit

Exploration-exploitation trade-off where the agent has to balance between
exploiting what it already knows and explore in order to make better action
selections in the future?

2The exploration-exploitation problem was already known in the engineering community study-
ing optimal control under the name dual control problem (for an overview see [18])



The class of algorithms particularly suited to address this problems goes under
the name of Temporal Difference algorithms (TD). As we will see in the next chapter
TD-learning algorithms are specified by

— a value function saying how much a given action in a given state is valuable

— a TD-error essentially representing mismatches between outcomes and pre-
dictions,

— a learning rate determining the timescale over which reward histories are
integrated to assess the value of an action

— a parameter defining the time horizon over which the behavior must be op-
timized.

Interestingly RL reaches also the implementational level, the third of Marr’s dia-
gram. Different experimental evidences [8, 19] pointed to the fact that dopaminergic
neurons compute the TD-error and the learning rate is linked to serotonin, naturally
related to what is called neural plasticity (see [20] and refs therein). Nowadays the
mutual inspiration between the field of Reinforcement Learning and Neuroscience [21]
shows that the separation between Marr’s levels is just a matter of convenience and
that they have necessarily to interact.

It is now clear how RL in its full generality permeates all the levels of Marr’s
paradigm and can be considered to be the appropriate framework to study behavior
in a quantitative way.

All organisms have to face a complex environment and to do it they have to select
meaningful environmental signals transforming them into actions. Learning and
memory are two key features of animal adaptation to challenging situations. Wisely
using information sensed from the environment and properly taking into account past
experiences is often critical for optimal decision-making in a fluctuating environment
and is involved in every aspect of an animal’s life, from single individual tasks [22]
to interaction with other individuals [23, 24].

Foraging and searching strategies are appealing problems to approach using a
decision making framework. Both are critical activities for the survival and this as-
pect is thought to have profoundly shaped the organisms decision-making systems
towards optimality. The ability to transform signals coming from the environment
into actions is an aspect that crucially appears regardless the complexity of organ-
isms. Learning and memory and how to deal with the perception-action cycle usually
have been linked to cognitive capabilities of insects and vertebrates equipped with
a central nervous system [25]. However even prokaryotes and eukaryotes show very
well developed strategies. For example, simpler organisms such as bacteria sometimes
cannot measure gradients in space. They present highly conserved signal transduc-
tion pathways to transform the temporal variability of chemical stimuli to precise
chemotactic strategies corresponding to clockwise or counterclockwise rotation of



the flagellar motor. The goal in this case is to move towards higher concentra-
tion of chemoattractant or to excape from toxic substances [26]. Eucaryotes such
as Dictyostelium are capable of measuring spatial gradients resulting into the acti-
vation of very well defined internal chemical pathways triggering locomotion with
the consequent formation of pseudopods in the direction of the chemical gradient to
reach the source [27]. Moreover, habituation considered a proof for the presence of
learning mechanisms, has been identified in single cell organism such as Physarum
polycephalum [28].

Given the ubiquity of behaviors classifiable as foraging or search strategies across
organisms with radically different capabilities and the importance of these processes
for species survival, it is likely that a range of different mechanisms from very simple
rules to more complex ones have been selected under evolutionary pressure to cope
with complex and unsteady environments.

We think that the framework we exposed presents the right characteristics to ap-
proach several problems related to behavior. It is general enough to be versatile but
at the same time its mathematical formulation and the centrality of the algorithmic
approach allows to frame biological phenomena inside a firm theoretical foundation.

Where can this thesis be placed in the described scenario ?

Marr's levels RL framework
Chapter 2
Computation
@ Chapter 3
< MDP -
i 59 E%
Algorithm 25 ;
T Chabter 5 /7= Chapter 4
S apter 5/ —% POMDP
o Full RL @ 4
Implementation knowledge of the

environment

Figure 1.2: Thesis organization. Chapter 1 describes the general framework in which
this Thesis can be placed. Chapter 2 presents the mathematical framework that will be
used in Chapter 3 to describe a constrained search process by means of Markov decision
processes (MDP), in Chapter 4 to study a problem inspired by olfactory navigation in
pigeons using partially obervable Markov decision processes (POMDP) and Chapter 5 to
show how optimal foraging strategies emerges in the context of full reinforcement learning.

The structure of the thesis is illustrated in Fig.1.2. The phenomena we are going
to formalize in the framework of decision making theory are inspired by different



biological systems that we briefly present below. In the Marr’s diagram this work
can be placed at the algorithmic level. We will proceed from the top-right corner
to the bottom-left one given in the RL classification scheme characterizing each
biological phenomenon by means of a particular class of algorithms.

Constrained search processes

In Chapter 3 we will start studying a search process inside a confining domain.
Diffusion and jump processes have been applied countless times to describe processes
ranging from ecology to finance. In many instances the process is subject to a given
number of constraints. Imagine for example to have an agent undergoing a random
walk with the goal of reaching a target. What happens if we ask it to reach that target
being confined within a given space region ? This situation can be described thinking
about the agent to pay a cost each time it jumps outside the domain and to pay no
cost otherwise. We show how the problem can be mapped into a particular class
of Markov decision processes. As a particular example we consider a jump process
with exponentially distributed jumps that have to reach a target without leaving
a cylindrical channel. In this case we can analytically solve the Markov decision
process and find the optimal policy corresponding to the transition probability of the
jump process inside the cylinder. In analogy with the physics of confined polymer
we investigate several geometrical properties of the constrained walks. Having the
analytical expression for the transition probability of the constrained process we can
efficiently characterize these properties in different regimes, going from the diffusive
case to the one of long jumps corresponding to two different confinement regimes.
The results presented in this Chapter are contained in

Adorisio, M., Pezzotta, A., de Mulatier, C., Micheletti, C., Celani, A. (2018).
Exact and Efficient Sampling of Conditioned Walks. Journal of Statistical Physics,
170(1), 79-100.

Navigating a noisy odor environment

Chapter 4 will be dedicated to approach from the algorithmic point of view the
phenomenon of olfactory navigation in homing pigeons. The scientific community
agrees on the fact that their ability to find home from unfamiliar places depend on
their olfactory system.

In a map and compass mechanism olfaction gives the positional information and
the compass is represented either by the coupling of the pigeon’s internal clock with
the position of the sun or by the geomagnetic field. In a simplified situation but
considering anyway the experimental evidences accumulated in the last decades we
cast this problem into a partially observable Markov decision process with Gaussian
beliefs for which we can give a closed form solution for the optimal policy. The
agent in this case is able to sense scalar signals representing the odors and use them
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to optimally select actions. At variance from what has been proposed in the past,
preliminary results show how this algorithm can explain experimental findings.

Optimal foraging strategies

Chapter 5 relates to the bottom-left corner in the algorithmic classification. The
analysis of the trace fossils highlighted that the foraging behavior of different species
evolved from very inefficient strategies showing self-intersecting trajectories to very
compact and self-avoiding trails often showing stereotypical patterns such as spirals
or meanders. In the field of ichnology, a sub-field of paleontology, a question that
still does not have an answer is how this kind of strategies emerged during evolution.
Previous models were able to reproduce these types of strategies using hard-coded
instructions. Approaching the problem in the framework of reinforcement learning
we show how the spirals and the meanders emerge as optimal solutions of a foraging
problem. We will consider agents with very limited sensitivity able to represent
the food distribution at very short spatial scales and with very simple locomotion
capabilities much alike the ones that organisms of which we observe the trace fossils
had. We will also investigate the task of searching for a target and eventually couple
foraging and searching in a simple example of food exploitation.

Other projects

During these years I had the opportunity to collaborate on two other projects that
are not presented in this Thesis. They both relate to chemotaxis approaching the
phenomenon at two different scales. One is related to the flagellar motor and the
other to the collective aspect of chemotaxis.

Flagellar motor: a cooperative binding model— FE.coli is one of the model or-
ganisms to study bacterial chemotaxis. Its flagella are governed by rotary motors and
their clockwise and counterclockwise rotation regulate the well known run and tum-
ble behavior with which F.coli moves towards more favorable environments. In this
work, exploiting the separation of time scales between different chemical processes
regulating the flagellar motor, it is shown how to reduce the conformational spread
model to a coarse-grained, cooperative binding model. This simplified model repro-
duces very well the switching dynamics between the clockwise and counterclockwise
state. The results are contained in

Pezzotta, A., Adorisio, M., Celani, A. (2017). From conformational spread to
allosteric and cooperative models of E.coli flagellar motor. Journal of Statistical
Mechanics: Theory and Ezxperiment, 2017(2), 023402.

Cooperative games and chemotaxis— Individuals in a group have often to co-
operate to achieve common goals. We can think for example to multiple agents that

11



want to reach a given target minimizing a given cost function taking into account
single individual costs and costs related to the interaction between the individuals.
In this work it is shown that the equations that characterize the optimal strategy
are identical to a long-known phenomenological model of chemotaxis. This allows to
establish a dictionary that maps notions from decision-making theory to biophysical
observables in chemotaxis, and vice versa. The results are contained in

Pezzotta, A., Adorisio, M., Celani, A. (2018). Chemotaxis emerges as the optimal
solution to cooperative search games. Physical Review FE, in press.

My interest in biological systems started looking at multiple species interactions
and their effect on the stability of ecosystems [29]. In these years I shifted my
attention to the level of single agent behavior. It would be very interesting to see
these two approaches converging at one point in the future to see how behavior and
macroecological patterns are related.

12
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Chapter 2

Methods

A look into optimal decision making theory

In this Chapter we focus on explaining the fundamental aspects of the optimal de-
cision theory framework that especially deals with sequential decision-making prob-
lems. As explained in the introduction, Reinforcement Learning [1] and its formula-
tion in terms of Markov decision processes|2| is the appropriate framework to study
decision making and the optimality of behavior.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) represent a framework to formalize sequential
decision-making and in general learning problems in stochastic domains. In this
approach, an environment is modeled as a set of states and sequential actions can
be performed by an agent to control the system’s state. The agent has the goal to
act optimally meaning that it has to control the system in such a way that some
performance criterion is maximized.

More specifically we can imagine that the agent and the environment interact in
a sequential way. At each time step t the agent receives some representation of the
environment’s state, s; € S and based on this it selects an action a; € A receiving a
reward ri,; and eventually finding itself in a new state, s,,'. Thus the interaction
between the agent and the environment can be summarized by a trajectory of the
form

S0,A0,7T1,S81,A1,72,82, ... 8¢, A, Tt11, St+1

We can define the transition probability p(s’,r|s,a) as the probability of arriving
in state s’ after taking action a in state s and receiving a reward r. It represents a

Lwe write 74,1 instead of r; to emphasize that action a; jointly determines the reward and the

new state Tt+1, St41-
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Figure 2.1: Perception-action cycle in the MDP. The agent receives the percept that
is composed by a reward and the true state of the environment. According to the state the
agent selects an action following a given policy.

central object in MDP theory and is sometimes called the model of the environment.
For p(s',r|s,a) to be a proper probability distribution over possible next states s’
and rewards r we require that

Zp(s’,r|s,a) =1Vs,a

s'r

The transition probability p(s’,r|s,a) completely characterize the environment’s
dynamics under the agent’s actions. We are assuming implicitly that the transition
between states are Markovian. Considering the history of the interactions between
agent and environment this means

D(St415 Te41/50, Gos S1, A1, S2, - - . St @) = P(Sea1, Teg1|St, )

highlighting that the state s, carries enough information to make an optimal decision
in the future.

Informally we can state that the goal of the agent is to maximize? the expected
value of the sum of rewards. To be more specific the agent seeks to maximize the
expected value of return defined by

Ry =141+ ripo+ ... rp  [return] (2.1)

where T is the final step. This return definition makes sense in the case of episodic
tasks (i.e. when the agent reaches a terminal state and the interaction with the
environment restarts).

There is also the case of continuing tasks in which we cannot identify an episode and

2We use reward to define a scalar signal received by the agent from the environment. Obviously
it can be positive or negative (a cost paid by the agent) and in this case the goal will be to minimize
the cost.
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the agent-environment interaction continues until 7 = oo. The expected return (2.1)
will consist of a sum of infinite terms and could turn out to be infinite itself. To
avoid this situation we introduce the expected discounted return

[e.e]
= Z Y*ri ki1 [discounted return]. (2.2)

k=0
The parameter v satisfying 0 < ~ < 1 characterizes the “nature” of the agent.
A v = 0 agent wants to maximize the immediate reward (i.e. R, = ryyq). As v
approaches 1 the agent weights future rewards more strongly. We can unify the
two expressions for the return (eq.(2.1) and (2.2)) admitting that an episodic task

reaches an absorbing state s4 that transitions only to itself generating zero reward
(see Fig. 2.2).

ro = +1 ry = +1

000 Wi

Figure 2.2: Starting from sg we accumulate Ry =11 + 719 +734+ 0+ 0+ 0+ ... obtaining
the same reward whether we sum over the first 7' = 3 steps or over the infinite sequence.

Summarizing the return can be expressed by

T
= Z Ve (2.3)
k=0

where 1" = oo or v = 1 but not both conditions together.
A nice property of the return is that it satisfies

Ry =1 + 7R (2.4)

This property is at the base of what we are going to present in the following section.

2.2 Value function: how valuable is a policy

The agent interacts with the environment following a given policy. Formally a policy
m(als) is a mapping from states to probabilities of selecting each possible action.
Following the policy m means that at time ¢ the agent has the probability 7(als) of
taking action a; = a if in state s; = s. Thus it would be useful for the agent to have
a “measure” of how good a given state is or how good is taking an action in a given
state. In other words we would like to give a value to each state given the policy 7.
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We can define the state-value function of a state s under a policy 7 as the expected
return when starting in S; = s and following 7 thereafter. Formally we can define it
as the average value according to 7 of the return starting from s; = s

Vi(s) = Ex [Ry|s: = $] (2.5)

with the definition of R; given in eq. (2.3). Similary if the agent wants to know how
good it is to take action a; = a when in s; = s we define the action-value function

Qr(s,a) = Ex [Ri|st = s, ay = q] (2.6)
Using eq. (2.4) to simplify eq. (2.5), we can write

Vi(s) = Ex [rep1 + YRiqa|se = 8]
= Z s',r]s, a)m(als) [r 4+ YV (s)] (2.7)

CLST

For the action-value function (2.6) reasoning the same way we obtain

Zps r|s,a 7’+72 a'|s)Qx(s',d)] (2.8)

J/

-~

Vi (s')

The last two equations represent two important recursion relations for the value-
function and action-value function respectively.® Solving a MDP means finding
an optimal policy that is the policy that roughly speaking accumulates the largest
amount of reward for the prescribed task. Thus given a set of policies we look for
the optimal one 7* that will have V,«(s) = V*(s) = max, V,(s) Vs. Accordingly
Q*(s,a) = max, Q(s,a) Vs,a

Concluding, if we identify V*(s) = max, Q*(s,a)?, the optimal policy is such that
the following Bellman optimality equations for V* and Q* hold

V*(s) = mapr (s',r|s,a) [r +~V*(s")]

(2.9)
Zp s',rls,a)[r +ymax Q*(s', a')]
The solution for the MDP (i.e. the optimal policy) will be given by
7 (s) = argmax Q" (s, a) (2.10)

a

3we can define T'(s,a,s) = p(s’,r|s,a)r(a|s) as the transition probability from s to s’ taking

action a.
4Intuitively the optimal value for the state s when acting with the optimal policy is the total
return we get choosing the best action from that state.
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Notice that the structure of eq. (2.9) reflects the property (2.4)

V* = immediate reward + 7y(expected value for the future)

Summarizing an MDP with optimal policy 7* is defined by

We introduced the structure of the MDP and the Bellman equation that must be
solved in order to find the optimal policy. There are many methods to solve an
MDP and all these techniques go under the name of Dynamic Programming. Policy
iteration is one of them and the idea is summarized in Fig. 2.3. Given a policy
we evaluate it finding its value V. We then improve the previous policy selecting
greedy actions on the computed value and evaluate again the new policy. If both the
evaluation process and the improvement process stabilize, that is, no longer produce
changes, then the value function and policy must be optimal.

starting
Vr

Figure 2.3: Policy iteration scheme.

In Chapter 3 we are going to present how to condition a jump process to stay
inside a given domain. We will highlight the equivalence of this problem with a
particular class of Markov decision processes and solve for the optimal policy.
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2.3 Partially observable Markov decision processes

If an agent has access to the true state of the environment and it knows the model
then the problem can be described as a Markov decision process. What if the agent
lack precise knowledge of state knowing only the probability to be in that state 7 In
this case the MPD framework can be extended to take into account that the agent
does not have access to the real state s of the environment but only to observables
related to it. The framework of Partially Observable Markov Decision Processes
(POMDPs) allows for principled decision-making under uncertainty in the ability
of representing the state of environment. In this section we present the POMDP
structure in relation to what we already introduced for MDPs. Even if we do not
focus in details on the algorithms solving POMDPs we discuss the ideas that are
central to understand the results of Chapter 4.

The first property to relax when defining a POMDP in relation to the MDP
framework is the assumption that the agent knows with full certainty the state of
the environment. The agent interface with the environment is represented by sen-
sors that are capable of extracting few observables among all the ones that define the
true state of the environment. The Markov property of the (fully observable) MDP
is based on the fact that the agent has access to the true state and that the true state
is sufficient to represent the environment. In general, when certain state features are
hidden from the state signal received by the agent the assumption about Markovian-
ity ceases to hold. Partial observability in general arises because the sensors of an
agent represent different environmental states in the same way and also because the
sensors return noisy measures. The main result of what we present below is that we
can reacquire the Markov property disrupted by partial osbervability by paying the
cost of formulating a MDP in the continuous space of probabilities over the states
(the belief state) °.

To define a POMDP we can build on top of the definition of a MDP given in the
box at the end of section 2.1. In the sequential interaction with the environment
the agent takes an action a when in state s and the environment transitions to
state s" according to p(s'[s,a) and the agent receives a reward r. The big difference
with the MDP setting is that the agent now perceives an observation o related to s’
instead of observing ¢ itself. As we said before the observation is in general a noisy
quantity. We can encode this fact saying that there is a likelihood ((o|s) to obtain
the observation o when in state s ®. The problem of dealing with observations is that
a direct mapping of observations to action is not sufficient to act optimally and a
sort of memory of the past experience is needed. A first idea could be to book-keep
the history of observations received and actions taken. Even if it sounds intuitive

5The Bellman equation presented in the previous section will be defined on the space of proba-
bilities over states and not anymore on the set of states
6The likelihood is normalized > f(o|s) =1V s
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Environment

percept action

Agent

state ,
—f’- olic
estimation] e/ poicy

Figure 2.4: The perception-action cycle in the POMDP. The agent receives from the
environment the percept that contains the reward and an observation. The agent exploits
the observation to update the belief and selects an action according to the new generated
belief.

it is not the most efficient way to do it especially if we consider continuing tasks.
Fortunately there is a better option that is the one to transform all the information
about the past into a belief over the states. As the word says the belief distribution
b(s) is the probability to be in state s giving an idea about the “belief” the agent
has to be in state s. Obviously we must require ) b(s) = 1. To compress the past
history of actions and observations into the belief over the states we need both the
model of the environment p(s'|s, a) and the likelihood £(o|s). We look for a rule that
allows us to update the belief as soon as an observation is received by the agent.
This rule must compute a new belief state ¢'(s") given the old belief b(s), observation
o and action a. A natural choice is to use a Bayesian update rule for the belief b(s).
In fact, making the sequential time dependence explicit, according to Bayes rule we
have that

bir1(sir1|ar) = Prob(siy1|be, ar, 0041)
= Prob(0p41|5¢41, ar) Prob(se1|be, ay)
~ Uowa|serr, an) Do, P(siralse, an)bi(se)
a p(ort1]a, be)

where p(ogi1lar, b)) = 30, U(01]8e41, @) Do, P(Se41l8e, ar)bi(se) 7. If in MDPs we
have that a policy maps states into actions in POMDPs the policy maps a belief into

(2.11)

"p(o|b, a) it’s a normalization of the belief b;,; but it can be interpreted as the transition prob-
ability between b; and b;r; when the agent takes action a; (see footnote 8)
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actions. As in MDPs the goal of the agent is to maximize the discounted reward.
Finding the optimal policy requires to give a value to a given policy starting from a
given belief and in analogy to (2.5) we can define the value function for POMDPs as

Va(b) = Ex [i T R(by) | by = b] (2.12)

k=0

where R(b) = >, bi(s)r(s, a) and by is the initial belief. Concluding, it can be shown
that an optimal policy for a POMDP is the solution of the optimal Bellman equation
that in this case takes the form ®

V() = max Z r(s,a)b(s) + Zp(0|b, a)V*(b) (2.13)
and the optimal policy is
7 (b) = arginax [Z r(s,a)b(s) + Zp(0|b, a)V*(b) (2.14)

As in the MDP case the equation for the value keeps the structure
V* = immediate reward + 7y(expected value for the future)

Concluding, we have summarized how a POMDP is equivalent to an MDP in the
continuous belief space. The following box, to be compared with the one at the end
of Sec. 2.2, brings together all the ingredients that define a POMDP.

8In analogy to the MDP case where we defined T'(s’,a,s) (see footnote 3) we can inter-
pret the term p(o|b,a) as the transition probability from b to o’ taking action a if we rewrite
TV, a,b) =%, Z(b" —blo,a)p(o|a,b) where

1 if ¥’ and b are related by (2.11)

0 otherwise

Z(b' —blo,a) = {
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2.4 Full Reinforcement Learning

The aim of Reinforcement Learning (RL) algorithms is to find an optimal policy that
maximizes the return without relying on the model of the environment. Because the
model of the MDP is not known the agent has to interact with the environment
and ezplore it receiving scalar feedback in the form of rewards. In this situation
the agent has to deal with a trade-off between exploring newer actions that could
possibly return higher rewards and exploiting what it already knows.

In the generalized policy-iteration approach one crucial step is the policy evalua-
tion or prediction step. Given a policy we must compute its value

Vi(s) = Ex [Ry|s: = $] (2.15)
=E; [re + 7Va(St41)|s: = ] (2.16)

As in eq. (2.15) we can estimate V, sampling R; and then adjusting the estimate of
the value as

V(st) < V(sy) +a[R, — V(sy)]

where « is called learning rate.

This kind of algorithm goes under the name of Monte Carlo Reinforcement Learning.
Without requiring a model of the environment they approximate the value function
because they sample the reward at each time step computing the return R; only a
the end of the episode. Apart from being very intuitive this approach could become
infeasible in the case of very long episodes or for continuing tasks.
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On the other side there are Dynamic Programming (DP) approaches that evaluate
the policy approximating the value function as in eq. (2.16). Even if in the DP
approach the model of the environment is known, the value function is approximated
because it is computed using the current estimate V;(s,11) instead of the unknown
Vi (s21) until the process converges. Using estimates of a quantity to compute other
estimates the quantity is called bootstrapping.

There is a third class of algorithms that goes under the name of Temporal Dif-
ference (TD) algorithms [3] combining both approximation aspect of sampling and
bootstrapping that we are going to briefly discuss in the following.

In general these algorithms have the form

Vit (s) <= Vi(s) + arde(v, V2).

where o is again the learning rate and the quantity d, is called the TD error. We
made the dependence explicit on v and the current value function V; because what
differentiates the algorithms in RL is the way the TD-error is computed. In general
the idea is to write the TD error as

); = target — current value.

We will highlight this structure when presenting two RL algorithms below. In the
following we present Q-learning and SARSA algorithms. The Bellman equation for
the action-value function (eq. 2.9) represents the perfect starting point to understand
their structure.

Q-learning

Q-learning [4] is one of the most basic and popular way to estimate the action-value
function @) and it takes the form

Qir1(5¢,ar) < Qi((se,a¢) + o |7+ "y max Qi(st41,a) —Qy(st, ar) (2.17)

J/

TV
target

This update rule can be understood rewriting the optimal Bellman equation 2.9 as
Er[r +ymaxQ*(s',a') — Q"(s,a)] =0
telling us that at optimality the expectation of the TD-error satisfies

0" =r+ymaxQ*(sy,a) — Q*(s,a) = 0.
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Since we do not know the model of the environment we must substitute E,«[-] with
a sampling step where we generate an experience (s;11,as, 7141, S;) interacting with
the environment following policy .

Q-learning is called an off-policy algorithm in the sense that even if we keep exploring
actions to balance exploration and exploitation following a given policy 7 it is actually
evaluating the optimal policy 7*. The convergence to the optimal @) is guaranteed
under the assumption that each state-action pair is visited infinitely many times and
the learning rate o is decreased appropriately °

SARSA

If Q-learning is an off-policy algorithm SARSA [3] represents an on-policy approach
with the following update rule

Qt+1(8t7 at) < Qt(3t7 Cbt) +a; |7+ 7@t(3t+17 at+1Z—Qt(5t7 @t) (2-18)

-~
target

Starting from the Bellman equation (2.8) for () we can rearrange it as
Zps rls, a) 7“‘1‘72 (d'|8)Qx(s",d") — Qr(s,a)] = 0.

The quantity 1n81de the square brackets give us a hint on how to interpret the TD-
error for SARSA algorithm. As before, we do not know the transition probabilities
and we approximate the expectation value with a sample of (s¢y1, azy1,7, 8¢, az). '
At variance from what happens in QQ-learning, SARSA uses the policy being evaluated
to extract a;y1. This is why it is considered an on-policy algorithm. Convergence to
the optimal @ [5] is guaranteed also in this case by the usual stochastic approximation
conditions (see footnote 9).

Neurons and TD-error computation

The interesting point about RL algorithms is that it has been shown that dopamin-
ergic neurons [1, 7] encode the TD-error and a positive or negative J is related to

9Watkins and Dayan (1992) prove the convergence of Q-learning algorithm. In general conver-
gence analysis of TD learning algorithm is rooted in stochastic approximation analysis. @-learning
and SARSA [5] algorithm (see next section) converge with probability 1 to the value function if

g Qp = 00 g a? < oo
t t

or in the mean if « is kept fixed and sufficiently small. There is a wider class of algorithm called

TD(A) that has been proven to converge with probability 1 [6]. A is a parameter related to how far

in the future the agent can look (MC algorithms corresponds to TD(1) and SARSA to TD(0).)
0the name SARSA comes from the structure of the experience: s’,a’,r, s, a
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a “good” or “bad” action because it led to a state with a better or worse than ex-
pected value. Moreover there is evidence (see [8] and references therein) that other
neuromodulators different from dopamine are responsible for the representation of
the other RL parameters such as the discounting factor v and the learning parameter
«. In particular the learning rate o has been hypothesized to be connected to neural
plasticity regulated by serotonin, another neuromodulator [9].
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Chapter 3

Optimal control of jump processes

Freely jointed chains confined in a channel

1 Introduction

Random walks are ubiquitous in physics and have countless applications in biological
systems [1-3], ecology [4], finance [5], chemistry and transport phenomena [6]. In
many instances, the walk is subject to a certain number of global constraints, e.g.
the walker can be restricted to a given domain of space or constrained to reach a
certain target.

Generating constrained walks by stochastic techniques is computationally chal-
lenging [7]. This is readily illustrated by considering the inherent inefficiency of
simple resampling strategies. In such approaches one could, in principle, generate
by Monte Carlo or other schemes, a large ensemble of unrestricted walks and then
reject a posterior: those violating the constraints. This naive strategy is bound to
incur in a rejection rate that increases exponentially fast with the walk length.

To overcome these challenges, various advanced stochastic sampling methods have
been proposed (see e.g. [8]). These techniques work by suitably biasing the system
towards the relevant configurations that would otherwise be visited only exception-
ally in the unconstrained case. In practice, finding an algorithm able to generate
efficiently constrained random walks with the exact statistical weight still remains a
daunting task.

A different approach was pioneered by Doob [9] for diffusive processes and recently
revisited in the physics literature, see e.g. [10-13]. In short, this method is based
on the observation that any constrained random walk is exactly equivalent to an
auxiliary unconstrained one, via a suitable reweighting of the transition probability.
Clearly, the unconstrained version of the original process is typically much more
amenable than the former to computational, and even analytical treatment. The
challenge, in this case, lies in how to exactly derive the auxiliary process from the
given global constraints.
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Another interesting perspective is given by looking at the problem from the point
of view of decision processes. In particular in this Chapter, we show how the uncon-
strained auxiliary process can be obtained both by reweighting and as the solution
of a particular class of Markov decision processes [14-17].

We illustrate our approach with the example of a walk confined inside a cylin-
der and forced to reach one of its ends. For this problem the exact expression of
the transition probability for the jumps can be obtained analytically, providing an
efficient way to generate constrained walks.

This method allows to easily generate constrained jump processes with an ar-
bitrarily number of jumps. The numerical and analytical control we have on this
specific problem allowed us to study different geometrical properties of the walks.
For example we were able to study the transition between weak and strong confine-
ment that would be otherwise difficult to access for asymptotically long chains. We
also explore possible connections with the physics of confined polymers, still a very
active field of research [18-20].

2 Constrained random walks

Consider a random walk in a domain R? where the sequence of visited points {z;}:>¢
follows from a transition probability p(z;y1 | x;) for the jumps z; — ;41 Let us now
choose a domain C inside which we want to constrain the trajectories. We also define
a terminal domain 7, outside C, where the last point of the trajectory has to land.
Therefore, the ensemble of constrained trajectories we are considering corresponds
to unbiased realizations of the jump process that, starting anywhere in C, happen to
stay inside this domain for all jumps except for the last step that takes them inside
T.

The joint probability density function of the trajectory (xi, ..., zr) starting from
xo € C and reaching x7 at time T reads

P(zy,...,x0|xo) = H pla | ziiq) . (1)

Our goal is to find the subset of trajectories generated by P that stay inside
C and terminate in 7. The new joint pdf of the trajectory (z1,...,z7) under the
confinement condition can thus be written as

[T, p(xi| 7o) le(2;)
ZT(%) ’

(2)

Q(l’l,...,ZEN|ZL‘O) =

where

o) = 0, z¢C
are 1, zeCuUT



The normalization factor

Zp(xo) = / day . dop [ (i @io0) le(as) .- (3)

i=1

is the probability that a trajectory originating from xy sampled from P does not
leave C and terminates in 7. Notice that this term can be rewritten in the following
recursive form

Z(‘%l)

7~ ™~

Z(Io) = /dxlp(x1|$0)|6(xl) /d$2 dayp Hp(l’z"%—l)'c(xi) . (4)

Exploiting this backward equation we can rewrite eq.(2) as

1 (i e () Z ()
Z(zr) 1 Z(wi1) . ©)

Q(.ﬁlﬁl .. ..TT‘$0) =
=1

with Z(zr) = 1, meaning that the walker reached the terminal domain 7.
The key non trivial fact is that the constrained trajectories described by Q(x1 . .. xy|z0)
still follow a Markov process described by the well defined! transition probability

Z(x')
Z(x)

q(z'|x) = p('|z) le(z"). (6)

Summarizing, the constrained Markovian trajectories inside C will be described
by

Z(Z’/) / ;.
2'|xz) for ' in C or T,
q(2|r) = { 20 P’ [ 2)

elsewhere,

=}

where the weighting function Z(x) obeys the linear integral equation
Z(x) = /dx'Z(a:')p(m’ | z) for all . (8)
c

Note that Z is the probability of being absorbed in 7 before being absorbed
elsewhere outside C (see [9-12]).

It is also important to remark that the constrained process (7) is not equivalent
to enforcing reflecting boundary conditions at the frontier of C.

'Equation (6) ensures that each q(x; | z;_1) is correctly normalized.
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An interesting fact is that eq.(7) for the new transition probability and eq. (8)
defining the reweighting factor assume a specific meaning in the framework of op-
timal controlled Markov decision processes. Using the ideas presented in Sec.2.1 in
Chapter 2 we show in the next section how the transition probability ¢(a’|x) corre-
sponds to the optimal policy of a Markov decision process and that Z(x) is strictly
related to the value function.

3 Reweighting and Markov decision processes

Let us imagine that the jump process described in the previous section by the transi-
tion probability p(z’|x) is the trajectory of an agent inside a given region of the space
R?. A subregion T of the whole space represents the target that the agent wants to
reach while remaining inside C. The domain 7 represents an absorbing state and to
force the agent to stay inside C we penalize it when it jumps outside CUT. The cost
it has to pay is

C<x>:{k, e dCUT

0, otherwise

o

‘ '
x—-
\\
Figure 3.1: We would like to select only the trajectories that never leave the red domain and

arrive at the green target. Each time a trajectories jumps out of the domain it accumulates
a cost k.

Thus what the agent would like to do is to control its trajectory to minimize
the cost. We give the agent the freedom to reshape its original dynamics described
by p(z'|x) defining a new transition probability p,(z'|z) to achieve the goal. To
make a parallel with what we presented in Chapter 2 we can think to p, as the
analogous of the actions. There we defined the transition probability p(z'|z,u) from
state z to state 2’ taking action u chosen in a discrete set of actions. Here we can
imagine that the agent has the power to directly choose the transition probability,
ie. p(a'|x,u) = p,(2'|z). A path of this Markov process will be described by
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Pu(x1,. .., zx|ze) = H pulai|ziiy). (9)

However the agent has not an infinite freedom on the choice of p,(2'|x) but it
must pay for deviating from its original dynamics p(2’|x). Intuitively this prevents
the controlled process to jump directly to the target. Then the agent has to deal
with two types of cost. One given by the constraint to stay inside C. The other cost
comes from the possibility to control its dynamics. To incorporate these two types
of cost in a single cost function we can define

L = (c(@))p, + Drcr(pullp) (10)

where Dy (py||p) is the Kullback-Leibler divergence between the controlled and un-
controlled process defined by

p(x ’|I)

In this context Dy (py||p) naturally emerges as a measure to quantify the cost for
the control. Moreover it must be p,(z'|z) = 0 whenever p(2'|x) = 0 to make the
Kullback-Liebler divergence well defined and to keep the same forbidden transitions
in the two Markov processes.

The Bellman equation for this problem is

b
DKL pqu Zpu ’l’ 10g

V(x) = min | £+ (V(2')), (11)

where the usual value function V' (x) now is the optimal cost-to-go function, defined as
the expected cumulative cost for starting at state x and acting optimally thereafter.
Given the definition of the cost function (10) the Bellman equation can be rewritten
as

pu(:r’|x)ec(x’)+‘/(”‘">]

V() = min | 3 puwla) log B s

We can now define

- 1 —e(z =V (z'
pla'|z) = 70" =V p(a!|z) (12)

where Z(x) for the moment represents just the normalization factor
Z e~ @VED (2| 2). (13)

The Bellman equation now takes the form
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V(z) = H;in Dk r(pu||p) — log Z(z). (14)
The Kullback-Leibler reaches its minimum if p, = p implying that

V(z) = —log Z(x).

The normalization condition (13) and the controlled transition probability p, now
takes the form

AG
Z(x)
Z(x) =Y Z(@)e p(a'|x).

~—

efc(:v/)p(x/ |I)

pu('|z) =
(15)

If the agent pays an infinite cost when it jumps outside the domain C (i.e. £k — oo
in eq.(3)) then the equations above are exactly the same as eq. (7) and (8) showing
the analogy between Markov Decision processes and the reweighting procedure pre-
sented in the previous section. This class of problems goes under the name of linearly
solvable Markov decision processes [17]. As already pointed out at the beginning of
the section in this case the notion of “action” defined in the general framework of
MDP is replaced by the transition probability p,(z’|z), somehow generalizing the
concept of policy as a mapping between states and actions.

The reference dynamics p(z’|z) is arbitrary and must reflect the properties of the
system under exam. For example in the next section inspired by polymer physics
we are going to see how to constrain a jump process inside a cylindrical channel. In
this case that can be solved analytically, p(z/|z) will described a jump process with
exponentially distributed jump length. Exploiting the analogy with the searcher in
this case the goal will be to reach a target region at the end of the cylinder without
leaving it.

4 Constraining a jump process inside a cylindrical
channel

In general, the linear integral equation (8) can be solved numerically and once the
weights are obtained, the deformed process ¢ can be used to generate samples of the
constrained ensemble with their exact statistical weight.

In this section we show an interesting case where the problem can be solved
analytically providing a very effective method to sample configurations that would
otherwise be exceedingly rare in an unbiased sampling. As we show below, one
such instance is when the confining regions is a cylinder. Besides being amenable
to extensive characterization within the aforementioned framework, this system was
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chosen for its connection with confined polymer chains, a classic and yet still actively
investigated topic in polymer physics.
Let us consider the following free jump process in R?

m?2 e~ mlzit1—zil

(i1 |2i) = (16)

AT ||zigr — @il
where m is a parameter controlling the mean length of a jump,
Uy = (lzia — @ill)p = 2/m. (17)

The transition probability of Eq. (16) can be obtained by considering a three-
dimensional diffusion process with coefficient D and sampling it at random time
intervals distributed exponentially with mean 7 = 1/(Dm?) (see Figure 3.2)

Figure 3.2: The red line is the free jump process where £y denotes the average jump length.
The gray trajectory represents the Brownian motion related to the jump process. The red
trajectory is obtained from the gray one sampling it with exponentially distributed time
steps (black dots).

Consider a Brownian walker starting from z, € R?® at time ¢t = 0 and diffusing in
a three-dimensional space with a diffusion coefficient D; its position x after a time ¢
is given by the probability density function
1 (:c—xo)2

G(Jf, t | I’O) = W e 4Dt | (18)

We would like to introduce a characteristic length of the jump process. For this
purpose, we sample the Brownian motion at exponentially distributed times with
mean 7, thus defining a discrete random walk (see Fig.3.2).By definition, this new
process is still Markovian and its successive positions x; are given by the transition
probability:

> dt _t
prin]) = [ — Gl tz) e r. (19)
0
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where 7 characterises the coarse-graining. Passing to Fourier space we obtain

Bk mr .
a2 = [ s g . (20

where m = 1/v/7D, which finally leads to Eq. (16). The jumps (x;4; — x;) are
identically distributed with mean length ¢ = (||z;41 — z4||) = 2/m.

Let us now constrain this process to stay inside a cylindrical channel (see Fig. 3.3)
of radius R and axial length 2H, with the terminal domain 7 to be at one end of
the cylinder

C={z,y,zlp=va2+y2<R,|z| <H}
TZ{ZE,y,Z|p= v$2+y2 SR’Z>H}

Rf, C | T
/

Figure 3.3: C is the region where the trajectory has to be constrained. 7T is the target.

The choice of the Markov process described by (16) apart from being useful as
an abstraction for a polymer it also helps in solving equation (8) when the domain
C is an infinite cylinder and the terminal domain has been pushed to z — co. The
advantage comes from the fact that p(a’|z) satisfies

(V2 —m?) p(z'|z) = —m? (2’ — z), (21)

where § is a Dirac delta function. Thus applying V2 — m? to Eq. (8) gives
(V2 —m?) Z(x) = —m? / dz'Z(2") (2" — x),
c

that leads to the system of equations

V2Z(x)=0, for z in C,
(V2—m?) Z(z) =0, elsewhere.
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Given that in cylindrical coordinates the problem is separable in z and (6, p), the
general solution of the equation above reads

Z(x) = (23)

A exp(Az) Jo (Ap) , for z in C
B exp(Az) Ko (cap), elsewhere,
where A and B are real constants, ¢y = v/m? — A? and the parameter A belongs to

(0, m) and satisfies

AJAR) Ky (Vim? = 2R)
= Vm? =02 Jo(\R) K (Vim? = )2R) (24)

In this expression, J, is Bessel functions of the first kind of oreder v and K, is the
modified Bessel function of the second kind of order v.
This result leads to the reweighted transition probability in cylindrical coordinates

T = (p7€7z)

/ _ JO()‘p/) A(z'—2) /
o(e'le) = A0S (el 29
for p' < R and zero otherwise.

According to (25), A™! can be seen as a confinement-dependent length controlling
the size distribution of the jumps in the positive z—direction: larger values of A~!
will reflect in larger longitudinal jumps on average.

Figure 3.4 displays three realizations of the walk, when the reference jump length of
the unconstrained walk, ¢, increases with respect to the cylinder radius R, i.e. the
system transitions from weak to strong confinement.

The knowledge of the transition probability (25) allows for a direct sampling of
the constrained walk (see Appendix A.2 for details).

With this method, the complexity of generating trajectories is independent of
the strength of the confinement, and grows linearly with the spanned size of the
channel, and hence the average chain length. This allows us to produce large samples
of confined trajectories without rejections. This is especially useful in the strong
confinement limit (see Fig. 3.4), when the channel diameter is much smaller than the
jumps of the unconstrained process. In this case, virtually all free trajectories will
violate the constraints (see Appendix A.1). In analogy with the confined polymer
in the following we discuss, several geometrical properties of interest. The result we
obtained allows an efficient inspection of these properties going from very weak to
strong confinement.
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Figure 3.4: Different regimes of confinement. Monte Carlo simulations of a three-
dimensional random walk confined in a cylindrical channel of axis z and radius R. a)
Weak confinement, {; ~ 1073R. The confinement has no effect on the jump process. b)
Intermediate confinement, £y ~ 10~'R. The confinement starts to have an impact on the
walk. Regions with higher and lower than average density of bonds appear, namely voids
and blobs. ¢) strong confinement, £y ~ 2R. In this regime the walker is force to make very
straight jumps.

5 Geometrical properties of the confined chains

Exploiting the Monte Carlo algorithm explained in Appendix A.2 we studied several
geometrical properties of the confined walks in analogy to what is usually done in
polymer physics. But before showing the results we would like to spend few words to
describe how these walks relates to polymers. The jump process in the constrained
case corresponds to realizations of the free jump process that are entirely confined
inside the cylinder, with one of their termini being anywhere inside the allowed
cylindrical portion, C, corresponding to —H < z < H and p < R, while the other
is in the absorbing domain 7, i.e. at z > H and p < R . After performing the
limit H/R — oo, this ensemble of trajectories can be thought as consisting of very
long chains whose two termini (at i — +o00) are tethered at the opposite ends of
the cylinder. We then look at the statistics of a subportion comprised between two
tagged beads (i = 0 and ¢ = N, see Fig. 3.5). Notice that this is a different ensemble
from the one usually considered where the termini are unconstrained or for typical
models of tensioned chains. For the latter, in fact, both ends are at the boundaries
of the spanned region at sufficiently high tension, while in our ensemble only the
last step has to do so. Another aspect we want to stress is that the average jump
length varies as the degree of channel confinement increases. In standard polymer
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models the bond length is, instead, kept fixed as the degree of spatial confinement
or stretching is varied.

1 =10 1 =N

/

Figure 3.5: Eq. (20) is solved in the limit of an infinite cylinder. The ensemble we consider
here can be thought as consisting of very long chains whose two termini (at ¢ — +o0) are
tethered at the opposite ends of the cylinder. We look at the statistics of the trajectory
comprised between two tagged beads (i =0 and i = N).

With these differences borne in mind, we investigated the behavior of several
observables that have a straightforward interpretation in the language of polymer
physics: the mean extension of the polymer along the z-axis, L. = (zy —2), the end-
to-end distance Re. = \/{||xny — 20]|?) and the chain length L = (Zf\:ol |l wiv: — 4| )-
Note that, as we discuss later, the conformational selection due to confinement is
expected to make the average bond lengtho f the confined jump process, /., larger
than the free case one, (.

We have investigate the previous properties for different values of ¢;, ranging
from {; =9-107°R to {; = 3R.

Three distinct regimes are observed (see Fig. 3.4):

a) weak confinement, where the average bond length of the constrained walk is
still comparable to the free one, £y, and R.. < R. In this regime the metric
properties of the chain are only slightly perturbed with respect to the free case;

b) intermediate confinement, where the average bond length is still small relative
to the cylinder diameter but the end-to-end distance is comparable or larger
than it (/. ~ {y < R S Ree);

c) strong confinement, where the chain is affected even at the scale of individual
bonds, ¢, > {; ~ R.

In the left panel of Fig. 3.6 we show the scaling behavior of the end-to-end distance
as a function of the chain length. The blue curves are in the weak confinement case
while the red ones are for the strong confinement, while the yellow ones (and the
black circles) correspond to the intermediate confinement regime. The emergence
of two different scaling regimes becomes evident upon rescaling the chain length,
L — AL/m, which produces a nearly exact collapse of the data (see the left panel
of Fig. 3.6). Note that in the strong confinement regime, the end-to-end distance
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is proportional to the total chain length. This is reminescent of the Odijk scaling
regime for polymers that are strongly confined inside channels[18-20].

by
106 | 18 5
104 |
5.1071
Ree 102 [ ]
R 6.1072
1 4
-2 | B 2107
10*4 T T N N . L . . | . 09.1072
107 1072 1 102 10* 10% 107% 1074 1 104 108

L/R AL/(mR)

Figure 3.6: Ree behavior from weak to strong confinement. Left panel. Re. as a
function of L. Each colored curve is obtained as an average of 10* realizations of the walk
with a fixed value of the parameter £;. Right panel. Same as for the left panel, after
rescaling L — AL/m .

In the left panel of Fig. 3.7 we show the deviation of the average length /. of the
segments of the confined walk from the average length ¢ in the free case as a function
of the strength of the confinement 2R/{;. Under weak confinement ({; < R),
. is essentially equal to the mean length ¢; of the bonds for the free polymer,
whereas under strong confinement (¢; 2 R), (. increases exponentially fast (see
Appendix A.6). This behavior signals the appearance of long stretches of nearly
linear polymer configurations in the limit of strong confinement when the free average
bond length /; exceeds the channel radius R.
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Figure 3.7: Effect of the confinement on the average jump. Left panel: The ratio
beetwen the average jump length /. of the confined walker and the free jump length as a
function of the parameter 2R/{; (red). For £y < 2R, (. is essentially equal to the free jump
size £y (dashed line), whereas for ¢; 2 2R it increases exponentially fast. The black line
is its analytical expression in this regime (see Appendix A.6). Right panel: The extension
L./L as a function of 2R//.. Each value of L, and L is obtained over 10* realizations of
the walk with fixed parameter £;.

Another customary way to present results on the elongation statistics is given in
the right panel of Figure 3.7. It displays L. /L for different values of 2R //. expressing
the degree of confinement. We observe two main regimes, for 2R/{. smaller or larger
than 1. In the diffusive limit (¢ ~ ¢, < R), L,/L varies linearly with ¢./R, with a
slope that can be computed analytically in the diffusive limit (see Appendix A.5).

6 Fluctuations in the density of bonds along the
channel

Visual inspection of the confined paths (see Fig. 3.4) suggests that they are not
homogeneously dense along the channel but rather feature an alternation of densely
and sparsely occupied regions. To quantify this effect, we considered a measure of
the variations of the local density of bonds along the channel. This is defined as the
number of bonds that fall inside a cylindrical region of width A along the z-axis. In
particular we ask how this density deviates from a Poisson distribution, which is the
reference for a uniformly distributed point process. We selected a set of parameters
corresponding to an intermediate confining situation (see Fig. 3.4b). By projecting
the trajectory along the z-axis we build the empirical probability distribution to have
n points inside a region of width A. To explicitly highlight the presence of regions
denser than average we define the rescaled variable (n — (n))/o,, where (n) and o,
are respectively the mean and the standard deviation of the number of points n for
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a given width A.

— . homogeneous
- ~—{— low-density A—03R

p(i)

high-density

Figure 3.8: Voids and blobs. The curves represent the probability density p(n) for
n = (n — (n)) /o, in the homogeneous case (black curve) and for A = 0.3R (blue curve)
in the case /;/R ~ 1072.The encircled regions highlight inhomogeneities in the density
of bonds. The right tail indicates the presence of regions with higher density of points
and the peak at negative values stems from the presence of regions with lower density of
points. Plots for different values of A and comparison with analytical results are shown in
Appendix A.9.

Fig. 3.8 clearly highlights the presence of local inhomogeneities in the distribution.
In fact, the shape of the right tail suggests that in the confined process there is
a higher probability to have regions with higher than average number of points.
The location of the peak of the distribution also shows that less dense regions are
more likely in the confined case. As detailed in Appendix A.9 the shape of these
distributions is well captured by the diffusive approximation for the confined process.

7 Conclusions and perspectives

In this Chapter we proposed a general framework for the exact and efficient gen-
eration of constrained random walks. The formalism in its full generality can be
applied to all Markovian jump processes. In general, one has to solve numerically
the linear equation (8) and use its solution to obtain the transition probability for
the constrained process which can then be directly sampled by any suitable tech-
nique. Sometimes it is possible to obtain exactly the transition probability and gain
significant analytical control on the process and exceptional efficiency.

Inspired by the classical problem of polymer chains confined inside nano-channels,
which are still actively investigated for their rich metric and entanglement properties,
we have applied this method to a jump process constrained inside a cylinder.

For the purposedly minimalistic jump processes considered here, we have shown
that the proposed strategy offers an effective way of implementing confining con-
straints that would otherwise make the problem intractable with simple sampling
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(rejection-based) sampling strategies.

We also highlighted that the confined jump process is exactly equivalent to a
Markov decision process. In this respect we were able to solve the optimal Bellman
equation and find the optimal policy achieving the goal of reaching a given target
respecting a geometrical constraint. One of the properties of polymer models is self-
avoidance (i.e. the bonds cannot cross each other). The cost function we analyzed
here do not take into account any interaction cost between the jumps (i.e. the
walks in this case is not self-avoiding) and it would be very interesting to investigate
cases in which this interaction is taken into account allowing, if possible, to generate
configurations closer to self-avoiding polymers.

Following the analogy with search strategies, the agent perfectly knows its posi-
tion in the space of states (here the physical space) and has perfect representation
of where the target is located.

In the next Chapter we study an example inspired by bird navigation where
the knowledge of the environment and the target are both represented by partial
knowledge.
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Appendix A

A.1 Generating the constrained ensemble by re-
jection

Directly sampling a free random walk with exponentially distributed jumps accord-
ing to eq. (16) and then rejecting the trajectories that do not satisfy the constraint
of staying within a cylinder is very inefficient, especially for long chains and large
jumps. Figure 3.9 shows the efficiency of this brute-force method for different num-
ber of jumps and their length. The efficiency falls off exponentially fast to zero
as expected. Fig. 3.10 presents a summary of the results concerning the runtime
to sequentially produce one hundred trajectories using the rejection method and
the method described in this work. In the case of small jump length the rejection
method is impractical if one wants to explore the limit of long chains (see Fig. 3.10
right panel). The other limit is shown in the left panel where the jump length is
comparable with the confinement. In this case sampling few hundreds of jumps is
impractical. Using the rejection method, the runtime grows exponetially with N
in agreement with what shown in Fig. 3.9. The method we described in this work
instead presents a runtime that practically grows linearly with V.

€ 1 - If/R
10711 10°
10:2_ 4119 107
10_4' 10—1
10 " . . . : -1
5.10
0 2500 5000 7500 10000
N

Figure 3.9: Fraction of free chains that satisfy the constraint as a function of the number
of jumps. Colors encode the jump length and N is the number of jumps.
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Figure 3.10: The CPU time required to generate ensembles of 100 paths of length N
using the strategy based on Eq. (25) (red points) is compared with the one required by
the rejection method (blue points). The two panels correspond to different degrees of
channel confinement: ¢¢/R = 61071 and £;/R = 6 - 107! for the left and right panels,
respectively. In both cases, the runtime grows linearly with NV for the the strategy based
on Eq. (25), while it grows exponentially with N for the rejection method. As the chain
length is increased, this significant additional computational cost make the rejection scheme
impractical compared to the proposed strategy.

A.2 Monte Carlo simulation of confined trajecto-
ries
As the transition probability (25) is invariant under translation along the axis z, the

distribution of the walker positions in the transverse direction reaches a stationary
state:

_ J3(Ap)
Puulp,0) = 7 R2[J2(AR) + J2(AR)]’ (A1)

that verifies, for all p < R,

R 21
/ p'dp/ / A" q(p, 0|0/, 0") Pu(p',6') = Put(p,0) ,
0 0

where

27 +o00o 27
/ dd'q(p,01p',0") =/ dz/ Ao q(p, 0,z 0,0, 0),
0 —00 0

=m

o Jo(Ap) [ Lolexp) Ko(exp) it p>pf
Jo(A0) | Io(exp) Kolenp!)  else.

Starting from steady state (A.1) in the transverse direction of the channel, we then
generate confined trajectories using a direct Monte Carlo method with the jump
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process (25). To sample jumps from (25), we use the acceptance-rejection method
with the instrumental pdf

m2 e~ m [|lz1—2o0]|

- Aer—) | A2
f(ZL'1|CL’0) 47T||.I‘1—$0||C($0)e p1<R> ( )

where C(zg) = m? [1 — cxR Iy(capo) Ki(caR)] /ci. The cumulative distribution func-
tion (cdf) of Eq. (A.1) can be exactly computed thus sampling p does not represent
a computational bottleneck. The cdf for (A.2) cannot be expressed in a closed form
but this pdf is indeed simpler to sample due to the absence of the Bessel functions
of the first kind. For all zy and x; in the cylinder, (x| o) < k f(z1|2z0), where
k= C(po)/Jo(Apo), which sets the rejection threshold to

q(x1 | o)
k f(z1]z0)
Observe that this threshold decreases when the walk gets closer to the boundaries

(p1 — R) and closer to the diffusion limit (AR — zp1). It finally remains to show
how to sample from f(z; |xy). Using the change of variables

0< = Jo(Ap1) < 1. (A.3)

= |lz1 — o],
520081/:21_20 e[-1,1], (A.4)
tan(p = L y pE [_ﬂ-aﬂ-]y
1 — X
we can rewrite the pdf (A.2) as
5 m2 e—mé-i-)\Ef
— I A
f(z1|zo) A1 = Loy 47 C(po) tdedg de, (A.5)

where (*(xz¢,&, ¢) is the maximum length that a walker starting from x, can travel
within the cylinder in the direction given by (&, ¢): ¢* = b(zo,)//1 — &2, with
b(wo, ) = / R2 — pZsin®(p — 0y) — po cos(¢ — ). The joint probability density can
then be decomposed into three probability densities, one for each variable:

f(éa gv 90|x0> €2 = f(€|€7 2 l’o)f(g | 12 l‘o)f(gﬁ | Io)

where
(flplmo) = [ ede [1 dEf(L, € ¢ xo)
o Jorerde fe, €, o)
f(£|90> 0) - EQ f(gf?ou'.()))
( — > PR
S8 2 m0) = T ) o o)
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Starting from zy, we thus sample first the angle ¢ from

m2

f(@) = Qﬂ_cic(po)

{1 —exb(e) Kifeab(e)]}

then, given the angle ¢, we then obtain £ from the pdf

T = et 70 =20

Finally, the jump length ¢ is sampled directly from

(m — X&)? (e~ (m=28)¢ lo<or
— e~ (M= T + (m — N\E)*]

f(e1E9) =<

using the Lambert W function.

A.3 Constitutive equation for A\

m? 1 — e~ M= + (m — )]

(A7)

In this section we derive equation (24) that defines A. This is a parameter biasing the
average jumps along the z—axis and must be determined just once at the beginning

of each simulation.

In cylindrical coordinates x = (x,y,z) € R® is expressed by (p,¢,z) so that
Z(x) = Aexp(Az)Jo(Ap) with p = /2?2 4+ y2. Using (20) and integrating over z

equation (8) takes the form

—1Kp COS @

drdp,

_ 2
exp(Az)Jo(Ap) = m7e™ / 2w e =

The right hand side after integration over ¢ and ¢’ is

9] R
rhs= er’\Z/ dm%/ dp'p' Jo(kp") Jo(Ap')
0 0

/{2+m2—

1 K2—=)\2

Rewrltlng s ETy vl

m _ . .
e vl the previous integral becomes

R oo
rhs = e’\z[/ dp’p’JO()\p’)/ drrJo(kp)Jo(kp') @
0 0

0 R 2 2
—A
—/ dli/{JO(lip)/ dp’p'Jo()\p'Jo(lip')H—]
0 0

K2+ m?2 — )2

Thanks to the closure formula for the Bessel functions
| st htoe) = o = )1
0
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@ = e Jo(A\p)

Then in \&/ we can perform the integral in p’ (Lommel’s Integrals) that results in
% kJo(AR)J1(KR) — Mo(#R)Ji(\R)
= /0 drkJy(Kp) PR =0. (A.9)

The integral over « is known (Gradshteyn Ryzhik 6.577 2) leading to
JIAR)  vmZ = XK (RVm? — X2)
Jo(AR) — AKo(RVmZ—X?)

that is equation (24).

(A.10)

A.4 Asymptotic Behavior of \R

The left panel of Fig. 3.11 displays the behavior of AR as a function of ¢;/R obtained
by solving numerically Eq. (24). In the (diffusive) limit ¢/;/R < 1, A behaves as

)\RNZOJ( —;—%) > (All)

where 2y >~ 2.40483 is the first zero of the Bessel function Jy. In the limit {;/R > 1,
Eq. (24) gives the asymptotic behavior

1/ 0\ %
using that, in this limit, max (AR, vm? — A?R) <mR <1 and ¢\R ~ exp[—2/(mR)?].
Note that AR € (0, z0,1) and is a strictly decreasing function of ¢;/R.

2
)\RN—R

A12
gf ? ( )

A.5 Theoretical analysis of the polymer extension
L. = (zny — 2)

After relaxation to steady state in the transverse direction (see Appendix 5), the
generating function of the jump lengths z = (z;.1 — 2;) along the axis of the cylinder
is given by

G(s) = (%) = / h dz e¥ p(z), where (A.13)

—0o0

p(2) :/pdpdﬁ/p’dp’dG’ q(p', 0,2 p,0,0) Py(p,0) .
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Figure 3.11: Left panel: Values of AR (red) obtained by inverting numerically Eq. (24) for
different values of £;/R. The two asymptotic curves are also displayed: in blue, Eq. (A.11)
for £;/R < 1, and in black, Eq. (A.12) for the long jump limit £;/R > 1. Right panel:
Numerical estimates of 1 — L /L for different values of £;/R (red dot), compared with the
curve 1 — My /2 (in black).

Integrating, we obtain
2

m
Gls) = —5— i (A.14)
1492 [)\ J1K0 - C)\(S) J()Kl] [)\ Jlfo + CA(S) J()]ﬂ
(J2+ JE) (m? — 52 —2)s) ’

where ¢y (s) = /m? — (A + 5)2, K; = Ki[ea(s) R], I; = Lijex(s) R] and J; = J;(AR).
Finally expanding to first order at s = 0 leads to the expression of the mean jump
length along the z-axis, £, = (z) = G'(s)|s=0:

A2 ¢
_ My f
l, = 5 {1+g<2R)] ; (A.15)

where g is a positive and increasing function of ¢;/R that vanishes as {;/R goes to
0:

ff /\J1]0 + C)\J()]l

— | = Jo(2K, — cxRK3) + AR K A.16
0(55) = SR LKy - R £ ARKK] (A10
with J; = J;(AR), K; = K;(cAR) and I; = I;(cxR). We recall that both AR and
caR are functions of mR = 2R/{;. In the diffusive limit ¢; < 2R, AM; behaves
as O({;/R) (see Eq. (A.11)), and expanding (A.15) to first order thus yields the

asymptotic behavior:

_ o [ Uy b
fz = ﬁf [7 +o0 <ﬁ%):| 20,1 ﬁ . (Al?)
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This result is in agreement with the direct derivation for the diffusive case, where we
found the drift 2D X along the cylinder axis (see Appendix A.7). Since the process is
Markovian and is started from steady state, the mean extension of the polymer can
be decomposed as L, = N/, and the total length of the polymer as L = N/, (see
main text). Moreover, in the diffusive limit, ¢, ~ £, so that Eq. (A.17) becomes

L, (, Uy

LAY

. 20,1

which varies linearly with /R (see left panel of Fig. ?7). Note that, in the long-jump

limit mR < 1, the asymptotic expansion of Eq. (A.16) is

(mR)*
4

g(mR) = exp {(mZ;)Q} —1+0(mR)*. (A.19)

A.6 Numerical analysis

Polymer extension L, — Perhaps surprisingly, we observe from the numerical simu-
lations that Eq. (A.18) extends to any value of /;,
L l

fi l Z =2~ )2 A.20
Oor any £y, I gc 9 ( )
where A is now given by Eq. (24), as shown in the Right panel of Fig. 3.11 where
Eq. (A.20) matches almost perfectly the numerical data. In the long-jump regime
{y > R, using the expansion (A.12) for AR, we obtain

L 1 14 -2 (z—f)z
for ¢y > R, f ~1— 3 (—f) e \? . (A.21)

Mean jump length under confinement £. — Reformulating Eq. (A.20) with Eq. (A.15)
we can write:

for any ¢y, b~ Uy {1 +g (;—;;) } : (A.22)

which stays consistent with the numerical data (see Fig. 3.7). In the diffusive limit
we recover that (. ~ (¢, and, in the long-jump limit, using Eq. (A.19), we can note
the extremely rapid growth of ¢, as {;/R increases:

2
0. 1 [2RV 4(ﬁ>
fi < o= R A2
or ;> R, o 4(€f)e (A.23)
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End-to-end distance Re. = \/{||xn — z0||?) — In Fig. 3.6, each colored curve (fixed
value of /;/R) displays two distinct regimes: R, V'L for R.. < R and R, x L
for R.. > R. For polymer such that R.. < R, the polymer behavior can be modeled
by a Brownian walker under confinement, which yields,

R?, = 6Dt + (2\Dt)?, (A.24)

with t = N7 = (;L/4 and where the second term comes from the drift along the
z-axis resulting from the confinement (see Appendix A.7). Replacing the value of ¢,
we observe that this second term is negligible with respect to the first one, so that
R.. evolves as v6Dt:

Ree ly L
~a/3 =L 2

forRee<<R7 R ﬁﬁ7

(A.25)

the effect of the confinement on R, is not visible in this regime. For long polymers
R.c > R, we observe that R.. can be rescaled using L — A{;L/2 (see Fig. 3.6).
Note that this rescaling is valid only after a large number of jumps, N > 1, and is
not exact. Indeed, by definition we can write R = \/(L%) + ( (25 — 20)2) where L
in defined in the transverse direction of the cylinder. The rescaling does not apply
to (L?) in the long-polymer regime (see Fig. 3.12). However this is not visible on
ee, as, for long polymer (R.. > R), {(zn — 20)?) > (L%), and therefore R, ~
V{((zn — 20)?) that rescales for large N.

Now keepmg the number of jumps N fixed and varying the effective channel size
(see black dots in Fig. 3.6), we observe three main regimes. They result from the
overlap of the two transitions previously described, for R.. and L., and are summa-
rized in Fig. 8.

A.7 Brownian motion constrained inside a cylin-

der

In the continuum (I;/R — 0) the jump process becomes a controlled Brownian
motion for which an analytical description is affordable. The effect of confining
a Wiener process in the cylindrical channel C is subsumed by an additional drift
term [10], u(z), called control drift. The Langevin equation for the walker thus reads

i(t) =u(z) +V2Dn, (A.26)

where each 7! is an independent white noise. The behaviour of the confined Brownian
process then corresponds to the optimal (stationary) trajectories of this controlled
walker: we look for the optimal control drift using the Hamilton-Jacobi-Bellman
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Figure 3.12: Evolution of (L,)/R as a function of the rescaled variable A(;L/(2R) in
log-log scale. Each colored curve is obtained from 10* realizations of the walk with a fixed
value of the parameter ¢y (see scale on the right), varying the total length of the polymer
(from N = 1 to N = 10* jumps). Observe that the rescaled curves do not collapse for
values of (L )/R close to 1.

equation with a cost that takes into account the boundaries (see [11]). We find that
the drift u(z) takes the form:

Ji(Ap) .
Jo(Ap) "

u(p) =2DNe, — 2D (A.27)

where A = 291/R. As a consequence, the mean length travelled by the confined
Brownian walker in the direction of the z-axis during a time 7 is

l, = (z) =2DAT. (A.28)

For the process (19), where 7D = (7 /4, we thus expected to recover, in the diffusive
limit, that ¢, = )\Ef /2. For the same reason, we find that the mean-square distance
travelled in the direction of the z-axis during a time ¢ is given by:

(22(t)) = a(t)* + (2(t))> = 2Dt + (2D \t)*. (A.29)
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Figure 3.13: Summary of the results found analytically and numerically, for L, and ¢, in
the regimes R < £y and R > ff, and for R in the regimes R < R, and R > R... We
took the notations £; = £;/(2R) and /. = £./(2R). General expressions for L,/L and .,
found valid in any regime, are given, respectively, in Eq. (A.20) and Eq. (A.22).

A.8 Thelimit H/R — oo for the constrained Brow-
nian motion

The Laplace equation in cylindrical coordinates is
1 1
P p

The cylinder has a radius R and in the z direction it extends from —H to H. We
impose the following boundary conditions for the Laplace equation:

Z(R7 67 Z) :OZZ(p, 07 _H)
Z(p, 0, H) =1

The equation is separable and, looking for a solution of the kind Z(p, 0, z) =
P(p)©(0) ((2), it can be written as the following equivalent system of coupled ordi-
nary differential equation:

("(2) = N ((2),
0"(0) = —u* ©(0),
p*P"(p) + pP'(p) + (\p* — i*) P(p) = 0,

where here A and p are real parameters. The solution to the equation for ¢ which
satisfies the Dirichlet boundary conditions on the left end of the cylinder is

((2) = const x sinh[A(z + H)]
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The equation for © satisfying the rotational invariance about the longitudinal axis
of the cylinder selects the value u = 0 and is just a constant:

©(0) = const
Finally, the solution for P is the regular Bessel function of first kind of order zero:
P(p) = const x Jy(Ap)

the allowed values of A are all and only those for which P(R) = 0, so A\, = 20,/ R,
where we denote by 2z, the n-th zero of Jy(z).

Therefore, the solution of the Laplace equation in the cylindrical geometry specified
above is, dropping the 6 dependence,

ch sinh[zo, (z + H)/R] Jo(z0.np/R)

n=1

The vanishing conditions at p = R and z = —H is already implemented in the
solution, while the boundary condition Z|,_y = 1 fixes the coefficients ¢, as the
solution of

oo i 00 ) o
nJo(zont) = nJon(x) =1 Ver==¢€]0,1
;C 0(20,n) ;0 0n () z=5 € [0,1)

where ¢, = ¢, sinh[2 H 2o,/ R)].
The set {Jon(2)}52, is a basis of the set of function in the interval [0, 1) and they
are mutually orthogonal therein with respect to the measure du(z) = z dx 2

Jl(ZO,n)2

577’1/7’1/
2 ’

1
/ drx Jon(x) Jom(x) =
0

The coefficients ¢, are therefore found to be the (properly normalized) inner products
between the function f(x) =1 and Jy,(x) within [0,1):

N 2 /1d Jon(2) 2
Cp = ——= rxJon(z) = ————
J1(20)% Jo o J1(20.) 20n

so that the full solution Z of the Laplace equation is

(e 9]

sinh[z,, (z + H)/R]
Jl 20,n ZO,n SlIlh[QH 20,n /R]

JO<ZO,np/R>

n=1

In the limit H/R — oo (infinite cylinder) with finite z, only the first term of the

2For m # n one can use Gradshteyn-Ryzhik, 6.521, to check the orthogonality condition; for
m = n one can integrate twice by parts using d(x Ji(x))/dz = x Jy(x).
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Figure 3.14: The ratio between the coefficients of the first subleading term and the leading
one against the length of the cylinder L = 2H, in logarithmic scale: the suppression of the
subleading terms is exponential in L.

expansion can be retained:
Z(p, z) xexp(z012/R) Jo(z01 p/R)
The drift in the effective Langevin dynamics of the conditioned Brownian motion is

then
Ji(z01p/R)

w.(p, 2) =2DVlog Z(p, z) =2DXe, — 2D\ e,,
(p ) g (p ) JO(fZO,lp/R) P

where A = 291/ R.

A.9 Density fluctuations

To study the density of beads along the cylinder, we focus on the evolution of
the driven Brownian walker (see Appendix A.7) along the z-axis, described by the
stochastic process:

where dW; is the standard Wiener process. As described in Appendix A.7 the first
term is the drift along the z-axis due to confinement. Consider now the interval [0, A]
along the z-axis, we define the residence time of the walker therein as

(bA = /OOO dt IA(Zt> s (A31)

where | is the characteristic function of [0, Al], equal to 1 within the interval and
0 otherwise. In general, ¢ is a random variable, whose statistics depends on the
initial conditions of the process. Its moment generating function is defined as

Gal(s, z0) = <e_S¢A zo> (A.32)
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and satisfies the stationary Feynman—Kac equation

OG A R EIN
2D D =s | ) A.33
A 70 + Ozg s 1a(20) (A.33)

In Eq. (A.32), the average is taken with respect to the measure of the paths generated
by the dynamics in Eq. (A.30). The drift in Eq. (A.30), that drives the process
towards increasing values of z;, fixes the boundary conditions of Ga(s, 2o):

Ga(s, 20) — 1, as ¢a — 0
20— 400

(A.34)
Ga(s, z0) —> const(s).

Z0—>—00

The general solution of Eq. (A.33) then reads

Aje2 % 4+ B, for zog < 0
Gal(s, 20) = e (A e*™ — A_e %) for 2z € [0, A]
A, e % 4 B, for zg > A

where « = /A2 + s/D and the A; and B; are constants with respect to z5. The
conditions of Eq. (A.34) then set

A=0 and B.=1. (A.35)

The four other constants are uniquely determined by imposing continuity and dif-
ferentiability of Ga at zp = 0 and zy = A. Note that, for zg < 0, Ga(s, z9) doesn’t
depend on zy, and thus, the statistics of ¢a are independent of the specific value of
20-
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Figure 3.15: Probability density functions of the rescaled residence time d;A = (pa —
(¢a))/04, in the homogeneous case (black curve) and for decreasing values of A (colored
curves) in the case £;/R = 4.511-1072. As discussed in the main text the peak and the tail
of each curve highlight inhomogeneities in the system. The right tail indicates the presence
of regions with higher density of points and the peak at negative values stems from the
presence of regions with lower density of points. The theoretical result (dashed lines) is
also shown to be in extremely good agreement with data.

In our estimates of ¢, we are interested only in the case z; < 0, since the initial
condition of the process is always to the left of the interval [0, A]. Therefore, the
moment generating function of ¢ is given by the amplitude B;:

A\ o 6A(a+>\)

(a+ M) e2ba — (A —a)*’ (4.36)

GA(S, 20 < O) =

where we recall that a(s) = /A2 + s/D. Note that Ga can be written in the scaling
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form Ga(s) = g(A%s/D, A )), where g is

Av /U ¥ UQ eA(\/U+v2+U)
(Vu+ 0%+ '0)2 eVt — (X = Vu+ 112)2 .
In particular, the diffusion constant D can be absorbed in the scaling variable wu.

Hence it follows that the probability density of the residence time ¢a, denoted
FA(¢a), is given by the inverse Laplace transform

9(u, v) =

FA(CbA) = 2L7ri/d868(ZSA GA(S),

~

_ % 7 (DTQZA, A)\) , (A.37)

where f is the inverse Laplace transform of § with respect to its first variable. The
results are shown in Fig. 3.15.
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Chapter 4

Homing pigeons

A partially observable decision process approach

1 Homing pigeons: the phenomenology

Homing pigeons (Columba Livia) have been exploited as message carriers since an-
cient Egypt. Human interest in homing pigeons started with exploiting their ability
to carry messages covering long distances and evolved to a more scientific one with
the purpose to understand how they do it. Navigation in birds is a phenomenon
that involves many different spatial scales: from migratory processes where birds
covering tens of thousands of kilometers [1] to local pinpointing of target locations
mostly guided by vision. Homing takes place between these two spatial scales. Aside
from being a stage in bird navigation, homing can be operationally defined as the
bird ability to find its home when displaced to unfamiliar places. Very well-trained
racing pigeons have been reported to fly back home from distances up to a thousand
kilometers in homing pigeon races. A record flight for a U.S. Army pigeon is 3700
km in a single flight but single flights of 1600 km were routine.

Apart from these cases, in controlled experiments the spatial scale typically ranges
from fairly short distances (around 50 km) to distances that extend up to 400-500
km. Pigeons used in experiments usually are from 4 to 6 months old. They grow
in their home site (often called loft) and when displaced to unfamiliar distant places
they are at their first long-flight experience [2].

The “map-and-compass mechanism” proposed by Kramer in the 1950s considers
avian navigation as a two-step process (as in the human case). The map is a way to
identify the position relative to the goal. A compass serves to orient and maintain
the correct heading to reach that goal.

Kramer’s paradigm allowed to disentangle two different aspects of navigation and
to study them separately. In the following we will explain how, over the last decades
experimental evidence unraveled the role of the sun and the geomagnetic field as a
compass and gave to olfaction a special place in the map step [4].
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Figure 4.1: Three different phases of navigation. a. Mostly guided by celestial
cues and by magnetic maps long-distance navigation takes place on the scale of tens of
thousands of kilometeres b. The homing phase takes place on distances covering hundreds
of kilometers c. Pinpointing the goal is instead mostly local (up to tens of kilometers) and
guided by vision [Picture from Mouritsen (2018)]

1.1 Compass mechanisms: experimental evidences

In the 50s it became clear that pigeons could use the sun to determine compass
direction [2]. To keep the compass updated during the apparent movement of the sun
requires an internal clock. Coupling the internal clock with the apparent movement
of the sun means that at each time of the day they know where the north is with
respect to the sun position. With artificial day-night cycles it is possible to shift
their internal clock. As a result the angle at which they choose to orient is shifted
as well by a quantity predicted by theoretical reasoning (see Fig. 4.2).

Most importantly, the clock-shift experiments show that the sun is a fundamental
component in the pigeons’ navigation system and that its function is related only
to the compass aspect. Even if this mechanism tells the pigeon in which direction
it is flying it is not sufficient to reveal if that direction is the correct one. But
what do the pigeons do when they are released while the sun is covered by clouds?
An experiment by Keeton (1969) puzzled the community presenting results of clock-
shifted pigeons that could orient towards home in overcast sky conditions. This made
the community think about new experiments concluding that a backup compass
system exists. Other results obtained by Keeton brought the scientific community
to discover the role of the geomagnetic field as an alternative compass mechanism
highlighting the importance of the sun as a compass system only in conditions of
clear skies. The other effect was to definitely discard the hypothesis that the sun is
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Figure 4.2: Internal-clock shifting experiments Let us say our smartphone shows the
time 7. Control pigeons (e) know that they have to orient at an angle o with respect
to the position of sun. If at the same time T of the day we release clock-shifted pigeons
(o) previously exposed to an artificial day-light cycle (e.g. advanced by 6 hours) they will
keep an angle 8 equal to the one they would choose with the sun of 7'+ 6h (®). The
theoretical prediction is that their orientation will be at an angle o + § from the home.
The left panel shows the theoretical expectation. Right panel: experimental results. H
and H’ represent the position of the true home and the theoretical predicted one under
time shift. The arrows inside the circle represent the average direction of controls (») and
operated pigeons (>). [Adapted from [2]]

used both as a compass and a map.

A series of other experiments accumulated evidences that the earth magnetic
field is involved in the compass process when the sun is not available. In fact, Kee-
ton (1971) noticed that experienced pigeons with magnets glued to their head were
often showing disorientation when released under total overcast skies, whereas no
such disorientation occurred during similar releases under clear skies (see Fig. 4.3).
Walcott and Green (1974) equipped the pigeons with Helmholtz coils around the
head producing a magnetic field comparable to Earth’s magnetic field in two differ-
ent directions. The results can be summarized as follows: in the presence of the sun
both directions of the magnetic field did not produce any alteration on the hom-
ing performances but in overcast conditions the opposite directions of the artificial
magnetic field caused the pigeons to orient in opposite directions (see fig. 4.4).

Empirical evidence supports the conclusion that pigeons can use the geomagnetic
field to determine compass directions, like other birds do. Hierarchically, however,
the magnetic compass ranks lower than the sun compass, which is obviously preferred
as long as the sun is visible.
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Figure 4.3: Overcast skies homing. A) In the sun, the vanishing bearings of the clock-
shifted birds were deflected in the direction predicted by the internal clock and sun position
coupling. B) In overcast sky they were homeward-oriented without being significantly
different from the controls. Open symbols (> o) represent the controls in different days.
Filled symbols (» e) are the clock-shfted birds. MC average direction of controls MS average
direction of clock-shifted. [Adapted from [5]]

1.2 Olfactory navigation: experimental evidences

Now that the sun and the Earth’s magnetic field were identified as two compass mech-
anisms what was lacking was some environmental cue encoding the map. Between
1950s and 1970s geomagnetism, gravity, celestial bodies, infrasounds and different
others stimuli have been proposed to explain how pigeons could obtain positional
information [4].

Before 1971 a puzzling issue in the field of bird navigation was the nature of the
environmental cues providing pigeons with positional information. Papi et al. (1971)
reported that pigeons with sectioned olfactory nerves failed to home. Olfaction
appeared for the first time as a possible mechanism for encoding the map in homing
pigeons (see Fig. 4.5). Since that discovery, a large empirical evidence in favour
of the olfactory hypothesis has been accumulated [2, 10] inducing the conclusion
that olfaction is the decisive sense enabling goal-oriented navigation over unfamiliar
territories.

The most reliable method of making pigeons definitely anosmic is sectioning the
olfactory nerve. If done properly, no nerve reconstitution occurs and the achieved
anosmia is permanent. The involvement of the olfactory system in pigeon navigation
has not been exclusively demonstrated by lesion experiments. In the brain the piri-
form cortex receives a large projection from the olfactory bulb and sends projections
to numerous other regions of the brain. For this reason it is a good candidate to look
for olfactory stimuli processing in the brain. For the first time Patzke et al. (2010)
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Figure 4.4: Magnetic fields disturb homing. Left: A pigeon equipped with Helmholtz
coil producing two different magnetic fields (Sup, Nup as in [7]). Adapted from [8]. Right:
results from [7]. It is evident that in case of overcast skies, disrupting the sensed magnetic
field results in bad homing performances. In both Sup and Nup conditions the pigeons
home successfully in sunny conditions (A and B, home is a the top). In case of overcast
skies Sup could still orient home but Nup were impaired.

report that the highest number of ZENK-marked cells! in the piriform cortex have
been found in birds released from unfamiliar places or just exposed to the odors at
the unfamiliar site but not released. Instead, pigeons released from a familiar place
did not show significant activation.

In the following we would like to focus on a few simple but ingenious experiments
shedding light on the important role of olfaction in pigeon navigation.

Artificial winds and false release site experiments

A variety of different experimental approaches have revealed two preconditions that
must be realized in order to observe homeward-oriented flights of pigeons from un-
familiar distant areas:

1. during the long term stay at the home site the birds must be exposed to winds
bringing the surrounding odors

2. at release site the birds must be exposed to environmental air

1ZENK is an immediate early gene rapidly expressed in response to external stimuli. An in-
creased expression of the ZENK protein in certain brain regions can be directly linked to neuronal
activity
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MATERIAL AND METHODS

20 pigeons from the loft of the Zoological Institute of the University of
Florence were divided into two groups of 10, nearly equivalent in homing experience,

We severed the olfactory nerves of the experimental birds, while the controls
were subjected to a sham operation. The birds recovered quickly from the operation,
and the next day their behaviour in the aviary looked quite normal.

RESULTS AND DISCUSSION

olfactory nerves severed. The second hypothesis is that olfaction is directly
involved in the homing mechanism.
Further research is now being made in order to test these hypotheses.

SUMMARY

10 carrier pigeons subjected to olfactory nerve section showed ab-
normal behaviour when released 54 km from the loft and very poor
homing as compared with sham operated controls,

Figure 4.5: A snapshot of the paper by Papi et al. (1971) where for the first time the
olfactory hypothesis was mentioned as a possible mechanism for homing in pigeons

The first experiment we present modifies the conditions at the home site exposing
the birds to artificial winds and odors [12]. In one half of a corridor cage oriented
North-South, a group of birds (the “triangles”) were exposed to turpentine from
North and olive oil from the South. Another group (the “diamonds”) in the other
half of the cage was exposed to the opposite conditions: olive oil from the South and
turpentine from North. After the treatment, both groups were displaced East to an
unfamiliar place and exposed to turpentine and olive oil odors, respectively, before
the release.

Even if displaced East the “triangles” started flying North when exposed to olive
oil odor (the one that was coming from the South at the home site) and South when
exposed to turpentine (the odor that was coming from North at the home site).
Similar but opposite results were obtained for the “diamonds” demonstrating that
pigeons oriented their initial courses according to the associations they had made, at
home, between artificial odors and artificial winds. Fig. 4.6 summarizes the results.

Other experiments aimed to manipulate wind directions at the home site, because
winds coming from different directions were thought to bring different chemicals from
distant sources. In fact, experiments in which the wind direction was artificially
deviated at the loft showed a deflection in initial bearing at unfamiliar release site
positively correlated with wind deflection at home.4.7 illustrates the idea behind this
type of experiments.
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Figure 4.6: Artificial winds and odors. Left figure shows two tunnelsm one for the
“triangles” pigeons and the other for the “diamonds” pigeons. The tunnels are oriented in
the direction N-S as indicated by the arrow. “Triangles” are exposed to turpentine from
North and olive oil from South. The opposite happens for “diamonds” pigeons. The right
panel shows the results for pigeons displaced West and exposed to the odors experienced
at the loft. In summary, even if displaced West they oriented their flight North or South
depending on the type of odor they were exposed at the release site.

The second type of experiments we discuss is related to the exposure to odors
at the release site. A logical step was to disconnect the site at which pigeons smell
local air from the site of release. We can call these experiments false-release-site
experiments [2](see Fig. 4.8). The pigeon is transported inside a cage equipped with
air filters from the home site to a false release site. At the false release site the air
filters are removed and the pigeons are free to smell local odors for some hours. After
putting back the air filters they are transported to the true-release-site where they
are made anosmic and then released. Many experiments have been conducted (see [2]
and references therein) pointing always to the same result: the pigeons treated in this
way vanished in directions that were appropriate to the site of smelling but not to the
site at which they were actually released suggesting that at the false release site the
odor to which they were exposed encoded the direction of home. Moreover, on the
same line, other experiments highlight the fact that after sitting for an hour or more
in an airtight container ventilated with outside air at the release site, pigeons released
under nasal anaesthesia, behave differently depending on the pre-release conditions:
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Figure 4.7: Deflected wind cause rotation of homeward direction. Bottom panel:
using oriented barriers the winds appraoching the home from the soutern site are deflected
in such a way that inside the cage the wind is perceived in a rotated fashion. Top panel:
the initial homeward direction is correlated to the direction (see [2]).

if they had been allowed to smell natural local air, they depart homeward-oriented;
if the air had been filtered removing airborne trace gases, they depart disoriented.

In the last decades the numerous and repeated experiments revealed the nature
of physical cues and environmental factors crucially involved in pigeon home-finding
process. They can be outlined as follows:

1. a general reference direction can be determined using the sun azimuth or the
geomagnetic field with the sun dominating over the geomagnetic system in
clear sky days

2. the directions of the winds bringing odors at the home site are crucial to build
an angular map of odors with respect to the compass reference

3. atmospheric odors correlated with wind direction at home are used to navigate
or at least to orient the flight from unfamiliar places

4. in familiar areas navigation based on olfaction it is not the only source of

positional information; instead landmarks also play a role.

1.3 How Does Olfactory Navigation Operate?

This question is still unanswered but Wallraff has drawn on the experimental evidence
to propose a possible mechanism that could represent a navigation strategy for the
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Figure 4.8: False-release-site experiments. Left: a scheme of the rationale of the false-
release-site experiments. From the home site they are transported in purified air to the
false-release-site (FRS) where they are exposed to local air. They are transported again
in purified air towards the true-release-site (TRS) where they are made anosmic and then
released. Right: Two trajectories from two different groups of pigeons transported from the
home site (H) to the false-release-site at N (A) or S () and then to the true-release-site
R. The triangle pigeon exposed to odors at N headed South and the other familiar with
odors in S headed North. The outward path is represented by dotted lines. (see [2] for
more details).

pigeons. It consists of two stages, learning the atmospheric patterns at the home
site and then homing using the local knowledge learned at the loft. In the following
we introduce with an example learning and homing as depicted by Wallraff [13, 14].
Let us assume that there is a source of a chemical X (e.g. a forest) North of the loft.
Another source of the chemical Y is represented by the sea in the far East.

1. Learning: at the home site the wind blowing from North brings on average
higher concentration of X with respect to other compounds. Winds from East
instead correlates more with the compound Y. During the period spent at the
loft the pigeon learns to correlate wind directions? and concentration of odors.
In doing so, it builds a sort of angular map for the concentration of each odor.
At home the compound X will be identified by average concentration ¢x and
direction North and Y with ¢y and direction East

2. Homing: we can now release the pigeon North-West. It will perceive a con-
centration cx > ¢y and cy < ¢y meaning that it is nearer to the North and
farther from the East source of chemical. For this reason it will orient South-
East pointing homeward.

2The presence of a compass system ensure that the pigeon has a way to define a reference
direction.
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The idea of navigating using a bi-coordinate system seems a possibility in particu-
lar for long-distance navigation based on a geomagnetic field map. Animals familiar
with Earth’s magnetic field conditions at home may be able to use a grid of iso-
lines related to at least two parameters of the magnetic field to approach the goal
area. The precondition that the isolines must be on a regular grid and intersect
each other at appreciable angles is not always satisfied (“no-grid zones”) and even if
the geomagnetic field can be somehow exploited on long-distance navigation (thou-
sands of kilometers) it could not be the case for “local” homing (usually hundreds
of kilometers). In any case the geomagnetic grid navigation is still under scrutiny
especially for navigation tasks happening in the range of the one we are interested
in this work [3, 15].

Moreover due to high variability in space and time induced by turbulence a grid
based on atmospheric odors appears at first glance something infeasible but the ex-
perimental findings induced the hypothesis that ratios between several chemicals
transported by the atmosphere show roughly monotonic spatial gradients over dis-
tances of hundreds of kilometres. Wallraff and Andreae (2000) conducted an exper-
iment in Germany to test this hypothesis sampling the air at 96 sites regularly dis-
tributed 25 km apart from each other over an area covering a radius of 200 km around
Wurzburg (see 4.9 A). In three different summers, 192 air samples were collected,
and a statistical analysis of the gas chromatographic measurements on these samples
revealed that such gradients in the ratios between a number of omnipresent hydro-
carbons do in fact exist. Subsequent theoretical work based on these data [14, 17]
show how a pigeon can navigate from site to site (the sampled ones) comparing the
concentration of odors at the site with the one at home and transforming this scalar
information into a displacement taking into account the angular map of odors built
at home. In practice in the learning period for each odor X the pigeon determines a
direction gx from which it perceives the highest concentration for that odor X. Dur-
ing homing it obtains a flight direction as » y(cx —¢x)gx. Trajectories obtained in
this way are reported in Fig 4.9 D.

As the authors report this study aims to show that is possible to suggest a navi-
gation system that successfully exploit the information contained in the data of the
spatial gradients. To the best of our knowledge this attempt is the only theoretical
contribution in terms of algorithms to an open problem but it clearly suffers from
two main issues

e in practice the navigation occurs on static landscape and the source of spatial
information,even if interpolated, is restricted to a few site separated by 25 km
from each other;

e in general a real odor landscape would involve variability in time, as well as
in space, over timescale related to the winds’ daily variability. It can be that
the results obtained by [16] depend too much on the specifics of the particular
geographical area.
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Figure 4.9: A) Arrangement of the 192 sites around the pigeon loft (in the center) B)
two examples of spatial profiles obtained from the air samples and then interpolated to
obtain the landscape. The inset shows the spatial trend of each chemical along a given axis
(the angle reported in the top left corner) C) Computation of the bearing according to six
chemical compounds. D) Example of trajectories obtained using computed direction as in
panel C with 1 km spatial step and interpolated odor landscapes. The central black dot
is the home site. Dotted circle represent an absorbing region of radius 10 km. The other
black dot represents a stuck trajectory due to zero bearing vector.

In the next section we propose a theoretical framework with which we abstract the
process of home finding into a decision making algorithm keeping the fundamental
aspects highlighted by the experiments we exposed.

2 Finding home: a partially observable decision
process approach

The experiments summarized in the previous section state the following key aspects
about homing pigeon:
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e they have a compass system to fix a reference direction
e they can use odors to navigate the environment

e the learning phase at home is crucial for them to understand two quantities:
the average concentration of a given odor and its relevant direction bringing
on average higher concentration of that volatile compound

e manipulation of local atmospheric elements at the home site (e.g. deflecting
the winds or fooling the pigeon about the release site) results in disorientation
at the release site

Note that a necessary comment must be made about the last point. When pigeons
are exposed to rotated winds at home and then released at the unfamiliar site they
show initial disorientation. Even if vanishing bearing results (see Fig. 4.7) tell us that
they orient in the wrong direction with respect to home, looking at the trajectories
show that pigeons can correct their initial belief and eventually get successfully to
the loft. The same can be said about false-release-site experiments. We will comment
later on this aspect in relation to what we propose in our model.

2.1 Analytical solution for the one dimensional case

Now we would like to cast the home finding problem by pigeons in a dynamic odor
landscape into a Partially Observable Markov Decision Process (POMDP) as intro-
duced in Sec. 2.3. For the sake of simplicity we will start with a one dimensional
homing task in a single odor landscape, show its POMDP structure and then extend
the framework to the general case of two dimensional homing in the presence of many
odors. We consider an odor landscape represented by a large scale increasing gradi-
ent g on which we superimpose a Gaussian noise. This means that at each location
x the pigeon will perceive an odor

c(r) =gr+n

with n ~ N(0,02%) a Gaussian variable with zero mean and variance 2. Before
introducing the quantities to define the POMDP framework we define the task. We
fix the home site at x = 0 and without loss of generality the average concentration at
home will be ¢ = 0. Such an odor landscape can be considered a simplified situation
in which there is a source of odor far away from home in the positive axis (on the
right).

In this setting finding the home coordinate is equivalent to finding the zero of the
function f(z) = gz by means of observations ¢ that are independent and identically
distributed Gaussian variables representing the noisy odor signal the pigeon perceives
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during navigation®. Following the olfactory hypothesis (see [4, 10]) the general idea is
that the odor perceived at a given location encode somehow for the spatial coordinate.
The minimum number of odors needed will be related to the dimension of the domain.
In a one-dimensional navigation task one odor is sufficient but if we want to navigate
a two-dimensional environment at least two odors are necessary.

As we already said at the home site the pigeon can define a direction from which
the average concentration over time is higher. In this synthetic odor landscape we
can identify such direction with the positive direction of the real axis. To make
a parallel with what we previously said imagine to have a “one dimensional wind”
blowing on the real axis in both directions according to some periodicity. On average
this wind will bring higher concentration from the right then from the left. Anyway
the information about this direction does not bring any cue about the strength of g
and we consider g an unknown of the problem.

We can now define the POMDP and solve for the optimal Bellman equation
associated to it. The plan is the following:

1. we define the POMDP (see the box at the end of Sec. 2.3): the model of the
environment, the likelihood, the belief and the reward function

2. we write and solve the optimal Bellman equation that will give us the optimal
policy for the problem

We define the state 5 of the environment as the true value of the odor at location
x and the gradient itself

s=(s=ygx,g)
The model of the environment will be defined by

p(s'.dls, g,a) = 0(s" — s — ga)o(g' — g) (1)
where §(x) is the Dirac delta. Here a represents the action. In this case it can take
just two values: “left” and “right”. For the moment we do not fix its magnitude.
The other object to identify is the likelihood of the observation. Due to the structure
of the odor landscape, sitting at a location x with odor concentration s the likelihood
to get an observation c is

k) = Nols. o) = o |52 )

Finally we define the reward function to be dependent only on s:

r(s) = —s?

3we can think to define the functiion f(z) as an average of the observations ¢ conditioned to the

point z: f(x) = E(c|z)
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In this way the closer the agent is to home the higher is the reward. In this context
we can interpret the homing behavior as the tendency of the pigeon to be closer and
closer to the loft characterized by a given averager odor concentration *.

According to the Bayesian update eq.(2.11) of Chapter 2 the belief to be in a
given state s will evolve according to the model of the environment (1) and the
likelihood (2). Choosing a Gaussian belief means that the prior and the posterior
will be related by simple relations and moreover the belief will remain Gaussian. For
this reason we can take

b(5) = Yo M expl—3 (5~ )T M(5 70

where M is the inverse of the 2 x 2 covariance matrix with entries

(3)

where M*®9 = M9 and fi = (ps, 1ty) are the estimates for the odor level and the value
of the gradient respectively.

In this context the space of states s and observations ¢ is continuous. This means
that the ) and ) in the expressions discussed in Sec. 2.3 become integrals. Thus

MSS  MS9
M = {Mgs Mgg]

_ S dsbls, 9)U(clsp(s]5. 9,0) b —ga, 9)f(yls)
[ ds'dgb(s, g)(c|s)p(s'|s,g,a) [ ds'dgb(s’ — ga, g)l(c|s’)

that is still a Gaussian with covariance matrix M’
M/ss — Mss + 0_;2
M"®9 = M9 — aM** (5)
M"9 = M99 + a®> M** — 2aM*™

(4)

V(s gy, a)

These expressions come from the comparison of the second order terms in s and g
at the exponent of the numerator in eq. (4) (see Appendix 3).
Instead the average of the new belief will be defined by
W=+ apd + ale— (p° + ap?))

W= = Ble— (p° + ap?)]

with a and 8 the two learning rates

1 1
o= _Q(M/—l)ss ’ 5 — _2<M/—1)sg (7)

O¢ O¢

4We set s = 0 at the loft but in general the reward function can be redefined to be 7(s) =

_(5 - SHome)2
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According to these equations, an agent can start with an initial belief My,, and
use the observations ¢ to update the estimates for the covariance matrix M and the
averages 1 thus refining the belief.

The next step is to find a way to map the belief into optimal actions. This means
we have to solve the optimal Bellman equation associated to this problem.

But before we would like to cast the equations above in a more simplified form.
Starting from My = 0 (a completely flat belief) we can rewrite the recursive rela-
tion (5) as

SS t
Mt - O_—g
Ay
sg _ Tt
M == (8)
1[&E A2 1
M = - : 2 Af
t =z r(r—1) o(t—1)
with
t—1
At = ZT@T = At_l + (t — 1)at_1
7=0
t
1 A2
H, = - AN’=H, ¢
t 27(7—1) T

Using these relations we can rewrite the learning rates (B.28) and finally the equa-
tions that learn ug and p, take the form

Oztjtl
) . " A2 H-LN\ .
e = o+ ant) 4 g (10 S ) g G )
Ay HL 9)
t+ s
P = pi — ?fﬂ(y — (p + ap))
Bi+1

We notice that the learning phase will consist to estimate at home the local value
of the average concentration ¢ and the variance o2 of the odors. During the homing
phase to update the values of ;1 and pi4 is just sufficient to know the expression of
H~' (H has a simple iterative form) and A that can be updated on the fly.

In the general scheme of the POMDP the set of equations (8) and (9) represent
the state estimator part of the problem. We now have to look for the optimal policy.

Since the value function depends on the belief in this particular case it will be a
function of  and M. Since the reward does not depend on the action, the Bellman
equation in the box at the end of Sec. 2.3 can be rewritten as follows
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Vi, M) = / dsr(s)b(s) + 5y max, [ / del(cla)V (7, M) (10)

The expected reward takes the form

7= /dsr(s)b(s) = — (ul + M3}

We still have to define the nature of the action a. In this context we think it is
natural to define a as a discrete step size jump in the only two possible directions
thus a = +4. The expression for the expected reward gives us a hint on a possible
form for the value function V (@, M). In fact, if we make the ansatz

V(i M) = —A(p* 1’ + M) — Blusptg + M') = Clug + M,yy')

we can solve the Bellman equation provided that we choose

_ 1 2y _a*y(1+9)
AT Prar YT am )

The optimal value takes the form

_ 1 _ 2a _ 1+~ _
V* M) = — E M 1y s M 1y 2 2 M 1
(M? ) 1_,_}/(:1’61u _'_ ss) (1_7)2(M :ug+ sg) a (1_7)3(Mg+ gg)
(12)
and finally the optimal policy is defined by
a* = argmax, V — a* = —§sign (pspy + Ms;,l) : (13)

Notice that without the learning part expressed by eqs.(9) and perfectly knowing the
value of the gradient this policy corresponds to a completely reactive strategy that
uses only the noisy odor concentration to select the action. We will comment on this
in the following section.

2.2 Preliminary results in one dimension

In the light of this result we would like to interpret and discuss the paradigm summa-
rized at the beginning of Sec. 1.3 (see also Fig.1 of [10]). At the home site the agent
is exposed to the wind-borne odor. On average it will perceive higher concentration
from the right (direction +) and will fix the gradient to be positive. It also learns
the average concentration ¢ describing the odor at the home site. According to Wall-
raff’s algorithm [13, 18], when displaced far away from the loft, the bird compares
the odor concentration at the new location with ¢: if it is higher it goes left, if it is
lower it goes right. This reactive strategy can be translated into the update rule
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Ty =2 — §(c—70) (14)
where ¢ is the direction of the gradient and plays a crucial role (in this case
g = +&). If at home we reverse the wind the agent learns the wrong ¢ and the
update rule will always fail to bring the agent close to home (see Fig. 4.10 A). As
expected all the trajectories starting from both positions far in the left or in the
right with respect to home systematically diverge away from the target, defined as
a region of width A. This is not the case for the POMDP model. As it is shown in
Fig. 4.10 B all trajectories starting with the wrong value of the gradient are able. At
the beginning the agents keep the same wrong direction as in Wallraff and this effect
as expected is stronger the stronger is the belief that the gradient has that negative
value. In practice the two algorithms behave the same in the limit Mgg — 00.
Using the observations of the odor concentration the agent is able to learn both the
magnitude and the direction of the gradient, correcting the initial trajectory (see
Fig. 4.10 C,D respectively).

Another aspect that cannot be embedded in the update rule (14) is related to
the outcomes of the false-release-site experiments. In practice, the agent can gain
information about the local odor at the place where is transported but not released.
It means that its belief will be peaked around that value of concentration when
released from a different place.

2.3 Analytical solution for the multiple odors case

Navigation is obviously a task that take place in space and not in a line. Also the
atmosphere typically presents multiple odor sources. The model we presented in the
one-dimensional case has then to be extended to describe a situation with a generic
number n of odors in d spatial dimensions. We will follow the same steps we presented
for the one-dimensional case. Here the calculation are just more convoluted but the
idea behind it is exactly the same. In this case we would like to find the zero of the
multidimensional function F(x) = gz where x € R? F' € R" and g is a n x d matrix.

The states, hidden to the agent, are defined to be the value of the function
F = gx = s and the gradient itself

5=(s,g) seRMID (15)

We define the model of the environment exactly as in the one-dimensional case

p(s',g'ls, g,a) = 0(s" — s — ga)d(g' — g). (16)
The likelihood £(c|s) N(s,0?) of the one dimensional case will be replaced by the
multivariate Gaussian

.

els) = (2‘:3155 expl— (e~ 5)7K(c — 9) (17)
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Figure 4.10: Synthetic wind deflection experiments. A) This plot shows 50 trajecto-
ries starting from z¢g = £50 with § = —2. They all diverge from home (the region between
dashed lines A = 5) B) the figure shows 50 trajectories starting from z¢o = £100 with the
wrong initial gradient uf = —& and My, = 0.25. Highlighted in red a trajectory for which
the learning of the magnitude of the gradient and its direction is shown (panel C and D
respectively). o, = 100

where K ! is the n X n covariance matrix for the observations (in the one dimensional
case we had only ¢? quantifying the noise on the odor concentration). The belief is
the Gaussian

vdet M 1

V(31 M) = e b5 (5 )M~ 7) (18)

where i = (ps, ptg) is a n(d + 1) vector wtih the first n components given by the
vector ug of the mean odor concentration and the other nd components by the mean
gradient p,. Note that the n(d+1) x n(d+ 1) matrix M is a block matrix defined by

M= ( ( ]\%ﬁl)T %Qi ) (19)

59 99

and each block inverse in general is not the inverse of the block (for example M_! #
(Ms) ™).
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Now we have all the ingredients to compute the update rules for the parameters
defining the belief: the covariance matrix M and the mean p. We recall the belief
update rule to be

§) [ ds b(5) p(E'5, a)
/crwd b(s) p(E'5. )

t(cla)

(20)

We first focus on the numerator and then on the denominator. Recall that the
denominator ¢(y|a) is also called the evidence and is of fundamental importance to
write down the Bellmann equation associated to the problem. Exploiting the presence
of the (5" — s) in the model of the environment we integrate over the variable g and
s obtaining

el = W =)

The next step is to obtain the explicit update rules for the two variables defining the
belief: the covariance matrix M and the average 7. We skip here all the calculations
(see Appendix ?7) that are based on the fact that the numerator is a product of two
multivariate Gaussians and therefore the new belief & will be a Gaussian. To find
the new covariance matrix M’ of b’ we can collect the terms of quadratic order in &'
and g giving

(21)

M;S = MSS + K
Ms,g = Msg — M ® a’ (22)
Mg//g =Myy— My @a— My @ al + M, ® (aaT)

where a is the action represented by a d-dimensional vector and ® represents the

Kronecker product.
If instead we collect the terms linear in s’ and g we obtain

M. il + M/gug Mispis + Mygpy + Kc
Mggp + Mgty = Mosjis + Mgy — (M @ a)ps — (Myg @ a)pg

The solution for i and p, is thus

:u/s = Hs + pga + MS;lK [c— (us + Nga)]
fy = tg + My K e = (115 + p1g0)]
We can now write the Bellman equation and find its solution. In the one dimensional

case a hint to write a tentative form for the value function came from the form we
took for the reward function. Also in this case we will take a reward

(23)
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r(s)=—s's > 7= /ds r(s)b(s,g) = —pl g — tr M} (24)

As before the reward for the agent will be higher the closer it is to the reference
level (here taken to be zero at the home site). The optimal Bellman equation for the
scalar value function V' (b) = V (g, M) is

V (@, M) =T + ymax, [/ del(cla) V (@', M) (25)

To gain insight on the shape of V' in terms of M and i, without knowing the exact
expression for ¢(c|a) we can exploit the fact that (see eq. 21)

Ucla)V (5'|e,a) = b(s" — ga, g)l(c|s") (26)

and try to compute for example the expected value over all the observations ¢ of the
reward

/dcﬁ(c]a)(u;Tp;thngsl) = /dcﬁ(da)/ds’dg sTs'V (s, glc,a) use (26)
= /dcds'dgsTs’E(ds’)b(s’ —ga,g)

= /ds’ dg s'T's'b(s' — ga, g)

= / ds dg (sTs + 25Tga + aTnga)b(S, 9) (27)

=l s+ tr M+

N———

+ pt 1190+ (i prga)” + 2tr(M )+

+ (1ga) " pga + tr(aTMg_gla)
In this expression we recognize the reward (24). This result gives us a hint on how
to build the value function. In Appendix 3 we show that the form

V(i M) = = [ ALty + b M)+
+ By pga + tr(M'a)) (28)

+ Cla” 1) pga + tr(aTMg_gla))]
solves the Belmann equation provided that

gt g2 2049

1—v (1—9)2 (I—7)3
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Among a discrete set of predefined actions the optimal one will be defined by

at = argmaxa/dcﬁ(c\a)‘/(ﬁ’, M)
(29)

1
= arg min [uz,uga + tr(Msja) + ﬁ

(a” 1} pga + tr(aTMg_gla))}
Summarizing, Eqgs.(22) and (23) represents the analogous of Egs. (5) and (6). Ob-
viously, if we consider d = 1 and n = 1 the general expressions (22) , (23) and
(29) reduces to the ones we found in the one dimensional case with the substitution
K — 072. In fact, in the action selection rule (29) the second term in the sum will
give a constant contribution if the action has only two possible values a = 46 and
the tr(Mg'a) will be trivially equal to 6 M'.

Moreover it is not surprising that the algorithm can be rewritten in the same
recursive form already seen for the one dimensional case

Pt =l + [0y 4 Qy [ee — (ut + u;@at)}

(30)
M;H = N; + [Ct - (ui + /’Ltgat)] ® 5tT+1

where a; and ; are respectively a scalar and d—dimensional vector representing the
learning rates

1 1

and f; is the d—dimensional vector

1
Br = ;Ht_IAt

with the d x d matrix H;, and the d—dimensional vector A; having the expressions

t—1

At = ZTGT = At,1 + (t — 1)Gt,1

7=0
t

1 1
H, = — A QA =H, 4+ —A, AT
=) A @A = Hat A A
Thus also in this case the agent needs to keep only track of A; and H; to update the
belief and learn the covariance matrix K and the vector of concentration ¢ at home.
The algorithm proposed by Wallraff can be extended to the multiple odors case
and takes the form

T=2

Tip1 = Ty + Z gi(ci — )

81



where the sum is done over all the odors. As reported also by Wallraff this algorithm
can become inefficient when that sum comes close to zero giving a null bearing
direction. An example of an unsuccessful trajectory is reported in Fig. 4.9.

The theoretical result we obtained and the preliminary evidences in the one di-
mensional case open different directions to investigate. We will discuss them in the
following.

3 Discussion

Navigation based on noisy odor cues has been algorithmically approached in different
situation from the one we presented here [19, 20]. The situation of homing birds can-
not be described for example as the case of the moths searching for mates exploiting
a pheromone signal emitted upwind. In our case the target at which a pigeon is di-
rected does not emit any signal. Moreover pigeons home equally well with both head
and tail winds. Even if we cannot consider the home site as a source emitting odors,
it is however characterized by a given concentration of chemicals. To the best of our
knowledge regarding the particular case of homing pigeons, Wallraff [13, 18] was the
only one to propose an algorithm based on experimental evidences. This algorithm
can be translated into the update rule (14). However, this approach is not completely
consistent with the experimental evidence. Odors that are locally manipulated in-
duce the pigeons to lose the initial orientation towards home, but eventually they can
find their way home by correcting their route. Wallraff mentions that a completely
reactive strategy such as the one produced by that algorithm could result in a “quite
chaotic zig-zag course” and he proposes a way to correct this behavior taking into
account the trajectory flown by the bird up to a given point to update its new flying
direction. In Appendix 3 we show how the history of observations can be taken
efficiently into account at fixed gradient. In any case, the crucial fact here is that
once the pigeon learns the wrong cues regarding the gradients at home it can never
correct them using observations sensed along the trajectory. In our work instead the
“previous history” of the bird’s trajectory is taken into account in the space of odor
and gradient and their estimates can be corrected exploiting new observations. We
solved an optimization problem in a very particular scenario where the noisy mea-
surements are Gaussian-distributed and completely uncorrelated. The preliminary
insights coming from the very simplified case of a one dimensional navigation task
open different directions we would like to follow. A natural one we are already inves-
tigating is of course to study the properties of the algorithm in the two dimensional
case. A more intriguing one is to understand what are the performances in a more
realistic environment where the dynamics of the odors is driven by turbulence. We
will start to simulate the turbulent dynamics of two passive scalars representing the
odors (see Fig. 4.11 A). The odor landscape will present two profiles arranged to
have two large scale perpendicular gradients mixed by the turbulent velocity field.
In this case the synthetic pigeon will learn what is the angular profile of odors at
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home that will encode for the direction of the large scale odor gradients. The hom-
ing phase will then start from a point distant from the home site. A preliminary
setup is shown in Fig. 4.11B. The green and red gradient point in two different car-
dinal points, North and East respectively. Obviously the solution we found for the
POMDP in the Gaussian uncorrelated odor signals is optimal in that framework and
it only allowed us to qualitatively look at behaviors already highlighted in experi-
ments. We hope that the navigation in the turbulent environment will allow us to
make some more quantitative in silico experiments to validate the findings of the one
dimensional case. We also would like to see how the resulting trajectories correlate
with real data. The idea that memory and learning are managed by organisms in a
Bayesian fashion is not new. Experiments have shown that animals learn and make
decisions based on the strength of their beliefs, the reliability of cues, and the like-
lihood of outcomes integrating past and present information. [217 —23]. Olfactory
navigation in pigeons still constitutes an open problem with fascinating implications.
In a simplified situation our approach connected memory and learning directly to
optimal decision-making. We hope that the algorithmic approach we propose in this
work could open a new direction to investigate the phenomenon.
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Figure 4.11: Turbulent odor landscape A) Four snapshots of a turbulent environment
with two odor gradients. The green odor presents a W-E positive gradient perpendicular
to the positive S-N one of the red odor. The home site is in the center. B) Concentration
profiles for the two odors. The reference concentration is ¢ = 0 for both the odors. The
red concentration has a peak in the direction North and the green one peaks at East.
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Appendix

B.1 One-dimensional case

In this section we show the detailed solution of the Bellman equation in the one -
dimensional case with known and unknown gradient. As mentioned in the main text
the goal is to locate the zero of the function defined by f(x) = gz = s with Gaussian

distributed random variables representing the odor.

B.1.1 The case of fixed gradient: solution of the Bellman

equation

In the case of fixed gradient the state is represented only by s.
The POMDP is defined by the model

p(s'|s,a) = 6(s" — s — ga).
The likelihood is

{(c|s) = N(s,0%) = ! exp [— M},

\/2mo? 202

and the belief of being in state s takes the form

1 (s —p)?

b(s) = N(u,0?) = pr-Qﬁ ]

We also fix the actions to be a = £0.
The last ingredient to define is the reward function
r(s) = —s%

The belief update gives a new Gaussian N (u/, 0'?)

_ [ dsb(s)(els')p(s'|s. )

b/ !/ — — N /! 12
with
_|_
M:dﬂw fw+%]
o lof
1 1 1

o2 o2 Uz :

If we define 02/0? = T we can rewrite the update equations for  and o2 as
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T c c— (u+ga)
I_— —_— —_—
Wo=gmton)+ g =ptget —
T =T+ 1.

The evidence is

T+1
l(cla) = /dsds'b(s)f(c|s’)p(s'|s,a) = N(u + ga, ; 03).

The reward averaged over the belief is

0.2

r [asrtonts) = - - %

We can now write the optimal Bellman equation

V(p,T) = —p* — 0.7~ 4 ymax [/dcé(da)V(u',T’)
If we make the ansatz

V(p,T) = —bp? — dp — o2¢(T)

and substitute it inside the equation above we have

2
2 0-

—bp* —dp— o2(T) = —p* — =%
. : 2
7 min [b/dcé(da)u +
+d/dc€(c|a) u’]—l—
+a2(T').

Using (B.7) we get

2
—bMQ—CM—Ung(T):—Mg—%—Vmin b(pe + ga)? +d(p + ga) |+

a==0
2
— 2H(T") — bt
o) = b
Equating the terms of order u? gives
b=1/(1-7)

In the min operation a = +¢ is optimal if
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b(pt+ g8)* + d(p + g6) < b(p — g8)* + d(p — gd)
- d
=9
with d = ﬁgé obtained equating linear terms in y. Finally, the optimal policy
we obtain is

-0, p> 'YTQ‘S
with p that is updated by using new observation as
' = p+ga+aple— (u+ ga)l
1 (B.12)
T+1
In this way the choice of the action is not completely reactive according to the new
observation but it integrates the odor signal to have a more precise estimate of the

true odor concentration along the trajectory thus giving a more precise hint on the
position with respect to the target.

I
ap =

B.1.2 The case of unknown gradient

In this section we show the details of the solution of the Bellman equation

V(f, M) =T + vy max, [/ del(cla) V (@', M) (B.13)

to obtain eq. (12) of the main text.
The update rule for the covariance matrix M of the belief are

M/ss — Mss + O_y—2
M'$9 = M3 — aM** (B.14)
M99 = M99 + o> M*° — 2aM*?

and can be easily obtained by comparing the terms in s sg and ¢° in eq. (4).
The linear terms in s, g give respectively the two equations

C
! !
Mssus + Msglu“g = MSSMS + Msglug + ;

C

Mooty + Mggpig = Mospis + Mogpig — aMysprs — aMgpr,
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Using the update relations for M’ we can rewrite this two equations as

1
M [y — (ps + apg)] + M, (g — pg) = ;[c — (s — apy)]

C

Mg lpts — (s + apg)] + Mgy (py — p1g) = 0

thus
Mlg — Hyg 0
where
(ML MG\ 1 (M, M
—1 — Ss sg _ 99 <
M (M;s Még) det M’ (—M;s MS’S > : (Blﬁ)

Combining the previous two set of equations we obtain exactly the two equation in
the main text

Pt =t 4 ap? + ale — (07 + apf)]

W9 =p? — Ble— (p° + ap?)] (B.17)

with learning rates

M99 1 Ms9 1
- (MYHs — T (M"Y, B.18
“ T o det M o—g( A o2 det M’ ag( ) (B.18)

We can now solve the optimal Bellman equation. A relation that will be useful in

the following is
M/
det M' = det M + —52. (B.19)

O¢

to make the notation more readable we define

2= s Tt afg
det M’

—2 _ 2

4 _chetM

The evidence is

U(cla) =

—

ds'dgb(s' — ga, g)l(c|s")
(B.20)

- e ]

87



One term of the Bellman equation presents the [ dy f(y|a)V* (&', M) = Eya)[V"*]
that is the average value of the value function with respect to the evidence.
We can now compute Ef(c\a) [/’6/52]7 Ef(c|a) [M;2] and Ef(c|a) [M;M;]

Esoli?] = [ desi? b(cl)

= /dc[z2 +a®(c—2)* + az(c — 2)]

= 2>+ a’7 (B.21)
1 1
2 !
- o~ k)
(b g )"+ Mo\ Gor 37 ~ qecar
= =M+ g+ M+ a? (g + M|+ 2alpapeg + M|
from which
Eoe) 12" + M) = gy + M+ a®[pg + Mg + 2alpspy + M. (B.22)
The average value of M;Q over the evidence becomes
Evteio) 11g] = 11g + %07
1 1 1
2 !
=2+ M., - ) - . B.2
Mo = Moo\ Ger 07 ~ detar’) ~ o2det M (B.23)
= =My, + pg + My
from which
Evteay (i + M) = pi2 + M, (B.24)
For the average value of yy;, we can proceed in the same way to obtain
Et(elay [Hstty + M| = popg + Mgt + a(uﬁ + Mg‘;). (B.25)

If we now define

V(i M) = —A[p2 + M| = Blusptg + My'] = D[ + M,,']

the expression Eg(c|q) [V"*] inside the max, in the Bellman equation takes the form

Ev(ea) V"] = —A[pZ + M) — (a®?A+aB + D)[pspg + M| — (20A + B) [ + M,,'].

The 1.h.s. and r.h.s. of the Bellman equation are equal if
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2
Ao 1 B 2va, azy(1+7)

1—7 (1= = (1=9)p
Since we are in the one dimensional case and the only coefficient linear in the
action is B we have that the max, is selected by Ey[sg] = pspty+ M, thus obtaining
equation 13.

B.2 The general case of multiple odors

In this case following the same steps of the previous section we derive the solution for
the value function in the multidimensional and multiple odors case. As explained in
the main text the goal is to find the zero of the multidimensional function F'(x) = gz
by means of observations made about n Gaussian distributed and independent odors.
r € RY, F € R" and g is a n x d matrix. In this case the action a is a d—dimensional
vector.

The posterior belief is

b(s' — ga, g)¢(c|s")
{(cla)
with b(s, g), ¢(c|s) specified by eqs.(18) and (17) of the main text, respectively.
Collecting the quadratic terms in s and g we obtain, as in the one-dimensional
case

V(s gle,a) = (B.26)

M, =M, + K
M;g - Msg - Mss ® CLT (B27)
M, = Mgy — My ® a — My, ® a’ + M, @ (aa™)

where ® here represents the usual Kronecker product and K ! is the n xn covariance

matrix for the observations.
Collecting the linear terms in s and ¢ results in

MésM; + M;g:u; - Mss:us + MSQMQ + Ky
Mggpy + Mgty = Mspis + Mgy — (Mg @ a)ps — (Myg ® a)pg

Using the relations for the covariance matrix M’ we can rewrite the relations above
as

My = (s + prga)] + My (pg — pg) = Kle = (s — prga)]
Mg = (s + pga)] + Mgy (g — 1) =0
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from which the two equations (23) for y and p; follow.

The rationale we followed to solve the Bellman equation is exactly the same as
the one exposed in the previous section.

To solve

V =7+ ymax E@(C|a) [V’]

it is sufficient to note that

/dc {(cla) [,u;Tu’S +tr MY = (s + pga) " (s 4 pga) +tr M+ 2tr(Ms_gla) + tr(aTMg_gla)
/dc ((cla) [ ia + tr(ML a)] = (s + pga) " prga + tr(My'a) + tr(a” M, a)
/dc ¢(cla) [GT,U;TMIQG + tr(aTMégla)} = aT,ugTuga + tr(aTMg—gla).

For this reason the ansatz

V(7 M) = —Alpf po+te MY = Blul pgatte(My'a)] = Cla” ug nga+tr(a” Myl a)]
solves the Bellman equation if

1 2 1
A=— p=_“ D:M

1y (1-7)? (1—=7)*
The optimal policy is then defined by

a* = argmax V (g, M)
a
where a belongs to a set of discrete actions.
In this case the term involving the gradients influence the choice of the optimal
action at variance from what we found in the one-dimensional situation where that
term was contributing just a constant shifting the baseline of the value function.

B.2.1 Recursive relations

In this section we derive in the general case of n odors in d dimension, the recursive
relations for the covariance matrix M and consequently for the learning rates o and

B.

The two learning rates are defined by

o= Ly p= Ly, (B.28)

2
O¢ O¢
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We now find a recursive expression for M’

-1 -1 -1
e[ ) a5 5
Mgs Mgg Mgs Mgg
= (Mss)il + (Mss)ilMngilMgS(Mss)il _(Mss>71Mngil
_Q71M95<Mss)71 Qil
where
Q = Mgg - MQS(MSS)_1M89~ (B29)

In this case M is a (n + 1)d x (n + 1)d matrix with a n x n block Mg,, n x nd
block M, and nd x nd block My,. M, = MgTS.
Ifat=01is M =0 we have

M, =tK
M;g — —K ® At
with A; = Z’;ll Ta; = Ay—1+ (t —1)a;. Using these expressions in the definition
of M!M we can rewrite
1
Mgy = My, = ;K ® | Av1 Ay + AAT
Performing the telescopic sum we get

1
Mgy = K @ Hiy + K ® (MA])

where H; is a symmetric d X d matrix H; = 2322 ﬁATAZ =H, 1+ ﬁAtAtT.

Now that we have the recursive relations for each block of the matrix M we can
compute () that is then necessary to compute the inverse of each block of M. Given
the definition of () and the recursive expressions for M we get

Q=KoH —-Q'=K'®H!

Eventually the learning rates of eq. (23) have the following expressions
—1 1 L
Oét:Msusg(l—F?AtH At)
1
ﬁt — M;;lK - ;H;lAt

In the case n = 1 and d = 1 we have H — 0,2 and the expression for M1 is the
usual inverse of a 2 X 2 matrix.
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Chapter 5

Optimality of trace fossils

A look at their shapes through decision making
theory

1 Introduction

Most trace fossils represent what remains of the behavior of organisms that are rarely
preserved as body fossils. For this reason the morphology of the traces serves as a
proxy for the ethology of these organisms at the time the trace was produced. The
study of fossil traces left by soft-bodied organisms goes under the name of ichnology.
Ichnologists highlighted a very interesting point: the behavior exhibited by trace
fossils shows a diversification over geological time, showing an evolution towards more
optimized search and foraging patterns and the development of new strategies. The
first foraging trails present in the records show tracks that often cross themselves,
and indicate relatively crude foraging strategies (see Fig. 5.1). However, during
the “Cambrian explosion” (around 600 millions year ago), more regular foraging
patterns were appearing showing spiral fossils or “meandering” trails exhibiting high
complexity, compactness and high degree of self-avoidance (see Chapter 3 in [1]).
Seilacher [1] suggested that the evolutionary changes in trace fossils, particularly
those from the deep sea, involved optimization of feeding behaviour, increase in
complexity and compactness.
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Figure 5.1: Evolution of strategies. A FEarly traces (sometimes called “scribbles”)
showing high crossing rates B an example of a spiral C The planar nature of the spiraling
trajectories is part of network of spirals connected by straight trajectories D Examples of
meanders E Modern meanders and spirals trajectories produced by various species such as
limpets (grazing algal films), dragonflies and bark beetles (laying their eggs), acorn worms
and Praonis (in the sea bed), moths (Ogmograptis lying eggs on leaf or barks). [adapted
from [2, 3]]

The analysis of the fossil traces revealed that the behavior encoded in the trajec-
tories could be reproduced by using three simple rules (see Fig. 5.2)

1. Phobotaxis that forbids the worm to cross its own trail (or any other trail)
2. Thigmotaxis used to stay close to an existing trail

3. Strophotazris making the worm reverse direction (U-turn)

In the classification given by Seilacher [3] apart from all the details the categories
can be summarized into a few classes. Crawling traces which represent animals
moving without necessarily feeding; dwelling traces, interpreted as semi-permanently
occupied structures and finally grazing traces generally composed of meanders or
spirals and related to animals actively exploiting food resources.

Previous models [4, 5] focused on implementing a hard-coded strategy with the
three simple rules (see Fig. 5.2) in an if-then-else series of instructions and the
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Figure 5.2: Three basic rules. A Phobotazis causes the worm to avoid crossing existing

tracks B thigmotaxis forces the worm to stay close to a pre-existing track C strophotazis
causes the worm to make U-turns

fine tuning of some parameters allowed these models to reproduce meanders and
spirals. Hyphotesis about the factors that fostered the development of new and more
efficient strategies take into account both the evolution of sensing capabilities of
the organisms [6] and the distribution of food in the environment [7]. In another
approach Sims et al. (2014) following the optimality argument related to Lévy-like
search strategies, show that meanders can be considered optimal in that sense.

Given these premises, the question becomes how the organisms created the pat-
terns, and what kind of algorithms they employed to guide their movement. In the
following we will focus on feeding strategies showing how their structure can emerge
from optimality principles. We will also focus on how the interaction between sensory
capabilities and the surrounding environment shapes the behavior.

2 Scavenging in stlico

Given the context exposed above our goal was to understand if the rules highlighted
as fundamental building blocks in behavior of simple organisms could arise spon-
taneously without fine tuning of parameters. In particular we were interested in
understanding if spirals and meanders, the most common behaviors observed in the
fossil traces, could be described as the result of an optimal foraging process.
Following the evidences that early worms had very limited sensory capabilities
we wanted to understand how the strategies described above could emerge from
both very simple sensing modalities and learning algorithms. Reinforcement learning
serves as a natural framework in which to include the problem. Imagine, in fact to
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have a given patch of food and an agent that can sense the environment only in the
close neighborhood of its body. What kind of strategies will emerge if we ask the
agent to learn to act optimally with the request that in a given amount of time it has
to eat the most out of the patch ? Following Fig. 5.3 let us suppose that the agent is
represented as a disk of radius R. Moreover its sensitivity goes up to a distance Rj.
We wanted to study two situations in which the agent is only sensitive to directional
stimuli (sensing the average direction of food around it Fig. 5.3 A) and to the intensity
of the food ( Fig. 5.3 B). In both settings the agent represents the environment
into a discrete number N of states represented by one of the colored sectors in
Fig. 5.3 A. Actions are fixed to be in the set A = {go left, go straight,go right}
characterized by a turning angle 6.

"nose"

high

R
ye

low

A directionality B intensity

Figure 5.3: Direction and intensity sensing agents. A) The agent has size R and
sensitivity radius Rs. It represents the environment just looking at the average direction
of food in the vicinity of its body B) An agent with size and sensitivity radius as in A
representing the environment according to the intensity of the signal. In this case it is in
a gradient ( high concentration (red) - low concentration (blue) ) and the “sensor” that is
activated is the one colored in red.

We give the agent the goal of maximizing the food intake

T
Rr=> ' (1)
t=0

in a given amount of time T where r, is the food eaten at each time step ¢ and ~
is the discounting factor. In particular, the simplest situation amounts to consider a
greedy agent that wants to maximize the immediate return ry corresponding to the
case v = 0. At the end of each episode of duration T we reset the position of the
agent to a random position near the patch with a random orientation of the “nose”.
Among the different Reinforcement Learning algorithms we use SARSA that has
the characteristic of being an on-policy algorithm (see Sec. 2.4). Given the discrete
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nature of states and actions the agent will keep a tabular Q-function @), representing
the value of the state s given the action a. Concerning the policy 7(a|s) we use what
is called an e-greedy strategy where
a* = argmax, (Js,, Wwith probability 1 — €
7(als) = . . N (2)
a€ A—a*, with probability e

where epsilon represents a small probability. This allows the agent to follow the
optimal action keeping the exploration of new ones.

3 Results

Spirals and meanders

The first result we discuss is related to the agent that directionally senses the food
around. We tested the algorithm in two situations in which the agent has to exploit
a circular and a squared patch of homogeneous distribution of food both with linear
size L. We fix the the radius of sensitivity to be R; = 1.3R with the size of the
agent R = %L. The number angular states is N = 6 providing the agent a very raw
representation of the surrounding food distribution. The learning parameter is fixed
at a value a ~ % and € ~ 1073, The episode duration is in both cases T' ~ 1500
steps. The turning angle is fixed to be § = 20°. The Q-function is initialized at
Qsa = 0 Vs,a meaning that the agent is completely naive at the beginning of the
training.

The spirals appears in the circular patch at very early learning stages. On average
it takes 60 episodes for the agent to learn how to cover the patch using spirals. The
spirals that emerge present very high degree of compactness. A more tricky situation
is when the agent has to cover a squared patch. In particular the corners represent
a difficult configuration where the agent can be stuck (see Fig. 5.5). This is also the
reason why the average return is more noisy than in the circular patches. Eventually
spirals emerges with the optimal distance (d ~ 2R) between successive tracks.

Commenting on these findings we can say that these homogeneous distribution
of food and an agent capable of directionally sensing it in the immediate vicinity of
its body spontaneously show the emergence of thigmotaxis. In the following we will
see how the other two rules, i.e. strophotaxis and phobotazris emerge in the same
setting just changing the way the agent represents the environment and introducing
gradients in the distribution of food. In this case the agent is sensitive to the intensity
of food around its body (see Fig. 5.3 B) instead of representing the direction of food.
The other parameters are chosen as in the previous case. Clearly both strophotazis
and phobotaris emerges naturally in this context. At the early stages the agent
presents close to random strategies (see Gy to G3 stages in Fig. 5.6). At stage G
the agent starts to understand the structure of the gradient exploiting it upward. In
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Figure 5.4: Learning to optimally forage a circular patch. The plot on the left
shows the evolution of the total return as a function of the episode. Grey dots encode for
different realizations with their average shown as a red curve. On the right four different
stages during the learning. Sy show a case in which the agent is trapped on one half due
to wrong initial actions. Eventually the agent converges to the spiral. The small picture
below stage Sy shows the close packing of the trajectory.
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Figure 5.5: Learning to optimally forage a squared patch. The plot on the left
shows the evolution of the total return as a function of the episode. Grey dots encode for
different realizations with their average shown as a red curve. On the right five different
stages during the learning. The square patch is more difficult to learn since sometimes the
agent can be stuck in the corners then taking the wrong direction (Q2 @3 Q4). Eventually
the agent converges to the spiral. The small picture near stage Q5 shows the close packing
of the trajectory

the three examples of the final stage (G4 we see the other two fundamental behaviors
namely strophotaxis and phobotazxis as classified in Fig. 5.2.

At this point we ended up with two types of “sensory systems” producing the
three basic behaviors in two different environments. Thigmotazis spontaneously
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Figure 5.6: Learning to optimally forage in a gradient. The plot on the right shows
the trend of the total return across episodes of duration 7" ~ 1500 steps. In the early stages
(G1 G2 G3) the strategy is close to random. At stage G'g there is evidence that the agent
climbs the gradient. All the three snapshots of stage G4 highlight the emergence of both
strophotazis and phobotazis

emerged in an homogeneous environment in the case of an agent sensitive to the
average direction of food. Phobotaxis and strophotaxis behaviors were generated in
the case of a food gradient explored by an agent sensitive to the intensity of food.
It was natural to investigate what kind of strategies could emerge in the case of
homogeneous environment and an agent representing the food distribution according
to its intensity. Fig. 5.7 shows that spirals emerge again as the optimal strategy to
exploit the food patch.
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Figure 5.7: Spirals emerge again. Left panel shows the average return versus the episode
of an agent sensitive to the intensity of surrounding food (see Fig. 5.3). The red line is
an average over multiple realizations of the learning process. The arrows on the x-axis
pinpoint different episodes with trajectories reported on the right panel. H; and Hy shows
early stages trajectories. Hg refers to three different trajectories found in late episodes.
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Localizing a source

The approach we presented can be extended to train an agent to localize a source.
In the following, we will take a simple situation in which an agent is able to have a
representation of distant food patches. Imagine for example that the agent can track
a point that is representative of the food distribution. From very far away we can
take this point to be the center of mass of the food distribution giving an indication
of the overall position of the region where to point to reach the food. Closer to the
food region the agent will be more sensitive to closer patches and the center of mass
will turn to be an indicator of the position of these patches (see Fig. 5.8).

Far from food patches Close to food patches
high

3 a0
O
$0°% (ot
d
low l l
@ agent . . @

M "center of mass"

Figure 5.8: Center of mass representation. When the agent is far from the region where
the food is distributed the center of mass of the distribution is a good indicator. The red
point is the center of mass of the three patches closer to the higher concentrated patches
(the purple and yellow ones). On approaching the “center of mass” shifts to patches that
are closer to the agent. In this case the red point is inside the purple region.

First of all we can train the agent to localize a single patch in a given position.
The target is represented as a circle of the same size R of the agent. The episode
terminates when the target enters in the sensitivity radius R, of the agent. The states
are defined as the angular position with respect to the agent of the point representing
the food distribution. In this case we will take v = 1 and the reward will be r = —1
if the agent does not reach the target and r = 100 if it localizes it. The actions
are defined as before to be in the set A = {go left,go straight,go right} with a
given angle § = 20°. The training is summarized in Fig. 5.9. The fastest trajectory
is of course the straight line of length L joining the target and the starting point. We
track the performance comparing the agent’s trajectory (of length d) to L. In the
first stages (7} in Fig. 5.9) the agent crawls around without intercepting the target.
Eventually it finds the target getting high reward. This last event is propagated back
to previous states and finally the agent learns to reach the target at each trial (73 in
Fig. 5.9).

As we said before in the case of multiple targets we can imagine that if the agent
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Figure 5.9: Learning to localize the target. The plot on the left shows the performance.
L is the length of the straight trajectory. d is the length of the actual trajectory. On the
right panel we show two stages of the learning. An early phase 77 where the agent is not
able to localize the target. T5 instead refers to the stage in which the agent has learnt to
associate the right sequence of actions to the states. A target of size R equal to the size of
the agent is in the middle of the picture. Each trajectory refers to a trial.

is far away from the food distribution the target position can be represented by the
center of mass of the food distribution. Instead, when closer to one of the patches the
target has to move closer to that particular patch mimicking the fact that the agent
will give more credit to closer patches. For this purpose we can think of describing
the position of the target xr as

> wildi)x;
1= S d) ®)

where the weights w;(d;) express how strongly each patch contributes to the center
of mass when the agent is at distance d; from the patches'. We can take the weights
to be of the form

I
T ep Nd—dy)] ()

where f is the intensity of the signal from each patch as perceived from an infinite
distance, I is an amplification factor, dy is a cutoff distance below which the agent
starts to be very sensitive to that patch and A\ a decay constant quantifying how fast
the “signal” fades away with the distance. The results are presented in Fig. 5.10. In
this case we only show the trajectories of the trained agent that follows the policies
learnt separately.

w(d) = f

"'We can think of dividing each patch into small parts of intensity f;. Each part will contribute
with a weight w;(d;) where d; is the distance between the agent and the small part.
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Figure 5.10: Foraging multiple patches. Results obtained in the case A = 0.5 dg = 200
and I = 103. The agent has size R = 10 and sensitivity radius R, = 1.3R. When it is not
in direct contact with the food it follows the policy to search the target. As soon as it gets
to one target it switches to the feeding behavior.

4 Discussion

Raup and Seilacher (1969) were the first to propose a series of hard-coded rules to
reproduce trajectories observed in trace fossils. In particular the worm they simulated
could move straight ahead, turn toward or away from a preexisting track, or make a
full U-turn (they forced a turn of 180° according to some random event). Building on
this work Prescott [5] showed that a robot equipped with two lateral sensors gave rise
to patterns such as spirals and meanders without specifying the U-turn. In this case
a series of predefined events triggered for example a U-turn according to user-defined
time-out between one turn and the next. A U-turn was completed as soon as one of
the two sensors came in contact with an already deposited track. Moreover to produce
spirals and meanders two different architectures were designed (see Fig.3 and Fig.6 in
[5]). These approaches were successful attempt to validate the assumption that three
very simple rules such as thigmotaxis, strophotazis and phobotazis are sufficient to
classify and explain the behavioral traits of fossils, drawing possible connections with
the evolution of a very simple central nervous system coordinating action selection [6].
Another line of investigation [7] relates the behavior to the characteristics of food
distribution. In particular the statement is that the variability in patterns observed
in the fossils may represent and be caused by spatial differences in the distribution
of food resources.
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The algorithmic approach we proposed shows how the strategies resulting in the
spirals and meanders often observed in trace fossils can emerge just by requesting
the agent to be optimal in the sense of food intake maximization within a given dis-
tribution of food. The interaction between sensing capabilities and the surrounding
environment is also crucial. As the primitive organisms had limited sensory capabili-
ties, the action selection algorithms must have been fairly simple. In this respect the
choice of a Reinforcement Learning approach based on simple learning algorithms
able to be implemented in very simple organisms® showed to be successful in ex-
plaining the observed behaviors. Moreover, we also showed that learning to search a
target can be approached in the same framework as well. One aspect that remains to
be investigated is the effect of the discounting factor v (here we considered the case
7 = 0). We found that a greedy agent that wants to maximize just the immediate
reward can learn to make spirals and meanders. It can be that the time horizon
over which the agent wants to optimize its behavior could play a role in shaping the
strategies. Another interesting question could be to understand what kind of search
processes appear when an agent faces a more complicated distribution of food with
respect to the one it exploited in our examples. Moreover, our approach considered
directional sensing in a discretized way. Eucaryotic organisms able to measure spa-
tial gradients and navigate the environment using chemotaxis respond to directional
stimuli showing a very well-defined shape of the response function [10]. Another
direction we will investigate is to take into account this experimental fact by means
of what is called value function approximation. In this kind of reinforcement learn-
ing approach the value function is approximated using continuous functions and it
would be really interesting to connect the ingredients of this approach to the internal
chemical pathways of an organism dedicated to sensing and locomotion.

2Here we refer to organisms in general including also the ones that are not equipped with neuron-
like structures (see Ref. [9])
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