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Abstract  

The cellular form of prion protein (PrPC) is a ubiquitous component of both the central and 

peripheral nervous systems from early stages of development to adulthood. Its misfolded isoform 

PrPSc is the pathological agent of prion diseases, a group of fatal neurodegenerative diseases. PrPC 

has been suggested to play different roles in neuroprotection, synaptic activities, neuritogenesis and 

metal homeostasis. Particularly, we were interested in its neurotrophic function and molecular 

mechanism involved the prion protein (PrP) with the process. By combining genomic approaches, 

cellular assays and focal stimulation technique, we explored PrP could act as a guidance cue, 

attracting the growth cone (GC) protrusion forward and eventually neurite outgrowth.  

In the study, we made different forms of the recombinant prion proteins (recPrP) from mouse 

without GPI anchoring residues mimicking secreted forms of PrPC. Our data suggest that full-length 

and wild-type recPrP(23-231) protein, not its truncated forms at N or C-terminal (23-90, 23-120, 

89-231), could attract GC turning toward the protein source and enhance neurite growth in a dose-

dependent manner. recPrP may act through homophilic interaction with the GPI-anchor PrPC and 

form trans-signaling complex with neural cell adhesion molecule (NCAM) on the target cells to 

induce multiple intracellular signaling cascades known for cell growth including the Src-family 

kinase Fyn, extracellular regulated kinases MEK-ERK and phosphatidylinositol 3-kinase (PI3K).  

In addition, we discovered the functional sites for PrP function as a signaling molecule in 

neuritogenesis lying directly on N-terminal copper binding sites by mutating these residues to 

partially or completely prevent copper binding. In detail, minimal change in the copper binding site 

could lead to changes in the protein structure preventing PrP from functioning correctly and 

disrupting all the copper-binding sites at the N-terminus could turn the protein to be toxic to 

neurons. Especially, copper coordination at non-octarepeat (non-OR) region was shown to be 

essential for PrP to activate the proper growth signaling. GSS-linked mutation P102L (P101L in 

mouse numbering) that impacts indirectly to non-OR copper coordination could also abolish the 

function of PrP on neuritogenesis. Altogether, our findings indicate the crucial role of copper 

binding sites in maintaining functional structure for PrP interaction in neuritogenesis and suggest a 

potential link between loss-of-function of the protein and prion disease initiation. 

Key words: prion protein, neuritogenesis, growth cone, copper binding site 
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CHAPTER 1 – INTRODUCTION 

1.1. Research statement 

Transmissible spongiform encephalopathies (TSEs) or prion diseases is a group of fatal 

neurodegenerative diseases found in both animals and humans which is featured by gliosis, 

neuronal loss [1, 2] and synaptic degeneration [3]. The prion protein has been believed as the 

only proteinaceous agent causing the disease by converting from its cellular form (PrPC) to PrPSc. 

In the past 20 years, more than 280,000 cattle suffering from bovine spongiform encephalopathy 

(BSE) – a common type of prion disease [4]. In addition, transmission of BSE to humans have 

been considered as the reason of more than 200 cases of variant of Creutzfeldt-Jakob disease 

(vCJD) [5].  Although the epidemics of prion disease in animal have been in control and cases 

found in human are also rare, occurrences of the diseases are still found from time to time, for 

example a rise of chronic wasting diseases in elk and deer in the US [6] or cases of vCJD caused 

by blood transfusion [5]. Moreover, prion protein is getting more attention since it may mediate 

the neurotoxicity effect of amyloid beta (Aβ) oligomers that are associated with Alzheimer’s 

disease [7, 8]; and prion-like mechanism has been proven in other neurodegenerative diseases [9] 

and even metabolic disorder [10].   

Thereafter cellular prion protein (PrPC) has been noticed widely in neurobiology research not 

only for its central role in prion disease and related disorders but also for its emerging function in 

the central nervous system (CNS) such as neuritogenesis [11], cell adhesion [12, 13], memory 

and cognition [14], neuroprotection [15, 16] and metal homeostasis [17]. For the reason, it is 

proposed that prion pathogenesis may involve alterations in the physiological function of PrPC. 

Although loss of PrPC function cannot, by itself, account for prion-induced neurodegeneration 

since PrP knockout (KO) mice do not develop prion disease [18]. However, it is possible that a 

loss of function mechanism exacerbates pathology caused by a toxic gain of function or other 

mechanisms [19].  

PrPC can be secreted from the cell membrane and released to the extracellular space through 

distinct mechanisms [11]. Therefore, PrPC can interact with neighboring cells either in a soluble 

form or in exosomes, which are released by cells upon fusion of multivesicular bodies [20]. It 

has been suggested that the secreted form of PrP may contribute to neurotrophic activity and 
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promote neuritogenesis [11]. This phenomenon may help explain about loss in neuronal 

connection in prion diseases probably due to malfunction of PrP in neuritogenesis.  

Therefore, attempts to study mechanism of neuritogenesis driven by soluble form of PrP will 

broaden important knowledge of emerging PrP functions in CNS which eventually can be 

helpful for understanding prion pathology and suggestions for therapeutic interventions.  

1.2. Objective 

Considering the potential importance of PrP role in neuritogenesis, we would like to investigate 

molecular mechanism on which extracellular PrPC complex forms and induces intracellular 

signaling to guide neurons in that process. Taking advantage of a recently developed local 

delivery technique of molecules encapsulated in phospholipid vesicles [21-23], we combine with 

genomics manipulations to provide deeper mechanism of PrP function in specific neuronal 

compartment such as growth cone (GC) in addition to previous evidence from traditional cellular 

assays [24-26] . We also aim to explore which are the relevant components of the molecule for 

its function.  

CHAPTER 2 – LITERATURE REVIEW 

2.1. Prion diseases 

Although prion disease is a group of rare neurodegenerative diseases, there are various types 

caused by different prion strains in both animals and humans. Despite variety of phenotypes and 

incidences, this group of disease is commonly believed to be caused by a unique proteinaceous 

agent, so called prion [27], that is resulted of pathogenic conversion of a highly conserved 

cellular prion protein PrPC from α-helical structure to β-pleated sheet one [28, 29]. Common 

neuropathologic changes in prion diseases includes vacuolation, astrogliosis, and PrP deposition 

[30]. The diseases can occur by three mechanisms: spontaneous (sporadic), genetic (familial), 

and acquired (infectious/ transmitted) [31].  

In humans, these diseases are Creutzfeldt-Jakob disease (CJD), Gerstmann-Strussler-Scheinker 

(GSS) syndrome, Fatal Familial Insomnia (FFI), and kuru. CJD accounts for approximately 85% 

of human prion diseases which are mostly sporadic and heritable [30]. Different types of CJD 

includes sporadic, familial, iatrogenic and variant CJD. Sporadic CJD is an acute disease and 
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predominantly at late middle-age around 60s with unknown cause [32]. The 129M/V 

polymorphism on PRNP gene and two types of protease-resistant prion proteins are the major 

determinants of neuropathological phenotypes in sCJD [33]. Iatrogenic and variant CJD (vCJD) 

are acquired prion diseases from neurosurgical instruments in transplantation or treatment and 

from food consumption respectively [34]. vCJD has earlier age of onset and more prolonged 

duration of illness than in sCJD (~13months) and featured by psychiatric symptoms and memory 

impairment [34, 35]. Higher prevalence in UK for vCJD is found with risk factors including 

young age and methionine homozygosity at codon 129 (129MM genotype) [34]. Remarkably, 

over 40 different mutations of PRNP gene have been shown to divide with the genetic human 

prion diseases [30] (Figure 1). Familial CJD (fCJD) as well as GSS occur inheritably as 

autosomal dominant trait with high penetrance and can transmit a scrapie-like disease to animal 

model with brain extract inoculation [36]. Insertions of two to nine additional octarepeats as well 

as point mutation E200K have been found in individuals within fCJD pedigrees [30]. Mutation 

D178N coupled with polymorphic V129 also causes fCJD with clinical signs including dementia 

and widespread deposition of PrPSc [30, 37]. Notely, point mutation at codon 102 (P102L) was 

found in unrelated families with GSS syndrome from several countries [30, 38, 39]. Other GSS-

linked mutations include P105L, A117V, G131V, Y145Stop, Q160Stop, P198S, D202N, Q212P, 

and Q217R [40]. GSS typically begins at 40s to 60s age and progress slowly with cerebellar 

dysfunction, unsteady gait and/or mild dysarthria [40]. FFI similarly presents in midlife (40–50 

years) with the onset of insomnia, a progressive sleep disorder that is ultimately fatal [30, 40]. 

The pathogenic mutation D178N if coupled with M129 results FFI instead of fCJD [37]. 

Concernedly, human-to-human transmission of prion disease is as well documented and occurred 

either through oral or mucocutaneous route of infection, for example from ritual cannibalism as 

in kuru [33, 34].  
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Figure 1 - PRNP gene polymorphisms and mutations. All mutations are associated with a 

CJD phenotype except those in bold (GSS), solid box (FFI or CJD, depending on codon 129 

genotype), and dotted box (CJD phenotype but variable pathology). Adapted from [40] 

In mammals, some well-known prion diseases include scrapie in sheep and goat, bovine 

spongiform encephalopathy (BSE), chronic wasting disease (CWD) in mule deer and elk [30]. 

Scrapie was probably the first prion disease documented since 1732 from which the infectious 

prion protein was named (PrPSc). Thanks to species barrier, humans are resistant to scrapie 

whereas laboratory animal models such as hamster and mouse are susceptible [30]. BSE was 

emerged in United Kingdom in early 90s probably due to prions-contaminated food supplement 

[36]. It has been suggested that a single prion strain responsible for BSE has infected humans, 

causing variant CJD (vCJD) [33, 41]. In classical BSE (BSE-C), the non-glycosylated PrPSc band 

migrates at ~17 kDa while in atypical BSEs, the band runs 0.5 kDa lower in low-type BSE (BSE-

L) or 1–2 kDa higher in high-type BSE (BSE-H) [42]. The mean incubation time for BSE is 

approximately 5 years [30] while atypical BSE can be much shorter (less than two years) [43]. 

Atypical BSE is characterized by the presence of PrP-amyloid plagues, opposite to typical BSE, 

and to be similar with sporadic CJD (sCJD) [33]. The three natural host species for CWD are 

mule deer (Odocoileus hemionus), white-tailed deer (O. virginianus), and Rocky Mountain elk 

(Cervus elaphus nelsoni) and native to North America [44].The incidence of CWD in wild 

cervids was estimated to be as high as 15% [30]. CWD is infectious, transmitting horizontally 
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from infected to susceptible cervids potentially caused by shedding of prions in the feces or 

saliva [44]. 

2.2. Prion protein  

2.2.1. Structure  

Cellular prion protein (PrPC) is a glycoprotein that is ubiquitous in mammals. It is mostly 

expressed from early to adult stage in central and peripheral nervous systems. Mature PrPC 

molecules are normally localized on the cell surface attaching to the lipid bilayer via a C-

terminal, glycosyl-phosphatidylinositol (GPI) anchor Ser-231 [45].  

The premature PrP peptide is composed of around 250-254 amino acids that is encoded by a 

single chromosomal gene Prnp. After biosynthesis, it is processed at endoplasmic reticulum (ER) 

to remove a signal peptide with N-terminal 22 amino acids and 23 C-terminal residues upon the 

addition of the GPI anchor [46, 47]. The protein is also N-linked-glycosylated at Asn-180 and 

Asn-196 (mouse numbering) prior to being secreted to the cell membrane.  

Mouse and hamster prion proteins contain a C-terminal globular domain that extends 

approximately from 121-231 [48] and 125–231 [46] respectively and an N-terminal flexibly 

disordered structure. The globular domain contains a two stranded anti-parallel β-sheet and three 

α-helices [49]. α2 and α3 helices are connected to each other through a disulfide link between 

residues 178 and 213 (mouse numbering). The flexible N-terminal tail is characterized mainly by 

five tandem repeats of eight amino acids forming an octarepeat region (OR) with the motif 

PHGGGWGQ and a hydrophobic linker region, also called hydrophobic domain (HD) [50]. 

(Figure 2) 

 

Figure 2 – Schematic representation of full-length, non-glycosylated form of major mouse 

prion protein MoPrP(23-231). The protein structure consists of five octarepeat regions (OR) 

and hydrophobic domain (HD) at the unstructured N-terminal; two short β-sheets (β1 and β2) 

and three α-helices (α1, α2, α3) with disulfide bond between α2 and α3; and GPI-attached at 

Ser231 at C-terminal.  
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The region from 50 to 111 residues at N-terminal sequence are claimed to bind metal ions such 

as Cu(II), Zn(II) or Mn(II) by the histidine residues at the OR and the adjacent site denoted as 

non-OR region (His95 and H111 - human numbering) [51, 52]. Although the metal-free 

PrPC (apo-PrPC) is natively unstructured at the N-terminal (Figure 3) but different 

stoichiometries of metal binding can impart different structures of this region (called ‘component 

1’, ‘component 2’ and ‘component 3’  [50, 53] (Figure 4). 

 

Figure 3 – apo-PrPC structure with unstructured N-terminal tail. β-stranded antiparallel 

sheets are marked in yellow and α-helices are in pink. Modified from pdb: 2LSB 

 

Figure 4 – Different conformation of N-terminal PrP domain. Different stoichiometries of 

metal binding at the N-terminal of PrP leading to potential different structure with 

interchangeable component 1, 2 and 3 geometries [50] 
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2.2.2. Proteolytic processing 

After removal of the N-terminal signal sequence (aa 1-22) by signal peptidases in the ER and the 

C-terminal signal sequence for the attachment of the GPI-anchor (aa 231-254), mature PrPC can 

be subjected to diverse proteolytic processing including α-cleavage within the neurotoxic domain 

(aa 105–125 in mice), β-cleavage around the residue 90, and shedding near the plasma 

membrane to release almost full-length PrPC into the extracellular environment [54]. (Figure 5) 

The α-cleavage is carried out by members of the ADAM (A Disintegrin And Metalloproteinase) 

enzyme family, including ADAM8, 10 and 17. ADAM8 cleaves PrPC at residue 109 (primary 

site) or 116 (minor site), while ADAM10 and 17 cleave at 119 [55]. Cleaving by ADAM8 at 

residue 109 (mouse numbering) yields two fragments, soluble N1 fragment of 11 kDa and a 

membrane-bound C1 fragment of 18 kDa [56, 57] although it was controversial ADAM10 was 

primarily responsible for this cleavage as well [57] and role of ADAM8 was proven mainly in 

muscle tissue [58]. Of note, this cleavage destroys the neurotoxic and amyloidogenic domain 

comprising aa 106-126. C1 can be glycosylated and is present in the normal human brain in 

substantial amount [56]. It has been shown that C1 could play a modulatory role as dominant-

negative inhibitor of PrPSc formation probably because C1 competes with wild-type PrP for 

binding to PrPSc seeds [59]. However, in vitro study suggested that C1 potentiates staurosporine-

induced caspase-3 activation through a p53-dependent mechanism displaying a pro-apoptotic 

function [60]. Conversely, compelling data suggesting N1 fragment is antiapoptotic, possibly 

acting through the inhibition of caspase-3 [55, 61].  

The β-processing which was believed to be done by ADAM8 [55] is to make N2 (9 kDa) and C2 

(20 kDa) fragments [57]. This cleavage appears to be driven by reactive oxygen species (ROS) 

[62, 63] that was proposed from these in vitro studies to be as a protective mechanism by the cell 

in response to oxidative stress. A longer C2 fragment that harbors the neurotoxic domain was 

thought to be conducive to prion replication since it is the main proteolytic product found in CJD 

brains [56]. In fact, C2 shares common features with the protease-resistant core of PrPSc denoted 

as PrP27-30 (i.e. detergent insolubility and the electrophoretic mobility) [57, 64]. The protective 

role of β-cleavage was suggestively modulated mainly by N2 fragment. N2(23-89) attenuated the 

production of intracellular ROS in response to serum deprivation and its activity depended on 

copper occupancy [65].  
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Recently a study by Lewis et. al. identified a potential γ-cleavage site on PrP producing C3 

fragment of less than 10kDa. C3 is preferentially produced from unglycosylated form of PrP by a 

matrix metalloprotease. Even though the investigation was performed mainly with an engineered 

murine PrP (Myc-PrP), C3 was detectable readily in human sporadic CJD brains. [66] 

 

 

Figure 5 – Sites for proteolytic processing of PrPC resulting in (I) N1, C1 fragments by α-

cleavage gives or (II) N2, C2 by β-cleavage at the end of the OR region or (III) nearly full-length 

PrP by ectodomain shedding from the membrane close to the GPI-anchor. N-terminal signal 

sequence (aa 1-22) for directing the premature peptide to the ER and the C-terminal signal 

sequence for the attachment of the GPI-anchor (aa 231-254) are indicated as grey box; OR 

region (aa 51-90; dark green); a neurotoxic domain (aa 105-125; red box); a hydrophobic core 

(aa 111-134; dotted box); a disulfide bridge between aa 178 and 213 and two variably N-

glycosylated sites aa 180 and 196 are also illustrated. [57] 

2.2.3. Secretion 

A secretory form of PrPC was first evidenced since 1987 in the study with Xenopus oocytes and 

cell-free system [67]. Those experiments demonstrated that PrP was secreted as a soluble 

monomeric protein, not oligomer. Later, the relevance of this form was confirmed to be present 

in human cerebrospinal fluid [68]. A substantial amount of soluble PrPC is also found in the 
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culture medium of splenocytes, cerebellar granule cells and in murine and human serum [69]. 

This secretion was suggested to be different from membrane budding [67] and happened after 

several possible mechanism. For example, ADAM10 could act as a sheddase to proteolyze the C-

terminal component of PrP at position 227 (murine numbering) to release it from the GPI 

component [27]. Full-length PrP could be shed from the cell surface via phospholipase C 

cleavage of the GPI anchor [70] which mechanism is usually mimicked in vitro by usage of 

bacterial phosphatidylinositol-specific phospholipase C (PI-PLC). PrPC could also be released to 

the extracellular space after loss of its GPI-anchor by post-translational modifications [71]. 

PrP secretion and its physiological relevance therefore has been implicated for its role in 

neuronal processes and spreading of prions. For example, soluble PrP was suggested to act as a 

neurotrophic factor promoting neurite outgrowth and neuronal survival [24, 72] thanks to 

different studies mimicking the function by using recombinant PrP [11]. Additionally, soluble 

PrP Fc fusion was shown to delay PrPSc accumulation and replication proposing its 

neuroprotective effect in prion disease [73]. On the other hand, infectious transgenic mice 

expressing anchorless PrP developed different amyloid pathogenesis with “new strain” of 

protease-resistant PrP (PrPres) and co-expression of wild-type PrP and GPI-negative PrP 

accelerates scrapie disease [74].  

Secreted forms of PrPC and PrPSc were both identified in exosomes and microvesicles (MVs) 

released from different cell cultures as well [20] which may contribute to intercellular spreading 

of prions. PrPC was found in association with the lipid raft components in MVs from plasma of 

healthy human donors and culture supernatant of murine neuronal cells. In the same study, 

scrapie infected cells released PrPSc-containing MVs that could propagate prions in vitro and in 

vivo [75]. Interestingly, exosomal PrPC was proposed to have neuroprotective role by 

accelerating fibrilization of toxic oligomeric Aβ42 into non-toxic Aβ aggregation [76].  

Overall, secretion of PrP molecules may contribute significantly to both physiological and 

pathological conditions.  

2.3. Physiology of prion protein (PrP) in central nervous system (CNS) 

2.3.1. PrP and memory 
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A role of PrPC in memory retention was early assumed from studies with comparison between 

wild-type animals to the knockout model. One of the first attempt was published since 1997. The 

authors found PrP-/- mice showed a significant disturbance in long-term memory retention and 

could not performed properly in the water-finding test indicating a disturbance in latent learning 

at nearly 6-month old [77]. The involvement of PrPC was suggested to be age-dependent. While 

3-month-old mice showed no difference between groups, 9-month-old Prnp0/0 mice showed a 

clear impairment of short- and long-term memory retention [78]. In the same study, similar 

pattern could be observed in rats by infusion with anti-PrPC antibody indicating the impairments 

were not a consequence by genetic ablation side effect yet by the loss of PrPC function. 

Additional evidence came from the study by Criado R.J. et. al. in which PrP knockout mice from 

both homogenous or mixed background had deficits in hippocampal-dependent spatial learning 

and reduction in long-term potentiation in the dentate gyrus. Intriguingly, it was possible to 

rescue those phenotypes by re-expressing neuronal PrPC [79]. 

Molecular mechanisms for PrPC involvement in memory were investigated through interaction 

between PrPC and its partner such as laminin (LN) and stress-induced protein 1 (STI1). 

Interfering interaction of PrPC and LN by using LN-binding-site PrPC173-192 peptide or either 

anti-PrP or anti-LN antibodies could impair memory consolidation probably by inhibiting the 

activation of hippocampal adenosine 3′,5′-cyclic monophosphate (cAMP) ‐ dependent protein 

kinase A (PKA) and extracellular regulated kinase (ERK1/2) signaling [80]. In turn, blockage of 

PrPC-STI1 interaction with intrahippocampal infusion of PrPC or STI1 antibodies or PrPC peptide 

106–126 that spans the binding site for STI1 to PrPC (aa 113-128) [81] inhibited both short and 

long-term memories for which performance could be enhanced by STI1 peptide 230–245 

covering the PrPC binding site [82].  

Important roles of PrPC in memory and cognition was found in human subjects as well. 

Polymorphic Val129 codon was associated with worsened cognitive performance in the elderly 

whereas healthy young adults expressing Met129 exhibit better [14, 83, 84]. Surprisingly, recent 

study pointed this function of PrP appears to be conserved among animals since zebrafish 

knocked out of PrP gene (prp2) showed an age-dependent memory decline [85]. Overall, 

compelling evidence support PrPC as a significant component for memory formation and 

retention, especially during aging.    
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2.3.2. PrP and synaptic development 

One of the first evidence for the presence of PrPC at synaptic structure was shown from 

colocalization of PrPC with the presynaptic vesicle protein synaptophysin using immunogold 

electron microscopy technique [86]. Later, Herms J et. al. used synaptosomal fractionation 

methods and immunohistochemical techniques which were claimed as a less destructive way to 

detect PrPC expression in different brain tissue and confirmed that location of PrPC is 

predominantly on the presynaptic plasma membrane rather than on the synaptic vesicle 

membrane [87].  In the same study, the authors could not detect PrPC in the post-synaptic density 

(PSD) probably since postsynaptic PrPC could be expressed only in particular type of neurons 

and at specific type of synapse. Indeed, the immune-reactivity for the protein was found more 

pronouncedly in Purkinje cell (PC) post-synaptic dendrites than in other type of cerebellar 

neurons like granular cells [88]. The expression of PrPC in either pre- or post-synapses supports 

its potential function in synaptic regulation depending on specific type of synapses and inter-

neuronal sites (Table 1). 

Table 1 – Distribution of PrPC-immuno-reactivity in the cerebellar synapses of the mouse 

and the hamster * [88] 

Asymmetric 

synapses 
PRE/POST 

Symmetric 

synapses 
PRE/POST 

PF/PC + 

- 

- 

+ 

PR/PC + 

- 

- 

+ 

PF/IN + 

- 

- 

-/+ 

SC/PC - + 

CF/PC + 

- 

- 

+ 

BC/PC - -/+ 

CF/GD + - GO/GD - - 

MF/GD + -    

* Presynaptic (PRE) or postsynaptic (POST) immuno-reactivity (+) is observed in the 

asymmetric and the symmetric synapses in the cerebellar cortex. (-/+) indicates occasional 

labeling. BC: basket cells, CF: climbing fiber, GD: granule cell dendrite, GO: Golgi neuron, IN: 

interneuron of the molecular layer, MF: mossy fiber, PC: Purkinje cell, PF: parallel fiber, PR: 

recurrent axon of Purkinje cell, SC: stellate cells.  
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PrPC was found to localize on the surface of elongating axons and its retrograde transport is 

increased during axon regeneration [89-91]. Developmental expression of the protein in 

elongated axon in olfactory and hippocampal neurons is increased significantly after birth and 

maintained at high level in adult [89]. This evidence strongly suggest for PrP role in axonal 

growth, synaptogenesis and synaptic plasticity. It has been shown, furthermore, PrPC regulates 

synaptic plasticity or long-term potentiation (LTP) through postsynaptic cAMP-dependent PKA 

signaling in developing hippocampus [92].  

PrPC expression at synapse was also linked with copper concentration since the latter was found 

being reduced by half in synaptosomes collected from Prnp0/0 mice and could be rescued in 

Prnp-reconstituted Prnp0/0 mice (tg20) [87]. This suggested for PrP function in synaptic copper 

homeostasis thanks to its copper-binding ability which will be discussed later in this thesis.  

2.3.3. PrP and neuroprotection 

The function of cellular prion protein in neuroprotection was early proposed from the 

observations in PrP null mice that showed to be more vulnerable to oxidative stress and 

apoptosis than the wild-type [93-95]. Deletion of PrPC in vivo caused impairment in anti-

apoptotic PI3K/Akt signaling and elevation of apoptotic caspase-3 activation in ischemic brain 

injury [94]. Markers for protein oxidation and lipid peroxidation were also found higher in brain 

lysate of Prnp-/- mice [96]. Furthermore, these mice in model of experimental autoimmune 

disease exhibited stronger proinflammatory cytokine gene expression such as IFN-γ and IL-17 

accompanied with loss of spinal cord myelin basic protein and axons suggesting protective role 

of PrP in neuroinflammation [95].  

Different studies had linked PrPC and modulation of N-Methyl-D-aspartate receptors (NMDAR) 

as a neuroprotective mechanism. Taking advantage again of PrP-null mice, Khosravani et. al. 

explored that hippocampal slices prepared from these mice exhibited more neuronal excitability 

associated NMDAR activity which eventually mediated neuronal cell death; and overexpression 

of Prnp gene could rescue this phenotype. The study also pointed out PrPC negatively modulates 

NMDAR by direct inhibition of its NR2D subunit [97]. Thereafter, this interaction of cellular 

prion protein and NMDAR was proven to be copper-dependent which copper binding to PrPC 

reduced affinity of co-agonist glycine to the receptor [98, 99]. A detailed mechanism of the 

signaling complex between PrPC, copper and NMDAR was already elucidated in the study by 
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Gasperini L et.al. The explanation is as following and summarized in Figure 6 adapted from the 

paper. PrPC may bind copper usually released at the synapses. Then PrPC-bound Cu2+ can oxidize 

NO to NO+ and be reduced to Cu+. NO+ can react with extracellular cysteines thiols of NMDAR 

subunits resulting in the S-nitrosylation of the receptor which is inhibitory and helps protect 

neuron from excitotoxicity [16]. 

  

Figure 6 - Mechanism of PrPC-mediated S-nitrosylation of NMDAR. According to this 

model, binding of copper ion to PrPC facilitates the reaction of NO with thiols group on GluN1 

and GluN2A subunits leading to the S-nitrosylation, thus inhibiting NMDAR channel. Copper 

and NO ions could be released from the post-synaptic terminal after NMDAR activation by 

glutamate released from the pre-synaptic cell. [16] 

Intriguingly, soluble alpha-cleaved N1 fragment of PrP displayed neuroprotective function both 

in vitro and in vivo as well. It protects HEK293 cells, mouse cortical neurons and rat retinal 

ganglion cells from staurosporine-induced apoptotic caspase-3 activation and oxidative glucose 

deprivation respectively; reduces pressure-induced ischemia cell death in the rat retina by down-

regulating p53 activity [61]. N1 can also bind early oligomeric intermediates during Aβ 
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fibrillization and strongly suppress Aβ oligomer toxicity in cultured hippocampal neurons and in 

a mouse model of Aβ-induced memory dysfunction [100]. 

2.3.4. PrP and neurogenesis 

In 2006, Steele AD et. al. published strong in vitro and in vivo proofs for involvement of PrPC in 

neurogenesis. Firstly, they found PrPC expression was strongly high in the neurogenic region 

adjacent to proliferative subventricular zone (SVZ) and increased during neuronal development 

and differentiation. Secondly, PrPC level positively correlates with neuronal differentiation from 

multipotent neural precursors in vitro and increases cell proliferation in vivo in SVZ and dentate 

gyrus (DG) where neurogenesis actively happens during development and adult stage. Although 

the study could not detect a direct increase in overall neurogenesis in these regions by PrPC level, 

its important role in this process of mammalian CNS is unneglectable. [101] 

It was then shown that the ablation of PrPC reduced the number of neurospheres inferring the 

protein role in neurosphere formation, in other words, self-renewal capacity of neural 

progenitor/stem cells. Moreover, the augmentation in proliferation of these cells by PrPC was 

proven to be dependent on its interaction with STI1 [102]. PrPC – STI1 interaction was also 

discussed in memory formation in previous section. The involvement of PrPC in both processes 

may represent additional evidence to support the relationship between adult neurogenesis and 

new memory formation [103].   

Overexpression of PrP could enhance neurogenesis in the ischemic mouse model after 28 days 

post-stroke [104]. Although the authors also observed higher neurogenesis in the knockout brain 

slices comparing to the wt ones, this consequence exacerbated the brain injury whereas more 

neurons developed in PrP+/+ mice accompanied with reduced proteasome activity leading to 

neurological recovery.  

Intriguingly, prions – pathologic state of the PrPC was found to accumulate and able to replicate 

in the neural stem cells (NSC) in ME7 prion-infected mice that eventually impaired the neuronal 

differentiation and might speed up the disease progression [105]. Adult neurogenesis can be 

helpful for regeneration of the central nervous system neurodegenerative disorders. Hence, the 

impairment of this process by prions could partly explain the pathology of the disease and 
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strongly imply the role of PrPC in regulation of neural differentiation from endogenous neural 

progenitors.  

2.3.5. PrP and neuritogenesis 

The normal prion protein has been considered as a neurotrophic factor that promotes 

neuritogenesis through its cis or trans cell-cell interaction by either native GPI-anchor form or 

soluble secreted form [11]. Many interacting partners of PrPC have been found involving this 

process for which interactions are important in memory consolidation and neuroprotection as 

well (Figure 7). 

One of the first PrPC cis interactor discovered was human 37-kDa laminin receptor precursor 

(LRP), also accepted as 37-kDa/ 67-kDa laminin receptor (LRP-LR ) [106]. LRP-LR via its 

laminin binding domain aa 161-179 directly interact with C-terminal domain of PrP (aa 144-179) 

and indirectly interact with PrP octarepeat region mediated by heparan sulfate binding [107]. The 

binding of recombinant PrP to this receptor could lead to internalization of PrP as well [108]. 

Captivatingly, PrPC showed high-affinity to the extracellular matrix (ECM) protein laminin (LN) 

and this interaction happening at γ-1 chain on laminin and probably 170-183 residues on PrPC 

was involved in the neuritogenesis induced by nerve-growth factor (NGF) and LN in PC-12 cells 

[109]. PrPC was also found co-localized and interacted with vibronectin (Vn), another ECM 

protein, via PrPC domain 105-119 and Vn domain 307-320 to mediate axonal growth in 

embryonic dorsal root ganglia [110]. Altogether, PrPC may form signaling complex with laminin 

receptor and ECM proteins at lipid raft and promote neurotrophic effects.  

The interaction of PrPC and the soluble ligand STI1 in trans resulted in memory formation and 

maintenance (discussed above) might propose for potential function in neuritogenesis at the 

cellular level. Binding of STI1 to PrPC induced entocytosis of the prion protein via clathrin-

coated vesicles triggering ERK1/2 activation that is essential pathway for neuritogenesis [111, 

112]. These two proteins were found secreted by astrocytes resulting in stimulated neuronal 

survival and differentiation that support for importance of astrocyte-neuron cross talk in neuronal 

networking [72].  

Lastly, an alternative pathway for PrP to promote neuritogenesis is via transmembrane receptor 

NCAM (neural cell adhesion molecule). It was found long ago from the in situ crosslinking study 
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about the direct interaction between the two proteins either in cis or in trans and the binding 

interfaces were between fibronectin III (FNIII) domain of NCAM and N-terminus plus helix A 

or helix 1 (residues 144-154) and the adjacent loop region of PrP [113]. Interaction of FNIII1,2 

and human PrP (HuPrP) was then confirmed in the study with surface plasmon resonance (SPR) 

and nuclear magnetic resonance (NMR) technique that the affinity of binding was strong (Kd of 

337 nM) and appeared to be stronger in case of HuPrP peptide with P102L mutation [114]. The 

study also revealed residues Tyr669, Val673, His686, Phe687, and Val688 of the FNIII2 domain 

constitute critical binding site to the PrP N-terminal peptide (23-144) [114]. However, the 

functional residues on PrP could not be detailed probably due to disordered N-terminal tail 

limiting the complete NMR structure of PrP. In hippocampal neurons, both cellular and soluble 

prion protein could recruit to and stabilize NCAM in lipid draft and activate Fyn kinase signaling 

to enhance neurite outgrowth [26]. In addition, PrP could act through different receptor to 

activate cAMP-PKA signal transduction for increasing significantly neurite growth [24].  

 

 

Figure 7 – Interacting partners of PrPC (green) involving neuritogenesis and other 

processes. The first signaling complex would consist of PrPC and ECM proteins such as Laminin 

(Ln) and Vitronectin (Vn), laminin receptor (37LRP/67LR) and integrins (red) as ECM 

receptors. The second possible pathway could be mediated by PrPC-STI1 interaction. Lastly, 
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PrPC might interact with neural cell adhesion molecule (NCAM) either in cis or in trans, and 

promotes neuritogenesis through the activation of Fyn kinase. Adapted from [11] 

2.4. Role of copper in CNS 

Copper ions play essential roles in many biological processes and are found highly rich in 

mammalian brain [115]. In human, copper content together with zinc was found higher in inner 

molecular and granular layers of the dentate gyrus of hippocampus than in insular and central 

region [116]. Intracellular level of Cu is usually higher than in extracellular concentrations which 

vary from 0.5-2.5 µM in cerebrospinal fluid (CSF) to 10-25 µM in blood serum and up to 30 µM 

at the synaptic cleft [117]. The entries of Cu ions into the brain are effectuated via CTR1 

(copper-transporter 1) and ATP7A [118]. Cellular uptake of copper requires reduction of Cu2+ to 

Cu+ that is transported by Ctr1 and this protein remains intracellularly till the need of more Cu 

[117]. ATP7A facilitates copper transport from the blood brain barrier (BBB) to the brain 

parenchyma [119]. In fact, P-Type ATPases including ATP7A and ATP7B are main copper 

transporter in and out the cells and mutations on these proteins caused Menkes and Wilson 

diseases [117, 119].  

Due to its redox ability of changing between oxidized state (Cu2+) and reduced state (Cu+), 

copper is able to bind a wide range of proteins as a catalytic or structural cofactor [120]. It is 

widely known that copper serves as a catalytic cofactor for cuproenzymes such as cytochrome c 

oxidase, superoxide dismutase, dopamine β-hydroxylase and peptidylglycine α-amidating 

monooxygenase required for processes critical to neuronal function including mitochondrial 

respiration, antioxidant activity, catecholamine production and hormonal processing respectively 

[121]. Other non-enzymatic proteins bind copper involving in neuronal signaling, especially at 

synapses [118] (Figure 8) which could explain why copper is abundant at synaptic vesicles 

[122]. Cu2+ inhibited AMPA and NMDA receptors with IC50 of 4.3 and 15 µM respectively in 

primary rat cortical neurons [118, 123]. While blockade of AMPA receptor by copper is based 

on an oxidative mechanism [123], inhibitory effect of NMDAR is due to S-nitrosylation 

mediated by the binding of copper to PrPC [16]. Competing with zinc ion, Cu(II) also inhibit 

GABAA receptor on channel gating by binding distinctly from GABA binding site [118]. 

Residues V134, R135, and H141 in a VRAECPMH motif of α1 subtype of the receptor compose 

the main binding pocket for Cu(II) and the H141 residue was the major determinant [124]. 
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Interestingly, the extracellular domain of APP which cleaves Aβ peptides implicated in 

Alzheimer’s disease binds Cu2+ with attomolar affinity at the binding site on amyloid beta 1-42 

[125]. Cu2+-glycine (1 µM) promotes Aβ production and potentiates Aβ-mediated neuronal 

toxicity [126]. Lastly, Cu ions bind cellular PrP which is expressed pre- and post-synaptically 

with high nM to low µM affinity [52]. Notely, Aβ may compete with PrP in Cu binding that 

prevents it from inactivation of NMDAR and leads to neurotoxicity – a potential mechanism for 

synaptic loss and neuronal death in AD [127]. Role of Cu-PrPC interaction in neuronal processes 

and prion pathology will be discussed further in the next part.  

 

Figure 8 – Role of Cu in synaptic function. Cu enters cells through CTR1 and is delivered to 

ATP7A by Atox-1 chaperone. Cu2+ could be delivered to secretory pathway via ATP7A and is 

stored in LDCVs (large, dense-core vesicles) prior to secretion or to mitochondria (green 

rectangular) and cuproenzymes (blue round) for ATP production and antioxidative activity 

respectively. Influx of Ca2+ through NMDARs and VGCCs (voltage-gated Ca2+ channel) results 

in LDCV release and Cu secretion. Extracellularly, Cu has inhibitory effects on NMDARs, 

VGCCs and GABAARs. Cu binds PrP and APP, which are located at synapses. Binding of Cu to 
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APP facilitates extracellular Aβ yield which also binds Cu with high affinity. Adapted from 

[118] 

Under physiological condition, copper concentration needs to be strictly regulated. While copper 

deficiency or genetic mutation of copper-transporting proteins could lead to developmental 

defects [115, 120, 121], excess copper load would increase toxic-free radicals and cause 

oxidative damage within the cell [121, 128]. Hence, there are several neurodegenerative diseases 

involved perturbation of copper homeostasis such as Menkes disease, Wilson disease, 

amyotrophic lateral sclerosis (ALS), Alzheimer’s disease and prion disease [129].  

2.5. Role of copper in PrP physiology 

2.5.1. Copper binding sites on PrP 

Metal-binding sites on human prion protein (HuPrP) were characterized since 2001. There are 

two high-affinity binding sites for divalent transition metals lying on N-terminal octarepeat 

region (aa 60-91) (OR) and the adjacent non-OR region around His96 and His111 [52] (Figure 

8). Affinity of PrPC for copper is higher than zinc and other metals (Ni2+, Mn2+) [52, 130]. N-

terminus of PrP can coordinate up to six Cu ions while there may be other potential site with 

histidine residues at the C-terminus (Figure 9) [51]. 

OR domain composes of four or five tandem repeats of conserved eight-residue sequence 

PHGGGWGQ that at full occupancy, each OR His can coordinate to single Cu ion [53]. This 

region has the Kd for Cu(II) of 10-14 M at pH 7.4 [52]. An electron pramagnetic resonance (EPR) 

spectroscopic study revealed three distinct binding modes of Cu into OR segments of PrP at pH 

7.4 which are component 1 at high Cu2+ concentration, component 2 at intermediate Cu2+ 

occupancy and component 3 at low Cu2+ load [53] (Figure 4). In component 1 at pH above 7, 

coordination pocket consists of octarepeat subsegment HGGGW and involves the nitrogen Nδ1 

of the His imidazole and deprotonated amide nitrogens from the following two Gly residues [53, 

131]. Each octapeptide tandem binds Cu2+ through a 1:1 ratio and so the coordination 

stoichiometry composes of four Cu ions and four bridging imidazolate ions [132]. In component 

2, two His residues in sequential repeat segments are required to stabilize the structure or in other 

words, one copper is coordinated by both the His imidazole and its exocyclic nitrogen [53]. 

Multi-OR binding mode or component 3 appears in an environment of low copper load meaning 
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that three or four neutral imidazoles involve [53]. Similar multiple imidazole binding mode was 

also observed at mild acidic pH 5.5 [133]. 

Non-OR copper binding site, also known as “fifth site” starts after residue 90 and extend prior to 

the hydrophobic domain. Copper coordination was involved His96 and/or His111 (H95 & H110 

in mouse) with affinity of almost four folds to that in OR; this strong binding was observed in 

oxidized α-helical PrP and almost similar in reduced β-sheet conformation [52]. This non-OR 

domain of PrP has the most relevance to disease since it corresponds to the protease resistance 

core and contains pathogenic mutations such as P102L and P105L in Gerstmann–Sträussler–

Scheinker (GSS) prion disease [51]. Moreover, alteration in copper coordination in this region 

particularly at acidic pH 5.5 was suggested as a key switch of prion conversion [134]. 

Interestingly, in a competitive environment with both Zn2+ and Cu2+, preference binding of Zn 

ions to the OR regions can shift copper to non-octarepeat binding sites [130]. Non-OR region 

with the sequence GGGTH coordinates Cu in a distinct fashion from the octarepeat HGGGW 

motif in which Cu2+ is directed toward the C-terminal side of histidine whereas the ion interacts 

with backbone amides on the N-terminal side of His96 in case of non-OR site [135]. Notely, the 

presence of H96 seemed to increase the Cu-binding affinity at the entire OR segment since the 

peptide containing this residue had higher affinity to copper than the OR peptide alone [136, 

137] indicating that the possible preference as primary binding site for copper at histidine 

residues of non-OR facilitates the sequential coordination at the OR [137].  

 

Figure 9 – Copper-binding sites on the prion protein (human numbering). Two copper (blue 

round) coordinated components at octarepeat region are presented (component 1 at high copper 



Page | 21  
 

load and component 3 at low copper concentration). The PrP protein may coordinate up to six 

coppers with involvement of the fifth site consisting of His96 and His111. Other potential 

histidine residues for copper binding are suggested at the C-terminus as well. Adapted from [51].  

 2.5.2. Effects of copper binding to PrP functions 

Binding of metal ions, especially copper can affect biochemical and biological characteristics of 

the prion protein.  

Principally, one of the first PrP function suggested is metal homeostasis. PrP may help buffer 

copper concentration, especially at synapses [138] and cerebrospinal fluid [139]. Free Cu2+ is 

highly cytotoxic, since redox reactions of Cu2+ generate reactive oxygen species (ROS) [140]. At 

synapses, the copper concentration may exceed 10 μM due to significant copper efflux during 

neuronal activity [139]. Hence, the copper-buffering activity of PrPC at synaptic cleft can provide 

part of neuroprotective mechanism together with inhibiting NMDAR excitotoxicity as 

mentioned. Of note, deletion of the octapeptide repeats found to abolish the ability of PrP to 

protect cortical neurons from Bax (Bcl-2-associated protein x)-mediated apoptosis strongly 

implies for the role of copper in neuroprotection by PrP [141].  

Whilst unbound N-terminus of PrP is unstructured, copper binding to the OR and adjacent region 

at different pH and copper concentration leads to various conformations of the tail (as discussed 

above) which may have certain functionality. This could suggest PrP as a copper-sensor. Copper 

concentration of more than 100 μM stimulate PrP endocytosis which could be triggered by the 

transition between component 3 and 1 with component 2 as intermediate [139]. Indeed, both 

copper and zinc could stimulate the translocation and endocytosis of surface PrPC into 

transferrin-containing early endosomes and Golgi compartments [142, 143]. PrP endocytosis, 

thus, may transport Cu from the extracellular space to the cell interior. In turn, lowered pH in the 

endosomal compartment may facilitate the release of PrP-bound coppers and recycle of the ions 

[144]. Therefore it is suggested that PrPC may function as recycling receptor for the cellular 

uptake and efflux of ions [142]. At high copper load, PrP with component 1 conformation may 

exhibit its antioxidant activity by sequestering free copper ions [139]. Then the presence of PrP 

in the endosome can reduce Cu(II) to Cu(I) and facilitate the copper trafficking by other copper 

chaperones [145].  
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Additionally, binding of copper to OR region was shown to suppress beta-cleavage in the 

absence of a reducing agent. Of note, copper coordination at His110 suppresses α1-cleavage by 

ADAM8 [146]. Since β-cleavage provided N2, C2 fragments found extensively in prion-infected 

samples whereas α-cleavage has mostly neuroprotective role [57], binding of Cu at different 

position on PrP facilitates production of variously functional fragments that may explain for 

controversial role of copper in prion disease.  

In prion pathology, interaction of copper with PrPSc may not be beneficial since it can restore the 

PK resistance and infectivity of scrapie after inactivation by GdnHCl (guadinine chloride) [147]. 

Conformations of PrPSc also depend on metal-ion occupancy (copper and zinc) indicating the 

role in prion strain determination [148]. Intriguingly, high concentration of copper (~200µM) in 

vitro could turn PrPC into detergent insoluble and protease resistant form but not PrPSc and the 

effect requires the presence of a single octapeptide repeat [149]. In vivo study with copper 

chelator D-PEN suggested a delay in the onset of prion disease in mice for 11 days; yet copper 

levels might be only one of many factors influencing the progression rate of prion disease [150]. 

Conversely, Cu ions inhibited conversion of full-length recombinant PrP (recPrP 23-230) into 

amyloid fibrils at pH 7.2 although they have opposite effect to enhance aggregation of preformed 

amyloid fibril [151]. This may indicate copper has different effects on the soluble form of PrP 

and membranous PrPC.  

Copper binding into OR or non-OR region may have distinct importance to the development of 

prion disease. It was shown that in PrP-KO mice overexpression of truncated PrP retaining only 

one of the five ORs, still restored the susceptibility of these mice to scrapie and development of 

disease [152]. Further study confirms for the unimportance of OR copper-binding site in prion 

propagation since PrP devoid of this whole region could sustain scrapie infection in the knockout 

mice even though they appeared to have longer incubation times and 30 fold lower prion titers 

than the wild-type [153]. These mice showed no typical histo-pathological changes but neuronal 

loss and astrogliosis in the cervical spinal cord. In contrast, expansions of OR tandems correlates 

with earlier Creutzfeld-Jakob disease (CJD) onset [154]. Particularly, eight total repeats exhibit a 

conformation with two equivalents of component 3 coordinations and have approximate 10-fold 

Cu2+ binding affinity [155]. Very interestingly, copper binding in the non-octarepeat sequence 

GGGTH can protect against PrPC-to-PrPSc conversion [156]. Recent study has directly proposed 
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the key role of non-OR region in prion conversion which is in agreement with the implications 

from previous findings related to OR deletion [134]. Altogether, it is very likely that there is a 

strong relationship between copper binding properties and prion pathology. Although role of the 

OR domain in prion disease is enigmatic, significance of non-OR copper binding site has been 

increasingly recognized.  

2.6. Loss-of-function hypothesis in prion pathology 

It is widely discussed that the converted prion species (PrPSc) may have toxic gain-of-function in 

prion disease since amyloid fibrils or oligomeric aggregates have been proven to be very harmful 

for neurons [157, 158]. PrPC, however, involves in various neuronal processes suggesting that it 

is very likely the loss-of-function of the protein may be one of initiation factor of the disease 

and/or the consequences obtained after being converted. In addition, mice lacked the protein 

showed different abnormalities and were prone to neurodegeneration, especially in stress 

conditions [159, 160]. Hence, prion toxicity may be caused by perverting the normal function of 

PrP and in return the loss-of-function of the protein can exacerbate the pathology caused by toxic 

gain of function of the converted one [12]. 

Notely, the PrP knock-out mice are widely known to resist to develop prion disease making them 

debatable model for loss-of-function hypothesis in prion disease. Mice expressing structurally 

artificial or pathogenic mutations, instead, may give good insights for the possibility of 

incorporation between structural change and functional loss in the pathology [161]. In fact, some 

of these mutant PrP showed alterations in thermodynamic stability and biochemical properties 

favoring misfolding and formation of PrPSc-like structure [134, 162]. Mutated PrPs, for example, 

octapeptide insertional mutation or GSS-linked mutations, also exhibited impairments in PrP 

functions such as cytoprotective activity [12] and neurite outgrowth [163] that would largely 

potentiate neurodegeneration in the disease context.  

Furthermore, loss-of-function mechanism was as well suggested in other neurodegenerative 

disorders such as Parkinson’s and Huntington’s diseases in which huntingtin (Htt) and α-

synuclein, like PrP, possess neuroprotective roles [164].  
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Chapter 3 – MATERIALS AND METHODS 

3.1. Plasmid constructions 

The sequence encoding for the mature mouse prion protein (MoPrP) from residue 23 to 231 was 

amplified by PCR from pcDNA3.1::MoPrP(1-254) and cloned into pET-11a by restriction-free 

(RF) method [165]. Then the plasmids containing truncated mouse PrP(23-120) were cloned 

from the full-length protein sequence. Plasmid with truncated mouse PrP(89-231) sequence was 

available in the lab. The peptide corresponding to the truncated mouse PrP(23-90), N-terminal 

acetylated and C-terminal amidated, was chemically synthesized (Chematek Inc, Milano, Italy). 

Sho protein was a gift from Prof. David Westaway (University of Alberta; Edmonton, AB, 

Canada).  

For neuronal transfection, the open reading frame (ORF) encoding for the pre-pro MoPrP(1-254) 

was amplified by PCR from genomic murine DNA and cloned in pcDNA3.1(-) vector 

(Invitrogen). To generate the construct of GFP-PrP targeted to the membrane, the sequence 

coding for GFP from the plasmid pEGFP-N1 (Clontech) was amplified and inserted downstream 

of N-terminal PrP signal peptide sequence (1-23) by RF cloning method. The plasmid pcDNA-

GFP-PrP was verified by DNA sequencing, isolated and purified by Maxiprep kits (Qiagen) prior 

to transfection.  

The single point mutations (H60Y, H68Y, H76Y, H84Y, H95Y, H110Y and P101L) were 

introduced step-by-step into pET-11a::MoPrP(23-231) using the Quick Change site-directed 

mutagenesis kit (Stratagene). These plasmids were then used to produce recombinant mutant 

prion proteins at the N-terminal copper-binding sites denoted as recMoPrP(H1234Y) with 

octarepeat H-to-Y mutations, recMoPrP(H56Y) with non-OR mutations and 

recMoPrP(H123456Y) with all 6 histidine residues mutated or recMoPrP(P101L).  

The primers used for constructing the necessary plasmids are summarized in table 2. 

Table 2 – List of primers used for constructing plasmids containing different mouse prion 

protein sequences  

Primer - forward Primer - Reverse Usage Template 
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ctttaagaaggagatatacat

atgaaaaaacgcccgaaac

cggg 

ggctttgttagcagccggatcctat

tagctggatcttctcccgtcgtaat 

To amplify 

MoPrP23-

231 DNA 

sequence 

* pcDNA-MoPrP(1-254) 
 pET-MoPrP(23-231) 
* pcDNA-MoPrP(1-254, 
H1234Y)  
 pET-MoPrP(23-231, 
H1234Y) 
* pcDNA-MoPrP(1-254, 
H56Y)  
 pET-MoPrP(23-231, 
H56Y) 
* pcDNA-MoPrP(1-254, 
H123456Y)  
 pET-MoPrP(23-231,  
H123456Y) 
  

 

agctggggcagtagtgtaat

aggatccggctg 

cagccggatcctattacactactgc

cccagct 

To remove 

121-231 

region 

pET-MoPrP(23-231)  

pET-MoPrP(23-120) 

ggactgatgtcggcctctgc

aaaaagcggatggtgagca

agggcgaggagctgttcacc 

gttccaccctccaggctttggccg

ctttttcttgtacagctcgtccatgc

cgag 

To amplify 

GFP ORF 

from pEGFP 

* pEGFP  megaprimer 

* megaprimer + pcDNA-

MoPrP(1-254)  pcDNA-

GFP-PrP 

ggttggtttttggtttgctgag

cttgttccactgattatg 

cataatcagtggaacaagctcagc

aaaccaaaaaccaacc 

To substitute 

P by L at 

aa101 

pET-MoPrP(23-231) 

cagccctacggtggtggctg

gggacaa 

ttgtccccagccaccaccgtaggg

ctg 

To substitute 

H by Y at 

aa60 

ggggacaaccctatggggg

cagctgg 

ccagctgcccccatagggttgtcc

cc 

To substitute 

H by Y at 

aa68 

agctggggacaaccttatgg

tggtagttggg 

cccaactaccaccataaggttgtc

cccagct 

To substitute 

H by Y at 

aa76 
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tggggtcagccctatggcgg

tggatgg 

ccatccaccgccatagggctgac

ccca 

To substitute 

H by Y at 

aa84 

caaggagggggtacctataa

tcagtggaacaagc 

gcttgttccactgattataggtaccc

cctccttg 

To substitute 

H by Y at 

aa95 

aaaaaccaacctcaagtatgt

ggcaggggctgc 

gcagcccctgccacatacttgagg

ttggttttt 

To substitute 

H by Y at 

aa110 

 

3.2. Recombinant protein production 

Generally the protocol for protein expression and purification was referred to [166] with some 

modifications. The pET-11a plasmids containing sequences for recombinant proteins were 

expressed in Rosetta-GAMI E.Coli cells by 0.8mM IPTG overnight (~16 hours) induction. 

Inclusion bodies containing the proteins were isolated after cell homogenization by Homogenizer 

Panda Plus 2000 (Gea Niro Soavi) at around 1500 bar and following centrifugation at 13’000 g 

for 30 min, 4ºC. They were washed in 25 mM Tris-HCl pH 8.8, 5 mM EDTA pH 8, 0.8% Triton 

X100 and two times in bi-distilled water. Then they were solubilized in 6M GdnHCl and 25 mM 

Tris base pH 8, shake overnight and the supernatant was collected for further purification. In 

case of MoPrP(23-120), the protein is soluble and found in cell extract instead of inclusion 

bodies. Thereafter the protein is purified from the supernatant phase after cell homogenization. 

The samples with wild-type MoPrP(23-231), truncated MoPrP(23-120), MoPrP(H56Y) and 

MoPrP(P101L) proteins were purified using 5mL HisTrap column chromatography (GE 

Healthcare) whereas MorecPrP(89-231), MoPrP(H1234Y) and MoPrP(H123456Y) were purified 

using size-exclusion chromatography (column HiLoad 26/60 Superdex 200pg, GE Healthcare) 

because of lacking the histidine residues. All the purified protein samples were in vitro refolded 

by dialysis against refolding buffer (20 mM sodium acetate, 0.005% NaN3, pH 5.5) using a 

Spectrapor-membrane (MWCO 3500) and exchanged to PBS pH7.4 buffer prior to treatments in 

cell cultures.  
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3.3. Circular Dichroic (CD) measurement 

Purified and refolded proteins were dialyzed in phosphate buffer pH7.2 and diluted at 

concentration ~ 0.1mg/mL for CD measurement by spectrophotometer JASCO J- 810. 

Measurements were carried out at room temperature using 0.1cm optical path length quartz cell. 

Spectra were obtained in the 190 to 260 nm far-UV region and accumulated at least 3 times. 

Samples subjected for CD measurement were unexposed, UV or UV+IR exposed full-length 

recPrP and mutant PrP proteins at copper-binding sites. CD data were reconstructed by CDSSTR 

program with reference data set 7 (Sreerama and Woody 2000), NRMSD < 0.05 on DichroWeb 

server (http://dichroweb.cryst.bbk.ac.uk/).  

3.4. Neuronal culture and transfection 

P1-P2 FVB wild-type (wt) and PrP-deficient (Prnp0/0) mice were sacrificed by decapitation in 

accordance with the guidelines of the Italian Animal Welfare Act. After decapitation, 

hippocampi were dissected, cut into slices and washed twice with the dissection medium. The 

enzymatic dissociation was performed treating the slices with 5 mg/ml trypsin (Sigma-Aldrich, 

St. Louis, MO) and 0.75 mg/ml DNase I (Sigma-Aldrich, St. Louis, MO) in digestion medium (5 

min, 37oC). Then, trypsin was neutralized by 1 mg/ml trypsin inhibitor (Sigma-Aldrich, St. 

Louis, MO) in the dissection medium for 10 minutes at 4oC. After the wash in the dissection 

medium, mechanical dissociation was performed in the dissection medium with 0.6 mg/ml 

DNase I by approximately 50 passages through a Gilson P1000 tip. The cell suspension was then 

centrifuged at 800 rpm for 5 min, and the pellet re-suspended in the culture medium. Finally, 

hippocampal neurons were plated on 50 μg/ml poly-L-ornithine (Sigma- Aldrich, St. Louis, MO) 

coated coverslips. The hippocampal neuronal culture was incubated (5% CO2, 37°C) in the 

minimum essential medium with Earle’s salts and Glutamax I with 10% FBS, 2.5 μg/ml 

gentamycin (all from Invitrogen, Life Technologies, Gaithersburg, MD, USA), 6 mg/ml D-

glucose, 3.6 mg/ml Hepes, 0.1 mg/ml apo-transferrin, 30 μg/ml insulin, 0.1 μg/ml biotin, 1.5 

μg/ml vitamin B12 (all from SigmaAldrich, St. Louis, MO). To find isolated neuronal growth 

cone (GC) we performed local delivery experiments 24- 48 h after plating the neurons. PrP KO 

neuronal culture could be transfected with pcDNA-EGFP-PrP using Lipofectamine 3000 for 

primary cells (Life Technologies, Grand Island, NY) according to the manufacturer's 

instructions.  
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In experiments with treatments of PrP mutants, dissociated neurons were cultured in B27 

supplemented neurobasal medium (Thermo Fisher Scientific) with around 2 x 104 cells per 

coverslip after filtration through 40µm cell strainer (Corning). About 22 hours post-plating, the 

cells were treated in bulk with 2µM of the recombinant proteins or PBS control for further 

neurite outgrowth assay by immunofluorescence.  

3.5. Liposome preparation and local stimulation 

The following composition of lipid mixture was used for liposomal vesicle preparation: 

Cholesterol: 9 µmol, L-α-Phosphatidylcholine: 63 µmol, Stearylamine: 18 µmol (Sigma-

Aldrich). The lipid solution was prepared at the concentration of 10 mg/mL in chloroform: 

methanol (2:1v/v). The solution obtained was then saturated with nitrogen and stored at -20 °C. 

Vesicles with a diameter of 1 –5 µm were obtained by using the lipid film rehydration method 

[21, 167]. In this method the lipid solution was dried in vacuum condition for 24 h and then the 

lipid film was rehydrated with solution containing the desired concentration of recPrP. Sucrose 

100 mM was also included in the hydration solution to allow better vesicle washing and to 

improve vesicle trapping. After overnight incubation, vesicles were gently centrifuged (5,000 

rpm for 3 min) and rinsed 3 times with PBS to wash the external solution. Final vesicles solution 

was then administered to the cell cultures. Single vesicles were subsequently identified, trapped 

and positioned at the location of interest. The behavior of the stimulated growth cone was 

recorded and analyzed by Matlab software.  

The optical manipulation setup was developed starting from an inverted microscope (Nikon 

Eclipse TE-2000-E, Japan) equipped with phase contrast imaging and epi-fluorescence. The 

microscope was completed by installing custom IR optical tweezers and an UV laser-dissection 

system (MMI-cellCut Plus, Switzerland). Briefly, the IR laser beam (1064 nm, CW) was 

collimated and coupled to the optical path of the UV laser beam (355 nm, ns pulsed laser). Both 

beams were directed into the microscope lens (Nikon 60X, NA 1.25) by a dichroic mounted 

above the fluorescence cube [168]. The sample chamber containing the differentiating neurons 

and the vesicles was placed on the motorized microscope stage. The temperature of the dish was 

kept at 37°C by a digital temperature controller (PeCon GmbH, Er-back, Germany). During the 

experiments the cells were monitored by time-lapse phase contrast imaging using a digital 

camera (Orca Flash 4.0, Hamamatsu, Japan) at a frame rate of 5 Hz. 
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Estimation of the spatial and temporal distribution of the concentration at the GC. To 

perform this simulation, we used the point source approximation for the vesicle [23] and the 

following equation that describes three-dimensional free diffusion from a point source: 

 

where C is the initial concentration in the vesicle, D the diffusion coefficient and C(r,t) the 

concentration in a point at distance r from the vesicle, at time t. The concentration vs time curves 

for three points positioned at distances r, 1.25r and 1.5r are represented in the top inset of the 

Figure 10A, indicating a steep temporal gradient. The concentration at a distance r from the 

vesicle reaches a maximum after few seconds and then decreases fast to a value which is 

maintained almost constant in time after t=10s. From the concentration curves represented for 

different distances we notice also the spatial gradient and the fact that the spatial gradient tends 

to vanish after about 10 s from vesicle photolysis. However, when an obstacle as the cell 

membrane is reached, the molecules might stop their free diffusion, bind and accumulate on the 

membrane. Assuming that all the molecules reaching the membrane bind to it, we calculate the 

spatial and temporal distribution of the cumulative concentration CC(r, t) by summing C(r, t) 

values: 

 

As a numerical example, we consider a vesicle of 4 μm diameter, initial concentration inside the 

vesicle C0= 4μM, the diffusion coefficient of the encapsulated molecules D= 40 μm2/s, the 

distance r ranging from 10 to 50 m measured from the vesicle and t from 0 to 5 min. The 

spatio-temporal distribution of the concentration is shown in Figure 10B, showing that for a 

given distance the concentration increases fast immediately after the photolysis and tends to a 

constant value after about 2 min, while a significant spatial gradient is maintained constant in 

time after about 3 min. The concentration isolines are represented in Figure 10C. Notice that 

after 3 min the concentration decreases from 90 nM to 20 nM for a distance range of about 40 

μm. The vesicle is typically positioned at 10-20 μm from the leading edge of the neurite, creating 

a spatial gradient of molecules concentration of about 2 nM/μm at the GC, which promotes the 

outgrowth and guidance mechanisms. 
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Figure 10 - Schematic representation of the focal stimulation assay. (A) The vesicle, trapped 

by the IR laser tweezers (red) is positioned near the GC and the molecules are released by 

photolysis of the membrane vesicle with an UV laser pulse (blue). The normalized concentration 

vs time curves for three points positioned at distances r, 1.25r and 1.5r are represented in the top 

inset, indicating a steep temporal gradient. The maximum concentrations are reached in 1 -2 

seconds and the values decrease from 1 (for r) to 0.5 (1.25 r) and 0.25 (1.5r), indicating also a 

steep concentration spatial gradient. To generate these curves we have used r = 15 μm and D= 40 
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μm2/s. (B) The spatiotemporal distribution of the concentration at the GC, under the assumption 

that all the molecules reaching the membrane by free diffusion, bind to it. (C) The concentration 

isolines (numbers on the isolines indicate concentration in nM). 

3.6. Immunofluorescence 

After around 20hrs of treatments with wt or mutant recombinant mouse PrP (recMoPrP) proteins, 

the hippocampal neurons were fixed by 4% paraformaldehyde (PFA) in 20 min, washed 3 times 

in PBS and quenched with glycine 0.1M. The fixed cells were blocked in 5% normal goat serum 

(NGS, Sigma) for 30 min, permeabilized in 0.3% Triton and blocked again in 5% NGS solution. 

To appreciate the total neurite morphology, the cells were incubated with monoclonal antibody 

to β3-Tubulin (Thermo Fisher Scientific) in blocking solution for 2 hours at room temperature, 

washed three times with PBS, and incubated for additional 1 h at room temperature with the goat 

anti-mouse fluorochrome-conjugated secondary antibody in blocking solution. After three 

washes with PBS, nuclear staining was performed by incubated with 4',6-diamidino-2-

phenylindole (dapi) for 5 min. The coverslips were eventually mounted on slides with 

Vectashield mounting medium (Vector Laboratories). Fluorescent images were acquired at 40X, 

oil immersion objective by a Leica or Nikon laser scanning confocal microscope with a Krypton-

Argon and UV lasers. Five to six projections of six optical sections were randomly taken per 

coverslip at the region with cells evenly distributed and similar density between treatments, 

usually away from the edge and from center of the coverslip. Data were collected from at least 

three independent experiments per treatment and analyzed with ImageJ software 

(http://rsb.info.nih.gov/ij/).  

Immunostainings for PrPC localization and STED experiment were performed with some slight 

differences. Cells were fixed in 4% paraformaldehyde containing 0.15% picric acid in 

phosphate-buffered saline (PBS), saturated with 0.1 M glycine, permeabilized with 0.1% Triton 

X-100, saturated with 0.5% BSA (all from Sigma-Aldrich, St. Louis, MO) in PBS and then 

incubated for 1 h with primary antibodies followed by the 30 min incubation with secondary 

antibodies. Secondary antibodies used for STED measurements were conjugated with STAR580 

or STAR635P (Abberior, Göttingen, Germany).  

STED microscopy. 2-color STED microscopywas performed at the NanoBiophotonics 

Department (Max Plank Institute for Biophysical Chemistry, Göttingen, Germany) on a setup 
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previously described in [169] or on a two-color Abberior STED 775 QUAD Scanning 

microscope (Abberior Instruments GmbH, Göttingen, Germany) equipped with 561 nm and 640 

nm pulsed excitation lasers, a pulsed 775 nm STED laser, and a 100x oil immersion objective 

lens (NA 1.4) 

3.7. Western blotting 

For standard immunoblotting procedure to detect PrPC, primary hippocampal neurons were 

lysated in lysis buffer (50 mM-Tris HCl, pH 7.5, 150 mM NaCl, 0.5% CHAPS, 1 mM EDTA, 

10% glycerol) supplemented with protease inhibitor mixture (Roche), and processed for Western 

blot detection. Samples were loaded onto SDS-PAGE gel and transferred to nitrocellulose 

membranes (GE Healthcare). After blocking in 5% non-fat dried milk in TBS-T for 1 hour at RT, 

membranes were incubated overnight at 4°C with primary antibody diluted in blocking solution. 

Incubation for 1 hour at RT with secondary antibody followed.  

For detecting phosphorylated proteins in the treated cultures, hippocampal neurons were plated 

at 4 x 105 cells/mL in a 6-well plate. At day 1 in vitro, each well was treated with mock control 

or 2µM recMoPrP(wt) or recMoPrP(H56Y) for 25 min. Cells were then washed with ice cold 

PBS 1X (pH7.4) twice and lysed by lysis buffer (50mM Tris HCl pH 7.5, 150mM NaCl, 0.5% 

NP-40 and 0.5% sodium deoxycholate) supplemented with protease and phosphatase inhibitor 

cocktails (both from Roche). Cells extracts were collected after centrifugation at 14,000xg, 4°C, 

15 minutes. Total protein amount was measured using BCA kit (Euroclone). Same amount of 

protein in each sample were loaded on SDS-PAGE gel 10%.  Proteins were transferred onto 

polyvinylidene difluoride (PVDF) membrane (Immobilon-P, Milipore) at 300mA, 4°C, 150 

minutes and then blocked in 5% BSA (for detecting phosphorylated protein) or skim milk in 

TBST (TBS with 0.5% Tween-20) for 45min-1h. Membranes were probed with primary 

antibody diluted in blocking solution overnight at 4°C, washed 2 times (5 min each) with TBST 

and then probed with HRP conjugated secondary antibody for 1 h. Immunoreactivity was 

detected by chemiluminescence HRP substrate (Milipore) and imaged with UVITEC Cambridge 

Imaging system. Densitometric analysis of band intensities was performed using Alliance v16.14 

software.  

The antibodies used were as follows: mouse monoclonal anti-PrP (W226, 1:1000), mouse 

monoclonal anti-PrP (EB8, 1:1000), mouse monoclonal anti-β-Actin HRP conjugated (A3854, 
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SIGMA, 1:10000), β3-tubulin rabbit polyclonal antibody (pAb) from Sigma was diluted at 

1:5000. Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) rabbit mAb (197G2, Cell Signaling 

Technology) was prepared at 1:4000; p44/42 MAPK (Erk1/2) mouse mAb (3A7, Cell Signaling 

Technology) was diluted 1:3000. Horseradish peroxidase (HRP) or fluorochrome-conjugated 

secondary antibody conjugated goat anti mouse or rabbit secondary antibodies (1:1000) was 

from DAKO. 

3.8. Viability/cytotoxicity test 

After incubation with recMoPrP proteins for about 22 hours, neuronal cultures were subjected to 

cytotoxicity test by using the LIVE/DEAD Viability/Cytotoxicity Kit (Thermo Fisher Scientific). 

The staining protocol was applied from the manufacturer manual. Briefly, the dye mix was 

prepared in PBS 1X with 2 µM calcein AM for live cell staining and 4 µM EthD-1 for dead cell 

staining at final concentration. After being washed twice in warm PBS, the cells were incubated 

with the dye mix for 20min at 37oC. Then the coverslips containing the cells were proceeded for 

observation under 20X objective of the Nikon confocal microscope at laser 488 for the signal of 

calcein AM and laser 561 for the signal of EthD-1.  Numbers of live and dead cells from each 

image in each treatment were analyzed by the plugin Analyze Particles of ImageJ 1.49 software.  

3.9. Statistical analysis 

Statistical data are presented as mean (SD) or ± SE depending on data type. Circular statistics is 

used to compute mean and SE for angle analysis (MATLAB Circular Statistics Toolbox [170]). 

Statistical significance of the differences between the mean values was evaluated using the t-test 

for outgrowth and colocalization data. For some cases in which we had multiple comparisons we 

used Holm-Bonferroni correction to adjust the p-values. For angle data we used Watson-

Williams test as one-way ANOVA and Harrison-Kanji test as two-way ANOVA [170]. 

Statistics for multiple comparisons were also analyzed using one-way ANOVA with Games-

Howell or Dunnett’s T3 post-hoc test by IBM SPSS statistics 23. Minimum significance was set 

at p < 0.05.  
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CHAPTER 4 – RESULTS 

The project contains two parts. The first part involves the characterization of neurite outgrowth 

by the prion protein in a focal stimulation manner which was already published on Journal of 

Cell Science by Amin L. et. al., 2016 [171]. The second part investigates on the role of copper 

binding in regulating the prion function in the neuritogenesis process.  

4.1. Recombinant PrP (recPrP) induces neurite outgrowth and rapid GC 

turning 

Although prion protein has been indicated to contribute in neurite outgrowth [25, 172], its role in 

neurite navigation has not yet been investigated. To test whether recPrP molecules can directly 

influence neuronal growth cone (GC) steering, we used an in vitro assay for axon guidance based 

on local stimulation technique [21]. This technique employs an infrared (IR) laser tweezers to 

trap and position a lipid vesicle carrying guidance molecules in the proximity of the cell. The 

molecules are then released by vesicle photolysis, using a pulse from a second ultraviolet (UV) 

laser. Here, we employed recombinant PrP (recPrP) molecules. Despite the lack of 

posttranslational modifications (e.g. N-glycosylation at residues N180 and N196 and 

glycosylphosphatidylinositol- (GPI) anchor), full-length recPrP is structurally equivalent to 

brain-derived PrPC [173] thus, it represents a valuable model for structural and functional 

studies. Considering that UV light might induce protein damage by direct photo-oxidation and 

radical reactions [174], we investigated the structural consequences of UV and IR radiations on 

recombinant murine PrP. Protein samples were exposed to 7 min UV (355 nm) followed by 2 h 

of IR irradiation (1064 nm) to mimic the irradiation conditions during the stimulation 

experiment, based on the lasers characteristics (energy and beam size). Circular Dichroism (CD) 

spectra of each sample were recorded before and immediately after laser irradiation 

(Supplementary Figure S1). We found that in both conditions (UV and UV+IR irradiated 

samples) the spectra of the protein remain unaffected, indicating that neither UV nor IR radiation 

alter recPrP structural features in our experimental assays.  

After vesicle photolysis, molecules freely diffuse in all directions and only a fraction of them 

reaches the GC membrane. The number of molecules reaching the leading edge depends on the 

starting concentration of the molecules inside the vesicle, distance between the GC and vesicle, 
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and the diffusion coefficient of molecules [21]. Assuming the concentration inside the vesicle 

and the size of vesicle were known, we calculated the spatial and temporal distribution of the 

concentration of the molecules at the GC (see section 3.5). The numerical example in section 3.5, 

using the set of parameters consistent with the real experiments, shows that a spatial gradient of 

about 2 nM/µm can be delivered to the GC from the micro-vesicle. 

In our experimental assay, 4 µM of recPrP were encapsulated in lipid vesicles with a diameter 

varying between 1 and 5 µm. Vesicles were introduced to the cell culture media and a single 

vesicle was trapped and positioned by an infrared (IR) laser tweezer near an exploring 

hippocampal GC (Figure 11A-B). Using a short ultraviolet (UV) laser pulse the membrane of the 

vesicle was then broken, and the protein content was released and allowed to reach the GC by 

free diffusion. With this assay, the outgrowth and turning of neurite can be measured in response 

to a defined stimulus of recPrP over a short time period (Figure 11A-D). Following the release of 

recPrP (4 µM), we observed a rapid neurite outgrowth and a significant turning towards the 

source of the stimuli (Figure 11E-F). Rapid GC motions started 1-2 min after vesicle breaking 

and within 600s the neurite outgrowth enhanced 2-3 folds, compared to control (Figure 11F, 

maximum neurite growth within entire duration of experiment reached to 6.73 ± 0.80 µm). 

Quantification of the turning angle revealed that neurites had a significant bias toward the source 

(Figure 11E blue rose distribution). Control vesicles, filled with phosphate-buffered saline 

(PBS), were positioned and photolysed in proximity of exploring GC (Figure 11A). Following 

vesicle photolysis, the GC continued the spontaneous navigation without significant changes in 

growth or direction (Figure 11E-F, maximum neurite elongation in this case reached to 2.88 ± 

0.36 µm). Remarkably, the neurite outgrowth induced by recPrP was significantly correlated 

with the turning angle (Figure 11G; correlation coefficient R = -0.64, p-value <0.05), but no 

significant correlation was observed in the control. This confirms that local recPrP stimulation 

was concomitant with simultaneous fast neurite growth and GC turning toward the protein 

source. Indeed, these experiments strengthen the evidence that PrPC is involved in neurite 

outgrowth and differentiation but also suggest a putative physiological function for soluble PrP 

as a guidance molecule for mouse hippocampal GC, which promote neurite outgrowth and 

influence the directional motion of neurites.  
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Figure 11 – Local delivery of PrP induces fast neurite outgrowth and turn toward the 

source. (A-B) DIC images of GC dynamics after vesicle photolysis at t=0 s. Red arrowheads 

indicate the position of vesicle encapsulating PBS (A) and 4 M recPrP (B). Scale bar 8 µm. 

After recPrP release, GC clearly grew faster and turned towards the vesicle. (C) Definition of the 

growth and turning angle, α. The growth was derived from the position of the leading edge in 

successive frames, while the turning angle was defined as the angle between the direction of 

neurite extension and vesicle position for each frame. The blue line represents the detected 

leading-edge position at different time. (D) Superimposed trajectories of neurite extension after 

PBS (up) and recPrP (down) stimulations for 6 GC. Trajectories were normalized to the distance 

between initial position of GC and vesicle position. Scale bar 2 m. Dotted lines indicate the 

principal direction of growth. (E) Distributions of turning angle (absolute value) for control and 

recPrP (N= 22 and 49 GC respectively) showing large angular distribution for control and a 
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much narrower distribution for stimulation with recPrP. (F) The value of maximum neurite 

outgrowth defined with respect to t= 0 s. recPrP stimulation enhanced neurite outgrowth up to 3-

fold. Data represent mean ± SE and significance indicates *** p < 0.001 (Student’s t-test). (G) 

Scatterplot of the maximum neurite outgrowth versus turning angle for control (left) and after 

recPrP release (right) 

We next wondered whether changing the concentration of recPrP reaching the GC could 

influence its navigation. Therefore, GC were stimulated with different concentrations of recPrP. 

As expected, at low concentration (0.5 µM), the maximum growth was similar to control and no 

significant turning was observed. Increasing the concentration of recPrP from 1 to 4 µM, both 

neurite elongation and GC turning toward the source increased significantly (Figure 12). 

However, these effects were diminished by increasing the concentration to 6 µM and the 

opposite effects were observed at 15 µM (Figure 12B-D). Altogether, these data suggest that 

recPrP influences GC navigation in a dose-dependent manner: outgrowth and turning are 

stimulated progressively only when the concentration increases up to a certain value. For higher 

concentration the outgrowth is decreased or even reverted into retraction (at concentrations 3-4 

folds higher the threshold). Low concentration of recPrP at the plasma membrane is sufficient to 

initiate signaling, while increased recPrP concentration may interfere with signaling cascades or 

activate different pathway leading to GC retraction and collapse. 
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Figure 12 - GC response to recPrP stimulation depends on the recPrP concentration. (A) 

Color coded bars indicate maximum neurite outgrowth with respect to concentration of recPrP 

inside the vesicle. Data represent mean ± SE; p<0.05, one-way ANOVA; stars indicate p-values 

of t-test with Holm-Bonferroni correction for multiple comparison (* p < 0.05, ** p < 0.01). (B) 

Mean turning angle with respect to concentration of recPrP inside the vesicle. Data represent 

circular mean ± SE; p<0.001, one-way ANOVA for circular data. Stars indicate p-values of 

Watson-Williams test with Holm-Bonferroni correction for multiple comparison (* p < 0.05, ** 

p < 0.01). N > 10 GC. (C) Color coded rose distributions indicate the change of GC direction as 

a function of concentration. By increasing the concentration of recPrP inside the vesicles 

maximum neurite elongation increased significantly and GC turn toward the source in dose 

dependent manner. For very high concentration GC retracted completely (dark blue bar)ournal 

4.2. The function is specific to full-length wild-type PrP molecule 

Next, we examined whether the stimulatory effect of recPrP was dependent on the full-length 

molecule or if a similar effect could be reproduced by truncated forms of PrP. To ensure that the 

recombinant proteins were not degraded or cleaved by proteases during incubation time in 
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neuronal medium before or during the experiments, we analyzed by Western blotting the 

integrity of each PrP fragment at different time points (0, 20, 40, 60 and 120 minutes) after 

addition to the medium. We found that all fragments of PrP used in this study remained stable for 

the entire duration of the experiments (Figure 13A-B).  

Local delivery of N-terminal (23–90) domain of recPrP (up to 8 µM) slightly increased the 

average growth in comparison to control condition but did not result statistically significant 

(Figure 13D-F). Surprisingly, local delivery of C-terminal [89-231] domain (4 µM) caused an 

opposing effect on GC dynamics and in some cases, GC retracted completely (Figure 13C). 

Quantification of the turning angle indicated that none of the fragments was able to induce GC 

orientation toward the source (Figure 13D and F). Notably, the mixture of 4 µM of recPrP (23-

90) and 4 µM recPrP (89-231) had a very similar effect to what was observed after local delivery 

of C-terminal domain [89-231], no significant growth or turn was detected (Figure 13E-F). We 

also performed experiments using 4 µM recPrP (23-120) and the mixture of recPrP (23-120) and 

recPrP (89-231). We found that although recPrP (23-120) can slightly enhanced the maximum 

growth with respect to control condition, the mixture of this fragment and recPrP (89-231) is 

functionally not active (Figure 13E-F). These results are consistent with associated pro- and anti- 

apoptotic functions of the C- and N-terminal domain of PrPC [11], confirming that the growth-

promoting function of recPrP is more pronounced in the presence of the full-length protein.  

Previous studies identified the biochemical similarities between the flexible N-terminal domain 

of PrPC, and a newly discovered GPI-linked glycoprotein called Shadoo (Sho). This protein is 

also expressed in the adult brain. Furthermore, it has been suggested that Sho exhibits PrP-like 

protective properties [175]. Therefore, we examined the role of this protein on neurite outgrowth 

and GC navigation. Local delivery of 4 μM Sho, did not influence the GC navigation 

(Supplementary Figure S2). 
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Figure 13 - Full-length PrP had a more active role in GC navigation. (A) Mouse full-length 

PrP and its different domains proteins used in this study. (B) Western blot analysis indicates 

different PrP fragments in neuron medium (NM) supplemented with FBS and incubated for 

different time (0, 20, 40, 60 and 120 minutes). Protein in PBS was used as a positive control. 

W226 (binding epitope: 145-155) was used to detect full-length recPrP (23-231) and C-terminal 

fragment (89-231) but EB8 (binding epitope: 26-34) was used for N-terminal fragments 

detection (23-120 and 23-90). (C) DIC images of a GC before and after vesicle photolysis. Red 

arrowheads indicate the position of vesicle encapsulating 4 M of full-length recPrP, N-terminal 

(23-90) and C-terminal of recPrP (89-231). Scale bar 8 µm. (D) Angle distributions when full-

length, C-terminal and N-terminal of PrP were delivered to GC. (E) Maximum neurite outgrowth 

in control condition and in presence of different fragments and their mixture. Data represent 

mean ± SE. p<0.001, one-way ANOVA, stars indicate p-values of t-test with Holm-Bonferroni 

correction for multiple comparison (*** p < 0.001). (F) Mean turning angle. Data represent 

circular mean ± SE. p<0.05, one-way ANOVA for circular data. Stars indicate p-values of 

Watson-Williams test with Holm-Bonferroni correction for multiple comparison (** p < 0.01). N 

> 10 GC 

4.3. Membrane-anchored PrPC acts as a signaling receptor 

We then investigated how neurons respond to extracellular recPrP stimuli and where the primary 

site of this interaction could be. Previous studies suggested that GPI-anchored PrPC itself could 

be one of the candidates for mediating the effect of PrP [13]. To test this hypothesis PrP 

knockout mouse (Prnp0/0) models were used. As a preliminary control of the neuronal cultures 

used in this study, endogenous PrPC expression was evaluated in PrP wild-type (wt) and knock-

out neurons, 24 and 48 h after plating the neurons. PrPC is expressed in wt neurons with its 

normal glycosylation pattern (Figure 14A), presenting three isoforms (unglycosylated, 

monoglycosylated and di-glycosylated protein). After PNGase F (Peptide -N-Glycosidase F, an 

amidase that cleaves oligosaccharides from N-linked glycoproteins) digestion, PrPC is mainly 

deglycosylated. PrPC-ablated neurons do not show PrP expression as expected. Comparing GC 

dynamics in wt and Prnp0/0 neurons we found that PrP-null GC were insensitive to recPrP release 

(Figure 14B-C), undergoing the repetitive cycles of protrusions and retractions, without any 

significant growth or change in direction (Figure 14D-E). Although PrP-null GC were growing at 

a slower rate in comparison to wt neurons (Figure 14C), they were able to respond to other 

guidance cues such as Netrin-1. When GC were exposed to Netrin-1 stimulation, within a few 

minutes GC clearly turned toward the vesicle position (Figure 14F-G). These results suggested 

that these two signaling events followed two different signaling pathways. In all species, the 
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attractive effects of Netrin are meditated by well documented receptors of the DCC (Deleted in 

Colorectal Carcinomas) family [176] while our experimental data on Prnp0/0 mice model 

predicted that the potential function of recPrP as a signaling molecule requires membrane-

anchored PrPC to exert its functions. To further clarify this issue, Prnp0/0 neurons were 

transfected with GFP-PrP constructs and examined for local stimulations with 4 M recPrP 

(Figure 14H-I). GFP-tagged PrP is expected to have the same glycosylation pattern as the 

endogenous protein, previous studies showed that GFP-tagged PrP is correctly localized and 

functionally active in the brains of transgenic mice [177]. Moreover, it has been shown that GFP-

PrP expressed in prion-infected cells have the same pattern as wt PrP after PK-digestion [178]. 

Notably, in our assay GFP-PrP expressing GC acquired the ability to respond to recPrP stimuli 

and neurite outgrowth enhancement was rescued compared to control (Figure 14J).  
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Figure 14 - recPrP requires expression of PrPC on the membrane to exert its functions. (A) 

PrPC expression in primary hippocampal neurons 24 and 48 h after dissection. Western blot 

analysis using anti-PrP W226 antibody was performed. PrPC expression was evaluated in wt 

neurons before (right) and after (left) PNGase F treatment. Prnp0/0 neurons were used as negative 

control. β-actin was used as loading control. (B) DIC images of a Prnp0/0 GC after recPrP 

stimulation. Any significant growth was observed after vesicle photolysis. (C) Time evolution of 

neurite outgrowth after recPrP release in Prnp0/0 GC superimpose with collected data from wt 

GC. (D) Bars indicate the value of maximum neurite outgrowth in control conditions and after 4 

M recPrP stimulation in wt and Prnp0/0 GC. N > 10 GC. Data represent mean ± SE. Stars 

indicate p-values of t-test with Holm-Bonferroni correction for multiple comparison (*** p < 

0.001). (E) Distribution of angle after local delivery of recPrP to Prnp0/0 GC (N= 25 GC). (F) 

DIC images of a Prnp0/0 GC after local delivery of Netrin-1. After vesicle breaking GC clearly 

turned toward the source. Scale bar 4 µm. (G) As in (E) but vesicle encapsulating Netrin-1. (H-I) 

Fluorescence images of GFP-PrP expressing neurons immediately after local stimulation with 

PBS (H) and 4 M recPrP (I). Arrowheads indicate the position of the vesicles. Scale bar 8 m. 

Insets indicate the time-lapse images of GC marked in (I). (J) Bars indicate the value of 

maximum neurite outgrowth after local stimulation of GFP-PrP expressing GC (N= 9 and N=10 

GC for control and recPrP stimulated conditions, respectively). Restoring PrP to the GC 

membrane rescued neurite outgrowth enhancement. 

To check the accuracy and reliability of our experimental data we compared data from two 

different mouse strains, FVB and C57 black6 mice, either wt or Prnp0/0 (Supplementary Figure 

S3). The recPrP effects were identical, indicating that recPrP stimulation enhanced neurite 

outgrowth in a similar manner in both mouse strains. Neither significant growth, nor GC turning 

was observed in experiments using Prnp0/0 neurons originating from both FVB and Zurich I 

mice.  

Considering the relevance of homophilic interaction between PrPC molecules in our experimental 

assay, we then asked which region of PrPC is mediating this interaction. To address this question, 

PrPC was probed with three different monoclonal antibodies (mAb) to test their ability to bind 

distinct epitopes situated in the distal region of both the PrPC N- and C- terminus. The 

localization of PrPC was investigated by immunostaining with W226 [179] (binding epitope: 

145- 155), SAF34 [180] (binding epitope: 59-89) and EB8 [181] (binding epitope: 26-34). All 

three mAbs recognized the PrPC in wt mouse hippocampal neuronal culture, showing similar 

staining patterns (Figure 15A). After 30 minutes of incubation with mAbs [1 µg/ml], they were 

washed out and recPrP was delivered locally to GC. Interestingly, the growth promoting effect of 

recPrP was completely abolished after treatment with W226 and SAF34 (Figure 15B and C) 
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while EB8 was not able to block the effect of recPrP at the used concentration. These data 

suggest that the homophilic interaction of recPrP and PrPC is necessary to provide distinct 

signaling events and that defined epitopes of PrPC might regulate this homophilic interaction. 

 

Figure 15 - mAbs against PrPC block growth promoting effect of recPrP. (A) Hippocampal 

neurons were fixed and were immunostained with the three mAbs. All the antibodies show a 

similar pattern. Scale bars, 10 μm. Cartoon indicates three-dimensional structure of mouse PrPC 

and binding epitopes of mAbs (B-C) Maximum neurite outgrowth (B) and mean turning angle 

(C) in control condition and in presence of 4 M recPrP. Cells were pre-treated with different 

mAbs against PrPC (W226, EB8 and SAF34, [1 g/ml]). In the presence of W226 and SAF34 

any significant growth and turn was observed while EB8 did not block the growth promoting 

effect of recPrP. Data in (B) represent mean ± SE, p<0.001, two-way ANOVA, stars indicate p-

values of t-test with Holm-Bonferroni correction for multiple comparison (** p < 0.01, *** p < 

0.001). (F) Mean turning angle. Data represent circular mean ± SE. p < 0.001, two-way ANOVA 

for circular data. Stars indicate p-values of Watson-Williams test with Holm-Bonferroni 

correction for multiple comparison (** p < 0.01). 
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4.4. recPrP- PrPC mediates multiple signaling pathways through 

transmembrane receptor NCAM 

We showed that murine recPrP may interact with PrPC as a putative receptor or part of receptor 

complex to exert its function. However, it remains largely unclear how recPrP stimuli are 

transduced in the cell interior. To gain preliminary insight into the intracellular signaling 

mechanisms involved in recPrP-mediated neurite outgrowth on mouse hippocampal culture, a 

panel of kinase inhibitors was tested for their ability to inhibit the effect of recPrP on neurite 

elongation (Figure 16). Src family kinases, including p59fyn (fyn), are known to have roles in 

mediating both prion neurotoxicity and PrP-mediated cell signaling. In addition to the src family 

kinases, extracellular regulated kinases (ERK) and phosphatidylinositol 3-kinase (PI3-kinase) 

can regulate a broad range of cellular process including cell differentiation, adhesion and 

migration, reviewed in [182]. In this set of experiments, neurons were incubated with different 

inhibitors for 30 min and then 4 M recPrP (stripped blue bars in Figure 16) or PBS (stripped red 

bars in Figure 16) was delivered to the GC. As summarized in Figure 16, PP2 (1 µM), a selective 

inhibitor of the Src kinase, blocked the enhancing and guiding effects of recPrP by more than 

70%, this is in agreement with previous studies which introduced Src kinase as important kinase 

involved in PrPC-mediated intracellular signaling and its role in neurite outgrowth [24, 25, 182]. 

Furthermore, to investigate whether other kinase activation, including ERK and PI3-kinase, are 

necessary for recPrP-mediated neurite outgrowth we tested PD98059 (50 µM), inhibitor of 

MEK-ERK, and LY294002 (20 µM), inhibitor of PI3-kinase. Collected data indicated that 

inhibition of ERK and PI3 kinase abolishes the effect of recPrP on neurite elongation. Therefore, 

in our experimental assay neurite outgrowth and turning triggered by recPrP in cultured mouse 

hippocampal neurons require the activity of the Src kinase family, including p59fyn, ERK and 

PI3-kinase activation, thus these data indicated that multiple signaling pathways were involved 

in transduction of recPrP-mediated signals. 
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Figure 16 - Effect of kinase inhibitors on PrP-induced neurite outgrowth. Quantification of 

the maximum neurite outgrowth in control conditions (red bars) and after stimulation by 4 M 

recPrP (blue bars). Solid bars indicate untreated experiments and stripped bars indicate 30 min 

incubation with different kinase inhibitors. Treatment with 1 M PP2 (a selective inhibitor of the 

Src family kinase. N= 12 GC), 50 M PD98059 (PD, inhibitor of ERK. N= 11 GC) and 20 µM 

LY294002 (LY, inhibitors of PI3-kinase. N= 10 GC) block the effect of recPrP indicating that 

multiple signaling pathways were involved in transduction of recPrP-mediated signals. Data 

represent mean ± SE. p <0.001, two-way ANOVA, Stars indicate p-values of t-test with Holm-

Bonferroni correction for multiple comparison (* p < 0.05, *** p < 0.001). 

PrPC is anchored to the outer leaflet of the plasma membrane via a GPI-anchor, therefore it is 

unlikely to physically associate with cytosolic molecules. Nevertheless, several transmembrane 

and intracellular molecules are known to functionally cooperate with PrPC to transduce signals 

into the cell interior [14]. Among them, neural cell adhesion molecules (NCAM) have attracted 

interest because both PrPC and NCAM have been implicated in signaling cascades involving the 

Src kinase family and because Src is also involved in NCAM-driven neurite outgrowth [26, 113]. 

First, we investigated the role of NCAM in GC motility by using mAb against NCAM. 

Surprisingly, the growth promoting effect of recPrP was abolished after treatment with [1 g/ml] 
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mAb against NCAM (Figure 17 F). These data suggest that NCAM may be involved in signal 

transduction.  

To further investigate the role of NCAM in our assay, we analyzed the co-localization of PrPC 

and NCAM in cultured mouse hippocampal neurons in control condition (Figure 17A) and in the 

presence of 2 µM recPrP (bulk treatment) (Figure 17B) using STimulated Emission Depletion 

(STED) nanoscopy [183]. Low co-localization was measured between PrPC and NCAM in 

control cultured while after recPrP treatment co-localization increased significantly (Figure 

17B). In control condition both molecules showed uniform distribution along neurites (Figure 

17A). In contrast, in recPrP-treated cultures, clusters of NCAM overlapped with PrPC (Figure 

17B) suggesting that recPrP treatment can affect NCAM clustering in plasma membrane.  

To exclude the contribution of recPrP from observed colocalization we pre-treated the cells with 

EB8 antibody against PrP. After 30 min of incubation, unbounded antibodies were washed out 

and cultures were treated in bulk with 2 µM of recPrP for 2h. We found a slightly lower 

colocalization (not significant difference, p > 0.4) than for the case when the cells were exposed 

directly to recPrP (Figure 17 C and E). Notably, this value was also significantly different from 

the control, suggesting that recPrP treatment recruits NCAM to lipid rafts, and would increase 

the association between NCAM and PrPC. We then asked whether increased association between 

PrPC and NCAM is specific to recPrP treatment or other growth-promoting factor can cause 

similar effect on distribution of NCAM and/or PrPC. To address this issue, samples were treated 

in bulk with 1 µM NGF (Nerve Growth Factor) and examined with STED nanoscopy (Figure 17 

D and F). Surprisingly, we also observed higher colocalization between PrPC and NCAM in NGF 

treated samples, suggesting that recruitment of NCAM to lipid rafts is a generic property of 

neurite outgrowth stimulation.  

Higher co-localization of NCAM and PrPC in recPrP treated cultures suggested that these 

proteins might form a complex in lipid rafts, activate Src and downstream members of Src 

kinase, which in turn trigger the growth. This is in line with previous studies in cultured mouse 

hippocampal neurons [26] where PrPC was found to directly interact with NCAM via cis or trans 

interaction, stabilizing NCAM within lipid rafts, and thereby stimulating neurite outgrowth. 
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Figure 17 - recPrP treatment increase the colocalization between PrP and NCAM. (A) 

STED images of GC stained for PrP, NCAM and merge of the two staining in control condition. 

Scale bar 500 nm. (A1-A2) High-resolution images of areas indicated in (A). Scale bar 250 nm. 

(B) As in (A) but neurons were incubated in bulk with 2 M recPrP (2 h). (C) As in (A) but in 

this case cells were pre-treated with mAb against PrP ([1 g/mL] of EB8 for 0.5 h) and then 

incubated with 2 M recPrP (2 h). (D) As in (A) but neurons were treated in bulk with 1 M 

NGF for 2 h. (E) Mean correlation coefficients comparing the co-localization between PrP and 

NCAM in different conditions. p < 0.05, one-way ANOVA (F) Maximum neurite outgrowth in 

control condition and in presence of recPrP. Cells were pre-treated with mAbs against NCAM [1 

g/mL]. In the presence of mAb any significant growth was observed. Data represent mean ± 

SE. p < 0.001, two-way ANOVA. Stars indicate p-values of t-test with Holm-Bonferroni 

correction for multiple comparison (* p < 0.05, *** p < 0.001). 

4.5. Structural integrity of N-terminal copper-binding sites of the prion 

protein is crucial for its function in neuritogenesis 

To investigate whether copper-binding sites play an important role in the function of PrPC in 

neuritogenesis, we mutate the histidine residues of the N-terminal of PrP involved in copper 

coordination [184]. In addition we produced the homologous GSS-linked mutation P101L 

(P102L in human) that was shown to alter copper coordination at the non-OR region [134] 

(Figure 18a). The purified and folded proteins were assessed using Circular Dichroism spectra. 

As result, substitution of histidine to tyrosine at the OR denoted as H1234Y changed critically 

the PrP secondary structure with very high α-helix rich content comparing to the wild-type (wt) 

protein. The same structure was observed in the construct were all 6 histidine residues were 

mutated to tyrosine (6-H toY mutant (H123456Y)). However, mutations at non-OR including H-

to-Y substitutions or P101L had similar structural patterns with the wt protein although minimal 

changes favor more β-sheet contents were observed. (Figure 18b & 18c) 
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Figure 18 - Assessment of secondary structure for recombinant wild-type (wt) and mutant 

prion proteins by Circular Dichroism (CD). (a) Point mutation positions shown on part of 

sequences of the recombinant mutant MoPrP proteins compared to the wt recMoPrP; (b) 

Superimposed CD spectra representative of the purified and refolded recombinant MoPrP 
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proteins indicating that OR mutant (recMoPrP(H1234Y)) and recMoPrP(H123456Y) have 

completely different structure from the wt MoPrP whereas non-OR mutants including 

recMoPrP(H56Y) and recMoPrP(P101L) have minimal changes but mostly the beta-sheet 

content. (c) Detailed superimposed CD spectra indicating minimal changes in secondary 

structures between recMoPrP(wt) and non-OR mutants. CD data were reconstructed by CDSSTR 

program with reference data set 7 (Sreerama and Woody 2000), NRMSD < 0.05 on DichroWeb 

server (http://dichroweb.cryst.bbk.ac.uk/) 

Recombinant PrP proteins were without GPI anchoring residues to mimic the soluble form of 

PrP which may act as a signaling molecule for neuronal processes. They were then delivered into 

the neuronal culture following overnight incubation. Different concentrations of wt recMoPrP at 

0.5 µM, 1 µM or 2 µM were used to treat the P2 hippocampal neurons in bulk. After about 22 

hrs of incubation in the presence or absence of recMoPrP, the cells were fixed for the 

immunostaining with β3- Tubulin as s specifically neuronal marker. Neurites in cultures treated 

with 2 µM of wt recMoPrP sample showed significant outgrowth and connection than the mock 

control treatment though the increase in neurite growth could already be observed at 1 µM 

treated condition (Figure 19).   
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Figure 19 – Assessment on effects of different concentrations of recMoPrP(wt) on average 

neurite length of hippocampal cultures. Culture treated with 2µM recMoPrP(wt) showed 

significant neurite outgrowth and connections comparing to the mock control and 0.5µM 

concentration. (a) Representative immunofluorescent images of β3-tubulin for P2 hippocampal 

mouse neuronal cultures after about 22 hours of incubation with mock control or different 

concentration of recMoPrP(wt). Images were taken at 40X oil immersion objective by the Leica 

confocal microscope; scale bar 50µm, nuclear staining with dapi. (b) Quantitative analysis of 

average length of neurites in different treatments by ImageJ; data represent mean (SD) from at 

least three independent experiments with 28 to 88 images analyzed; statistical comparison by 

one-way ANOVA with Games-Howell post hoc test (****p < 0.0001; *p < 0.05) 

We next investigate the effect of minimally structural change in non-OR copper-binding site on 

the neuritogenesis process using two mutants recMoPrP(H56Y) and recMoPrP(P101L). After the 

cells were plated for one day, the neuronal cultures were treated with either the mutant or wt 

recombinant proteins at 2 µM concentration. As a result, neither recMoPrP(H56Y) or 

recMoPrP(P101L) could enhance neurite outgrowth comparing to the effect of wt recMoPrP 

treatment versus control (Figure 20a). The cultures treated with the non-OR mutants appeared to 

have shorter neurites than in the mock control despite the differences were of non-statistical 

significance. Average length of neurites in wt recMoPrP treatment could reach almost 200µm 

after two days in culture whereas in recMoPrP(H56Y) and recMoPrP(P101L) mutant treatments 

neurites were about 80 and 70 µm shorter respectively. (Figure 20b) 
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Figure 20 – Effects of non-OR mutants on neuronal growth. Neuronal culture treated with 

recMoPrP-wt showed significant neurite outgrowth and connections whereas non-OR mutant 

PrP(s) failed to promote the neuritogenesis in those treated cultures. (a) Representative 

immunofluorescent images of β3-tubulin for P2 hippocampal mouse neuronal cultures after 

about 22 hours of incubation with mock control or 2µM recMoPrP(wt) or non-OR mutants 

including recMoPrP(H56Y) and recMoPrP(P101L). Images were taken at 40X oil immersion 

objective by the Leica confocal microscope; scale bar 50µm, nuclear staining with dapi. (b) 

Quantitative analysis of average length of neurites in different treatment by ImageJ; data 

represent mean (SD) from at least three independent experiments with 23 to 88 images analyzed; 

statistical comparison by one-way ANOVA with Games-Howell post hoc test (****p < 0.0001) 

With dramatic changes in the protein structure, it is expected that the OR and 6-H toY mutant 

proteins would show altered PrP function. Indeed, while recMoPrP(H1234Y) failed to increase 

the neurite growth comparing to the mock control, recMoPrP(H123456Y) could surprisingly 

cause high toxicity to neurons (Figure 21 and Figure S4). This data suggests that copper binding 

may contribute to stabilize the unstructured N-terminal of PrP maintaining its proper 

conformation for the signaling function. Particularly, the toxic effect was observed only with the 

additional substitution at the non-OR region together with the OR-region. Hence the total 

disruption of copper-binding at N-terminal of PrP, especially at the non-OR region leads the 

protein become more vulnerable to structural alteration and conversion to toxic species.  
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Figure 21 – Effects of OR mutant and 6-His mutant on the neuronal growth. Neuronal 

cultures treated with the OR mutant (H1234Y) and the all 6 His to Tyr (H123456Y) mutant 

recMoPrP that folded into completely different structures from the wild-type protein also failed 

to promote the neuritogenesis. Especially, the latter induced lethal toxicity to neurons. (a) 

Representative immunofluorescent images are shown as β3-tubulin (green) and nuclear staining 

dapi (blue) for P2 hippocampal mouse neuronal cultures after about 22 hours of incubation with 
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mock control or 2µM or mutant proteins. Images were taken at 40X oil immersion objective by 

the Leica confocal microscope; scale bar 50µm. (b) Quantitative analysis of average length of 

neurites in treatments with control and OR-mutant by ImageJ; data represent mean (SD) from at 

least three independent experiments with 30 to 88 images analyzed. Images from cultures treated 

with recMoPrP(H123456Y) could not be analyzed due to neuronal death 

4.6. Mutant prion proteins at the N-terminal copper binding sites fail to 

induce neuronal growth cone polarity and protrusion 

After assessing the overall effect of the above PrP mutants to general growth of the neuronal 

network in cultures, we moved to evaluate single neuronal focal stimulation to understand how 

the mutants could affect the cell dynamics leading to the reduction in neuritogenesis. For this, we 

applied the established neuronal guidance assay based on optical tweezer technique in the first 

part of the study (see section 3.5) [171] to monitor the growth cone polarity and protrusion-

retraction movement after the stimuli delivery. Briefly, recombinant PrP proteins were 

encapsulated in liposomes at concentration of 4µM. With the help of optical tweezer composed 

of two focused IR laser beams, the liposome was trapped and placed near a dynamic growth cone 

at a distance around 10-20µm. The proteins were released after photolysis by the UV 

(ultraviolet) pulse laser and diffused toward the growth cone.  

Upon stimulation with wt recMoPrP, the GC trace (red line) showed that it protruded forward 

and turned towards the protein source (Figure 22) which replicated our previous finding about 

the function of wt PrP in promoting fast GC navigation (section 4.1) [171]. As for the OR and 

the non-OR mutants as well as the PBS control, GC(s) have only spontaneous movements 

around the original positions showed clearly from the rose diagrams with angle distributions 

covering 0-180 degree (Figure 23). Stimulation with recMoPrP(P101L) showed only few GC 

moving toward the source, and the mutant protein failed to significantly promote GC polarity 

(Figure 22, Figure 23, supplementary video 1). As far as neurite growth was concerned, wt 

recMoPrP stimulated GC outgrowth immediately following vesicle photolysis and sprouted after 

3 min whereas all other cases started decreasing at the same time or maintained minimal changes 

in length (Figure 24b). Wt PrP could increase the GC maximum growth up to 12 µm within few 

minutes, 3 folds more than the control and 4 folds than the H56Y mutant (Figure 24a). On 

average, GC stimulated with the non-OR mutant (H56Y) did not increase growth and in some 

cases even retracted indicating the protein may have inhibitory effect (Figure 24b, supplementary 
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video 2). Interestingly, the difference in behavior of GC upon stimulation with H56Y and P101L 

mutants infer that the direct blocking of copper binding has a strong impact on PrP function in 

neurite outgrowth than the putative conformational changes at the non-OR region.         

 

Figure 22 - Trajectories (red) of representative growth cones ‘responses to wt or mutant 

prion proteins. The GC movements were monitored for about 15min after the deliveries of 

recMoPrP(wt), OR (H1234Y) or non-OR (H56Y & P101L) mutants by photolysis of the 

encapsulating liposomes. Only the growth cone stimulated with the recMoPrP(wt) protruded 

dynamically toward the protein source. Blue arrows indicate original positions of the chosen 

liposomes before photolysis. Red lines indicate traces of the growth cone movement every 25s 

analyzed by our custom code developed in Matlab 
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Figure 23 – Effects of OR and non-OR mutant PrP on GC polarity. Rose diagrams showing 

angle α distribution between the target GC(s) and the liposome positions (protein delivery points) 

during different stimulation conditions. 0 < α < 900 indicates the GCs are attracted toward the 

protein source; vice versa 90 < α < 1800 indicates the GCs are repulsed from the protein source. 

The GC responses to recMoPrP(wt) show a clear polarity toward the signaling cue whereas in 

the other conditions, the GCs turn to the opposite direction many times. The angles are analyzed 

every 50 frames from all the experiments for each treatment by our custom code developed in 

Matlab 
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Figure 24 – Effect of OR and non-OR mutants on GC protrusion. The OR mutant 

recMoPrP(H1234Y) (n = 9) and non-OR mutants including recMoPrP(H56Y) (n = 18) and 

(P101L) (n = 8) failed to enhance growth-cone protrusion and neurite outgrowth as well as the 

mock control (n = 8) whereas the wild-type protein (n = 6) could increase remarkably the neurite 

growth. (a) Maximum growth of neurites measured from each stimulation conditions; growth-

inhibiting effect of the non-OR mutant recMoPrP(H56Y) is most pronounced indicating the 

importance of copper binding in this region on growth-promoting function. Data represent mean 

(SD), one-way ANOVA with Gabriel post hoc test (*p < 0.05, *** p < 0.001 and **** p < 

0.0001). (b) Superimposition of GC protrusion from all the experiments of different stimulation 

conditions during 10 min after liposome photolysis. Data represent mean ± SE every 25s 
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4.7. Non-octarepeat (non-OR) copper binding site is essential for PrP 

trans-signaling in neuritogenesis 

Data from the previous neuritogenesis assays showed that non-OR mutant recMoPrP(H56Y) 

treated culture had shorter average neurite length (~117 ± 46.7 µM) comparing to control (~147 

± 49.6 µM) (Figure 20b) and GC protrusion dynamic was even significantly lower than the one 

stimulated by other non-OR mutant recMoPrP(P101L) (Figure 24a). This set of data confirms 

that copper coordination in both His95 and His110 (mouse numbering) is relevant for PrP 

function. Hence, recMoPrP(H56Y) is chosen for further experiment to understand how non-OR 

copper binding site affects PrP trans-signaling in neuritogenesis. It can be implied from our 

previous study of this project that wt recMoPrP could promote growth signaling through NCAM-

Fyn-ERK pathway (section 4.4) [171]. In this part, we could show direct activation of this 

pathway by detecting phosphorylated form of ERK in the hippocampal cultures after treatment 

with the recMoPrP (Figure 25a).  Mitogen-activated protein kinases (MAPK) are activated by 

phosphorylation cascade. p44/42 MAPK- ERK1 and 2 are phosphorylated by MEK 1 and 2 at 

Thr202/Tyr204 and Thr185/Tyr187 respectively which eventually activate downstream 

transcription factors [185] such as CREB for neuritogenesis [186].  

To detect phosphorylation of ERK, the hippocampal neurons after one day of plating were 

treated with 2µM wt recMoPrP or recMoPrP(H56Y) for 25 min prior to cell lysis. As a result, wt 

recMoPrP could promote significantly phosphorylation of p44/42 ERK 1/2 up to almost 20% 

(1.2 fold) comparing to the mock control (Figure 25b). The mutation H56Y failed to induce this 

signaling event resulting in nearly 40% less phosphorylated ERK ratio comparing to the wt 

sample (Figure 25a & b). The total expression of ERK after being normalized to the loading 

control β-tubulin in the recMoPrP treated samples were higher than in the control although not 

statistically significant due to small sample size (Figure 25c). Interestingly, while the possible 

upregulation of ERK could lead to more activation of the kinase by MEK in case of wt 

recMoPrP treated culture, the phosphorylating cascade was much less efficient in the mutant 

treated culture. Mutant PrP however could act through other unknown mechanism to increase 

ERK expression. Spontaneous activity of the pathway was still present since phosphorylation of 

ERK was not diminished indicating other growth factors could compensate the normal growth in 
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the cells. As a conclusion, the non-OR copper binding site in PrP seems to play a major role in 

inducing outgrowth signaling in hippocampal neurites. 

 

Figure 25 - Non-OR mutant recMoPrP(H56Y) did not increase activation of ERK pathway 

observed in treatment with the wt protein. (a) Representative western blot of phosphorylated 

ERK 1/2, total ERK 1/2 and β-Tubulin as loading control. Around 18µg of proteins were loaded 

in each well. (b) Ratio of phosphorylated ERK normalized to total ERK calculated from 

densitometric volume of each blotted signal; ratios of the control samples were set to 1 and data 

are presented as fold of control. Only recMoPrP(wt) treatment could significantly enhance 

phospho-p44/42 MAPK (Erk1/2) indicating elevated activation of the cascade whereas the 

recMoPrP(H56Y) treated culture had a reduction of the ERK phosphorylation level; * p < 0.05, 

**p < 0.01 one-way ANOVA with Dunnett’s T3 multiple comparison. (c) Ratio of ERK 

densitometric signal normalized to β-Tubulin amount; PrP treated cultures appeared to have 

higher expression of ERK in spite of non-statistical significance. (b) & (c) data represents mean 

(SD), n=4 
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Chapter 5 – DISCUSSION 

5.1. Soluble PrP may act as a non-canonical guidance cue by forming 

signaling complex with membranous PrPC and NCAM 

In the present study we assayed experimental conditions to mimic the interaction between a 

single GC and locally released recPrP molecules, unraveling long-awaited putative physiological 

function for soluble full-length PrP as a signaling molecule and GPI-anchored PrPC as its 

receptor. Previous studies indicated that PrPC can be secreted from the cell membrane and 

released to the extracellular space through distinct mechanisms [11]. The GPI-anchor can be 

removed by posttranslational modification [71, 187] or cleaved by phospholipase C [70]. 

Moreover, PrPC can reach the extracellular space in exosomes, which are released by cells upon 

fusion of multivesicular bodies [20]. Therefore, PrPC may interact with neighboring cell in a 

soluble form. Our methodology enabled experimental condition to examine and visualize the 

function of soluble PrP as a guidance molecule. 

Comparing neurite navigation in wt and Prnp0/0 GC, we found that Prnp0/0 GC were insensitive 

to recPrP stimulation, but they are still able to respond to other biochemical cues such as Netrin-

1. These results strongly suggest that physiologically active PrPC on the membrane is required to 

mediate recPrP stimulation and activate downstream signaling events. There is evidence 

supporting the notion that PrPC functions as a part of cell surface platform to interact selectively 

with various sets of ligands and transmembrane modules, providing distinct signaling events, 

which in turn convert into specific physiological processes or behavior [2, 14].  

Moreover, we show that local accumulation of recPrP at wt GC leading edge requires the 

activation of multiple intracellular tyrosine kinases including the Src-family kinases and other 

kinases such as ERK and PI3-kinase to initiate any motile behavior. There is a general agreement 

that PrP-mediated signaling in neurons can trigger activation of Src-related kinases, such as fyn 

[24, 182]. More importantly, the non-receptor Src-related kinases are able to regulate a broad 

range of cellular process in physiology and disease. For instance, Src-related kinases are known 

to regulate cell adhesion via direct phosphorylation of p120ctn and -catenins [188]. Thus, PrPC 

signaling may modulate cell adhesion and consequently reorganize actin cytoskeleton dynamics 

through the activation of Src-related kinases. Furthermore, consistent with a previous 
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investigation [24], our experimental data support that the ERK kinase and PI3 kinase are 

involved in recPrP signal transduction. PI3 kinase, is involved in various cellular functions, 

including proliferation, cell migration, and axon guidance [189, 190]. It has been reported that 

PI3 kinase activity mediates GC attractive turning responses to guidance cues such as NGF, 

BDNF, and netrin-1 [191]. 

The observation that full-length recPrP is more active in inducing physiological responses poses 

intriguing issues about the role of N- and C-terminal domains for PrPC function: while the C-

terminus moiety possesses well-defined secondary and tertiary structures, the N-terminus is 

unstructured. These segments are often considered independent and non-interacting with each 

other [192]. However, recent studies are attributing a significant role to the N-terminus in driving 

tertiary structure contacts with the C-terminus, and this structural proximity appears to be 

mediated by metal ions (i.e. copper and zinc) binding the octarepeats domain located in the N-

terminal moiety [193, 194]. Interestingly, we found that treatments of wt mouse hippocampal 

neurons with SAF34 and W226 mAbs -targeting the N- and C-terminus, respectively- 

completely abolished the growth promoting effect induced by recPrP. On the contrary, EB8 mAb 

–binding a region adjacent the octarepeats domain does not show any inhibitory effect. These 

results seem to support a model whereby PrPC exerts its growth promoting function through a 

mechanism mediated by the interplay between the flexible octarepeat region and the structured 

domain. Cellular prion protein may undergo multiple processing by disintegrins. These cleavages 

occur within the putative toxic domain comprising the 106-126 residues. The processing is 

carried out by members of the ADAM (A Disintegrin And Metalloproteinase) enzyme family, 

including ADAM8, 10 and 17. ADAM8 cleaves PrPC at residue 109 or 116, while ADAM10 and 

17 cleave at 119. ADAM10 can also process the C-terminal domain of PrP at position 227. This 

complex posttranslational process harbors different fragments displaying various physiological 

functions. The first such processing carried out by ADAM8, which cleaves at residue 109, yields 

two moieties denoted N1 and C1, for the N-terminal and C-terminal domains, respectively. 

These two fragments have been shown to possess opposing biological activities [56, 146]. In our 

experiments, we have used either PrP(23-89) or PrP(23-120) to test whether the N-terminal 

domain may retain GC guidance properties. Although some limited effect was observed, the 

results were not statistically significant. Altogether, we propose a defined mechanism underlying 

the interaction of recPrP with GC. Local accumulation of recPrP at wt GC sites and its 
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homophilic interactions with membrane PrPC activate Src-related kinase (including fyn), along 

with downstream signaling pathway to transduce the recPrP signal into the cell interior. Focal 

adhesion molecules and actin cytoskeleton are the major targets of these signaling cascades at 

GC periphery. Therefore, local stimulation with recPrP may activate new adhesion formation at 

the leading edge nearest to the guidance cue and may promote actin remodeling at GC periphery, 

which in turn facilitates neurite outgrowth and mediate attractive guidance response. Most likely, 

the association of PrPC is not the sole player in transduction of recPrP-mediated signals and other 

cell-surface proteins such as NCAM are implicated in activation of signaling cascade by forming 

complexes on the membrane. This mechanism is consistent with a role of PrPC in the modulation 

of cell adhesion via signaling [14] and supports the previous evidence in a zebrafish study, 

showing that PrPC itself promotes Ca+2-independent homophilic cell adhesion and suggested a 

functional link between PrPC and E-cadherin to modulate Ca+2-dependent cell adhesion [13]. 

Other studies reported that over expression of PrPC modulates focal adhesion dynamics by 

regulating Src and Focal adhesion kinase phosphorylation both in mammals and Drosophila 

[195]. 

5.2. Role of copper in maintaining functions of PrP 

In the last few years, many attempts to investigate the physiological role of PrPC and its partners 

have been intensively carried out. In the CNS, different proposed functions of PrP have been 

proposed: synaptic regulation [25, 92], neuroprotection [16, 196] , neurogenesis [196, 197] and 

neuritogenesis [11, 26]. The latter may account for PrPC role in memory and cognition [14]. PrPC 

and Cu are found abundant at synaptic clefts [87, 88, 198] and some activity of PrPC at synapses 

has been proposed to act as a copper-binding protein to regulate Ca2+ influx signaling [14]. In 

addition, PrPC and copper cooperate in regulating NMDA receptor activity to protect neurons 

from glutamate excitotoxicity [16, 99]. Interestingly, PrPC expression increases proliferation and 

differentiation at subventricular zone (SVZ) and dentate gyrus (DG) of hippocampus where 

neurogenesis constitutively occurs in both developing and adult CNS [197]. Copper is also found 

at high concentration in SVZ than in other brain regions and its increased concentration during 

aging could reduce neurogenesis [199]. On the other hand, moderate copper deficiency at early 

developmental stage can affect to dentate gyrus and hippocampal maturation [200]. Since either 
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high or low copper concentration can disturb neurogenesis, the involvement of PrPC in 

neurogenesis should relate with its regulating activity in metal homeostasis.  

PrPC has been also considered a neurotrophic factor that facilitate neuritogenesis process either 

through cis or trans interactions between PrPC and other soluble ligands (laminin, vibronectin, 

STI1) and transmembrane receptors (NCAM, integrin) [11, 24, 25, 171]. However most of these 

studies neglect to assess the role of copper binding in PrPC activity, although it has been shown 

that extracellular copper can regulate PrPC expression and release of its GPI anchorless form 

[201]. Following the observations about co-existence and co-function between Cu and PrPC, we 

have attempted to study the role of copper binding in regulating PrP signaling. Altogether, in this 

study, we could provide evidence for the involvement of copper coordination in PrP signaling in 

neuritogenesis using specific point mutations to disrupt copper binding sites on the protein. Our 

data shows that copper binding stabilize the unstructured part on PrP. Whilst disrupting copper 

binding at OR region may change the protein structure, altered copper coordination at non-OR 

cause minimal but sufficient alteration in PrP structure that could prevent it from inducing 

neuritogenesis signaling. Cu2+ has high affinity to PrP with a Kd of 10-14 M for OR region and 4 x 

10-14 M for non-OR region with His 96 and 111 (as human numbering) [52]. Therefore, higher 

affinity for copper at non-OR may explain its vulnerability in structural alteration due to different 

copper coordination.  

Intriguingly, the GSS-linked mutation P102L (P101L as mouse numbering) seems to cause 

dysfunction of the protein. This result supports the loss-of-function hypothesis for prion 

pathology, particularly in case of GSS syndrome. It has been shown in previous studies that this 

mutant protein could alter copper coordination at non-OR region making the His96 unable to 

participate in the interaction with copper at both neutral and acidic pH [134]. This result suggests 

that copper-coordination at non-OR region may be critical to ensure correct conformation for this 

region, for correct interaction of PrPC with its partners in signaling complexes. Indeed, the non-

OR mutant tested in our study failed to activate the ERK signaling cascade - the central pathway 

for neurite outgrowth [171, 202, 203] comparing to the wt PrP protein. Moreover, this region has 

been suggested as a key site for prion conversion [134] . Thus, conformational changes in this 

region that would prevent copper binding could affect either PrPC function or increase its 

susceptibility to pathologic prion conversion.   
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Chapter 6 – CONCLUSION  

In this project we could define molecular function of PrPC, which may provide new insights into 

understanding of its physiological roles during developmental stage and adult life. PrPC in its 

soluble form might act as a signaling guidance cue. Its action needs homophilic interaction with 

the active PrPC on adjacent cell membrane to form a signaling complex with NCAM and induce 

intracellular cascades for neurite outgrowth such as Fyn, PI3K and ERK. Further investigations 

may establish whether PrPC has a potential role in affecting axon regeneration in the adult 

nervous system. 

Our data also provide evidence about the critical role of copper binding in regulating PrPC 

function in neuritogenesis. All copper binding sites are important to preserve the functional 

conformation of PrPC. The ability of PrPC in binding copper is key maintaining the protein 

function and preventing its conversion to the prion state. Indeed, minimal structural changes at 

non-OR copper binding site may be sufficient to alter PrPC conformation and function, which 

may modulate its propensity to prion conversion. Overall, this study contributes to shed light 

between PrPC physiology and prion pathology.  
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SUPPLEMENTARY DATA 

 

Figure S1 - CD spectroscopy monitoring possible changes in the structure of the PrP 

molecules by UV and IR radiation. The CD spectrum of a non-exposed sample of murine full-

length PrP was first measured (black). CD spectra for the sample exposed to 7 min UV (355 nm) 

laser radiation (blue) and the sample exposed both to 7 min UV and 2 h IR (1064 nm) laser 

radiation (red) do not show significant changes with respect to the control spectrum (black) 

meaning that the laser radiation does not damage the protein 
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Figure S2 - The role of Shadoo (Sho) on GC motility. (A) Maximum neurite outgrowth in 

control condition and after local delivery of 4 M Sho. Sho was not able to influence GC 

navigation at used concentration (N=9 GC). Data represent mean ± SE, Significance indicates 

*** p < 0.001 (Student’s t-test) 

 

 

Figure S3 - The recPrP stimuli have a similar effect on two different mouse strains. (A) 

elongation measurement in two different mouse strains. RecPrP stimulation enhanced neurite 

outgrowth in similar manner in FVB (solid blue bar) and C57BL/6 (striped blue bar) cultured 

neurons. No significant growth was observed in two different types of Prnp neurons (solid black 

bar indicates the FVB Prnp0/0 and striped black bar indicates Zurich I Prnp0/0 mice. (B-C) After 

recPrP release GC turned towards the vesicle position in both FVB (B, blue rose distribution) 

and C57 Black (C, blue rose distribution) but FVB Prnp0/0 (B, black rose distribution) and Zurich 

I Prnp0/0 (C, black rose distribution) were insensitive to recPrP stimulation 
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Figure S4– Assessment on cell viability after treatments with recMoPrP proteins. (a) 

Representative fluorescent images of calcein dye (green) as indicator for live cells and EthD-1 

dye (red) as indicator for dead cells in P2 hippocampal mouse neuronal cultures after about 22 
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hours of incubation with mock control, 2µM recMoPrP(wt) or other mutant recMoPrP(s). Images 

were taken at 20X objective by the Nikon confocal microscope; scale bar 50µm. (b) Percentage 

of live and dead cells from above cultures calculated from many images (n ≥ 20) taken from at 

least three independent experiments. Neuronal cultures treated with mutant recMoPrP had less 

live cells than those treated with mock control and recMoPrP(wt). recMoPrP(H123456Y) had 

highest toxicity to neurons. Data represent mean (SD). Statistical comparison by one-way 

ANOVA with Games-Howell post hoc test (**p < 0.01; ****p < 0.0001) 

Supplementary video 1  

GC stimulated with recMoPrP(P101L) 

The GC responded to recMoPrP(P101L) by turning toward the protein source few times but then 
kept spontaneous movement without significant outgrowth. (To see the video, Ctrl-click on the 
protein name) 

Supplementary video 2 

GC stimulated with recMoPrP(H56Y) 

The GC neither turned nor growth toward the protein source and retracted after some minutes in 
response to recMoPrP(H56Y). (To see the video, Ctrl-click on the protein name) 
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