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ABSTRACT 

The post-transcriptional regulation of HIV-1 replication is finely controlled by 

both viral and host factors. Among the former, Rev is involved in the nuclear ex-

port of viral intron-containing mRNAs, a group of transcripts which encodes for 

viral enzymes and structural proteins, but also constitute the viral genome that 

will be encapsidated into nascent virions. 

To avoid the nuclear retention of these intron-containing transcripts, Rev en-

gages an alternative export route which ultimately involves the CRM-1 export 

factor; during this process Rev requires the concerted action of several host fac-

tors but the details of its interactions are still not fully understood. To dissect this 

pathway a novel proteomic approach for the immunoprecipitation of the viral 

RNA was developed in our laboratory : we thus  identified the nuclear matrix 

protein MATR3 as a  Rev co-factor which was recruited after mRNA biogenesis 

during this process (Kula et al., 2011, 2013). We could assess that MATR3 acts in 

the post-transcriptional steps of viral replication and we could demonstrate its 

role as a Rev-cofactor during the nuclear export of viral mRNAs. 

To establish the functional role of MATR3 during acute viral infection we modu-

late its levels in Jurkat cells by both knockdown or overexpression. We found 

that, while MATR3 depletion resulted in the drastic reduction of viral replication, 

its overexpression leads to enhanced viral particle production. We applied the 

same approach to primary PBLs and obtained a similar result concluding that 

MATR3 is a positive regulator of viral replication. 

To investigate a possible role for MATR3 in the establishment of viral latency we 

depleted MATR3 from J-Lat cells, a well-established model of latency. We ob-

served that MATR3 depletion did not impede  transcriptional reactivation of the 

integrated provirus upon TNFα stimulation, but strongly impaired intracellular 

viral protein production and full viral rescue. 

This observation demonstrated that MATR3 depletion affects the post-

transcriptional steps of latency reversal suggesting that this factor could play a 

crucial role during the maintenance of latency.  

Since most of the attempts done with Latency Reversal Agents (LRAs), an hetero-

geneous  group of drugs proposed to restore viral transcription, failed to induce 

full reactivation of the latent provirus (Darcis et al., 2015; Spina et al., 2013) we 

reasoned that there could be a post-transcriptional block to full viral reactivation 
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in latently infected cells and we suppose that MATR3 could represent a limiting 

factor to this process. We confirmed that MATR3  was almost undetectable in 

resting PBLs but could be promptly upregulated upon cellular activation. MATR3 

was not induced by treatment with LRAs, such as SAHA or Romidepsin within PBL 

from healthy donors and HIV-infected patients. 

We propose that the restoration of proper MATR3 levels within latently infected 

cells could enhance latency reversal in LRAs-treated cells. 
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INTRODUCTION 

THE HIV-1 VIRUS: GENOME, STRUCTURE AND LIFE 

CYCLE 

HIV-1 AND AIDS 

The immunodeficiency virus type 1 (HIV-1) is the causative agent of the acquired 

immunodeficiency syndrome (AIDS), a systemic disease characterized by the 

dramatic drop in CD4+ T lymphocyte count which ultimately leads to the loss of 

immune system function. 

Although the discovery of HIV-1 virus dated at more than 30 years ago, AIDS is 

still a mayor public health concern worldwide with a high burden of mortality 

and morbidity in developing countries (Barré-Sinoussi et al., 1983; Gallo et al., 

1983). It has been estimated that around 35million people are HIV-1 infected and 

2,3 million of new cases have been diagnosed only in 2012. Although the abso-

lute number of new HIV infections is still high, it represents an historical mini-

mum with a negative trend in morbidity which is remarked also by the huge de-

crease in death cases during the last decade (ECDC  annual epidemiological re-

port 2014). 

Success in prevention and treatment of AIDS is due to the development of an ef-

ficient antiretroviral therapy based on the combined administration of drugs 

which target different phases of the viral life cycle. Constant adherence to the 

therapy results for the patient in the reduction of plasma viremia which is 

dropped to undetectable levels.  

Despite its high efficiency in controlling the progression of the disease, the anti-

retroviral therapy is a life-long treatment which is not able to eradicate the viral 

infection. The therapy interruption results in the rebound of viral replication 

which is due to the existence of a “viral reservoir” in which the virus could re-

main dormant for an undefined time frame. 

The existence of a viral reservoir constitute the major obstacle to HIV-1 eradica-

tion since the actual therapy are not able to target those cells which remained 

unaffected by treatment and invisible by the immune system. Currently, the de-

velopment of a strategy able to target the viral reservoir represent the major 

challenge in the fight against AIDS. 



 INTRODUCTION 

 

6 

 

HIV-1 GENOME 

HIV-1 belongs to the family of Retroviridae  (genus lentivirus) and its genome is 

based on 2 identical molecules of single-stranded RNA (+); each strand consists 

of about 9kb and carries a 5’CAP and a 3’ polyA-tail. 

HIV-1 genome contains 3 major structural genes named gag, pol and env which 

are shared by the other members of the Retroviridae family; moreover it con-

tains 6 non-structural genes ( Tat, Rev, Nef, Vpr, Vif, Vpu) encoding for accessory 

proteins. 

 

 

 

 

 

 

 

The gag gene encodes for a 55 kDa polyprotein then cleaved by the viral prote-

ase into the 3 structural proteins composing the virion: the p24 constitute the 

nucleocapsid, the  p17 is the major component of the matrix while the p15, 

processed in p6 and p7, helps in the proper assembly of the structure. 

The pol gene encodes for the viral enzymes: the reverse transcriptase (RT), a 

DNA-polymerase RNA-dependent which create a double-stranded DNA molecule 

from the RNA viral template, the integrase (IN) which catalyse the insertion of 

the viral genome within the host cellular DNA, and the protease (PR) which al-

lows the maturation of both viral polyproteins and budding virions. 

The env gene encodes for the two glycoproteins, gp120 and gp41, which form 

the spikes exposed on the external surface of the virion: these structures are re-

HIV-1 genome organization – from Sakuma et al., Biochemical Journal 2012 

The viral genome encodes three structural and six non-structural genes flanked by the LTRs. The 

Gag precursor consists of matrix (MA), capsid protein (CA), nucleocapsid protein (NC) and p6. 

The Pol gene encodes for reverse-transcriptase (RT), integrase (IN) and protease (PR). The 

envelope glycoprotein of HIV-1 encodes the polyprotein envelope precursor (gp160), which is 

eventually cleaved by PR to generate gp120 (SU) and gp41 (TM) domains. The RRE located with-

in the env region is also indicated. 
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sponsible for the interaction between the virus and the host target cell by medi-

ating the binding to receptors and co-receptors.  

The accessory proteins are involved in a variety of functions within the viral life 

cycle, ranging from the enhancement of transcription to the modulation of the 

host immune response. 

The Tat gene (Trans-Activator of Transcription) is constitute by two separate ex-

ons and encodes for a small protein (86-101 amino acids depending on the viral 

strain) which is crucial to enhance the transcription of the integrated provirus 

also thanks to its broad interactome (Gautier et al., 2009). The Tat protein binds 

the cis-acting elements TAR located downstream of the initiation site for tran-

scription and promotes the assembly of the RNA Pol II transcription complex 

(Brady and Kashanchi, 2005); moreover Tat enhance transcripts elongation by 

promoting the activity of the p-TEFb factor, but also by recruiting some cellular 

histone acetyltransferases to remodel the chromatin at the LTR site (Benkirane 

et al., 1998; Zhu et al., 1997). 

The Rev gene produces a 20 kDa protein which shuttles between the nucleus and 

the cytoplasm to mediate the export of intron-containing viral transcripts; this 

specific class of viral mRNAs are targeted by Rev because of the presence of  the 

Rev-Responsive Elements (RRE), a sequence located at the 5’ within the env gene 

which is bound by the protein to enhance their export. 

The Nef gene (Negative Expression regulatory Factor) encodes for a phosphopro-

tein involved in the regulation of viral infectivity and in the evasion from the host 

immune response: after infection of the target cell, Nef, along with the Vpu viral 

factor, modulate the surface level of the CD4 receptor to avoid both the super-

infection by other virions and the cytotoxic activity of CD8+ T lymphocytes. Re-

cently, Nef was also reported to counteract the activity of the host restriction 

factor SERINC5, a cellular transmembrane protein which, if incorporated into 

nascent virion, render the particles less infectious. Nef is able to redirect the cel-

lular localization of SERINC5 to the endosomal compartment to avoid its inclu-

sion within the nascent virions (Rosa et al., 2015). 

The Vif gene encodes for a small regulatory factor which strongly counteracts the 

cellular antiviral response during the very early phase of infection: Vif induces 

the proteasomal degradation of the cellular citidine deaminase APOBEC3G which 

lethally hypermutates the retroviral genome to inhibit the infection (Chiu et al., 

2005). 
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The Vpr factor plays an important role in the formation of the pre-integration 

complex and has also been linked to the regulation of the cell cycle and the 

apoptosis in the infected cells (Planelles and Barker, 2010). Moreover Vpr was 

shown to directly interact with the transcription factor TFIIB and to be putatively 

able to bind DNA: thus Vpr can also contribute to induction of viral basal tran-

scription at the LTR (Agostini et al., 1996; Zhang et al., 1998). 

STRUCTURE OF THE VIRAL LTR 

The viral Long Terminal Repeat (LTR) are non coding sequences of approximately 

640bp in length located both at the 5’ and 3’ end of the provirus; each LTR con-

sists of 2 Unique sequences (U3 and U5) and one Repeat sequence (R). 

The U3 region of the 5’LTR contains the viral promoter with all the functional se-

quences to allow the initiation of transcription by the cellular RNA polymerase II: 

enhancer elements surround the TATA box while 2 binding sites for Nf-KB and 3 

for Sp-1 ale placed in tandem immediately upstream of the TATA box. 

The region immediately upstream the NF-kB binding site, also known as the 

“modulatory region”, is rich in cis-acting binding sites for cellular factors respon-

sible both the repression and the activation of the viral LTR (Jones and Peterlin, 

1994; Pereira et al., 2000) 

The TAR element is a 26 nucleotide sequence located downstream the initiation 

of transcription site, within the R region, and forms a highly stable stem-loop 

structure characterized by stems, pyrimidine-rich bulge and loops; this structure 

is recognized by Tat and essential for transcriptional transactivation: mutations 

analysis which disrupt the TAR base pairing were shown to abolish the Tat-driven 

LTR transcription (Selby et al., 1989). 

At the edge of both the LTRs  are located the att sites, targeted by the viral inte-

grase to insert the provirus into the host genome; the packaging signals (PSI) re-

quired for the incorporation of the viral genome into the nascent virion are also 

located within the LTR. 

STRUCTURE OF THE VIRION 

The HIV-1 virion is a icosahedral enveloped particle of approximately 145nm. 

The external phospholipid envelope is derived by the host cell membrane during 

the budding process of the nascent virion. On the envelope are exposed the gly-
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coprotein spikes composed by heterodimers of gp120 and gp41: these structures 

mediate the interaction of the virus with the host target cells by recognizing and 

binding the cellular receptors and co-receptors present at the cellular mem-

brane. 

More internally in the structure there is the matrix formed by the myristoylated 

p17 protein, which allows the correct anchoring of the envelop to the viral cap-

sid. 

The most internal part of the virion is the nucleocapsid, a conical structure of 

p24, which contains both the viral genome associated with the p6 and p7 pro-

teins and the viral enzymes of reverse transcriptase and integrase.  

This final structure characterizes the mature virion and is generated by a process 

of maturation performed by the viral protease, which cleaves the multimeric gag 

polyprotein to allow the proper assembly of the different layers of matrix and 

nucleocapsid. 

VIRAL LIFE CYCLE 

The first contact between the virus and the target cell is established through the 

interaction of the viral gp120/gp41 heterodimer with the cellular CD4 receptor 

expressed by the cells of the monocytic-machrophage lineage  and by lympho-

cytes. 

The binding with the receptor causes a profound rearrangement in the structure 

of these proteins and lead to the exposition of those domains responsible for the 

binding to the cellular co-receptors: the usage of CCR5 as a co-receptor defines 

the HIV-1 R5-tropic strains,  while the preference for the CXCR-4 co-receptor 

characterizes the HIV-1-X4-tropic strains. 

The interaction with the co-receptor causes another structural change in the en-

velope spikes that induces the exposure of a portion of the peptide which is es-

sential to allow the fusion of the viral and cellular membranes and the release of 

the viral nucleocapsid into the cellular cytoplasm. 

Once in the cytoplasm, the nucleocapsid undergoes a process of disassembly 

called uncoating, which ends with the  release of the viral genome, which is fi-

nally available for the subsequent reverse transcription: the viral RT uses the 

RNA template to generate a double-stranded DNA molecule, which assembles 
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with the integrase (Farnet and Haseltine, 1991) and likely with p17 and Vpr (Bu-

krinsky et al., 1993) to form the pre-integration complex (PIC). 

The movement of the PIC through the cytoplasm depends on the association 

with actin (Bukrinskaya et al., 1998)  and its import into the nucleus occurs 

through the nuclear pore complex, a process which seems to be mediated by the 

Vpr factor (De Rijck and Debyser, 2006). 

The integration of viral genome into the host DNA is mediated by the viral inte-

grase with the cooperation of several cellular factors: among them the nuclear 

protein LEDGF/p75 was found to interact with the integrase and to help its an-

choring to the chromatin (Llano et al., 2004), while the DNA binding protein 

HGMA I seems to induce chromatin remodelling to facilitate the integration (Mil-

ler et al., 1997). 

Transcription of the viral genes is performed by the RNA polymerase II starting 

from the viral promoter at the LTR and requires the trans-activator Tat to en-

hance the assembly of the complex of initiation of transcription and the recruit-

ment of the elongation factors (Kao et al., 1987; Tahirov et al., 2010). 

The immature full-length pre-mRNA undergoes a splicing process to generate 3 

different classes of transcripts: the unspliced (US; 9kb) the singly-spliced (SS; 4kb) 

and the multiply-spliced (MS; 2kb) transcripts. 

The US  and the SS mRNAs encodes mostly for structural proteins and enzymes, 

but also, in the case of the US transcripts, serves as the viral genome to be en-

capsidated into new virions; the MS mRNAs are translated into regulatory factors 

such as Tat and Rev, crucial to allow full viral gene expression by acting both in 

the transcription and export of viral mRNAs. 

The expression of the different viral genes is temporally distinct: regulatory 

genes (Tat, Rev and Nef) are translated during the early phase of the viral life cy-

cle because of their requirement to allow the late phase genes expression by in-

creasing the efficiency of transcription (Tat) or the mRNAs’ nucleo-cytoplasmic 

export (Rev). 

Once produced, the viral transcripts exploit different pathways to be exported to 

the cytoplasm: MS mRNAs use the same pathway of cellular ones, while the US 

and the SS transcripts need the presence of Rev to overcome the cellular restric-

tion to the cytoplasmic translocation of intron-containing mRNAs. 
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The production of viral protein exploits the host cell translation machinery. 

A first block to the initiation of translation is given by the presence of several 

highly structured motifs present at the 5’UTR of both US and MS transcripts: to 

overcome this block is crucial the RNA helicase DDX3 which binds the 5’UTR and 

recruits the factor eIF4G and PABP  to allow the proper assembly of the pre-

initiation complex and to enhance the initiation of translation (Soto-Rifo et al., 

2012). 

The initiation of translation of US-mRNAs can occur both in a CAP-dependent or 

IRES-dependent manner (Brasey et al., 2003; Ricci et al., 2008), since two internal 

ribosomal entry sites are present at the 5’UTR and within the gag coding se-

quence; the CAP-dependent pathway is preferred  during the first 48hours after 

infection, while the IRES-dependent one is predominant at a later time point or 

under conditions of translation downregulation (Amorim et al., 2014). 

The translation of US mRNAs needs to be finely regulated to guarantee the main-

tenance of a proper pool of not-translated US transcripts to be enclosed within 

the nascent virion as genomic DNA. The Rev protein was proposed to play a cru-

cial role in this process in a way tightly related to its concentration: it was sug-

gested that, when low levels of Rev are available, they are mostly bound to the 

DDX3 host protein which, ultimately, forms a complex with the US transcripts to 

stimulate their translation (Groom et al., 2009a). 
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The viral factors Env and Vpu are translated on the rough ER: the glycoprotein 

Env is inserted co-translationally into the ER membranes, is glycosilated and as-

sembles into trimeric complex, which are then cleaved to separate the gp120 

subunit from the transmembrane  gp41. 

The Env trimeric complex is shuttled to the plasma membrane through the ve-

sicular transport and the protein spikes are inserted within the cellular mem-

brane where the nascent virion is assembled. 

HIV-1 life cycle – from Coiras et al.; Nat. Rev. Microbiol. 2015 

After the initial binding to the target cell, the viral genome is relased into the cytoplasm and 

converted in a molecule of dsDNA, which integrates within the host genome. The viral gene 

expression relies on the host cellular machinery for viral mRNA transcription and translation. 

Once translated, the viral proteins and the viral genome start accumulate at the plasma mem-

brane where the nascent virion is assembled and released. 
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The Gag protein and the Gag-Pro polyprotein concentrate at the plasma mem-

brane and it was proposed that a crucial protein level, known as “cooperative 

threshold”, is required to trigger the activation the assembly process which begin 

with the interaction between the MA domain of Gag with the plasma membrane 

(Perez-Caballero et al., 2004; Yadav et al., 2012) and with the viral Env protein. 

The Gag and the Gag-Pro proteins alone are able to orchestrate all the events re-

quired for the assembly of the nascent virion and particularly the CA domain was 

proposed to mediate all the processes: indeed it was shown that mature CA has 

the capacity to assemble into viral particle in vitro (Ehrlich et al., 1992). 

The NC domain of Gag is able to bind the PSI sequence within the viral genome 

and thus is responsible to ensure its encapsidation within the virion (Rein et al., 

2011). 

The final release of the virion from the plasma membrane is mediated by the 

Host Endosomal Sorting Complexes Required for Transport machinery (ESCRT);  

after budding the viral protease cleaves Gag into the several components to al-

low the formation of the mature structure of the virion with a proper assembled 

nucleocapsid (Bieniasz, 2009).   
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EXPORT OF THE VIRAL MRNAS 

 

VIRAL MRNA EXPORT 

Upon transcription at the viral LTR, a full length 9kb transcript is generated and 

processed by the cellular splicing machinery to create 3 different class of mRNA: 

fully spliced, singly spliced and unspliced. 

Fully spliced mRNAs encodes for the 3 regulatory protein Tat, Rev and Nef which 

are also known as “early phase genes” because of their requirement to allow full 

viral gene expression. Immediately after their processing these group of tran-

scripts are exported to the cytoplasm by the same pathway used by cellular 

mRNAs, which involves the recruitment of Nxf-1 and of the Trex complex to al-

low the passage through the Nuclear Pore Complex (NPC). 

The presence of introns in the mature form of singly spliced (SS) and unspliced 

(US) transcripts impede their export through the same pathway exploited by fully 

spliced mRNAs; these groups of transcripts encoding for structural protein and 

enzymes are called “late phase genes” and their  retention within the nucleus 

would be an obstacle to full viral replication. 

To overcome nuclear retention and degradation of intron-containing transcripts, 

the Rev protein is essential. The presence of a nuclear localization signal allows 

Rev to be imported into the nucleus where it targets these mRNAs by binding the 

Rev-Responsive Element (RRE), a sequence present within the 5’ of the Env gene 

(Fernandes et al., 2012; Malim et al., 1990). Thus Rev engages these viral mRNAs 

for an alternative route of nuclear export which ultimately involves the Chromo-

somal Maintenance 1 (Crm-1) export factor. 

Due to its small dimension Rev acts as an adaptor protein in the interaction of 

the Rev-RNA complex with the cellular factor Crm-1, a karyopherin present in the 

nuclear export complex. 

Crm-1 (also known as Exportin-1) is responsible for the nucleo-cytoplasmic ex-

port of cellular proteins and some cellular RNAs such as the ribosomal ones 

(Okamura et al., 2015); it binds the Ran-GTP in the nucleus and through the hy-

drolysis of the GTP into GDP is able to catalyze the export of a cargo to the cyto-

plasm most likely through the interaction with nucleoporins such as Nup98 and 

Nup214 (Monecke et al., 2009, 2013). 
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To be targeted by Crm-1, the cargo needs to have a specific Nuclear Export Signal 

(NES) based on a leucine motif (or on other hydrophobic residues): even if the 

NES present on Rev is unconventional, it still allows the recognition and binding 

(Güttler et al., 2010; Paraskeva et al., 1999). 

Usually Crm-1 binds the cargo in a monomeric form but the EM reconstruction of 

the complex with Rev-RNA showed unambiguously  that, in this specific case, 

Viral mRNAs export – from Okamura et al.; Genes 2015 

HIV-1 spliced transcripts are exported through the canonical cellular export pathway (left pan-

el); intron-containing transcripts are exported through an alternative pathway involving the 

viral protein Rev and the host export factor Crm-1 (right panel). 
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Crm-1 is present as a dimer and it was proposed that the dimerization functions 

increases the affinity for Rev’s unconventional NES (Booth et al., 2014). 

In this view, the unusual dimerization of this factor is essential to the export of 

Rev-dependent mRNAs and the inability to dimerize would constitute a limit to 

full viral replication: in line with this idea, comparative sequence analysis of hu-

man and murine Crm-1 showed that the 7 amino acids of difference between the 

two proteins resides in Crm-1’s dimer interface and this could provide a possible 

explanation for the defect in viral Gag protein production in murine cells (Sherer 

et al., 2011). 

The presence of multiple NES on the Rev oligomer would suggests the existence 

of a panel of equivalent configurations for the complex but the binding possibili-

ties are limited by steric effects due to Crm-1’s large size: in fact binding of one 

Crm-1 subunit  to a NES drastically reduces the possible orientations that the 

second Crm-1 could use to bind another NES (Booth et al., 2014; Daugherty et 

al., 2010a).  

Once the Rev-RNA complex translocates to the cytoplasm, Rev dissociation from 

the mRNAs occurs by a still unknown mechanism; different modes have been 

proposed, between the most likely there is the competition with nuclear import 

machinery for the NLS present in the same motif for RNA binding and the forced 

ejection of Rev by the ribosome: in any case cellular factors such as helicases are 

believed to help in complex disassembly (Fankhauser et al., 1991; Hadian et al., 

2009; Kutluay et al., 2014; Naji et al., 2012).  

THE REV PROTEIN 

The rev gene is transcribed early during the viral life cycle into a completely 

spliced mRNA and is translated into a small protein with dimensions ranging 

from 96 to 129 amino acids in patients (in most cases either 116 or 123 amino 

acids). 

It contains a bipartite Oligomerization Domain (OD), an Arginine-Rich Motif 

(ARM) and a Nuclear Export Sequence (NES). 

The ARM domain is an arginine-rich sequence which serves also as a nuclear lo-

calization signal (NLS). The ARM is responsible for the initial binding with the RRE 

on viral transcripts and leads to the recruitment of additional Rev monomers to 

form the final Rev-RRE complex; the interaction between Rev monomers occur 

through the OD domain (Zapp et al., 1991). The NES domain, necessary to allow 



 INTRODUCTION 

 

17 

 

the Rev shuttling between the nucleus and the cytoplasm, binds the Crm-1 to as-

sure the mRNAs export activity; moreover the NES domain was supposed to be 

critically important also for other activities such as the degradation of Tat, pro-

posed to be a mechanism involved in the establishment of latency (Lata et al., 

2015). 

 

 

 

 

 

 

 

 

 

 

The Rev protein has a well-established function in the export of intron-containing 

viral mRNAs and viral vectors, defective for Rev, shows impaired infectivity. The 

protein level of Rev are finely regulated by a negative feedback loop: a high con-

centration of Rev increases the rate of export of unspliced transcripts thus reduc-

ing the amount of RNAs available for complete splicing and, as a consequence 

reduces the levels of Rev expression (Felber et al., 1990). 

Different research groups reported a discrepancy between the fold increase in 

cytoplasmic accumulation of unspliced RNAs and in their protein products in 

Rev structural organization and ARM/Stem loop IIB complex- from Rausch and Grice; Viruses 

2015 

A) Rev organization according to primary sequence and 3D structure; the bipartite oligomeriza-

tion domain (OLIGO) and the nuclear localization signal/RNA binding domain (NLS/RBD) are 

shown in green and blue, respectively. The C-terminal domain of Rev, which houses the nuclear 

export signal (NES) is intrinsically disordered. 

B) ARM peptide in complex with stem-loop IIB model RNA.  ARM binds in the RNA major groove; 

the aminoacidic residues and nucleotides involved in direct contact are highlighted. 
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presence and absence of Rev (Emerman et al., 1989; Perales et al., 2005): in 

presence of Rev, a few-fold increase in the rate of cytoplasmic RNA was associ-

ated to a much stronger accumulation of viral protein. These observation sug-

gested an additional role for Rev in the enhancement of RNA translation; this hy-

pothesis was reinforced by the report of a direct interaction between Rev and 

the polysomes (D’Agostino et al., 1992; Groom et al., 2009b). Moreover, Rev was 

supposed to have a role also during the assembly of nascent virions by its direct 

involvement in the packaging of the viral genome (Groom et al., 2009b). 

Even if the focus on Rev research was mostly  put on its role on export, as fre-

quently observed for retroviral factors, a single protein could fulfil a wide range 

of tasks and be involved in different events during the viral replication; thus the 

Rev protein could exert a number of functions which of them are still not fully 

described. 

REV-RRE INTERACTION 

The RRE is a highly structured sequence consisting of 242 nucleotides at the 3’ of 

the HIV genome within the Env gene. It exists in two conformational states of 4 

or 5 stem loops (since stem III and IV could be fuse as a single stem loop); both 

conformations are functional for Rev binding although they were shown to be 

different in the efficiency of mRNA export activity, with the 5 harpin structure 

displaying the higher export activity (Heaphy et al., 1990; Olsen et al., 1990; 

Rausch and Le Grice, 2015; Sherpa et al., 2015).  
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As deduced from mutational studies (Huang et al., 1991; Jayaraman et al.; Malim 

et al., 1989; Tiley et al., 1992), the RRE carries three major sites for Rev binding: 

Stem IA, Stem IIB and the Junction between Stem IIABC . 

The three-dimensional model of RRE derived from the Small Angle X-ray Scatter-

ing (SAXS) shows an “A-shape” folding with Stem IA and Stem IIB close in space, 

suggesting that a Rev dimer may bind simultaneously to the two sites; taking ac-

count of the existence of different RRE conformers the structure depicted may 

reflect the solution  average of multiple structures (Fang et al., 2013). 

Secondary structures of HIV-RRE - from Rausch and Grice; Viruses 2015  

A) RRE 5-stem structure. Established Rev-binding sites at the stem IIB, the stem-loop II junction 

and the stem IA are indicated in grey ovals. 

B) Comparison of the 5 and 4-stem structures. Differences between the two models are limited 

to the base pairing patterns of nucleotides comprising stem loop III and IV, and stem loop III/IV 

in the respective structures.  
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The Arginine-rich motif (ARM) of Rev is responsible for the interaction with the 

RRE: the high affinity binding of the ARM to the Stem IIB is an anchor point for 

the recruitment of six Rev molecules on the RRE sequence till the formation of 

the complete Rev-RRE ribonucleoprotein complex (RNP) identified as a Rev 

hexamer on the 242nt RRE (Daugherty et al., 2010b).  

The Rev’s ARM can use several aminoacidic residues to interact with different 

binding sites on the mRNA and the interaction mostly rely on RNA structure and 

ARM orientation than on nucleotide sequence (Jayaraman et al., 2015): the high 

degree of Rev-RRE complex plasticity may represent the key of the functional ro-

bustness to mutations in the Rev sequence. 

After the initial binding to the Stem IIB, Rev oligomerization on the RRE was pro-

posed to continue with the formation of a dimer to bind  the Junction IIABC; then 

the binding of additional Rev molecules proceed across the Stem IA till the for-

mation of the Rev hexamer (Bai et al., 2014). 

 It’s still unclear if, to prevent the binding of additional Rev molecules to the viral 

RNA, the negative feedback mechanism which regulate Rev concentration is im-

plicated, or if cellular factors, such as the hnRNPs, fulfil this task by directly bind-

ing the viral RNA (Cochrane et al., 2006; Felber et al., 1990). 

The Rev-Rev interaction occurs via the bipartite, hydrophobic OD domain and 

could lead to at least 3 different orientation of the Rev-Rev complex and this 

plasticity is useful to recognize the different possible Rev-RRE complex structures 

(Jayaraman et al.). 

CELLULAR FACTORS INTERACTING WITH REV  

The activity and localization of Rev are largely dependent on its interaction with 

a variety of cellular factors: Rev’s interactome has been studied both experimen-

tally and computationally to understand the molecular basis of the host-virus in-

teraction and of the cellular restriction to viral infection (Brass et al., 2008; König 

et al., 2008; Trono and Baltimore, 1990). 

Post translational modification of Rev such as phosphorylation and methylation 

are carried out by CK2 (Meggio et al., 1996) and PRMT6 respectively (Invernizzi 

et al., 2006)  to influence or regulate its activity. 

Apart from chemical modification, also some cellular proteins can influence Rev 

shuttling between distinct cellular compartments: the Importin B binds to Rev’s 
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NLS to induce it’s nuclear translocation and factors such as HIC1 (Human I-mfa 

domain Containing Protein) and NAP1L1 (Nucleosome Assembly Protein 1) have 

been shown to participate to this process (Cochrane et al., 2009; Gu et al., 2011; 

Henderson and Percipalle, 1997). In particular the interaction between Rev’s NLS 

and HIC1 have been shown to inhibit Importin B-mediated nuclear import of Rev, 

but not transportin-mediated one suggesting that the spatial localization of Rev 

could be regulated in alternative ways (Gu et al., 2011). 

To allow the export of viral US-mRNAs Rev takes advantage of the interaction 

with several host factors: the recruitment of the CRM-1-Ran GTP complex allows 

the translocation of the Rev-RNP complex through the nuclear pore; other fac-

tors involved in this process are the eukaryotic initiation factor-5A (eIF-5A), 

which induces the interaction between Crm-1 and the nucleoporins (Ruhl et al., 

1993), and the helicase DDX3 (or DDX1 in astrocytes) which help the passage of 

the RNP complex through the pore(Fang et al., 2005; Yedavalli et al., 2004). 

Other proteins belonging to the RNA helicases family have been shown to inter-

act with Rev and to affect HIV replication by influencing the mRNA metabolism: 

among them, DDX3 seems to be implicated in mRNA translation while DDX5 and 

DDX17 affect both the amount and the export of viral transcripts suggesting a 

potential involvement in transcription, splicing or export (Naji et al., 2012). 

THE REV EXPORT COMPLEX 

To better characterize the involvement of host factors in the Rev-mediated nu-

clear export and to identify novel cellular interactors of the Rev-RNA complex, an 

approach based on the immunoprecipitation of the MS2-tagged viral RNA (Mai-

uri et al., 2011) coupled to a mass spectrometry analysis was developed in our 

laboratory. Through this approach it was possible to identify  the PTB-associated 

Binding Factor (PSF) and Matrin3 (MATR3) as novel components of the Rev-RNA 

RNP complex (Kula et al., 2011a). 

A more detailed analysis of this complex revealed that while MATR3 directly 

binds to PSF, its interaction with Rev occurrs in a RNA-dependent manner since it 

was lost upon treatment with the RNAse (Kula et al., 2013a). 

Moreover, it was possible to determine that, while PSF and Rev contacted the 

nascent mRNA at the site of transcription, MATR3 was recruited in a second 

moment to most probably enhance the Rev-mediated export of viral mRNAs (Ku-

la et al., 2011a; Yedavalli and Jeang, 2011). 
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PSF binding to the INS sequences of the HIV-RNA was shown to stabilize the viral 

transcripts (Zolotukhin et al., 2003) and both PSF and MATR3 were previously 

implicated in the nuclear retention of hyperedited RNAs (Zhang and Carmichael, 

2001): the documented involvement of PSF and MATR3 in mRNA metabolism 

make reasonable to hypothesize that their interaction with Rev is finalized to 

avoid the nuclear retention of viral transcripts and that they are recruited by Rev 

to the alternative route of viral mRNA export.  

THE NUCLEAR MATRIX PROTEIN MATR3 

The nuclear matrix protein MATR3 binds the inner nuclear membrane and, along 

with the other matrix proteins, forms a fibrogranular network involved in 

chromatin organization, genome replication and gene expression (Bode et al., 

2003).  

Concerning its sub-cellular localization, MATR3 is mainly found in the insoluble 

nucleoplasm with the exception of the nucleolus even if, by biochemical 

fractionation, it was shown that it’s possible to find MATR3 also in the soluble 

nucleoplasmic fraction and, at lower levels, in the cytoplasm (Coelho et al., 2015; 

Hibino et al., 2006; Zeitz et al., 2009). 

MATR3 is an highly conserved 125 kDa protein which contains a bipartite nuclear 

localization signal (NLS), two zinc-finger domains (ZF) and two RNA-recognition 

motifs (RRM); the remaining disordered region of the protein is supposed to 

mediate protein-protein interactions, as in the case of the PTBP1- RRM 

Interaction Motif (PRI), a seven amino acid sequence found within this region 

which is responsible for the interaction with the splicing factor PTB (Coelho et al., 

2015; Hibino et al., 2006). 

The two ZF domains mediate the interaction with the cellular DNA and the 

deletion of both of them is required to abolish the DNA binding. 

The two RRM domains are responsible for the binding to the target RNA and it 

has been suggested that the RRM preferentially recognize the AUCUU motif as 

the optimal RNA target site (Coelho et al., 2015; Hibino et al., 2006).  

Several proteins have been reported to interact with MATR3 and, of note, the 

majority of them are factors involved in RNA binding and metabolism such as 

PSF, PTB and p54nrb. Also thanks to its broad spectra of interactors, MATR3 was 

proposed to exert a number of functions ranging from the regulation of mRNA 

splicing and stability (Coelho et al., 2015; Salton et al., 2011), to the involvement 
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in viral mRNA export (Kula et al., 2011a, 2013a; Yedavalli and Jeang, 2011) and in 

the DNA damage response (Salton et al., 2010). 

It was reported that Double Strand Breaks (DSBs) induces MATR3 

phosphorylation at the Serine208 by the ATM kinase and this modification was 

proposed as a trigger event to induce the DNA damage response: upon 

phosphorylation, MATR3 forms a complex with PSF and p54nrb, and their 

interaction with MATR3 was proposed to be crucial for the correct recruitment 

and release of the two factors at the damaged site (Salton et al., 2010).  

MATR3 was frequently associated to different processes in RNA metabolism. 

Transcriptome-wide analysis performed in MATR3 depleted HeLa cells, showed 

that MATR3 can regulate alternative splicing with or without the cooperation of 

PTB (Coelho et al., 2015), while MATR3 depletion  in U2OS cells was associated to 

the altered expression of 77 genes. In particular it was shown that upon MATR3 

knockdown the levels of these transcripts were reduced and the effect was 

associated to a reduced RNA stability while a transcriptional effect was excluded 

(Salton et al., 2011). 

Mutations in MATR3 sequence have been associated to the development of a 

progressive miopathy called Vocal Cord and Pharyingeal weakness with Distal 

Myopathy (VCPDM) (Senderek et al., 2009) and, more recently, to the familiar 

form of Amiotrophic Lateral Sclerosis (ALS) (Johnson et al., 2014). 

Further investigation on the pathological role of ALS-associated mutations of 

MATR3 sequence suggested that these mutations altered MATR3 interaction 

with several components of the cellular Transcription and Export protein 

complex (TREX) thus leading to altered global mRNA nuclear export (Boehringer 

et al., 2017). 

MATR3 was also identified as a positive regulator of HIV-1 replication as it is re-

quired to allow full viral gene expression by enhancing Rev-mediated export of 

US-mRNAs (Kula et al., 2011a, 2013a; Yedavalli and Jeang, 2011); moreover, it 

was observed that MATR3 depletion strengthens  the antiviral activity of  the po-

tent restriction factor ZAP against retroviral infection (Erazo and Goff, 2015). 
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VIRAL LATENCY 

LATENCY: DISCOVERY, DEFINITION AND COMPOSITION OF THE VIRAL RESER-

VOIR 

In the late 1990’s different clinical investigation on cohorts of HIV+ patients re-

ported that the administration of the Highly Active Antiretroviral Therapy 

(HAART) for several years was not sufficient to eradicate the virus: upon treat-

ment discontinuation the plasma viremia recurred in few weeks (Palmer et al., 

2008; Zhang et al., 2000). 

At the same time it was demonstrated that the virus can establish a latent phase 

within a small fraction of infected cells: in HAART treated patients it was identi-

fied a subset of cells which contained a copy of the integrated provirus (~1 inte-

grated copy of HIV in 1x10^6 CD4+T cells) but didn’t express viral particles (Chun 

et al., 1997; Finzi et al., 1997; Wong et al., 1997). These cells carrying a silent 

provirus were found to be responsible for the rebound of plasma viremia after 

drug interruption and were defined as the “viral reservoir” established very early 

during infection. Notably, a fraction of these infected cells contained a defective 

virus whose expression couldn’t be rescued and thus their contribution to the 

clinically significant pool of the viral reservoir is null.  

Latently infected cells are thus defined as the cells which carry at least one copy 

of integrated HIV DNA; the provirus is silent but inducible and, upon cellular acti-

vation, is able to produce and release full viral particles. 

Some authors reported that, on the contrary to current opinion, latently infected 

cells were capable of transcribing low levels of HIV RNA and prevalently 

unspliced viral transcripts were detected (Lassen et al., 2004; Pasternak et al., 

2009). It is unclear if the rate of  viral mRNA transcription was sufficient to 

achieve viral protein production in latent cells; however, the detection of viral 

transcripts and the absence of full virions suggested the existence of multiple 

barriers to productive infection within the cells of the viral reservoir. 

Several cell types were identified as components of the viral reservoir (Chomont 

et al., 2009; Palmer et al., 2008); nevertheless the resting central memory CD4+ T 

lymphocytes were proposed as the most representative ones and are character-

ized by the lack of activation markers such as CD25 and CD69 (Chun et al., 1995; 

Han et al., 2007) and by the poor expression of transcription factors like NFAT 
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and NF-kB, which contribute to the maintenance of the proviral  transcriptional 

silencing (Colin and Van Lint, 2009). 

The virus may persist also in macrophages (Igarashi et al., 2001) and in stem or 

progenitor cells (Carter et al., 2010); due to their short half life dendritic cells and 

monocytes seems  unlikely to represent an important part of the reservoir even 

if, upon their differentiation into macrophages, they can contribute to the forma-

tion of local reservoirs in specific body districts such as the central nervous sys-

tem (Burdo et al., 2010; Hasegawa et al., 2009). 

ORIGIN AND PERSISTENCE OF THE RESERVOIRE 

The molecular details which lead to the establishment of a viral reservoir early 

during the infection is still a matter of debate. Latently infected cells may arise 

from the infection of activated cells that, after viral integration, return to a rest-

ing state, as suggested by the observation that memory T cells are the major 

component of the viral reservoir (Chun et al., 1995, 1997). However, the infec-

tion could also occur directly in resting T cells as observed in vitro (Agosto et al., 

2007; Plesa et al., 2007): this event is even more likely to occur in vivo in a cyto-

kine rich environment supported by the presence of dendritic cells and macro-

phages (Eckstein et al., 2001; Haase, 2005; Swingler et al., 2003).  

The prevalent theory about how the reservoir is maintained  is that long-living 

cells, like central memory  CD4+ T lymphocytes, persist for the whole life of the 

patient by homeostatic proliferation induced by cytokines like IL-7 (Chomont et 

al., 2009; Dahl and Palmer, 2009; Shen and Siliciano, 2008). This theory is sup-

ported by the detection over the time of a constant level of latently infected cells 

as measured by the Infectious Units Per Millions Assay (IUPM) and by the quanti-

fication of integrated HIV DNA in patients (Chomont et al., 2009; Finzi et al., 

1997; Siliciano et al., 2003; Wong et al., 1997). 

However, it was also suggested that different mechanisms of persistence may 

occur in different subsets of latently infected cells (Chomont et al., 2009). 

ASSAYS TO MEASURE THE RESERVOIR 

The existence of a viral reservoir constitute the major barrier to viral eradication 

and thus the measure of its extent can provide an essential parameter to evalu-

ate the success of the therapeutic strategy and to predict the prognosis in pa-

tients. 
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The first assay established to measure the viral reservoir is the Infectious Units 

Per Millions (IUPM), also called as Viral Outgrowth Assay (VOA), developed by 

Siliciano and Wong (Finzi et al., 1997; Wong et al., 1997). This method consists of 

the serial dilution of resting CD4+ T cells isolated from patients under HAART and 

their activation by PHA in the presence of T lymphoblasts to allow the spreading 

of infection in such target cells. The count of positive wells for the spreading of 

infection allows thus to estimate the number of latently infected cells which re-

verted to productive infection: therefore the major advantage of this method is 

the detection of the portion of the viral reservoir that can be successfully in-

duced to release infectious virus. 

However, in specific groups of patients, like the Elite Suppressors (ES), the size of 

the viral reservoir is so reduced to be under the limit of detection with the IUPM 

assay: in this case the measurement of the integrated HIV DNA provides a better 

alternative to estimate the viral reservoir, even if the presence of defective inte-

grated provirus could lead to its overestimation(Brussel et al., 2005; Chun et al., 

1997). 

Recently, the group of Chomont (Procopio et al., 2015) developed a novel assay 

to measure the inducible viral reservoir. The TILDA assay ( Tat/Rev Induced Limit-

ing Dilution Assay) is based on the assumption that multiple-spliced HIV RNAs are 

usually poorly expressed within latent cells and thus its transcriptional induction 

upon cellular activation can provide the quantification of cells carrying an induc-

ible replication-competent provirus. Thus this assay provides a sensitive detec-

tion of that specific subset of cells which carry a non-defective integrated provi-

rus, since it has been observed that many defective HIV genomes have deletions 

in the Tat/Rev genes and thus their mRNA are unlikely to be detectable (Ho et al., 

2013). 

MOLECULAR MECHANISMS OF POST-INTEGRATIVE LATENCY 

Taking advantage of the previous mentioned assays and of the quantification of 

the integrated HIV DNA in CD4+ T cells, it was possible to verify that the size of 

the viral reservoir is not much affected by the administration of  the antiretrovi-

ral therapy (Chomont et al., 2009; Siliciano et al., 2003) and that each patient 

seems to maintain a stable number of latently infected cells during all the course 

of infection.  

Thus, the comprehension of the molecular details behind the establishment of 

latency is required to develop a therapeutic approach targeting all the cells, both 
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in the acute and latent phase of infection, to achieve a “sterilizing cure” to eradi-

cate the virus.  

The establishment of latency within infected cells is a complex process depend-

ing on multiple mechanisms most of which are still a matter of debate and inves-

tigation. During pioneering studies on the topic, a bias was posed in proposing 

the transcriptional mechanisms as the predominant way to maintain the viral la-

tency. 

Nowadays increasing evidence support the idea that, even if the transcriptional 

silencing of the provirus plays a major role in this process, it could not be suffi-

cient to explain the tightly regulated phenomena of latency, and it was proposed 

the existence of different post-transcriptional mechanisms contributing to la-

tency to be investigated. 

 

TRANSCRIPTIONAL MECHANISMS IN VIRAL LATENCY 

The transcriptional silencing of the provirus is definitely the results of a number 

of events and condition occurring together within latent cells: the site of integra-

tion and the state of chromatin condensation at the viral promoter firstly con-

tribute to render the chromatin inaccessible to the transcription complex.  

Moreover, the limited action of the transcription complex, is a crucial block to vi-

ral expression and it results as a consequence of both the limited availability and 

altered activation status of the transcription factors. To impair the transcription 

al the viral promoter a big contribution is given by the modulation in the levels 

and in the activity of the viral trans-activator Tat which is absolutely required to 

enhance both the initiation of transcription and  the elongation process.  Last but 

not least, the cellular pathway of RNA interference was also shown to be in-

volved in the maintenance of latency. 
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The analysis of the HIV provirus in both in vitro models of latency and in resting 

CD4+ T cells from HIV+ patients revealed that the preferential sites of integration 

were regions within actively transcribing genes (Han et al., 2004; Shan et al., 

2011), supporting the idea that the establishment of latency is unlikely to be re-

lated to integration of the provirus within heterochromatic region. 

Nevertheless epigenetic modifications of the chromatin at the local site of inte-

gration could influence the availability of the LTR promoter to the cellular tran-

scription factors. 

Despite the site of integration, the nucleosome Nuc-0 and Nuc-1 were found to 

bind the 5’viral LTR respectively upstream of the modulatory region and down-

stream of the viral promoter thus not only physically impeding the processivity of 

Transcriptional mechanisms  in viral latency - from Archin et al.; Nat. Rev. Microbiology 2014  

HIV-1 transcriptional silencing is maintained by several mechanisms. a) transcription factors 

are sequestered in the cytoplasm ; b) epigenetic modification at the viral promoter; c) tran-

scriptional interference by RNA PolII readthrough; d/e) inactivation of the p-TEFb complex. 

Different drugs proposed to revert transcriptional silencing are shown in yellow boxes.  
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the cellular RNA polymerase, but also occupying the binding sites for the tran-

scription factors and the regulatory proteins (Verdin et al., 1993). 

A deeper analysis of the chemical modification to Nuc-1 showed markers associ-

ated with condensed and silent chromatin, such as the methylation of the his-

tone3 and the lack of proper acetylation (Pearson et al., 2008; Van Lint et al., 

1996): such epigenetic modifications are due to the recruitment at the viral pro-

moter of the Histone Methyl-Transferase (HMT) and the Histone Deacetylases 

(HDAC) by several cellular factors like Sp1, CBF-1 and CTIP2 (Jiang et al., 2007; 

Marban et al., 2007; Tyagi and Karn, 2007). 

The epigenetic modification operated by HMTs and HDACs are important not 

only to affect the nucleosome assembly. The acetylation of non-histonic sub-

strates is important to regulate the activity of some transcription factors, such as 

RelA, or cellular factors such as HIC1. HIC1 is a repressor of transcription pro-

posed to be involved in the establishment of latency within microglial cells, the 

major viral reservoir within the central nervous system, along with CTIP2 and 

HMGA1; it was shown that its acetylation status, regulated by SIRT1, influences 

its binding to the viral Tat, thus affecting the Tat-mediated regulation of viral 

transcription (Le Douce et al., 2016). The activity of Tat in microglial cells was 

also found to be negatively regulated by CTIP-2 which redirected Tat localization 

to inactive region of the chromatin (Rohr et al., 2003). 

The catalytic activity of HMT is exerted not only on histones but also directly on 

the CpG islands at the viral 5’LTR, even if it is still unclear whether the methyla-

tion status of the DNA represent an important contribution to latency (Blazkova 

et al., 2012). 

The viral LTR contains multiple binding sites to different cellular transcription fac-

tors like NF-kB, NFAT, SP1 and the activator protein AP1: the activation status 

and the availability of such factors appears to be one of the major contributors 

to the transcriptional block in latency. 

The inhibitory homodimeric form of NF-kB, p50/p50, binds the viral LTR to re-

press transcription, while the active heterodimeric form p50/RelA is sequestered 

in the cytoplasm by the IkB-α inhibitor; the stimulation of the PKC pathway 

would result in the release of the active p50/RelA form which leads to the dis-

placement of the p50/p50 complex from the LTR and to the recruitment of HATs 

to remodel the Nuc-1 to finally induce the initiation of  transcription (Zhong et 

al., 2002). 
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Once the transcription starts, the RNA Pol II get stalled and needs to be phos-

phorylated to proceed with the elongation of the transcripts: thus the recruit-

ment of the Positive Transcription Elongation Factor b complex (P-TEFb) is the 

crucial event to avoid the premature termination of transcritpion. 

The P-TEFb complex contains the Cyclin T1 and the cyclin-dependent kinase 9 

(CDK9): both of this factors are reported to be expressed at limiting levels in rest-

ing CD4+ T cells (Budhiraja et al., 2013). Besides the limited availability of these 

factors in resting conditions, the P-TEFb complex is sequestered in a large re-

pressed ribonucleoprotein complex containing the 7SK RNA and the proteins 

HEXIM2, MePCE and LARP7 (Michels et al., 2004): release of the active P-TEFb 

complex is essential to induce the proper phosphorylation of RNA Pol II by CDK9 

and thus to overcome the initial block of the transcriptional machinery (Fujinaga 

et al., 2004; Ping and Rana, 1999). 

POST-TRANSCRIPTIONAL MECHANISMS IN VIRAL LATENCY 

The transcriptional silencing of the integrated provirus plays a major role in the 

maintenance of HIV latency and the removal of these transcriptional blocks is 

without a doubt fundamental to achieve viral reactivation. 

Nevertheless, it was demonstrated  that when latently infected cells from HIV+ 

patients are stimulated with transcriptional inducers to restore viral gene ex-

pression, the rescue of full viral particles from these cells was affected, even if a 

proper level of intracellular viral transcripts was detected (Mohammadi et al., 

2014). 

This observation demonstrate that overcoming transcriptional limitation is nec-

essary but not sufficient to revert latency: several post-transcriptional blocks ex-

ist within latent cells and impede full viral reactivation even upon proper viral 

transcription. Limiting levels of the host factors involved in mRNA metabolism 

can affect proper stabilization, splicing and export of the viral mRNAs; moreover 

the activity of those factors could be altered in resting lymphocytes (Sarracino 

and Marcello, 2017). 

Taking advantage of ultra sensitive methods for intracellular and extracellular vi-

ral RNA detection, it was possible to determine that in resting CD4+ T cells from 

HIV+ patients under HAART, both unspliced and multipli-spliced viral mRNA were 

present (Lassen et al., 2004). An accurate analysis of the subcellular localization 

of these mRNAs revealed that they were retained in the nucleus suggesting the 
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existence of a block in the nuclear export of viral RNAs. Notably, upon cellular ac-

tivation by TCR stimulation, both US and MS mRNAs exhibited a proper cyto-

plasmatic distribution within 72 hours (Lassen et al., 2006).  

More evidences on the existence of post-transcriptional mechanisms to viral si-

lencing came from the use of in vitro model to reproduce the cellular environ-

ment of viral latency. 

In an in vitro model of latency based on the direct infection of resting PBLs, 

abundant levels of unspliced viral transcripts were detected, while the spliced 

forms were less represented demonstrating an inefficient splicing process in such 

conditions (Pace et al., 2012). The concomitant analysis of intracellular viral pro-

teins revealed that the level of Gag was much lower than expected based on its 

high mRNA concentration suggesting an additional block in the nuclear export of 

the unspliced mRNAs. 

These observations suggested that, in latently infected cells, both viral mRNA 

biogenesis and their nuclear export are affected thus leading to defects in viral 

protein production. 

In accordance with the hypothesis that defective mRNA processing could con-

tribute to post-integrative latency, it was reported that several factors involved 

in mRNA metabolism are limiting in CD4+ T cells under resting conditions and 

that their expression is increased only upon cellular activation (Mohammadi et 

al., 2014); some of these factors were previously found to interact with the viral 

RNA and in some cases it was shown that their overexpression can revert latency 

both in cellular models and in primary lymphocytes from patients. 

The Polypyrimidine Tract Binding Protein (PTB) is a  cellular factor involved in the 

post-transcriptional regulation of gene expression by different processes, like 

mRNA splicing (Kosinski et al., 2003; Singh et al., 2004); PTB was found to associ-

ate with the viral mRNA (Black et al., 1996) and to be barely expressed in cells of 

the viral reservoir. Notably it was demonstrated that PTB overexpression in rest-

ing latently infected CD4+ T cells was able to restore full virus production (Lassen 

et al., 2006). 

The PTB-associated Splicing Factor (PSF) plays several roles in cellular mRNA me-

tabolism (Emili et al., 2002; Shav-Tal and Zipori, 2002) and  was proposed to en-

hance viral RNA stability by preventing their degradation (Kula et al., 2013b), a 

role shared with the heterogenous ribonuclear protein A1 (hnRNP). In lympho-
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cytes, the activity of PSF and hnRNP A1 is finely regulated by phosphorilation via 

the MAP-kinase signal-integrating kinases (Mnks). The phosporylation of PSF oc-

curs differently in resting and activated CD4+ T cells and this influence the inter-

action of PSF with other host factors leading to a modulation in its activity (Bux-

adé et al., 2008) 

In particular, in resting lymphocytes, the protein kinase GSK3 phosphorylates PSF 

which, in turn, strongly associates with TRAP150 and BTF, two host factors impli-

cated in mRNA processing, stability and, along with hnRNP A1, in splicing regula-

tion. It was demonstrated that TRAP150 binds PSF on its RNA-recognition motifs 

(RRM), an interaction which abrogate PSF binding to target mRNAs (Heyd and 

Lynch, 2010; Yarosh et al., 2015). 

PSF was found to be a part of the Rev-RNA ribonucleoproteic complex along with 

the nuclear matrix protein MATR3, a factor linked to the Rev-mediated export 

(Kula et al., 2011b). Both MATR3 and PSF were found to be limiting under resting 

conditions and to be promptly upregulated upon cellular activation suggesting 

that their limiting levels could affect proper mRNA stabilization and export dur-

ing latency. 
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The involvement of miRNA-mediated silencing in the process of latency was 

demonstrated by showing the physical association between Ago2 and HIV 

mRNAs and their co-localization within P-bodies (Chable-Bessia et al., 2009). Re-

markably silencing of several RNAi effectors such as DGCR8 or Drosha, lead to 

reactivation of latent provirus from PBMC of HIV+ patients under cART. More-

Post-Transcriptional blocks to latency reversal – modified from Sarracino and Marcello, Curr. 

Pharm. Des. 2017  

HIV-1 transcriptional silencing is maintained by different mechanisms.  

1) epigenetic and molecular blocks inhibit HIV-1 expression; transcriptional activation is ob-
tained by LRAs; 

2) efficient splicing and export of fully-spliced transcripts is require to allow the production of 
regulatory proteins; 

3) limiting levels of cellular Rev co-factors results in nuclear retention of viral intron-containing 
mRNAs; 

4) translation of properly chemically modified viral transcripts is inhibited in latent cells by sev-
eral mechanisms involving mRNA degradation and their sequestration in cellular granules. 
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over, the 3’UTR of HIV mRNAs contains several putative binding sites for cellular 

miRNAs such as miR-125b, miR-150, miR-223, miR-382 and miR-28 (Huang et al., 

2007); all of them were found to be more abundant in resting than in activated 

CD4+ T cells and to specifically restrict viral replication. 

TOWARD A STRATEGY TO CLEAR THE VIRAL RESERVOIR 

Since it was observed that long-lasting  treatment with the antiretroviral drugs 

was not sufficient to eradicate the virus, a first attempt to clear the viral reser-

voir was done with intensified drug regimens; unfortunately it was found that 

the use of higher drug dosage didn’t affect the size of the reservoir (Gandhi et al., 

2010). 

Currently, different strategies have been suggested to specifically target  the viral 

reservoir. 

Among them, the “shock and kill” therapy proposes that, the reactivation of the 

silent provirus from  latently infected cells, could be achieved by pharmacological 

treatment with transcriptional inducers collectively named as Latency Reversal 

Agents (LRAs). Viral reactivation will consequently lead to the clearance of the 

infected cells by cytotoxic T lymphocytes whose activity could be also stimulated 

by the concomitant administration of cytokines. 
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To this task, a panel of drugs has been tested alone or in combination to restore 

proper viral transcription: chromatin remodelling agents, NF-kB inducers and P-

TEFb stimulators are the best characterized compounds. 

Among chromatin remodelling agents, we find inhibitors of the histone deacety-

lase (HDACi) and inhibitors of the DNA methyltransferase (DNMTi); the latter 

ones are less exploited since the role of DNA methylation in the establishment of 

latency is still controversial (Blazkova et al., 2012), even if some studies (Bern-

hard et al., 2011; Bouchat et al., 2012; Imai et al., 2010)  showed that inhibitors 

of the methylases G9a and SUV39H1 can revert HIV latency by inhibiting the me-

thylation of Nuc-1. 

The panel of HDACi is an heterogeneus group of drugs including both natural and 

synthetic compounds which showed different specificity for the different classes 

of HDACs: this group of drugs is well characterized thanks to their use in clinic for 

Use of LRAs to achieve a sterilizing cure – from Durand, Blankson and Siliciano; Trends Immunol. 

2012 

Patients on a three-drug HAART therapy regimen (yellow, blue and green boxes) have unde-

tectable levels of  viremia, even if occasional “blips” can occur. Ideally, the administration of 

LRAs should induce a transient increase in viremia followed by a decrease in the size of the 

latent reservoir. 
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their anti-cancer properties and for the treatment of neurodegenerative disor-

ders. 

Among the most potent HDACi there are Valproic Acid (VPA), suberoylanilide hy-

droxamic acid (SAHA), Romidepsin and Panabinostat; their effect is not limited to 

histones but also non-histonic proteins can represent a substrate for their activ-

ity.  In the case of the NF-kB subunit p65, the deacetylation by HDAC3 induces its 

binding to the IkB-α inhibitor thus leading to its sequestration into an inactive 

complex which results in transcriptional silencing; the restoration of proper ace-

tylation on p65 leads its release from the inhibitory complex to allow the forma-

tion of the active NF-kB heterodimer and the iniziation of transcription. 

Thanks to its broad spectra of actions directed to different events in the tran-

scriptional process, the group of HDACi constitute a powerful class of drugs for 

latency reversal. The potency of HDACi to viral reactivation have been widely 

tested in several latency models and in resting CD4+ T cells from HIV+ patients 

(Quivy et al., 2002; Reuse et al., 2009; Søgaard et al., 2015); unfortunately the re-

sults are frequently controversial since it was not possible to achieve a complete 

latency reversal in all the condition tested.  

The activation of transcription factors NF-kB and AP-1 is achieved by stimulation 

of the protein kinase C (PKC) pathway and thus PKC agonists, such as prostratin 

and bryostatin-1, have been tested alone or in combination with HDACi as la-

tency reversal agents in different model of latency (Mehla et al., 2010; Pérez et 

al., 2010; Reuse et al., 2009). 

To enhance the activity of the elongation factor P-TEFb  different approaches 

have been proposed. The stimulation of the P13/Akt pathway induces the re-

lease of P-TEFb from the inhibitory complex formed with HEXIM and the 7 SK 

RNA while the inhibition of the bromodomain protein 4 (BRD4), which bind di-

rectly to P-TEFb on the same binding site of Tat, would allow the rescue of 

proper Tat activity on the enhancement of transcripts elongation.  

The hexamethylene bisacetammide (HMBA) is an activator of P13/Akt pathway 

and was tested both in latency models and in CD4+ T cells from HIV+ patients for 

its ability to revert latency; unfortunately all those tests gave disappointing re-

sults (Choudhary et al., 2008; Yang et al., 2009). 

JQ1 is a small molecule which acts as a selective inhibitor of BRD4; it was tested 

in different latent cell models but gave inconsistent results: in the latency model 
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developed by the group of Siliciano, JQ1 proved to be effective but these result 

was not confirmed in other cellular models (Boehm et al., 2013). 

Despite the promising approach of the “shock and kill” strategy to target the viral 

reservoir by acting on proviral transcription, the results accumulated during the 

past years of experimentation are disappointing. 

The restoration of viral transcription seems to be not sufficient to revert the la-

tent state suggesting that several steps of the viral replication are not success-

fully induced by the currently available LRAs thus leading to the failure of these 

treatments. The development of drugs to overcome the post-transcriptional 

blocks to latency reversal would provide a powerful tool which, used in combina-

tion to the well-known LRAs, could provided a more incisive strategy to target 

the viral reservoir. 

CURRENT MODELS FOR THE STUDY OF LATENCY 

Investigation on the molecular mechanisms behind viral silencing and the neces-

sity to test therapeutic strategies to target the viral reservoir, require a proper in 

vitro model of latency; the small number of latently infected cells in patients and 

their lack of a proper distinguishable markers makes the attempt to derive such 

cells directly from patients almost not feasible. 

Moreover the use of immortalized cell lines, even if useful and practical, pone 

several issuses such as the clonal nature of the integration site, the altered cellu-

lar environment related to the immortalizing mutations and the cycling nature 

due to an imbalanced growth control. 

The development of in vitro models of latency based on primary cells appear to 

be the best way to study the characteristics of the viral reservoir in a more 

physiological environment and different laboratories have explored the possibil-

ity to reproduce latent infection by taking advantage of different techniques. 

The model developed in Lewin’s laboratory (Cameron et al., 2010; Saleh et al., 

2007) exploits the use of several chemokines to induce rearrangement in the cy-

toskeleton of resting CD4+ cells without causing activation: such structural 

changes allow the establishment of proper infection with a wild-type NL-4.3 HIV 

strain. 

The model proposed by Siliciano (Yang et al., 2009) is articulated in two different 

steps to isolate latently infected CD4+ T cells: during the first step, cells are TCR 
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stimulated and transduced to express Bcl-2 to overcome apoptosis. After a brief 

culture in IL-2 these active cells are infected with a replication-defective NL 4.3 

GFP reporter virus and left in culture for at least 3 weeks to allow the establish-

ment of latency: the cytofluorimeter is then used to sort only the GFP-negative 

cells showing a resting memory phenotype. 

The Spina model (Spina et al., 1995, 1997) is based on the observations that la-

tent infection can be established in resting CD4+ T cells upon exposure of a 

mixed population of primary CD4+ T lymphocytes, including both dividing and 

quiescent cells, to wild type HIV. Basically co-colture of dividing infected cells is 

used to obtain latent infection in non-replicating bystander lymphocytes. 

Direct infection of resting primary CD4+ T cells is exploited also in the model that 

the Greene’s group (Lassen et al., 2012) derived from the modification of 

O’Doherty model (Swiggard et al., 2005); infection of quiescent cells is achieved 

by increasing the efficiency of virus delivery (a replication competent NL 4.3 con-

taining luciferase reporter gene in place of Nef) by the use of spinoculation. 

Taking account of the different subsets of cellular populations exploited and the 

variety of techniques and cytokines or chemokines implied in the presented sys-

tems, it seems to be unlikely to obtain a uniform result from experiments per-

formed in these different models. 
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AIM OF THE THESIS 

The identification of MATR3 as a component of the Rev-RNA nuclear complex 

prompted an investigation of its role in the course of HIV-1 infection. My thesis 

work is therefore finalized to assess the functional role of MATR3 during viral 

replication, both during the acute infection and upon establishment of the latent 

phase. To this aim, I investigated the effect of MATR3 modulation in Jurkat cells 

and primary PBLs in the context of infection with a replication-competent HIV-1. 

I either depleted or overexpressed MATR3 within HIV-infected lymphocytes and 

assessed the impact on viral replication in terms of viral mRNA metablosm, viral 

protein production and full virion release.  

To study the putative role of MATR3 in the establishment of HIV-1 latency I used 

the J-Lat cell model. I evaluated the effect of MATR3 depletion on latency 

reversal when the transcription of the silent provirus is restored by TNFα 

stimulation: I analysed both the effect on transcriptional reactivation and full 

viral particle rescue from latent cells. 

To better characterize the actual cellular context of latency I used primary PBLs 

from healthy donors and from HIV-infected patients and analysed the levels of 

MATR3 during treatment with clinically-tested Latency Reversal Agents. 

Finally I tried to establish a proper model of viral latency, based on either 

primary or immortalized lymphocytes,  to test the effect that MATR3 

overexpression exert on latency reversal when is combined to treatment with 

Latency Reversal Agents. 

In conclusion I found that MATR3 is a positive regulator of HIV-1 replication 

during acute infection in Jurkat cells and primary PBLs: I could assess that MATR3 

acts as a Rev co-factor to enhance the export of intron-containing viral 

transcripts and I could exclude its involvement in the process of viral 

transcription. 

I assessed that MATR3 depletion affects latency reversal in J-Lat cells in a post-

transcriptional way and that MATR3 levels are limiting in primary resting PBLs 

from healthy donors and HIV-1 infected patients. Moreover I confirmed that the 

low basal expression of MATR3 is not induced by treatment with LRAs while 

cellular activation by PHA or TCR stimulation promptly increase MATR3 levels. 

These last observations suggest that MATR3 could be one of the limiting factors 
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to latency reversal and that its inadequate expression within cells of the viral 

reservoir could affect their capacity to restore full viral particles production upon 

treatment with LRAs. 

PUBLICATIONS FROM THIS WORK 

1) The Relevance of Post-Transcriptional Mechanisms in HIV Latency 

Reversal. Sarracino A, Marcello A. 2017. Curr Pharm Des 23:4103-4111. 

2) Post-transcriptional regulation of HIV-1 gene expressionduring replication 

and reactivation from latency by nuclear matrix protein MATR3. Sarracino 

A, Gharu L. et al. SUBMITTED FOR PUBLICATION. 

  



 RESULTS 

 

41 

 

RESULTS 
 

MATR3 depletion affects acute HIV-1 viral replication in human lymphocytes 

The Rev-mediated nuclear export of viral intron-cointaining  mRNAs  requires the 

concerted action of several host-factors exploited by the virus to assure the effi-

cient completion of its replication cycle. The cellular component of the nuclear 

matrix MATR3 was previously identified in our laboratory to be involved in this 

process and to specifically interact with Rev. 

When I joined the laboratory of Molecular Virology the post-doc Lavina Gharu 

was working on this project and thus the initial stages of my work are closely re-

lated to hers: figure 1, 2 and 3 are essentially her contribution and I worked 

along with her to repeat some of those data. 

To better investigate the role of MATR3 in the context of HIV-1 infection we 

screened 5 different shRNA targeting MATR3 mRNA (either in the ORF or in the 

3’UTR)  to stably deplete this factor from target cells, either immortalized or pri-

mary  T-cell lines. 

Each shRNA was expressed from a lentiviral vector pseudotyped with the VSV- 

envelope protein (VSV-G) as described in Materials and Methods; a non-

targeting scramble shRNA was chosen as a control (shCTRL). 

 Jurkat cells were transduced and kept under puromicin selection for 3-4 days; 

cells were then lysed in Laemmli Buffer and the level of MATR3 was analyse by 

immunoblot. 

Two shRNA (sh905 and sh906) showed the strongest efficacy in inducing an effi-

cient depletion of MATR3 (Figure 1A). 

In order to assess the persistence of the depletion in Jurkat cells the levels of 

MATR3 were measured at different time points following selection. As shown in 

Figure 1B, specific and long-lasting suppression of MATR3 could be observed up 

to two weeks : sh905 and sh906 were thus selected for the subsequent studies 

throughout this work. To exclude any cytoxic effect related to MATR3 depletion 

we checked cell viability of Jurkat cells transduced with sh905, sh906 and shCTRL 

lentivectors by tripan blue exclusion test: we could thus assess that MATR3 de-

pletion didn’t affect cell viability (Figure 1C). 
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To investigate the role of MATR3 in the context of acute HIV-1 infection, Jurkat 

cells were transduced with the above mentioned sh905 , sh906 or shCTRL lenti-

viruses and kept under puromicin selection for 4 days. MATR3 depleted Jurkat 

cells were then infected with the full-lenght HIV-1 NL4.3 and the overall effect on 

viral replication was assessed by  viral particle quantification in the culture media 

through p24 ELISA. 

Fig.1- screening of shRNA targeting MATR3 

A) HeLa cells were transduced with different lentivectors targeting MATR3 (shMATR) or 

with a control (shCTRL); 4 days after puromicin selection cells were harvested and analysed 

by immunoblot. Tubulin is the loading control. B) Jurkat cells were transduced with len-

tivectors targeting MATR3 (sh905; sh906) or with a control (shCTRL); MATR3 depletion was 

monitored for two weeks (B). Actin is the loading control. C) The Tripan Blue exclusion test 

of cell viability showed no cytotoxic effect upon MATR3 depletion.  
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MATR3 depleted cells exhibited a strong impairment in viral replication since no 

increase in extracellular viral particle was observed up to 14 days post infection 

(Figure 2A). 

 To confirm the essential role of MATR3 in HIV-1 replication in a more physiologi-

cal cellular model we recapitulated this experiment in primary PBLs. Again upon 

MATR3 depletion a striking impairment in HIV-1 replication was observed for 

both sh905 and sh906 compared to shCTRL as shown in Figure 2B. 

These data confirm the role of MATR3 as a positive regulator of HIV-1 replication 

during acute infection.  

         

 

 

 

 

 

 

Fig.2-MATR3 depletion affects viral repliaction in Jurkat cells and in PHA-activated primary 

PBLs.  

A) MATR3 depleted Jurkat cells were infected  with the full lenght HIV-1 NL4.3. Viral replica-

tion was monitored for two weeks  by p24 ELISA on culture supernatants. 

B) PBLs isolated from healthy donors were activated with PHA for 72 hours and transduced  

with lentivectors to deplete MATR3. MATR3 depleted PBLs were infected with the replication 

competent HIV-1 NL4.3 and viral replication was monitored by p24 ELISA on culture superna-

tants.  
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MATR3 acts post-transcriptionally 

Previous work in our laboratory identified MATR3 as a co-factor in Rev-mediated 

nuclear export of intron-containing HIV-1 RNAs. In order to confirm if this was 

the case also in acute HIV-1 infection  we infected MATR3- depleted Jurkat cells 

with a VSV-G pseudotyped HIV-1 vector NL4.3-R-E-luc containing the firefly 

luciferase reporter gene within the Nef region which is expressed  as the product 

of a fully spliced transcript. 

Since we could not observe differences in luciferase expression upon MATR3 de-

pletion we could exclude a direct role of MATR3 in viral transcription (Figure 3A); 

moreover the lack of effect on luciferase expression also indicate that MATR3 

depletion was not affecting the metabolism of fully spliced viral mRNAs. 

To investigate a possible effect of MATR3 depletion on the nuclear export of in-

tron-containing viral mRNAs nuclear and cytoplasmic fraction of infected cells 

were separated (Figure 3D) to quantify the relative amount of US-mRNAs by 

qPCR in the two compartment. 

The amount of US transcripts was significantly reduced within the cytoplasm and 

slightly increased in the nucleus (Figure 3B):  a trend compatible with a defective 

export of this specific class of mRNAs was also confirmed by the immunoblot for 

the intracellular viral Gag protein, fully dependant on the export of unspliced vi-

ral mRNAs, which was reduced upon MATR3 depletion (Figure 3C). 

These experiments confirmed that MATR3 regulates nuclear export and expres-

sion of intron-containing HIV-1 mRNAs also in the context of acute viral infection. 
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                         Fig 3- MATR3 acts post-transcriptionally. MATR3 depleted Jurkat cells were  infected 

with the viral vector pNL-4.3-R-E-luc; luciferase expression was measured 48hours 

post infection and normalized to total protein level measured by Bradford Assay (A). 

Results  from three indipendent experiments are shown as mean values + SD. 

Unspliced RNA levels were quantified by real time PCR in the nuclear and cytoplasmic 

fraction of MATR3 depleted Jurkat cells (B). Purity of nucleo-cytoplasmic fraction (D) is 

assessd by immunoblot for the cytoplasmic marker Hsp90 and the nuclear marker 

PARP. As expected MATR3 is detected only in the nuclear fraction of CTRL Jurkat cells. 

RNA levels are normalized to GAPDH. Results  from three indipendent experiments are 

shown as mean values + SD.  MATR3 depleted Jurkat cells were infected with the rep-

lication competent HIV-1 NL4.3 and 48 hours post- infection cells were harvested and 

the levels of intracellular Gag analysed by immunoblotting (C). B-actin is the loading 

control.  
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MATR3 overexpression enhances HIV-1 replication in human lymphocytes 

Next we wished to investigate the effect of overexpressing MATR3 in acute HIV-1 

infection. To this end a flag-tagged version of MATR3 was cloned into the 

pWPI_BLR lentiviral vector as described in materials and methods. 

Transduction of Jurkat cells with the lentiviral vector to express the flag-MATR3  

(fMATR) resulted in higher MATR3 RNA and protein levels (Figure 4A; 4B) com-

pare to cells transduced with a control lentiviral vector (CTRL). 

                                                           

  

 

 

 

 

 

 

 

 

FIG.4- Efficient MATR3 overexpression in Jurkat cells.  Transduction of Jurkat cells with a lentivec-

tor to deliver a flag-tagged MATR3 (fMATR) resulted in higher MATR3 mRNA (A) and protein levels 

(B) compared to cells trated with the control vector (CTRL). RNA levels were normalized to GAPDH; 

B-actin is the loading control in the immunoblot. Results from two indipendent experiments ex-

pressed as mean values + SD. 
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Infection of these cells with HIV-1 NL4.3 resulted in increased intracellular Gag 

(Figure 5A); nucleo-cytoplasmic fractionation of infected Jurkat cells overexpress-

ing MATR3 revealed a major  decrease of US-HIV RNA in the nucleus while MS 

HIV RNA were not affected (Figure 5B; 5C). Decrease of US RNA in the nucleus is 

compatible with an enhanced export of these transcripts mediated by MATR3 

through the Rev pathway while the steady-state invariant US RNA level in the cy-

toplasm could be explained by the increased production of viral particle (Figure 

5A).  

However we couldn’t exclude a MATR3-dependent effect on stability of HIV RNA 

mediated by the zinc-finger antiviral protein (ZAP)- complex as proposed by 

Erazo and Goff (Erazo and Goff, 2015). 

 

 

 

 

 

 

 

 

To finally confirm that  MATR3 is a positive regulator of HIV-1 replication primary 

PBMCs activated for 4 days with PHA/IL2  were transduced to overexpress 

FIG.5- MATR3 overexpression enhances the export of US mRNAs.  Jurkat cells overexpressing 

MATR were infected with the replication competent HIV-1 NL 4.3; 48 hours post infection the 

cells were harvested and subjected to nuclear-cytoplasmic fractionation. MATR3 overexpres-

sion  (fMATR) resulted in increased intracellular Gag levels; B-actin is the loading control (A). 

Quantitave analysis of viral US (B) and MS (C) mRNAs in nuclear and cytoplasmic fraction was 

performed by real time PCR; RNA levels are normalized to GAPDH. Results from two indipen-

dent experiment expressed as mean values+SD. 
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MATR3 and than infected with HIV-1 NL4.3.Viral production was monitored in 

the culture media with a p24 ELISA and showed that increased levels of MATR3 

resulted in higher amount of viral particles in the supernatant (Figure 6). 

                                       

 

These data complement the depletion data described above and confirm the role 

of MATR3 as a post-transcriptional regulator of HIV-1 RNA export and ultimately 

viral replication.  

However, a major hurdle to HIV-1 eradication is the persistence of viral reservoir 

that carry a silent, but transcriptionally competent, integrated copy of the viral 

genome. 

Since few study have explored post-transcriptional blocks to HIV-1 reactivation 

we addressed this topic further. 

 

FIG.6- MATR3 overexpression enhances viral replication in primary PBLs  

PHA-activated primary PBLs were transduced with a lentivector to overexpress MATR3 and 

infected with the replication competent HIV-1 NL 4.3.Viral replication was monitored  by p24 

ELISA in culture supernatant. Results from two indipendent experiments expressed as mean 

values+SD.  
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MATR3 depletion affects latency reversal in J-lat cells 

To address the question if MATR3 can play any role in the reactivation of HIV-1 

latency we took advantage of a well known model for the study of latency, J-lat 

cells, which contain an integrated but silent provirus encoding for GFP as a re-

porter gene for viral transcription, expressed from an HIV MS mRNA. 

Cells were transduced with shMATR3 lentiviral vectors to deplete MATR3 (Figure 

7A) and then stimulated with TNFα to induce HIV transcription from the latent 

provirus. As shown in Figure 7B, cell-associated Gag protein levels were markedly 

reduced upon MATR3 depletion with sh905 and sh906. Consistently, p24 levels in 

the medium were also reduced (Figure 7C), while HIV-1 transcription was not af-

fected by MATR3 depletion (Figure 7D). 

These experiments show that MATR3 removal results in a reduced ability of 

TNFα to reactivate HIV-1 from latency. One intriguing hypothesis is that certain 

host factors, which are essential for HIV-1 gene expression, might be limiting 

and/or their activity might be perturbed, in latently infected cells. 
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FIG.7- MATR3 depletion affects  the post-transcriptional steps of viral reactivation in J-lat 

cells  

J-lat 8.4 cells were transduced  with a lentivector to knockdown MATR3 ( shMATR) leading 

to an efficient and  stable MATR3 depletion (A). MATR3 depleted J-Lat 8.4 were stimulated 

with TNFα  for 48 hours and viral reactivation was assessed in terms of intracellular Gag (B), 

viral particle in the supernatant  by p24 ELISA (C) and GFP expression  by FACS analysis (D). 

B-actin is the loading control in the immunoblots. Results from three indipendent experi-

ments presented as mean+SD. 
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MATR3 is limiting in primary resting PBMCs  

To better characterize the cellular context of the viral reservoir we analysed the 

expression levels of several host factors in quiescent primary PBMCs and PBLs. 

Primary PBMCs and PBLs purified from healthy donors were cultured in IL2 alone 

or activated with PHA for different time points (24, 48, 72 hrs or 6 days) and their 

protein extract was analysed with an immunoblot. We checked for factors in-

volved in mRNA synthesis and metabolism at different stages, from transcription 

(Cyclin T1) to RNA stabilization and export (MATR3, PSF, PTB). 

We observed that these factors were barely expressed in quiescent PBLs and 

readily induced by PHA activation (Figure 8A). The same was observed for puri-

fied primary CD4+ T cells (Figure 8B) that represents the best-characterized res-

ervoir of latent HIV-1. 

Hence, levels of MATR3 and other post-transcriptional factors required for full 

reactivation of HIV-1 are low in quiescent lymphocytes, possibly contributing to 

HIV-1 latency.  

          

                   

 

FIG.8- Expression of MATR3 in  primary  lymphocytes  

Primary PBMC, PBLs (A) and CD4+T cells (B) were isolated from healthy donors as described 

in Materials and Methods.The levels of transcriptional and post-transcriptional factrors 

(MATR3, PSF, CyclinT1, PTB) were analysed by immunoblot prior and post-PHA activa-

tion.Ponceau staining (A) or Vimentin (B) were used as loading control. 
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MATR3 is not modulated by LRAs 

We focused our analysis on the cellular context of resting primary PBMCs which 

are the cell types mainly composing the viral reservoir:  we sought to investigate 

deeper the actual behaviour of MATR3 and its modulation upon pharmacological 

treatments with the newly proposed latency reversing agents (LRAs). 

To this aim we selected several drugs from the panel of LRAs and tested the ef-

fect  these drugs exert on endogenous MATR3 levels within primary resting 

PBMCs. 

The drugs selected for the screening  are transcriptional inducer acting through 

different mechanism and in particular we choose the PTEN inhibitor Disulfiramin, 

the two histone deacetilase inhibitor SAHA and Romidepsin and the BET-inhibitor 

JQ1 in combination to the PKC agonist Ingenol B; we used PHA as a positive con-

trol for cellular activation. 

Romidepsin is a relatively newly discovered HDAC inhibitor whose potent action 

in latency reversal is  arousing increasing interest (Søgaard et al., 2015) while 

SAHA has a well-established use in clinic. SAHA was approved in 2006 for the 

treatment of cutaneous T cell lymphoma (CTCL) and is currently tested in several 

clinical trials for other types of cancer.  Moreover, in preclinical investigation, 

SAHA demonstrated to be a powerful activator of latent HIV-1 transcription in 

different cellular model of latency (Archin et al., 2009). 

The combination of JQ1 and Ingenol B is an intriguing approach which associate 

the nuclear translocation of NF-kB  through the PKC pathway induced by Ingenol 

B to the release of P-TEFb induced by JQ1 (Darcis et al., 2015). 

To set the appropriate concentration to use for each drug we refer to the plasma 

concentration (when available), the tolerated doses and the peak of efficacy as 

reported from literature. 

In particular we used the following drug concentration: 

-Disulfiramin 0,5uM 

-SAHA 0,5uM 

-Romidepsin 0,0175uM 

-JQ1 (0,5uM) in combination to Ingenol B (10nM) 



 RESULTS 

 

53 

 

PBMCs isolated from healthy donors were cultured in IL2 alone or stimulated 

with one or a combination of drugs for 3 and 6 days; MATR3 levels were then 

analysed at the protein level by immunoblotting. 

The relative amount of MATR3 after each treatment is shown as fold change to 

unstimulated PBMCs and represent the average obtained from three healthy do-

nors (Figure 9). 

 

 

 

 

 

 

 

 

 

FIG.9- MATR3 is not modulated upon treatment with LRAs in PBLs from healthy donors  

Primary PBLs were isolated from healthy donors as described in Materials and Methods and 

stimulated with different LRAs or PHA-activated; after 3 (A) and 6 days (B) of treatment cells 

were harvested and MATR3 levels analysed by immunoblot. Vimentin is the loading control. 

Western Blot quantifications of MATR3 relative levels are normalized to Vimentin by ImageJ 

and are obtained from immunoblot analysis on 3 different donors; MATR3 protein level is ex-

pressed as fold change to MOCK and reported as mean values+SD. 
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None of the tested drug was able to induce MATR3 protein level either after 3 or 

6 days of treatment, while PHA consistently increased MATR3 protein levels. 

Among the tested drugs we focused our attention on SAHA because of its well-

established use in clinic: we added an extra donor to the measurement and we 

confirmed again that MATR3 protein level remained low and not induced after 3 

and 6 days of SAHA treatment in resting PBMCs from healthy donors (Figure 10). 

 

     

 

 

 

 

 

To exclude a possible fluctuation of MATR3 protein levels during SAHA treatment 

at shorter time points we evaluated  the effect of SAHA stimulation at 18 and 24 

FIG.10- MATR3 is not modulated upon treatment with SAHA in PBLs from healthy donors  

Primary PBLs isolated from healthy donors were stimulated with 0,5uM of SAHA or PHA-

activated for 3 (A) and 6 days (B); the cells were then harvested and MATR3 levels analysed 

by immunoblot.Vimentin is the loading control. Western Blot quantification are obtained 

from immunoblot analysis on 4 different donors; MATR3 relative levels are normalized to 

MOCK and expressed as mean values+SD. 
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hrs. As shown in Figure 11, no modulation of MATR3 occurs upon stimulation 

with SAHA. 

 

                                              

 

 

SAHA treatment is not sufficient to rescue full viral particles from latent cells 

obtained from HIV+ patients under cART  

 

 

FIG.11- MATR3 is not modulated upon  short treatment with SAHA  in PBLs from healthy do-

nors  

Primary PBLs isolated from healthy donors were stimulated with 0,5uM of SAHA or PHA-

activated for 18 and 24 hours; the cells were then harvested and MATR3 levels analysed by 

immunoblot. Actin is the loading control. Western Blot quantification are obtained from im-

munoblot analysis on 2 different donors; MATR3 relative levels are normalized to MOCK and 

expressed as mean values+SD. 
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The inability of LRAs to increase MATR3 levels within resting PBMCs from healthy 

donors lead us to extend the observation to the actual context of viral reservoirs 

ex-vivo by testing the same drugs in PBMCs isolated from aviremic HIV+ patients  

under cART. 

The experiments on samples from HIV+ patients were done in collaboration with 

Dr.Ania Kula and Dr.Carine Van Lint at the University of Bruxelles (ULB) because 

they have access to a well established cohort of HIV+ patients from the St-Pierre 

Hospital; qPCR data analysis were performed in collaboration with Alexander 

Pasternak at University of Amsterdam (AMC). 

PBMCs isolated from 3 HIV+ patients were treated for 3 and 6 days with disul-

firamin, SAHA, romidepsin or Ingenol B + JQ1 while anti-CD3/CD28 antibodies 

were used as a positive control for cellular activation; the induction of MATR3 

was measured at the RNA level by qPCR. 

The results obtained in cells from HIV+ patients recapitulate the same scenario 

observed from healthy donors in which none of the tested drugs was increasing 

MATR3 levels after both 3 and 6 days of treatment (Figure 12A). We focused our 

analysis on SAHA and included 4 extra patients achieving a similar result (Figure 

12B). 

 

 

 

 



 RESULTS 

 

57 

 

 

 

 

 

 

 

 

 

 

Along with the effect exerted on MATR3 level we also checked for the efficiency 

of SAHA in latency reversal within the same samples: both cellular-associated 

and extracellular viral RNAs were quantified by qPCR. The measurement of intra-

cellular MS viral transcripts indicate the ability of SAHA to reactivate the tran-

scription from the silent provirus while the presence of extracellular viral RNAs 

would indicate a complete rescue of full viral particles. 

As shown in Figure 13A, cell-associated viral RNAs increased after 6 days of SAHA 

treatment at levels comparable to the one obtained with the positive control in-

dicating that SAHA is a strong inducer of transcription at the LTR site. However 

removal of transcriptional blocks after SAHA treatment is not followed by full vi-

ral particle rescue (Figure 13B) which suggest the presence of additional blocks in 

FIG.12- MATR3 is not modulated upon treatment with LRAs in PBLs from HIV-infected pa-

tients  

Primary PBLs were isolated from  aviremic HIV+ patients  as described in Materials and Me-
thods and stimulated with different LRAs  (A), with SAHA (B) or CD3/CD28-activated for 3 and 6 
days; MATR3 RNA levels  were analysed by quantitative real timePCR and normalized to total 
cellular RNA. MATR3 levels are normalized to MOCK; the number of patients included in the 
analysis is 3 for all the LRAs (A) and 7 for SAHA (B).  
A) Data sets were analysed using the Student’s t-test with significance at p<0.05. SAHA3 vs 
mock3 p=0.1917; Disulfiram3 vs mock3 p=0.351; Romidepsin3 vs mock3 p=0.1909; IngB+JQ1-3 
vs mock3 p=0.8525; CD3+CD28-3 vs mock3 0.3819; SAHA6 vs mock6 p=0.6606; Disulfiram6 vs 
mock6 p=5874; Romidepsin6 vs mock6 p=0.2681; IngB+JQ1-6 vs mock6 p=0.7147 ; CD3+CD28-6 
vs mock6 p=0.0237. 
B) Data sets were analyzed using a paired, nonparametric Wilcoxon test. p<0.05 was conside-
red statistically significant. SAHA3 vs mock3 p=0.2969; CD3+CD28-3 vs mock3 p=0.0313; SAHA6 
vs mock6 p=0.4688; CD3+CD28-6 vs mock6 p=0.0156. 
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one or more post-transcriptional steps which impede the completion of the viral 

life cycle. 

These observation reveal that transcriptional activation is necessary but not suf-

ficient to revert latency from cells within the viral reservoir. Since MATR3 have 

been found to be limiting during SAHA treatment we hypothesized a role for fac-

tors involved in mRNA export and stabilization in the maintenance of latency.  

 

 

 

 

 

 

 

 

 

 

 

 

FIG.13- Treatment with SAHA efficinetly induces HIV-1 transcription  

A) Cell-associated unspliced HIV-1 RNA (CA-US HIV-1 RNA) extracted from ex vivo cultures of 
CD8-depleted PBLs from 7 aviremic HIV+ patients  was quantified by RT-qPCR and expressed 
as HIV RNA copy numbers/µg of total cellular RNA. Open symbols indicate undetectable sam-
ples and report an estimated value calculated as 50% of a detection limit per sample. The 
detection limit depended on the amounts of cellular RNA and therefore differed between 
samples. The medians are represented. Data sets were analysed using a paired, nonparame-
tric Wilcoxon test. p<0.05 was considered statistically significant. SAHA3 vs mock3 p=0.1875; 
CD3+CD28-3 vs mock3 p=0.3125; SAHA6 vs mock6 p=0.2188; CD3+CD28-6 vs mock6 p=0.2969. 
B) Extra-cellular genomic viral RNA (EC HIV-1 RNA) was quantified using RT-qPCR and reported 
as HIV RNA copy numbers/milliliter of plasma. Symbols and statistics as reported for Figure 
13A. SAHA3 vs mock3 p=0.6875; CD3+CD28-3 vs mock3 p=0.1563; SAHA6 vs mock6 p=0.2969; 
CD3+CD28-6 vs mock6 p=0.0313. 
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J-Lat 8.4 are responsive to SAHA and Romidepsin treatment 

To explore if MATR3 is a limiting factor to latency reversal we opted for its over-

expression  in J-Lat cells treated with LRAs to induce proviral transcription. 

In our hypothesis  MATR3 overexpression can help full viral particle rescue from 

transcriptionally activated J-lat cells by compensating  the inefficient induction of 

post-transcriptional steps after LRAs treatment. 

To test our hypothesis the J-Lat model can be useful thanks to the immortalized 

cell type, easy to manipulate, and to the presence of a reporter gene within an 

already silent but inducible provirus; nevertheless a major limitation of this 

model is posed by the high levels of MATR3 present within J-Lat cells. 

J-Lat 8.4 cells were stimulated for 48 hours with the following LRAs at the indi-

cated concentrations: 

-SAHA (0,5uM- 1uM- 1,5uM) 

-disulfiramin  (5uM) 

-Ingenol B (0,4uM) 

-JQ1 (0,5uM) 

-Romidepsin (0,006uM - 0,0175uM - 0,026uM) 

The reported concentrations were selected referring to literature; TNFa 

(30ng/ml) served as a positive control. 

Responsiveness to drug treatment was evaluated in terms of both GFP expres-

sion by FACS analysis and US-HIV mRNA quantification by qPCR. 

As shown in Figure 14A, J-lat cells strongly respond to Romidepsin treatment at 

both concentration tested while transcriptional induction occurred with SAHA 

only at the higher concentration used; a weak transcriptional induction is also 

observed in response to Ingenol B. 

Results obtained from FACS analysis (Figure 14B) were confusing since not sig-

nificant increase in the percentage of GFP+ cells was observed even with the 

drugs which showed increased US mRNAs transcription from the qPCR analysis, 

with the exception of Romidepsin (0,0175uM). 
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MATR3 overexpression doesn’t help full viral particle rescue in combination to 

LRAs in J-lat 8.4 

J-lat 8.4 cells were transduced with lentiviruses to overexpress (OVER) or not 

(CTRL) MATR3, kept under blasticidin selection for 2 weeks and then stimulated 

with the above mentioned LRAs for 48 hours. 

Full viral particle rescue was evaluated by p24 ELISA quantification in the cell cul-

ture media. 

No significant difference was observed after transcriptional induction of the pro-

virus in cells treated to overexpress MATR3 compare to the control in terms of 

full viral particle rescue (Figure 15).  

 

 

FIG.14- SAHA and Romidepsin rescue viral transcription in J-Lat8.4 

J-Lat 8.4 cells were stimulated for 48 hours with different LRAs as indicated in Materials and 

Methods. Viral transcription was assessed by real time PCR quantification of the US RNAs (A) 

or by cytoflorimetric analysis of the GFP+ cells (B). US RNAs are normalized to GAPDH and ex-

pressed as fold change to MOCK. 
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MATR3 overexpression is not occurring efficiently in J-lat 8.4 

Since we couldn’t detect any positive effect to latency reversal from the combi-

nation of MATR3 overexpression to LRAs treatment, we hypothesized that the 

high basal level of MATR3 within J-Lat 8.4 could make less appreciable any affect 

on viral replication related to an additional increase in MATR3 protein level. 

We checked the effective amount of MATR3 within OVER or CTRL J-lat 8.4 and 

surprisingly find out that even upon efficient expression of the exogenous  flag-

tagged version of MATR3 after lentiviral transduction, the overall amount of this 

factor was not increased both at protein and RNA level (Figure 16).    

FIG.15- MATR3 overexpression  doesn’t enhance viral rescue in LRAs-treated J-Lat 8.4 

J-Lat 8.4 cells culture  transduced with a lentivector to overexpress MATR3 (OVER) or with a 

control lentivector (CTRL) were grown under blasticidin selection. and stimulated for 48 hours 

with different LRAs as indicated in Materials and Methods.  Full viral particle rescue was as-

sessed by p24 ELISA quantification on culture supernatants. 
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We concluded that  J-lat 8.4 finely controlled the levels of MATR3  when an addi-

tional amount of the factor is provided exogenously in a way to minimize the 

variation in its total amount. 

          

 

 

 

 

 

 

 

 

FIG.16- MATR3 overexpression  is not efficiently achieved in J-Lat 8.4 

J-Lat 8.4 cells culture  transduced with a lentivector to overexpress MATR3 (OVER) or with 

a control lentivector (CTRL) were grown under blasticidin selection. Whole cell lisates were 

analysed by immunoblot to assess the expression of the exogenous flag-tagged MATR3 

(FLAG) and the total levels of MATR3; B-actin is the loading control. Western Blot quantifi-

cation is obtained by two different experiments and relative levels of MATR3 are expressed 

as fold change to MOCK. The level of MATR RNA measured by real time-qPCR are norma-

lized to GAPDH and expressed as fold change to MOCK. Results from two different experi-

ments. 

 



 RESULTS 

 

63 

 

J-Lat 6.3 are responsive to SAHA treatment 

The limitation faced with the attempt to overexpress MATR3 within J-Lat 8.4 lead 

us to change the clone of J-Lat used and repeat our test in J-Lat 6.3. 

In this case we focused on a single drug, SAHA, which was tested at three con-

centration as before( 0,5uM- 1uM- 1,5uM); 48 hours post-stimulation transcrip-

tional induction of the provirus was assessed checking  both  GFP expression by 

FACS analysis and US-HIV mRNA transcription by qPCR. J-Lat 6.3 were found to 

be responsive to SAHA treatment at the two higher concentration tested (Figure 

17). 

 

 

 

 

 

 

 

 

 

 

 

FIG.17- SAHA rescues viral transcription in J-Lat6.3 

J-Lat 6.3 cells were stimulated for 48 hours with different concentration of SAHA. Viral tran-

scription was assessed by real time PCR quantification of the US RNAs (A) or by cytoflorimetric 

analysis of the GFP+ cells (B). US RNAs are normalized to GAPDH and expressed as fold change 

to MOCK. 
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MATR3 overexpression in not occurring efficiently in J-Lat 6.3 

J-Lat 6.3 cells were transduced with a lentivirus to deliver the flag-tagged MATR3 

(OVER) or with a control lentivirus (CTRL) and kept under blasticidin selection for 

2 weeks; the effective amount of MATR3 within the cells was checked by both 

immunoblotting and qPCR. 

As observed for J-Lat 8.4 even upon efficient expression of the exogenous flag-

MATR3 the overall amount of the factor was not increased (Figure 18).  

 

                                  

 

     

 

 

 

FIG.18- MATR3 overexpression  is not efficiently achieved in J-Lat 6.3 

J-Lat 6.3 cell culture  transduced with a lentivector to overexpress MATR3 (OVER) or with a 

control lentivector (CTRL) were grown under blasticidin selection. Whole cell lisates were 

analysed by immunoblot to assess the expression of the exogenous flag-tagged MATR3 

(FLAG) and the total levels of MATR3; B-actin is the loading control. Western Blot quantifica-

tion is obtained by two different experiments and relative levels of MATR3 are expressed as 

fold change to CTRL. The level of MATR RNA measured by real time-qPCR are normalized to 

GAPDH and expressed as fold change to MOCK. Results from two different experiments. 
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Development of a model of latency based on resting primary PBLs 

As suspected J-Lat cell line turned out to be an unsuitable model to verify our 

hypothesis about the combinatorial effect of MATR3 overexpression and LRAs. 

The problem seems related to the already high levels of MATR3 in these cells 

that cannot be up-regulated further by overexpression. Indeed an eventual posi-

tive effect on latency reversal related to an increased amount of MATR3 could be 

masked under condition in which such factor is not limiting. 

With the aim to verify our hypothesis in a proper and more physiological cellular 

model we started to work on the set up of a model of latency based on the direct 

infection of resting primary PBLs. 

The task to isolate latently infected cells directly from the blood of HIV+ patients 

is not feasible to our purpose because of the extremely low number of infected 

cells carrying an intact and inducible silent provirus: it has been estimated that 

out of 1 million of CD4+ T cells isolated from the blood of an HIV+ patient only 

10-100 cells contain a replication-competent provirus (Eriksson et al., 2013; Ho et 

al., 2013) 

To overcome this limitation several model of latency based on the ex-vivo infec-

tion of primary PBLs have been proposed by different laboratory during the past 

years. 

Given the refractory of quiescent PBLs to HIV-1 infection, the majority of these 

models require a step of cellular activation prior to infection to render the proc-

ess more efficient: the infected cells should be then left in culture for a reason-

able time to allow a complete reversion to a resting state. 

To make an estimation of the time required by activated PBLs to revert to a rest-

ing phenotype we activated primary PBLs with PHA (3ug/ml) and IL-2 (20U/ml) 

for 4 days; cells were then washed to remove the activation stimuli and cultured 

in IL2 alone. The activation status of CD4+ T cells subset was monitored by check-

ing the expression of the activation markers CD69 and HLA-DR by FACS analysis. 

As shown in Figure 19, PHA addition resulted in almost 40% of cells expressing 

one or both the activation markers. Unfortunately once activated these cells 

hardly come back to a complete resting phenotype: a big percentage of them (~ 

25% in our analysis) still express activation markers after 14 days in culture. 

Longer culture in absence of any activation stimulus only resulted in cell death.  
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The approach based on pre-activated primary PBLs have the obvious advantage 

to facilitate the manipulation of these cells by increasing the efficiency of both 

infection and lentiviral transduction; nevertheless a major limitation to our pur-

pose is represented by the fact that cellular activation induces MATR3 levels 

(Figure 8; Mohammadi et al., 2014) thus rendering this factor not more limiting 

in such a cellular context. 

This consideration along with the limitation to have a real quiescent environment 

lead us to abandon the model based on pre-activated PBMCs and focus more on 

the direct infection of resting primary PBLs.   

Two main features would render this model on resting PBLs ideal: the limiting 

levels of MATR3, which we know to be unaffected even by LRAs stimulation, and 

a more physiological and reliable context of latency.   

In a setting of latently infected resting PBLs we are going to combine transcrip-

tional reactivation induced by SAHA treatment for 72 hrs to post-transcriptional 

stimulation achieved by MATR3 overexpression through lentiviral transduction; 

this would provide us the proof of concept that MATR3 is not only a positive 

regulator of viral replication but is also a limiting factor in reactivation from la-

tency in cells forming the viral reservoir. 

The set up of such a model would consist of three main step: MATR3 overexpres-

sion, HIV-1 infection and SAHA stimulation to reactivate the provirus. 

SAMHD1 depletion doesn’t affect the resting state of primary PBLs 

Resting PBLs are refractory to HIV-1 infection given the presence of restriction 

factors which counteract the process. Among them SAMHD1 proved to block the 

very first steps of viral replication by depleting the pool of dNTPs available within 

the cytoplasm of the host cell to allow the retrotranscription of the viral genome. 

FIG.19- The majority of PHA-activated PBLs doesn’t revert to resting state 

Resting primary PBLs isolated from healthy donors were activated with PHA-IL2 as described 

before; after  4 days PHA was removed and the cells cultured in IL2 alone. Cytofluorimetric 

analysis was done at days: 0 (after PHA removal), 8, 14. Cells were stained with BV421-

antiCD3, BV510-antiCD4, PE-Cy7-antiCD69, PE-antiHLA-DR,. 
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In several reports it was shown how the depletion of SAMHD1 can alleviate the 

restriction to HIV-1 infection from resting PBLs: the retroviral factor Vpx was 

found to specifically degrade SAMHD1 through the proteasomal pathway. 

To deliver Vpx within resting PBLs SIVmac-based Viral Like Particles containing 

Vpx (Vpx-VLPs) are available. 

VSVG-pseudotyped Vpx-VLPs were used to treat resting PBLs for 24 and 48 

hours; SAMHD1 depletion was then assessed by immunoblotting and revealed an 

efficient removal of the restriction factor within 48 hours (Figure 20A). We asked 

if the depletion of SAMHD1 could somehow affect MATR3 protein levels and 

confirmed by immunoblotting that this was not the case (Figure 20B). 

    

 

              

 

 

 

Next we wanted to assess if treatment with Vpx-VLPs can alter the activation 

status of resting PBLs:  2x10^6 resting PBLs isolated from healthy donors were 

treated (PBL-Vpx)  with 12ng of Vpx-VLPs or left untreated (PBL); 6 days post 

FIG.20- SAMHD1 depletion doesn’t affect MATR3 expression  

Resting primary PBLs isolated from healthy donors were treated with VSV-G pseudotyped Vpx-

VLPs for 24 and 48 hours. Whole cell lysates were blotted for SAMHD1 (A) and MATR3 (B); B-

actin is the loading control. 
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treatment the resting status of the cells was checked by FACS through the stain-

ing for the activation markers CD69 and HLA-DR. 

As shown in Figure 21, CD4+T lymphocytes don’t increase the expression of early 

and late activation marker after Vpx-VLPs treatment. 

 

 

 

 

 

 

 

 

 

 

 

FIG.21- SAMHD1 depletion doesn’t activate resting PBLs  

Resting primary PBLs isolated from healthy donors were treated with VSV-G pseudotyped Vpx-

VLPs. Cytofluorimetric analysis was done 6 days post treatment; cells were stained with APC-

Cy7-antiCD3, BV510-antiCD4, PE-Cy7-antiCD69, BV421-antiHLA-DR. 
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MATR3 overexpression is not achieved along with HIV-1 infection 

SAMHD1 depleted cells were infected with 450ng of a full length clone of HIV-1 

containing the GFP reporter gene under the CMV promoter (kindly provided by 

Dr.Monsef Benkirane). The presence of the GFP gene under the control of CMV 

allow the constitutive expression of the reporter even under silencing condition 

at the LTR viral promoter thus allowing the identification of all the infected cells. 

8 hours post infection PBLs were transduced with 600ng of lentivirus to express 

the flag-MATR3 and cultured in IL-2 containing media. 

5  days post infection/transduction cells were analysed by FACS to assess the ef-

ficiency of infection (p24 staining and GFP) and the efficiency of lentiviral trans-

duction and flag-MATR3 expression (flag staining). 

The markers for HIV-1 infection gave contrasting results: an high percentage of 

p24 positive cells was detected while the GFP expression was not observed (Fig-

ure 22). 

Limitation in the detection of GFP signal were frequently encountered even in 

other experiments with the same virus which probably made the p24 staining 

more reliable to assess the efficiency of infection, which remained anyway still 

uncertain to be precisely defined. 

Unfortunately, flag-MATR3 was not detected after lentiviral transduction as 

showed by the anti-flag staining (Figure 22). 

Several attempts were conducted to optimize the step of lentiviral transduction 

by changing both the concentration of lentivirus used and the timing of transduc-

tion but all of them gave disappointing results: the concomitant events of HIV-1 

infection and MATR3 overexpression didn’t occur efficiently in resting primary 

PBLs during our tests. 
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FIG.22- MATR3 overexpression is not achieved along with HIV-1 infection  Resting prima-

ry PBLs isolated from healthy donors were treated with VSV-G pseudotyped Vpx-VLPs as 

before. 48 hours after treatment , SAMHD1-depleted PBLs were  transduced with the lenti-

vector to express flag-MATR3 (OVER) and infected with a replication competent HIV-1 con-

taining the GFP as a reporter gene. Cytofluorimetric analysis was done 5 days post treat-

ment; cells were stained with APC-Cy7-antiCD3, BV510-antiCD4, PE-Cy7-antiCD69, BV421-

antiHLA-DR, APC-antiFLAG, RD1-p24. 
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DISCUSSION 

The HIV-1 viral life cycle is a complex process which relies on the host cellular 

machinery. Proviral transcription and RNA metabolism occur with the concerted 

action of cellular pathways and viral factors, co-evolved to fully exploit the host 

environment to guarantee its replication. 

To avoid the translation of defective mRNAs which would result in the produc-

tion of possibly deleterious proteins, the cellular “quality control” pathway of 

nonsense-mediated decay along with a finely regulated export pathway, assure 

that only properly processed mRNAs are exported to the cytoplasm.  Thus the 

presence of viral intron-containing mRNAs at their mature stage could represent 

a major obstacle for the virus to the completion of the first steps of viral gene 

expression: unspliced transcripts should be retained in the nucleus and targeted 

for degradation or sequestration. To overcome this obstacle HIV-1 has evolved 

the viral factor Rev which is involved in the specific pathway of intron-containing 

mRNA export. To this aim Rev engages an alternative route for viral mRNA export 

which ultimately involves the CRM-1 transport receptor, used by the eukaryotic 

cells to allow cytoplasmic translocation of protein cargos and specific type of 

RNAs. 

The exact pathway which goes from Rev multimerization on viral mRNA to CRM1 

recruitment has not been fully elucidated and some steps still remain elusive; 

thus a better understanding of the Rev interaction with the host proteins during 

the export process would help to identify the crucial host factors involved and 

characterize better the details of this process. With this aim it was exploited in 

our laboratory an approach based on the immunoprecipitation of viral RNA cou-

pled to a mass-spectrometry analysis which allow the identification of the host 

protein MATR3 as an element of the Rev/RNA complex (Kula et al., 2011).  

MATR3 is a component of the nuclear matrix, a complex structure which organ-

ize both spatially and functionally the nucleus: for this reason MATR3 can be in-

volved in a plethora of role ranging from structural definition of discrete com-

partments to functional involvement in genome expression (Bode et al., 2003; 

Coelho et al., 2015; Salton et al., 2010, 2011). 

The literature analysis on MATR3 revealed that this factor has been related to 

several processes in mRNA metabolism: its involvement in defective mRNA re-

tention was found to be exerted in concerted action with PSF and p54nrb (Zhang 
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and Carmichael, 2001)  while its action on alternative splicing regulation was as-

sociated to PTB (Coelho et al., 2015), thus suggesting that MATR3 can be re-

cruited to different complexes and the factors engaged help defining its action. 

In the context of host-virus interaction, MATR3  was  reported to have a role in 

retroviral infection. Both for Moloney Murine Leukemia Virus (MoMu-LV) and 

HIV-1 it was found that MATR3 is a negative regulator of ZAP-mediated retroviral 

restriction since its depletion resulted in a strengthened antiviral activity (Erazo 

and Goff, 2015). Specifically for HIV-1, it was previously reported  by us and other 

groups, that MATR3 positively affect  viral replication (Kula et al., 2013; Yedavalli 

and Jeang, 2011): thus my thesis work aims to a better definition of the involve-

ment of MATR3 in the context of HIV-1 infection both in the acute and the latent 

phase. 

To point out a functional role for MATR3 during HIV-1 acute infection, we 

knocked-down this factor in Jurkat cells: a first striking observation we made is 

that MATR3 depletion in HIV-1 infected Jurkat cells results in a dramatic drop of 

viral replication. Notably we could recapitulate the same phenotype also in 

MATR3 depleted primary PBLs in the context of acute infection confirming that 

MATR3 is an essential factor to HIV-1 replication. 

Our preliminary investigations suggested  that MATR3  is recruited after tran-

scription and  interacts with Rev in an RNA-dependent manner. Thus to better 

characterize the effective role of MATR3 in the viral life cycle we further investi-

gated the outcome of MATR3 depletion on HIV-1 transcription and mRNA me-

tabolism.  

By infecting Jurkat cells with an HIV-1 vector containing the luciferase gene as a 

reporter for transcription we could confirm that MATR3 depletion didn’t affect 

proviral transcription during acute infection meanwhile we observed an intrigu-

ing effect on viral mRNA distribution. Intron-containing viral transcripts accumu-

lated in the nucleus of infected Jurkat cells deprived of MATR3 and consequently 

intracellular viral protein production was impaired; on the other hand fully 

spliced viral transcripts were not affected and no imbalance in their nucleo-

cytoplasmic distribution was observed. We therefore suggested that the effi-

ciency of Rev-mediated export was compromised by MATR3 depletion thus af-

fecting post-transcriptional steps of viral replication.   
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To verify our hypothesis on the role of MATR3 as a Rev co-factor during HIV-1 

acute infection we sought to test if an increase in MATR3 protein levels could 

boost mRNA export and viral replication. 

Exogenous delivery of a flag-tagged MATR3 into infected lymphocytes resulted in 

the effective increase in the total amount of MATR3 and, as expected, this 

caused an effect specifically on US-mRNA metabolism, while MS mRNAs were 

not affected. In particular, intron-containing mRNAs showed a reduced nuclear 

level, without a concurrent increase in their cytoplasmic localization: this obser-

vation can suggest either an enhanced export or a reduced stability of this 

mRNAs. 

It was previously reported by Erazo and Goff (Erazo and Goff, 2015)  that changes 

in the levels of MATR3 can affect HIV-1 mRNAs stability; in particular they no-

ticed that MATR3 knockdown strengthen the ZAP-mediated degradation of both 

MS and US viral transcripts thus leading to a dramatic drop in viral replication. 

In our case we observed that the reduction of viral mRNAs concentration oc-

curred upon MATR3 overexpression and only in the nucleus; moreover the effect 

we reported was specific for US mRNAs while MS ones were unaffected.  

Nevertheless, to rule out a possible effect of MATR3 overexpression on viral 

mRNAs stability we checked the level of intracellular viral proteins and the viral 

particle production. The increase in intracellular Gag and in viral particle produc-

tion associated to MATR3 overexpression excluded any effect on mRNA stability 

and confirmed that MATR3 is a positive regulator of HIV-1 replication which acts 

as a Rev-cofactor to mediate the nuclear export of US viral mRNAs. 

The discovery of new cellular factors involved in HIV-1 replication contributes to 

broaden the knowledge of the mechanisms behind viral infection. From the first 

contact with the target cell to the release of new virions every step of the viral 

life cycle is carried out with the concerted action of different host factors and 

thus any perturbation in their optimal function could greatly affect the progres-

sion of viral replication. 

It’s easy to understand how the establishment of post-integrative latency within 

infected cells requires a peculiar cellular environment in which the transcrip-

tional and post-transcriptional steps of viral replication are somehow defective. It 

is known that resting PBLs which mainly compose the HIV-1 viral reservoir exhibit 

a drastically altered cellular context compared to the one found in replicating 
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PBLs: thus the better comprehension of the phenomena of latency can’t be sepa-

rated from a deeper understanding of the cellular context where it is established. 

Extensive studies have been conducted to reveal the transcriptional blocks pre-

sent in latently infected cells. The epigenetic modifications to chromatin at the 

integration site are known to play an important role in maintaining a silent provi-

rus: both increased methylation and inadequate acetylation contribute to render 

the LTR sites inaccessible to the transcription complex (Jiang et al., 2007; Marban 

et al., 2007; Pearson et al., 2008; Tyagi and Karn, 2007; Van Lint et al., 1996). 

Moreover, the majority of the cellular factors involved in transcription are ex-

pressed at limiting levels or kept in an inactive state thus rendering the process 

inefficient: the suboptimal nuclear translocation of NF-kB  and the sequestration 

of the elongation factor P-TEFb into an inactive complex play a crucial role in the 

transcriptional silencing of the provirus (Budhiraja et al., 2013; Fujinaga et al., 

2004; Michels et al., 2004; Ping and Rana, 1999; Zhong et al., 2002). 

The detailed characterization of the transcriptional blocks behind proviral silenc-

ing is the starting point of the so-called “shock and kill” strategy, one of the most 

intriguing therapeutic approach proposed to clear the viral reservoir. The “shock 

and kill” strategy proposes that the clearance of the viral reservoir can be 

achieved by reverting the latent state of the virus through its transcriptional in-

duction: the return into active replication would render the infected cells visible 

to the host immune system leading to their targeting and removal. To achieve 

this goal several drugs, collectively called the Latency Reversal Agents (LRAs), 

have been proposed.  The transcriptional induction is achieved by different 

mechanisms, from the addition or removal of selective epigenetic histone modi-

fication to the direct stimulation of the activity of the factors involved in the 

transcriptional pathway. The panel of LRAs includes Histone Methyltansferase 

Inhibitors (HMTIs), Histone Deacetylase Inhibitors (HDACIs), NF-kB activators and 

P-TEFb inducers; in vitro investigations with single or combination of these drugs 

reveal that most of them were able to induce in-vitro transcription at the LTR 

site.  

Despite the efficient removal of transcriptional blocks an effective rescue of the 

full virus from latent cells is still lacking with most of the drug tested suggesting 

that other limitations impede the completion of the viral life cycle (Darcis et al., 

2015, 2016; Van Lint et al., 2013). 
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The contribution of post-transcriptional steps to the maintenance of latency has 

been poorly investigated during the past years even though some crucial discov-

eries started to unveil the possible role played by factors involved in mRNA me-

tabolism to the phenomena (Sarracino and Marcello, 2017). 

Several primary cell models have been used to investigate post-transcriptional 

latency: in the CD4+ T cell model used by Pace et al. (Pace et al., 2012) it was 

found that reduced level of MS mRNAs were associated to the nuclear retention 

of US ones, suggesting how inefficient splicing and export of viral mRNAs can 

contribute to latency. In the model of Saleh et al. (Saleh et al., 2011)  in which 

resting primary CD4+ T cells were treated with CCL19 prior to infection was 

found that the levels of US mRNAs were reduced possibly due to a nuclear reten-

tion or a cytoplasmic degradation of MS ones. 

Importantly, in the work of Lassen et al. (Lassen et al., 2006)  the ectopic expres-

sion of the polypyrimidine-tract binding protein (PTB) in resting CD4+ T cells from 

HIV+ patients was able to rescue the proper export of both fully and partially-

spliced viral transcripts underlining the role that limiting levels of host factors in-

volved in mRNA metabolism can play in the maintenance of latency. 

The transcriptomic analysis of resting PBLs revealed that most of the factors in-

volved in mRNA splicing, stabilization and export are poorly expressed unless an 

activation stimulus is provided thus suggesting how the maintenance of a quies-

cent state rely also on the limitation in mRNA processing (Mohammadi et al., 

2014). 

We found interesting that factors like PSF, PTB and MATR3 were shown to be 

poorly expressed in resting cells: to assess the actual expression of those factors 

in quiescent PBLs and CD4+ T cells we checked their protein level prior and post-

activation with PHA and we confirmed their barely detectable basal expression, 

which is induced only after activation. 

To better characterize the modulation of MATR3 level in the cellular context 

found in latency and upon exposure to drugs for AIDS treatment we sought to 

test if drugs selected from the panel of LRAs have any effect on the induction of 

MATR3 expression. To this aim we stimulated primary PBLs from healthy donors 

with the PTEN inhibitor Disulfiramin, the two histone deacetilase inhibitor SAHA 

and Romidepsin  or the BET-inhibitor JQ1 in combination to the PKC agonist In-

genol B and observed that none of the tested drugs or combination was able to 

increase the low levels of MATR after 3 and 6 days of stimulation. 
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To extend this observation to the actual context of latent HIV-1 infection we re-

peated this test in PBLs isolated from aviremic HIV+ patients under antiretroviral 

therapy (ART). We could confirm that HIV-1 infected primary resting PBLs treated 

with LRAs still express limiting amount of MATR3 and that only cellular activa-

tion, in this case by TCR stimulation by anti-CD3/anti-CD28 beads, is able to raise 

MATR3 protein levels, indicating that the mode of induction is essential. 

The assessment that MATR3, which we previously identified as a crucial factor 

for HIV-1 replication, is poorly expressed within cells composing the viral reser-

voir lead us to wonder about a possible involvement of this host factor in the 

maintenance of latency. Limiting level of MATR3 and other factors involved in 

mRNA processing and export could be responsible for the failure of the attempts 

to efficiently rescue the full virus from latent cells under condition in which the 

LRAs render the virus transcriptionally active.  

To begin our investigation on the possible role of MATR3 in the context of viral 

latency we sought to verify if it’s depletion in the well-established latency model 

of J-Lat has any affect on viral reactivation. We transduced J-Lat 8.4 cells with a 

lentivector coding for a shRNA targeting MATR3 and confirmed an efficient de-

pletion of the factor. Upon administration of TNFα, we could confirm by checking 

GFP expression, that transcriptional activation of the integrated provirus oc-

curred efficiently and that MATR3 removal was not affecting this process. Inter-

estingly we could observe that both intracellular Gag and virion quantification in 

the culture media were decreased in MATR3- depleted J-lat cells: the defect on 

full viral particle production in condition of efficient viral transcription clearly in-

dicated that MATR3 depletion affected the post-transcriptional steps of latency 

reversal. 

The results obtained from  J-lat cells supported our hypothesis about the neces-

sity of post-transcriptional factors such as MATR3 to guarantee that, the tran-

scriptional input to viral reactivation provided by TNFα or other drugs, lead to a 

complete replication cycle. 

In this view, a revised approach to the “shock and kill” strategy would include 

drugs capable of inducing those processes involved in post-transcriptional RNA 

processing to remove any block to full viral reactivation. 

In our previous tests with LRAs we could observe that MATR3 levels remained 

limiting after treatment with all the drugs. Among those drugs we focus on SAHA 

because of its potency as a transcriptional inducer and of its well-established 
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clinical use and we extended our observation to investigate the effect that SAHA 

alone has on the latency reversal. 

To this aim we stimulated PBLs from HIV+ patients with 0,5uM of SAHA, a dosage 

within the window of the plasmatic concentration usually found in treated pa-

tients. The latent virus was responsive to SAHA and its transcription was effi-

ciently restored as was stated by the appearance of intracellular viral transcripts 

which range levels comparable to the one obtained by cellular activation. Inter-

estingly, the transcriptional induction rescued after stimulation with SAHA was 

not associated to full virion production, contrary to the appearance of complete 

viral particles observed after cellular activation by TCR stimulation. 

Synergistic combination of LRAs have been tested with the aim to achieve a 

stronger effect on latency reversal (Darcis et al., 2015). We suggest that a new 

intriguing approach would be to combine stimuli acting at different stages: a po-

tent transcriptional inducer to revert transcriptional silencing to a stimulus acting 

post-transcriptionally to assure that nascent viral RNAs are efficiently processed. 

We believe it would be interesting to test if the restoration of proper MATR3 

levels within latently infected cells could help overcome the limitation to full 

virion production faced upon SAHA administration.  

We started working on a suitable cellular model of latency to test our hypothesis: 

ideally we would need a cellular setting in which MATR3 levels are limiting in a 

way to be able to obtain a major increase in its total amount by delivering an ex-

ogenous version of the factor with the help of a lentiviral tool. 

Clearly the best cellular model  to our purpose would be the one provided by 

resting infected primary PBLs because of the almost intact and physiological la-

tency environment; moreover we could previously assess that MATR3 levels are 

limiting under such conditions and not affected by SAHA administration. 

Several protocols are available to set up a latency model based on primary PBLs: 

however the majority of them require a previous step of cellular activation to in-

crease the efficiency of HIV-1 infection. Infected cells should be then cultured for 

a reasonable time in absence of any activation stimulus to allow a complete re-

version to a quiescent phenotype (Pace et al., 2011; Spina et al., 2013).  

To estimate the time in culture needed by  PHA-activated PBLs to come back to 

the resting state we monitored their activation status after PHA removal by 

checking the expression of early and late activation markers over a time frame of 
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three weeks. We observed that once activated, primary PBLs harshly come back 

to the resting state and a substantial part of them still express activation markers 

after two weeks from PHA removal; an additional week of culture only resulted 

in cell death. 

Another major disadvantage to the use of a model based on pre-activated PBLs 

to our purpose, is that  cellular activation increases MATR3 levels thus rendering 

this factor not more limiting in this cellular context. In the transcriptomic analysis 

provided by the group of Talenti (Mohammadi et al., 2014) in which cellular gene 

expression is analysed in latently infected cells from a well-described latency 

model based on  CD4+ T cells, it was found that the levels of different factors, 

and between them MATR3, remained sub-limiting after cellular activation, even 

after the long cellular culture used to allow the establishment of latency.  

Considering the limitation in restoring a proper quiescent state and the modula-

tion in MATR3 levels occurring after cellular activation, we abandoned the idea 

to use a model based on pre-activated PBLs for our purpose. 

An alternative approach to set up a latency model in primary PBLs propose the 

direct infection of resting cells: two major advantages of this model consist in the 

preservation of the actual quiescent cellular context in which the viral latency is 

established and in the maintenance of limiting levels of MATR3. 

Nevertheless several restrictions counteract HIV-1 viral infection of resting PBLs 

in vitro. 

 A major block to HIV-1 infection is constituted by the presence of the host factor 

SAMHD1 which acts as a potent restriction factor to viral infection. SAMHD1 is a 

cellular nuclease which exhibit a phospohydrolase activity by removing a phos-

phate group from deoxynucleoside triphosphate (dNTPs).  Its action results in the 

reduction of the dNTPs pool, which, in turns affect the efficiency of reverse tran-

scription during retroviral infection; the antiviral effect of SAMHD1 is more pro-

nounced in resting cells because of the already exiguous pool of dNTPs (Descours 

et al., 2012; Goldstone et al., 2011). 

It was shown that SAMHD1 depletion enhances HIV-1 infection: thus its removal 

from resting PBLs could provide a useful strategy to render these cells more 

permissive to viral infection in vitro. Recently it was discovered that the retroviral 

factor Vpx enhances SAMHD1 degradation through the proteasomal pathway; 
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notably this factor is not expressed by HIV-1 but only by other retroviruses such 

as HIV-2 and SIV (Hofmann et al., 2012; Laguette et al., 2011). 

To deliver the Vpx factor within resting PBLs a viral tool based on SIVmac back-

bone have been developed: these SIVmac-derived Viral Like Particles containing 

Vpx (Vpx-VLPs) can be pseudotyped with the VSV envelope protein  (VSV-G) to 

increase the efficiency of delivery (Geng et al., 2014; Nègre et al., 2000). 

We decided to take advantage of this strategy to render resting PBLs more per-

missive to viral infection, to infect these cells with HIV-1 to establish a model of 

latency and in this model to combine the overexpression of MATR3 to the treat-

ment with LRAs to finally test if the two approach can act in synergy to revert vi-

ral latency. 

We treated resting PBLs with VSV-G pseudotyped Vpx-VLPs and  we could assess 

an efficient degradation of SAMHD1 occurring in 48 hours; to verify if the treat-

ment with Vpx-VLPs could somehow affect MATR3 expression we simultaneously 

checked the levels of MATR3 protein and assure that there was no effect on its 

expression. To exclude that the treatment with Vpx-VLPs alter the quiescent 

state of the cells we analysed the expression of early (CD69) and late (HLA-DR) 

activation markers before and after treatment; we confirmed that incubation 

with viral like particles and Vpx delivery didn’t activate the resting PBLs. 

Resting PBLs, treated with Vpx-VLPs to be more permissive to viral infection, 

were infected with a replication competent HIV-1 containing the additional GFP 

gene as a reporter for viral infection: the GFP gene is cloned under the CMV 

promoter in a way to allow its expression even under condition where the tran-

scription at the LTR is silenced.  

To decide the concentration of lentivirus to use to deliver the flag-MATR3 within 

resting PBLs, we conducted some preliminary test by checking the efficiency of 

FLAG-MATR3 expression using increasing amount of lentivector. The concentra-

tion selected was the lower one at which we started to detect the FLAG-MATR3 

expression since we observed a marked cellular toxicity upon lentiviral transduc-

tion. The transduction with the lentivector to deliver the flag-tagged MATR3 was 

performed the same day of the infection with the aim to reduce the time passing 

after the treatment with Vpx-VLPs  to avoid the recovery of SAMHD1 restriction 

activity. 
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The efficiency of infection was evaluated by cytofluorimetric analysis checking 

for the expression of GFP and intracellular p24. The first thing we noticed is that 

the percentage of GFP positive cells doesn’t correspond to the percentage of p24 

positive ones which suggest that one of the two markers is not reliable to esti-

mate the rate of infected cells. Problems in the detection of GFP signal were fre-

quently encountered  in different experiments using the same virus: thus the p24 

staining was probably more reliable to assess the efficiency of infection. Never-

theless the percentage of p24 positive cells is so high that likely could be overes-

timated due to a residual contamination with the input virus used for the infec-

tion: thus the exact percentage of infected cells remained still uncertain. 

The efficiency of lentiviral transduction was assessed by cytofluorimetric analysis 

of the intracellular FLAG: unfortunately no FLAG expression was detected con-

comitantly to HIV-1 infection under the tested condition. Attempts to increase 

the time frame occurring between the viral infection and the lentiviral transduc-

tion to 24 hours didn’t help achieving a better efficacy of the two process simul-

taneously.  

In conclusion  we faced technical issues, especially related to the expression of 

the exogenous FLAG-MATR3, which don’t allow us to set up a proper model of 

latency based on the direct infection of resting PBLs to verify the actual contribu-

tion of MATR3 to the reactivation of the latent provirus. 

Since we had to put aside the idea to use primary cells for our latency model we 

evaluated the possibility to utilize the classic latency model of J-Lat. Although  

the J-Lat cell line can represent a very useful tool for the study of latency thanks 

to the immortalized cell type, easy to manipulate, and to the presence of a re-

porter gene within an already silent and inducible provirus, we had some hesi-

tancy to the employment of the J-Lat model to our task. 

 A major doubt arises from the consideration that J-Lat cells are not limiting in 

the levels of MATR3: thus it  is necessary to keep in mind that the high basal level 

of the factor could make less appreciable any affect on viral replication related to 

an additional increase in MATR3 protein level. The general approach would re-

main unchanged: transcriptional induction provided by LRAs stimulation would 

be combined to MATR3 overexpression obtained by lentiviral transduction to de-

liver its FLAG-tagged version. 

It is known that J-Lat 8.4 are responsive to treatment with TNF-α, a cytokine able 

to efficiently rescue the expression of the  integrated provirus: a preliminary 
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screening with different LRAs was thus necessary to assess if J-Lat 8.4 are re-

sponsive to any other of the tested drugs. We stimulated J-Lat 8.4 cells with 

SAHA, Romidepsin, Disulfiramin, Ingenol and JQ1 at different concentration; the 

transcriptional induction of the virus was assessed by checking both the GFP ex-

pression and the transcription of the unspliced viral mRNAs: we found that both 

Romidepsin and SAHA are able to rescue the transcription of the latent virus. 

Next we combined the treatment with the above mentioned drugs to the over-

expression of MATR3: J-Lat 8.4 cells transduced with a lentivector to express the 

FLAG-MATR3 were stimulated for 48 hours with the different drugs and then we 

evaluated the effect on full viral particle rescue by looking at the viral titre in the 

culture media. Unfortunately we couldn’t detect any positive effect to latency 

reversal from the combination of MATR3 overexpression to LRAs treatment. 

We then hypothesized that, as supposed, the high basal level of MATR3 within J-

Lat 8.4 could mask any  effect on viral replication related to an additional in-

crease in MATR3 protein level. 

We checked the effective amount of MATR3 within these cells and surprisingly 

find out that even upon efficient expression of the exogenous  flag-tagged ver-

sion of MATR3 upon lentiviral transduction, the overall amount of the factor was 

not increased. This observation was quite unexpected and we suppose that the 

overall amount of MATR3 is finely regulated within J-Lat 8.4 cells in a way to 

minimize drastic increase in its expression.  

To verify if this limitation in efficiently increasing MATR3 levels was specific for J-

Lat 8.4, we tried to recapitulate the same approach in a different J-Lat clonal cell 

line, the J-Lat 6.3. 

First of all we verified that this cell line was suitable to our purpose by checking 

the effect of the previously screened LRAs on viral transcription: we could con-

firm that J-Lat 6.3 cells responded to treatment with SAHA and Romidepsin by 

inducing high levels of viral mRNA transcription. Once confirmed their respon-

siveness to LRAs, we transduced J-Lat 6.3 cells with a lentivector to express the 

FLAG-MATR3 and checked the effective expression of the exogenous factor. We 

observed again that, even upon efficient delivery and expression of the exoge-

nous MATR3, the total amount of the protein was unaffected and no significant 

increase in its concentration was reported. 
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Unfortunately we couldn’t succeed in the attempt to overexpress MATR3 within 

J-Lat cells since it seems that the overall amount of this factor are finely regu-

lated to avoid drastic variation in its expression. 

In conclusion we couldn’t find a suitable model of latency, either based on pri-

mary or immortalized cells, in which establish the proper condition to verify if 

the limiting levels of MATR3 are responsible for the post-transcriptional blocks 

which maintain the virus in its latent state.   
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CONCLUSION AND REMARKS 

HIV-1 full viral gene expression is achieved with the concerted action of host and 

viral factors. We identified the host protein MATR3, a component of the nuclear 

matrix, as a Rev-cofactor recruited to engage the alternative nuclear export 

pathway through CRM1 to allow the cytoplasmic translocation of viral intron-

containing mRNAs. 

In this work we defined a functional role for MATR3 in the context of acute infec-

tion with a replication competent HIV-1; moreover we provide some evidences 

about the likely contribution of MATR3 to the maintenance of a latent state 

within the viral reservoir. 

We modulate the level of MATR3 both in T cell line and primary PBLs and we 

proved that MATR3 knockdown results in the nuclear retention of unspliced viral 

transcripts thus dramatically affecting viral replication. On the contrary, if MATR3 

levels are increased, the positive input to viral mRNA export enhances not only 

viral protein production but finally leads to a remarkable raise in viral replication. 

We observed that MATR3, like other factors involved in mRNA metabolism, is 

poorly expressed in resting PBLs suggesting that the cellular environment in 

which viral latency is established could rely on limiting levels of these factors to 

maintain the virus in a latent state. Moreover we showed  that the drugs cur-

rently proposed to revert the transcriptional silencing of the virus don’t alter the 

expression of MATR3 which remain limiting throughout the treatment which 

lead to removal of transcriptional blocks. 

Specifically for SAHA, one of the best characterized drug in the panel of the 

tested ones, we showed that the re-establishment of efficient viral transcription 

doesn’t lead to the production of complete viral particles revealing that removal 

of transcriptional blocks is necessary but not sufficient to allow the latent virus to 

come back to active replication. 

Intriguingly this observation uncover an aspect of viral latency, the existence of 

post-transcriptional blocks, which remain mostly elusive and would need further 

exploration to shed some light on what are the critical steps to be targeted to al-

low the virus to leave the latent state. 

We demonstrated in J-Lat cells, a classic model of latency, that MATR3 depletion 

impede the full viral rescue under condition of optimal viral transcription and we 
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propose that, due to a block in nuclear mRNA export caused by MATR3 limiting 

levels, the viral cycle get stuck in the production of structural proteins to assem-

ble the nascent virion. 

In this work we lack a direct evidence that the restoration of adequate levels of 

MATR3 within latently infected cells can provide the “post-transcriptional boost” 

to the initial SAHA’s “transcriptional kick” to revert viral latency. 

Despite the technical difficulties we encounter to inspect this last scenario, we 

believe that at this point is essential a further exploration of the post-

transcriptional blocks which render the “shock and kill” approach still unsuccess-

ful. 

A better comprehension of the pathways which are obstructed during the estab-

lishment of the latent state and the discovery of the crucial factors indispensable 

to revert such condition could significantly improve the development of a clinical 

strategy to clear the viral reservoir leading finally to a “sterilizing cure” to effec-

tive eradicate the HIV-1 viral infection. 
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MATERIALS AND METHODS 

CELLS 

Human embryonic kidney 293T cells were grown in Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) and 

antibiotics (penicillin/streptomycin). 

Jurkat and J-Lat cells obtained from NIH Research and Reference Reagent 

Program were cultured in Rosewell Park Memorial Istitute medium (RPMI) 

supplemented with 10% FBS and antibiotics. 

Peripheral Blood Mononuclear Cells (PBMCs) and Peripheral Blood Lymphocytes 

(PBLs) were purified from healthy donors’ buffy coat obtained from “Ospedale 

Maggiore of Trieste”.  

PBMCs were purified through Ficoll gradient (Ficoll-Hystopaque Lonza) and 

cultured in RPMI supplemented with 10% heat inactivated FBS and antibiotics. 

After an overnight culture non-adherent PBLs were collected and grown in the 

same media containing only IL2 (20U/ml) to maintain the resting state or IL2 

(20U/ml) and PHA (5ug/ml) to activate them.  

LENTIVIRAL VECTORS  

pLKO.1 lentiviral vectors expressing shRNAs targeting MATR3 or a scramble CTRL 

were obtain from Open Biosystems (TRCN0000074903-904-905-906-907 or 

shCTRL). 

The pWPI-flagMATR3 lentiviral vector was produced by cloning the flag-MATR3 

cDNA into the pWPI plasmid (kindly provided by Gualtiero Alvisi, University of 

Padova). 

Briefly, the flag-MATR3 sequence was amplified by PCR from the pCMV-

flagMATR3 plasmid adding the restriction sites for AscI and MluI at the 5’ and 3’ 

site of the gene respectively. 

The obtained sequence was inserted into the pWPI_BLR  transfer vector digested 

with Asc I and Mlu I and the plasmid was amplified in XL10 gold bacteria. Ampicil-

lin resistant bacterial colonies were screened for the presence of the pWPI-



 MATERIALS AND METHODS 

 

88 

 

flagMATR plasmid whose identity was verified by both enzimatic digestion and 

sequencing (Figure 23). 

The VSV-G pseudotyped lentivirus to overexpress MATR3 was tested on Jurkat 

cells and the efficient expression of the exogenous protein was assessed by an 

immunoblotting for FLAG (Figure 24). 

 

 

 

 

 

 

FIG.23- cloning strategy to obtain the pWPI-flagMATR3 lentiviral vector. The flag-MATR se-

quence containing the restriction sites for AscI-MluI was amplified from the pCMV-flagMATR 

plasmid and cloned into the pWPI vector digested AscI-MluI. Mini prep screening was performed 

by enzimatic digestion with AscI-MluI and the positive clone was checked by sequencing. 
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TRANSFECTION AND TRANSDUCTION 

Lentiviral particles to knockdown MATR3 were produced by calcium-phosphate 

transfection of 293T cells with the transfer vector (pLKO-shRNA; pLKO-scramble), 

the packaging plasmid (psPAX2) and the VSV-G coding plasmid (pMD2G), (all 

from Addgene). 

Lentiviral particles to express the flag-tagged MATR3 were produced by co-

transfecting the transfer vector (pWPI; pWPI-flagMATR), the packaging plasmid 

(psPAX2) and the VSV-G coding plasmid (pMD2G). 

Lentivirus-containing supernatant was collected 48 hours post-transfection, 

centrifuged to remove cell debris, filtered through 0,45nm filter and stock at –

80°C. 

When needed lentiviral-containing supernatant was concentrated 100 folds by 

ultracentrifugation at 27000 rpm and quantified by p24 ELISA (Retrotek, 

Zeptometrix). 

To deplete or overexpress MATR3 1x10^6 cells were incubated with the 

lentivirus in 6-well plate for 16 hours; cells were then washed with PBS to 

FIG.24- Validation of the flag-MATR lentiviral vector. Jurkat cells were transduced with the VSV-

G pseudotyped  lentivirus to express the flag-MATR3 (OVER) or with a control lentivector (CTRL) 

and selected by Blasticidin resistance. Whole cell lysates were blotted for FLAG;  B-actin is the 

loading control.  
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remove unbound lentiviral particles and 24 hours post-transduction cells were 

put under puromicin (1ug/ml) or blasticidin (10ug/ml) selection.  

HIV-1 VIRUS PRODUCTION 

The replication competent HIV-1 virus was produced by calcium-phosphate 

transfection of 293T cells with the full-length HIV-1 clone pNL4.3. 

48 hours post-transfection virus-containing supernatant was collected, clarified 

by centrifugation, filtered through 0,45nm filter and stock at -80°C. Viral titre was 

quantified by p24 ELISA (Innogenetics).  

A replication competent HIV-1 virus containing the GFP reporter gene in frame 

with Nef and under the control of CMV promoter was kindly provided by Dr. 

Monsef Benkirane. 

ANTIBODIES  

For immunoblotting the following antibodies have been used: MATR3 (A300-

590A, Bethyl laboratories, dilution 1:5000), HIV-1 p55 and p24 (HIV-1 p24 sc-

65462, Santa Cruz, dilution 1:250), FLAG (Sigma, dilution 1:5000), B-Actin-HRP 

(Sigma, 1:10000), Vimentin (Cell Signalling, dilution 1:1000), PARP (Enzo Life), 

Hsp90 (Enzo Life), PSF (Sigma P2860, 1:1000), Cyclin T1 (C-20-SC-8128, 1:200), 

PTB (rabbit polyclonal produced in house, 1:1000). 

For cytofluorimetrics analysis the following antibodies have been used: APC-flag 

(Biolegend, 637307, dilution 1:50), RD1-p24 (Beckman KC57-RD1, dilution 1:40), 

APC-Cy7-CD3 (Biolegend, dilution 1:25), BV510-CD4 (Biolegend, dilution 1:25), 

BV421-HLA-DR (Biolegend, dilution 1:25), PE-Cy7-CD69 (Biolegend, dilution 1:25). 

DRUGS AND REAGENTS 

The following drugs have been used: SAHA (SML0061 Sigma), disulfiram 

(PHR1690 Sigma),  

romidepsin (S3020, Selleckchem), JQ1 (2091-1 BioVision).  

IngenolB was kindly donated by Luiz F. Pianowski, Kyolab/Amazônia Fitomedica- 

mentos, Valinhos, Sao Paulo, Brazil. 

Other reagents include: Histopaque – 1077 (10771, Sigma), Polybrene (Sigma-

H9268), Phytohemagglutinin (PHA L1668-5MG, Sigma), Interleukin-2 (H7041, 



 MATERIALS AND METHODS 

 

91 

 

Sigma), TNF-α (T0157, Sigma),  Puromycin (ant-pr-1 InvivoGen), Blasticidin (ant-

bl-1 InvivoGen). 

LUCIFERASE ASSAY 

Jurkat cells were infected with 1μg/ml of HIV-1 pNL4.3R-E-luc pseudotyped with 

VSV-G envelope for 4 hours. The infected cells were washed twice and further 

incubated at 37°C for 48 hours.  

48 hour post infection the cells were harvested and lysed in passive lysis buffer 

(Promega) and the levels of luciferase activity were measured by the Single-

Luciferase-Reporter assay (Promega) as directed by manufacturers. For normali-

zation, total protein concentration in each extract was determined with a Bio-

Rad protein assay kit. 

NUCLEAR AND CYTOPLASMIC FRACTIONS 

To separate nuclear and cytoplasmic fractions cells were washed in cold PBS and 

lysate in Buffer A (10mM Tris HCl, 10mM NaCl, 3mM MgCl, 10% glycerol, 0,1% 

NP40, 0,5mM DTT, protease inhibitor). 

Lysed cells were then spin 2300 rpm and the cytoplasmic fraction was collected 

as supernatant; the pellet was washed twice in Buffer A  and finally resuspended 

in Buffer B (Buffer A supplemented with 0,5% deoxycholate) to collect the 

nuclear fraction . 

Purity of nuclear and cytoplasmic fractions was assessed by immunoblotting for 

PARP and Hsp90. 

RNA EXTRACTION AND qRT-PCR 

RNA extraction was done using UPzol (biotech rabbit) according to 

manufacturer’s protocol; residual DNA was removed by DNAse I digestion 

(Invitrogen) and 500ng of RNA were used to synthesize cDNA using the MMLV 

reverse transcriptase (Invitrogen). 

An equal amount of cDNA from all samples was used to run quantitative real 

time PCR (qRT-PCR) with SYBR Green dye (KAPA SYBER FAST qPCR Bio-Rad iCycle, 

KAPA Biosystem); GAPDH served as an housekeeping gene to quantify viral and 

cellular mRNA abundance. 

The primers sequences used in the qRT-PCR reaction are the following: 



 MATERIALS AND METHODS 

 

92 

 

MATR3 FW: 5’-TCT TGG GGG ACC AGC AGT TGG A-3’ 

MATR3 REV: 5’-GCT AGT TTC CAC TCT GCC TTT CTG C-3’ 

GAPDH FW: 5’-CAT GAG AAG TAT GAC AAC AGC-3’ 

GAPDH REV: 5’-AGT CCT TCC ACG ATA CCA AAG-3’ 

US_HIV FW: 5’-CTG AAG CGC GCA CGG CAA-3’ 

US_HIV REV: 5’-GAC GCT CTC GCA CCC ATC TC-3’ 

MS_HIV FW: 5’-TCT ATC AAA GCA ACC CAC CT-3’ 

MS_HIV REV: 5’-CGT CCC AGA TAA GTG CTA AG-3’ 

The primer set for US_HIV amplifies the 5’UTR-Gag region while the one for 

MS_HIV amplifies the Tat-Rev exon. 

HIV-1 REPLICATION KINETICS 

Jurkat cells or PHA-activated primary PBLs were infected with 40-70 ng of 

replication competent HIV-1 for 3 hours (or overnight) at 37°C; cells were then 

washed twice to remove unbound viral particle and cultured in RPMI 10% FBS 

(supplemented with 20U/ml of IL2 for PBLs). 

Every two days supernatant from infected cultures was collected and viral 

particle production was quantified by p24 ELISA (Retrotek or Innogenetics). 

LRAs TREATMENT ON PBL FROM HEALTHY DONOR 

Resting primary PBLs were isolated from healthy donors’ peripheral blood and 

cultured in RPMI containing 10% heat inactivated FBS and IL2 (20U/ml). 

6x10^6 cells were left untreated or stimulated for 3 and 6 days with the 

following drugs at the indicated concentration: 

- Disulfiramin 0,5uM 

- SAHA 0,5uM 

- Romidepsin 0,0175uM 

- JQ1 (0,5uM) in combination to Ingenol B (10nM) 
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PHA (5ug/ml) was used as a positive control for cellular activation. 

3 and 6 days post treatment the cells were lysed in Laemmli buffer to collect the 

protein extract. 

LRAs TREATMENT ON J-LAT 

2x10^6 J-Lat 8.4 or J-Lat 6.3 cells were left untreated or stimulated with the 

following drugs at the reported concentrations: 

-SAHA (0,5uM- 1uM- 1,5uM) 

-disulfiramin  (5uM) 

-Ingenol B (0,4uM) 

-JQ1 (0,5uM) 

-Romidepsin (0,006uM - 0,0175uM - 0,026uM) 

-TNFa (30ng/ml) 

48 hours post treatment culture supernatant was collected and cells were lysed 

in UPzol, in Laemmli buffer or analysed by FACS. 

The induction of transcription at the LTR viral promoter was evaluated by both 

GFP expression at the cytofluorimeter and RT-qPCR for the US-HIV mRNA nor-

malized to GAPDH. 

Viral particles in the supernatant were quantified by p24 ELISA. 

FACS ANALYSIS 

J-Lat cells were fixed in 4% PFA for 10 minutes, washed twice with PBS and 

analysed by BD FacsCalibur to check GFP expression. 

FACS analysis on primary resting PBLs were done by MACSQuant Analyzer. 

Samples preparation was done as following: cells were fixed in 4% PFA for 10 

minutes, washed twice in PBS and permeabilized in Permeabilization Buffer ( 

0,5% triton-X, 20mM Hepes pH 7.4, 50mM NaCl, 3mM MgCl, 300mM sucrose) to 

allow intracellular staining with anti-FLAG and anti-p24 antibodies.  
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After intracellular staining cells were washed in PBS 0,1% tween and stained for 

surface markers (CD3, CD4, CD69, HLA-DR).  

HIV+ PATIENTS 

Seven HIV-1-infected individuals were selected at the St-Pierre Hospital (Brus-

sels, Belgium) on the basis of the following criteria: all volunteers were treated 

with cART for at least 1 year, had an undetectable plasma HIV-1 RNA level (20 

copies/ml) for at least 1 year and had a level of CD4+ T lymphocytes  higher than 

300 cells/mm3 of blood. Characteristics (age, CD4+ T cell count, CD4+ nadir, anti-

viral regimens) of each patient are presented in Table 1. 

Ethical approval was granted by the Human Subject Ethics Committees of the 

Saint-Pierre Hospital (Brussels, Belgium). All individuals enrolled in the study pro-

vided written informed consent for donating blood. 
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QUANTIFICATION OF CELL-FREE HIV RNA IN CULTURE MEDIA OF PATIENTS 

CELLS 

CD8+ depleted PBMCs were isolated from blood of HIV+ patients. 

6x10^6 cells were cultured in LGM-3 Growth Medium (Lonza) and treated with 

the following drugs at the indicated concentrations: 

- Disulfiramin 0,5uM 

- SAHA 0,5uM 

- Romidepsin 0,0175uM 

- JQ1 (0,5uM) in combination to Ingenol B (10nM) 

Anit-CD3-anti-CD28 antibodies were used as a positive control for cellular 

activation. 

Three and six days after treatment, culture supernatants from patient cell cul-

tures were collected for RNA extraction using QIAamp Viral RNA Mini kit 

(Qiagen). HIV-1 RNA levels were quantified using the Generic HIV Charge Viral kit 

(Biocentric) according to the manufacturer’s instructions (detection limits of 110 

HIV-1 RNA copies/ml or 300 HIV-1 RNA copies/ml depending on tested super-

natant volumes). 

QUANTIFICATION OF CELL-ASSOCIATED HIV RNA FROM PATIENTS SAMPLES 

Total RNA was isolated from patient’s CD8+- depleted PBMCs using the Boom 

isolation method (22). 

The RNA was treated with DNase (DNA-free kit; Ambion) and reverse transcribed 

using random primers and SuperScript III reverse transcriptase (all from Invitro-

gen). Cell-associated HIV RNA was quantified using a qPCR assay specific for the 

HIV gag region (23). The amounts of HIV-1 RNA were 

normalized to total cellular inputs, which were quantified in separate qPCR as-

says, using the detection kit for 18S ribosomal RNA (Applied Biosystems, Foster 

City, CA), and were expressed as the number of copies per microgram of total 

RNA. 
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STATISTICS 

Typically three independent experiments in triplicate repeats were conducted for 

each condition examined. Average values are shown with standard deviation and 

p-values, measured with a Student’s t-test. Only significant values are indicated 

by the asterisks above the graphs (p<0.01 = ** highly significant; p<0.05 = * sig-

nificant). Data from patients were analysed using paired, non-parametric Wil-

coxon tests (p<0.05 = significant). All tests were two-sided. 
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