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Abstract 
My PhD project is focused on the impact of neuroinflammation processes in the mouse spinal 

cord, with particular attention to cytokines and their functional role. In particular, I have used 

as model the organotypic spinal cultures, which allowed me to investigate: i. spinal network 

activity changes induced by pro-inflammatory cytokines; ii. resident microglia and astrocytes 

response to inflammatory stress; iii. mechanisms by which pro-inflammatory cytokines 

modulate the inhibitory transmission. The principal aim of my work was to understand the 

crosstalk between neuroinflammation and the spinal pre-motor network. For this purpose, I 

combined electrophysiological and immunofluorescence methods to assess the interneurons 

synaptic activity especially localized in the ventral organotypic cultures from embryonic 

mouse spinal cord.   

I investigated a specific cytokines cocktail (TNF-α, IL-1β, and GM-CSF; CKs) and their 

effects on spontaneous and inhibitory postsynaptic currents (sPSCs and IPSCs). In cultured 

spinal networks, I have observed a progressive increase in the frequency of PSCs and IPSCs 

accompanied by a fastening of GABAergic currents, due to a reduction in the decay time 

constant (τ). This difference in the GABAergic PSCs kinetic properties is maintained in 

miniature PSCs (mPSCs) recorded after CKs treatments, suggesting mechanisms strictly 

associated with post-synaptic modification. The specific CKs modulation of GABAergic 

currents is strengthened by the absence of such a regulation by another danger signal as LPS. 

In this work, I evaluated and compared resident neuroglial cells response to CKs and LPS. 

Microglia and astrocytes show a different activation in the spinal slices. In particular, CKs 

induce an increase of microglia proliferation and astrogliosis followed by decreasing of 

microglia ramification. On the other hand, LPS increases only microglia ramification 

maintaining unaffected the other properties. Regardless the cell morphology, the activation of 

an inflammatory status was confirmed by the presence of cytokines and chemokines release in 

the supernatants in both conditions. 

I investigated the mechanisms by which cytokines speeded up the GABAAR-mediated 

currents, and pharmacologically based electrophysiological experiments strongly indicated the 

presence of a modulation of GABAAR subunit, in particular of α-subunit.  
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In conclusion, my work highlighted the effect of cytokines in compromising the pre-motor 

circuits that may contribute to induce spinal network increased excitability ultimately leading 

to neurodegeneration. 
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Introduction 
 

1. Neuroinflammation and neurodegeneration 

The Central Nervous System (CNS) is characterized by a high structural and functional 

complexity enabling the control of different tasks. CNS high specialization and complexity 

hardly recover upon damage in the adult, thus leading to permanent functional deficits. In many 

cases, CNS dysfunctions are associated with neuroinflammation. 

Neuroinflammation is an important protective mechanism adopted by the organism to repair, 

regenerate and remove damaged cells or pathogens (Kulkarni et al., 2016). Several immune 

and inflammatory cells are involved in reacting to the damaged CNS (Fig. 1). In the CNS, 

neuroinflammation is primarily mediated by microglia, astrocytes, and neurons to be followed 

by T-cells, neutrophils, mast cells, and involves inflammatory mediators such as cytokines and 

chemokines (Shabab et al., 2017). The development of chronic inflammation results in 

progressive neuronal death (Chen et al., 2016). In fact, chronic neuroinflammation plays an 

important role in the onset and progression of several neurodegenerative diseases, as in the 

case of Alzheimer’s disease (AD) and Parkinson’s disease (PD), or Amyotrophic Lateral 

Sclerosis (ALS) and Multiple Sclerosis (MS).  

Neurodegeneration is a pathological condition in which neuronal structure and functions are 

altered, leading to neuronal death and loss of cognitive and motor functions. Despite the 

progression in understanding the mechanisms involved in the neurodegenerative diseases, the 

causes of these disorders are essentially unknown.  

Different factors are implicated in the onset and development of many disorders. Some 

neurodegenerative diseases are associated with a genetic basis (<5%) as in the specific case of 

SOD1 gene mutation related with ALS, α-synuclein with PD, and amyloid precursor protein 

(APP) in AD. These mutations once inherited could contribute partly to the disease symptoms. 

On the other hand, environmental factors are particularly involved in the progression of the 

neurological disorder, as for instance in the MS in which reactive immune response towards 

myelin fibres promote degradation and axonal loss (Ransohoff, 2016; Schwartz and 

Deczkowska, 2016).  
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Figure 1. Mechanisms triggered by neurodegeneration and neuroinflammation disorders.  

a) Resident microglia cell and astrocytes are activated by proteins aggregate which induce the cytokines 

production contributing to the neurodegenerative mechanisms in the brain. Most of the inflammatory cells are 

recruited from the brain without any involvement of leucocytes from the peripheral blood circulation. b) 

Neuroinflammation is triggered by an internal defect such as demyelination which activates mechanisms mediated 

by astrocytes and microglia resulting in the invasion of lymphocytes and monocytes coming from the peripheral 

circulation (Becher et al., 2017).   

1.1 The immune response in the CNS 

In the CNS the first line of defence is accomplished by the Blood-Brain Barrier (BBB), a 

selectively permeable membrane that controls the CNS microenvironment and homeostasis 
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(Fig. 2). The BBB separates the brain from the circulating blood by specialized endothelial 

cells which are attached to each other via peculiar junctions. This tight barrier prevents the 

entrance of infectious agents and toxic factors to protect alteration of the CNS.  

 

 

Figure 2. Structure of the blood barrier in the central nervous system. 

CNS is protected from the external environment by two barriers located around the brain and the choroid plexus. 

The blood-brain barrier (BBB) is composed of endothelial cells and astrocytes which maintain well separated the 

blood circulation and the brain parenchyma. Similar to the BBB, the blood-CSF barrier has a stroma layer between 

blood and CSF which role is to control the leucocytes trafficking and the production of neurotrophic factors 

(Deczkowska et al., 2016). 

In several pathological conditions such as infections, injuries, or traumas, even slight 

alterations of the BBB expose the SNC to molecules that trigger the activation of the innate 

immunity. These molecules include proteins from the bacterial membrane, intracellular 

proteins, and molecules such as ATP, urea and nucleic acid (Kumar et al., 2011) which are 

recognized by germline-encoded pattern recognition receptors (PRRs). Three groups of 

receptors belong to PRRs family: Toll-like receptors (TLRs), Nod-like receptor (NLRs), and 

RIG1-like receptors (RLRs). These receptors expressed by microglia, astrocytes, 

https://en.wikipedia.org/wiki/Blood
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oligodendrocyte, endothelial cells, and even neurons activate a specific pathway and release 

cytokines mainly involved in disease progression, particularly TNF-α, IL-1β, and INF-γ.  

1.2 Neuroglia 

The term of “neuro-glia” (nerve-cement) was coined for the first time way back in 1858 from 

Rudolph Virchow, a German pathologist. With this name, Virchow denominated all the 

material present in CNS between neurons. Substantially, he described the real “cement” which 

binds the nervous elements together that constitutes a tissue different from the other connective 

tissue (Virchow R, 1978).  

Today, the term neuroglia, better known as glial cells, indicates a number of cells, including 

microglia, astrocytes, oligodendrocytes, and Schwann cells. They are distinguished from each 

other by their different morphology, lineage, properties, and functions. Glial cells play an 

essential role in development, synaptic plasticity, and regeneration, ensuring the highest 

performance for the brain and spinal cord.  

Microglia 

Microglia represent the 5-20% of the total population of glial cells in the entire CNS. These 

cells are considered complementary to macrophages, given their ability to fulfil phagocytosis, 

release cytotoxic factors and begin an immune response (Hanisch and Kettenmann, 2007).  

There are two major functional roles of microglia: immune defence and CNS maintenance 

(Hanisch and Kettenmann, 2007; Colton CA, 2009; Hanisch, 2013). Microglia are sentinels 

that recognise pathogens invasion and damage, under the inflammatory condition, they react 

but also tone down the damage to the CNS, delete debris, dead cells, and support remodelling 

and tissue repair (Lloyd et al., 2017). Another feature of microglia are their ability in 

controlling neuronal proliferation and differentiation (Graeber et al., 2010; Hughes et al., 

2012), besides contributing to synaptic structures formation and elimination (Tremblay et al., 

2010). 

The presence of microglial cells have been described for the first time during early 

development, suggesting that microglia arise from embryonic progenitors. These progenitors 

were first proposed to be meningeal macrophages infiltrating into the brain during early 

embryonic development (Ginhoux et al., 2013).  

http://www.wordreference.com/synonyms/substantially
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hanisch%20UK%5BAuthor%5D&cauthor=true&cauthor_uid=23717262
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At murine embryonic stage E8.5, yolk sac (YS) produces early primordial macrophages and 

erythrocytes as part of the process of primitive hematopoiesis. In addition, multilineage 

erythromyeloid progenitors (EMP) and lymphomyeloid progenitors also emerge in the YS as 

a second wave (Fig. 3). Later, at E9.5 YS macrophages migrate to colonize the brain rudiment, 

become microglial precursors, and starting from E13 they give rise to microglial cells during 

the brain development. On the other hand, the generation of definitive hematopoietic stem cells 

(HSCs) occurs in the aorta–gonad–mesonephros (AGM) region of the embryo around E10.5. 

These AGM-derived HSCs then migrate to the foetal liver (FL) and bone marrow (BM) and 

differentiate into all lineages (Cumano and Godin, 2007). Afterwards, HSC-derived myeloid 

cells, such as monocytes, are produced abundantly in the FL only from E12.5/E13.5 (Fig. 3). 

As a result, the brain contains YS-derived macrophages, but not HSC or maternal 

macrophages, suggesting that microglia have different origins from the other haematopoiesis 

lineages.  

 

Figure 3.  Microglial and hematopoiesis cells differentiation during development.  

In the early stage of mice development macrophages are originated from the yolk sac (YC). Later, they migrate 

through the blood to reach and colonize the rudimental brain. Here, YC-macrophage differentiates in microglia 

together with the brain maturation (Ginhoux et al., 2013). In parallel, from the foetal liver (FL) and later from the 

bone marrow (BM), monocytes migrate in the blood through which they can reach any tissue and organs. In 
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addition, inflammatory brain stimuli can recruit blood circulating monocytes, which after reaching the brain are 

able to offer support in re-establishing the physiological conditions (Ginhoux et al., 2013).   

A similar pattern of events may occur in humans. In human foetuses, microglia-like cells with 

a range of different morphologies can be detected as early as 13 weeks of estimated gestational 

age (Hutchins et al., 1990). However, it appears that maturation of the microglial compartment 

is ongoing throughout the majority of gestation. Colonization of the spinal cord begins at 

around 9 weeks, the major influx and distribution of microglia commence at about 16 weeks, 

and ramified microglia take up to 22 weeks to become evenly distributed within the 

intermediate zone (Rezaie and Male 1999; Rezaie et al., 2005). In fact, it is only close to term, 

at 35 weeks, that well-differentiated microglial populations can be detected within the 

developing human brain (Esiri et al., 1991; Rezaie and Male 2002; Rezaie et al., 2005; Verney 

et al., 2010). 

In physiological conditions, microglia are distributed ubiquitously throughout the CNS, with 

the highest densities in the hippocampal formation, the olfactory telencephalon, and in some 

areas of the basal ganglia, such as the substantia nigra. One of the main peculiarities of 

microglia are the ability in changing their morphology and appearance upon certain 

physiological or pathological states. This morphology, mainly characterized by the extent of 

branching patterns, differs among brain regions, or when comparing cells located in the grey 

or white matter (Lawson et al., 1990). The microglial immunophenotype commonly associated 

with resting or activated microglia is influenced by the chemical composition of the 

microenvironment, reflecting the physiological or pathological conditions of the surrounding 

tissue. In the healthy adult brain, microglia are usually highly branched (ramified) with a small 

amount of perinuclear cytoplasm and a small, dense, heterochromatic nucleus. 

This structure is associated with resting microglia (quiescent) (Fig. 4). On the opposite, in 

pathological conditions in particular associated with inflammation, microglia reduce the 

branches toward the amoeboid type (reactivate). In addition, microglia produce neurotoxic 

molecules, such as nitric oxide, glutamate, reactive oxygen and nitrogen species, and pro-

inflammatory cytokines, contributing to the so-called secondary damage following injured or 

diseased CNS (Leong and Ling, 1992).  
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Figure 4. Different microglia morphology 

Resting microglia are characterized by long a numerous branches which confer them the typical ramified shape. 

Inflammatory and injured stimuli induce microglia activation which is represented by an amoeboid morphology, 

promoting the phagocytosis of debris and dead cells. Moreover, microglia can active mechanisms in order to 

deteriorate their body and became dystrophic microglia. (Ransohoff, 2016). 

Astrocytes  

In the nineteenth century, two distinct classes of astrocytes were identified for the first time: 

protoplasmic astrocytes and fibrous astrocytes (Andriezen, 1893). The protoplasmic astrocytes 

are distributed homogenously within cortical grey matter, appearing as complex structures with 

numerous fine processes. Whereas fibrous astrocytes are less complex and organized along 

white matter area with fewer branching processes. Later studies reported the presence of 

specialized astrocytes within different brain area: the Bergmann glia of the cerebellum, or the 

Muller cells of the retina (Kettenmann and Verkhratsky, 2008).  

Glial fibrillary acidic protein (GFAP), an intermediate filament protein expressed by 

astrocytes, has been used to identify astrocytes within the SNC (Eng, 1985) although it is 

well known that not all types of astrocytes express this marker. 

Astrocytes have a plethora of functions, from neuronal support during development, 

maturation and injuries in the CNS, to promoting forms of synaptic signalling and plasticity. 

Astrocytes can be activated thus becoming larger and up-regulating GFAP and other 
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intermediated filament proteins (Pekny and Nilsson, 2005). This mechanism promotes 

astrocytes mobility, in order to reach and contact active synapses.  

The different classes of astrocytes originate from glial progenitor cells. Gliogenesis occurs in 

the perinatal phase in the germinal niches of the CNS, the ventricular (VZ) and subventricular 

zones (SVZ) (Levison et al., 1999). Radial cells in the VZ and glial progenitor cells in the SVZ 

develop into distinct pools of astrocytes. Radial cells are multipotent and persist also 

postnatally, giving rise to a subset of cortical astrocytes (Malatesta et al., 2003; Goldman, 

1995). Alternatively, astrocytes are generated from distal-less homeobox 2 (Dlx2) glial 

progenitor cells, and postnatally from NG2+ glial progenitor cells (Marshall and Goldman, 

2002). This process governs the formation of protoplasmic, cortical and white matter astrocytes 

(Beckervordersandforth et al., 2010). 

Likewise, in the spinal cord astrocytes follow the same path. Especially, Olig2+ progenitors 

arise from a particular ventricular zone of the spinal cord named the motor neuron progenitor 

domain (pMN), which give rise to ventral horn astrocytes (Masahira et al., 2006). Recent 

studies have demonstrated three distinct domains of the ventral ventricular zone, which 

generate distinct white matter astrocyte subpopulations in the spinal cord (Hochstim et al., 

2008).  

Oligodendrocytes  

Oligodendrocytes are defined as the cells that produce the myelin sheaths around the axons of 

several neurons. Rio Hortega classified oligodendrocytes into types I to IV, according to the 

characteristics of the number and orientation of their cellular processes, the shape and size of 

their soma, the size of the axons they were associated with, and their distributions within the 

CNS (Simons and Nave, 2015).  

Type I and II oligodendrocytes are quite similar. They have more than three fine primary 

processes that myelinate 10-30 axons < 2 μm in diameter. Type III oligodendrocytes have large 

cell bodies with primary processes that branch and myelinate less than five axons, forming a 

sheath with a diameters ranging from 4 to 15 μm. They are mainly localized in the cerebral and 

cerebellar peduncles, the medulla oblongata, and the spinal cord. Quite similar, type IV units 

are formed by a single long myelin sheath over large-diameter fibres which are found near the 

entrance of nerve roots into the CNS (Simons and Nave, 2015). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Simons%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26101081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nave%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=26101081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Simons%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26101081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nave%20KA%5BAuthor%5D&cauthor=true&cauthor_uid=26101081
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Differences among large- and small-diameter fibres are mainly due to their protein 

composition (Hildebrand et al., 1993). In fact, myelin basic protein (MBP) and proteolipid 

protein (PLP) are expressed more intensely in small- and large-diameter fibres, respectively 

(Hartman et al., 1982). Moreover, differences are also identified in the adult rat anterior 

medullary velum (Butt and Berry, 2000), concerning of the expression of carbonic anhydrase 

(CA) II and the S-isoform of myelin-associated glycoprotein (MAG). 

During development and maturation, the four classes of oligodendrocytes are derived from 

precursors named Oligodendrocyte Progenitor Cells (OPCs) (Butt et al., 1997). Type III/IV 

oligodendrocytes that differentiate prior to birth, myelinate the large-diameter fibres (≥4 μm) 

early in development. Whereas type I/II oligodendrocytes that differentiate in the first postnatal 

weeks, myelinate the small-diameter fibres (≤2 μm) later in development. Oligodendrocytes 

initially contact a large number of immature thin axons, and most of these processes are lost 

during myelination. In addition, another class of progenitors is associated with 

oligodendrocytes generated during development and the following demyelination in the adult 

brain (Dawson et al., 2000). These cells called NG2-glia for the expression of the NG2 

chondroitin sulfate proteoglycan a potent inhibitor of axon regeneration carry out a principal 

role during injuries protecting the surrounding neurons from further damage (Butt and Berry, 

2000). 

Schwann cells 

The major population of peripheral glial cells is represented by the Schwann cells which are 

similar to oligodendrocytes in terms of structure, molecular composition and functions. Two 

main populations are derived from neural crest, the myelinating and not myelinating Schwann 

cells, distinguished by their ability to contact group of small or one large axon (Dong et al., 

1999). Schwann cells have a peculiar role in forming myelin, a specialized structure that allows 

the conduction of action potentials. In particular, they are responsible for maintaining the 

internodal insulating myelin sheath as well as to the structural and molecular organization of 

the node of Ranvier (Bennett et al., 1997). Other kinds of Schwann cells with different role 

have been described; the perisynaptic Schwann cell of the neuromuscular junction and terminal 

Schwann cell-like cells of the sensory system (Dong et al., 1999). 

http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-161
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-159
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-143
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-147
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-154
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-143
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-161
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-161
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-3#acprof-9780195152227-bibItem-161


16 
 

The Schwann cells lineage start from Schwann cell precursors originate from neural crest cells. 

These precursors give rise to immature Schwann cells in a process that starts after 3 weeks of 

mouse embryonic development around birth. Hence, three major developmental steps lead to 

the maturation of Schwann cells after leaving the neuronal crest. Since crest cells can generate 

several cell types, the first steps involve a fate choice in which kind of cells it should become. 

The second transition, in contrast, represents lineage progression that Schwann cell precursors 

are fated only to become Schwann cells or die by programmed cell death. The last stage 

provides the differentiation in myelinated or not myelinated cells (Lobsiger et al., 2002).   

1.3 Microglia and astrocytes in neuroinflammation and diseases  

Microglia mediate immune and inflammatory responses in the CNS. When the brain is injured 

or diseased, the ramified microglia tune their morphology, via retracting their processes and 

increasing their volume (Fig. 5). In response to microenvironment stimuli, microglia can take 

two different fates: pro-inflammatory or anti-inflammatory phenotypes. These phenotypes are 

highlighted by upregulation of specific receptors and soluble molecules; CD16 Fc receptors, 

CD32, CD64, CD86, IL-1β, IL-6, IL-12, IL-23, tumor necrosis factor (TNF)-α, inducible nitric 

oxide synthase (iNOS), and chemokine for the pro-inflammatory state; arginase (Arg)-1, 

mannose receptor (CD206), insulin-like growth factor (IGF)-1, triggering receptor expressed 

on myeloid cells 2 (TREM2), chitinase 3-like 3 (Ym-1) for the anti-inflammatory phenotype 

(Jha et al., 2016).  
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Figure 5.  The synergic work between microglia and astrocytes in diseases 

Changes in microenvironment cause the activation of microglia and astrocytes, altering neuronal functions by 

releasing cytokines and chemokines. In physiological conditions, microglia is in a quiescent status useful for 

homeostasis processes. Once activated by stimuli coming from pathogenic agents, microglia in the first instance 

induce the weakness of neuronal synapses, contributing later to neuronal dysfunction (Sankowski et al., 2015). 

In damaged or reactive tissue, microglia proliferate in response to specific factors such as 

macrophage-colony stimulating factors (M-CSF), granulocyte macrophage-colony stimulating 

factors (GM-CSF), multi-CSF [interleukin-3 (IL-3)], microglial mitogen-1 (MM1), and 

microglial mitogen-2 (MM2) (Giulian and Ingeman,1988; Giulian et al., 1991). 

The expression of the chemokine receptors such as CCR1, CCR2, CCR3, CCR5, CXCR4, and 

CX3CR1, allow the microglia to move during the active state, in order to reach the 

inflammatory area (Gebicke-Haerter et al., 2001). 

When microglia are activated in response to specific stimuli which involve debris and dying 

cells, they transform themselves into phagocytes, in order to engulf dead neurons and damaged 

http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-35#acprof-9780195152227-bibItem-3224
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-35#acprof-9780195152227-bibItem-3225
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tissue. The presence of phagocytes has been observed in AD, PD, MS, ischemia, and trauma. 

In addition, in this activated state microglia produce and secrete a variety of deleterious factors 

including reactive oxygen species (ROS). Thus, one of the more toxic is represented by the 

nitric oxide (NO) that in turn reacts with superoxide anion to produce peroxynitrite. These 

radicals inhibit respiratory enzymes, oxidize the SH group of proteins, and enhance DNA 

injury, finally resulting in neuronal cell death. In the AD β-amyloid, in the presence of 

interferon-γ (INFγ), synergistically stimulates the production of NO and TNF-α in microglia. 

Furthermore, TNF-α causes cell death and, for instance, oligodendrocytes and myelin give rise 

to the inflammation reaction typically associated with MS (Liu et al., 1998).  

On the opposite, microglia may play a protective role in the pathological condition, including 

spinal cord injuries, compression injuries, and ischemia (Dougherty et al., 2000; Ikeda et al., 

2001; Lee et al., 2002). Even in this case activated microglia release a specific class of 

neuroprotective factors and cytokines.   

Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-

3), and NT-4/5 belong to the neurotrophins family which plays an essential protective role on 

various types of neurons in the CNS and the peripheral nervous system (PNS). Furthermore, 

other factors such as fibroblast growth factor 2 (FGF2: bFGF), insulin-like growth factor-I 

(IGF-I), IGF-II, and hepatocyte growth factor (HGF) promote neuronal survival in various 

types of neurons in pathological conditions.  

Astrocytes are involved in many important processes such as controlling the environment by 

regulating pH, ion homeostasis, blood flow, and modulating oxidative stress. Together with 

microglia, astrocytes are involved in the neuroinflammatory response. After specific signals 

such as injury or damage, astrocytes rapidly induce important changes in their morphology and 

function, reminiscent of what observed for microglial cells. Reactive gliosis is a self-

perpetuating process by which astrocytes may also exacerbate the injury, instead of protecting 

the damaged tissue. Thus, when astrocytes lose their helpful properties, they contribute to 

neurodegenerative mechanisms (Steardo et al., 2015). 

The mechanisms leading to the activation of these cells are actually unclear, and many factors 

that are involved in neurodegenerative diseases can trigger the response of these cells. As 

microglial cells, astrocytes also can phagocytose and degrade amyloid-beta in AD.  

http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-35#acprof-9780195152227-bibItem-3248
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-35#acprof-9780195152227-bibItem-3213
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-35#acprof-9780195152227-bibItem-3234
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-35#acprof-9780195152227-bibItem-3247
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1.4 Cytokines network in neuroinflammation 

Cytokines are small proteins that are involved in several cells signalling such as cell growth 

and differentiation, tissue homeostasis and repair, and immune and inflammatory responses in 

the CNS. In fact, they regulate molecules that modify the neuronal microenvironment. In 

addition, cytokines are pleiotropic molecules able to induce the production of other cytokines, 

initiating a complex mechanism of action (Boulanger, 2009; Benveniste, 1998).  

Most of our comprehension of the effects of cytokine release in the nervous system has been 

obtained by studies in primary cultures and in animal models of severe neurological diseases. 

The latter include experimental autoimmune encephalomyelitis (EAE) models for the 

inflammatory, de-myelinating diseases multiple sclerosis; models of chronic 

neurodegenerative disorders, such as AD and prion disease; and SOD1 mutant mice, a model 

for ALS (Glass et al., 2010; Chen et al., 2016). Many studies have been conducted using human 

brain material or cerebrospinal fluid (CSF) from neurological patients, providing important 

knowledge on the role of cytokines in MS (Czubowicz et al., 2017; Burm et al., 2016). On the 

other hand, in vitro studies often generated conflicting results on cytokine sources and targets 

in the CNS, owing to the fact that astrocytes and microglia cultures are able to influence each 

other and neuronal cultures without the contribution of the peripheral system.  

Interferons 

The interferons (IFNs) are a family of proteins produced and released in response to pathogens 

infections. They are classified into two different types: the type I composed by interferon-α 

and -β (IFN-α/β), and type II associated with interferon-γ (IFN-γ). The type I is the product of 

a combination of genes that are produced by many cell types in response to viruses or double-

stranded RNA. Alternatively, type II is the product of a single gene mainly produced by CD8+ 

cytotoxic T cells, a subset of CD4+ T helper cells (Th1), and natural killer (NK) cells. 

IFN-α/β are released by glial cells following the contact with viruses and induce an antiviral 

resistance from CNS cells. In addition, they have also been detected in reactive microglia and 

astrocytes during neurodegenerative processes (Akiyama et al., 1994; Rho et al., 1995). 

Furthermore, both subtypes are used in the therapy of many neuroinflammatory dysfunctions; 

lethal neurotropic viral infection and MS, respectively (Wang et al., 2002a).  

http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-22#acprof-9780195152227-bibItem-1893
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195152227.001.0001/acprof-9780195152227-chapter-22#acprof-9780195152227-bibItem-1960
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Contrarily from the previous ones, IFN-γ plays a protective role against neurotropic pathogens.  

In particular, it has been found in high levels in inflammatory pathologies in which are involved 

demyelination and neurodegeneration (Owens et al., 2001; Wang et al., 2002a). In addition, 

the presence of IFN-γ is supported by tissue infiltration and activation of NK, CD8+ cytotoxic, 

and Th1-type T cells (Owens et al., 2001).  

When INF-γ binds to specific microglia receptors, it activates a signal transduction cascade 

which induces the transcription of several immune genes via the transcription factor STAT-1. 

Moreover, IFN-γ potentiates the production of cytokines, chemokines, proteases, NO, and 

ROS, during activation of microglia-mediated by lipopolysaccharide (LPS) and CD40 ligation. 

In addition, IFN-γ acts also on astrocytes and Schwann cells, promoting expression of major 

histocompatibility complex (MHC) and adhesion molecules. The opposite effects exerted by 

INF-γ is chiefly attributable to its activity expressed at local and system level. Locally, INF-γ 

plays a pro-inflammatory role, while at the systemic level it exerts immunosuppressive and 

protective effects, observed especially in EAE model. In particular, a downstream 

immunosuppressive suggested effector molecule is NO, usually induced by INF-γ (Duong et 

al., 1994; Ferber et al., 1996; Willenborg et al., 1996). 

Colony-Stimulating Factors 

Colony-stimulating factors (CSFs) are hematopoietic cytokines that regulate the growth and 

differentiation of bone marrow progenitor cells. IL-3, macrophage-CSF (M-CSF), 

granulocyte-macrophage CSF (GM-CSF), and granulocyte-CSF (G-CSF) are included in this 

class of cytokines. M-CSF is released during infectious, autoimmune, and neurodegenerative 

diseases and together with GM-CSF stimulate microglia proliferation, differentiation, and 

activation in health and disease conditions (Raivich et al., 1999). Besides, GM-CSF is 

increased in microglia following nerve injury, promoting phagocytic capability and antigen-

presenting function (Re et al., 2002). Furthermore, IL-3 supports the proliferation of microglia 

and may serve as a neurotrophic/neuroprotective factor, highly accumulated during EAE and 

in peripheral neuropathies. 
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Transforming Growth Factor-β Family 

Additional cytokines that regulate the cell proliferation, differentiation, migration, and 

apoptosis are called transforming growth factor-β (TGF-β). These include TGF-βs, bone 

morphogenetic proteins, and activins. Three mammalian TGF-β isoforms, TGF-β1, -β2 and -

β3, are principally expressed in the SNC that usually interact with at least three receptors.  All 

three TGF-β isoforms have been detected in macrophages/microglia and reactive astrocytes in 

multiple sclerosis lesions. In particular, TGF-β1 mRNA is expressed predominantly in an area 

with leukocytes and microglia after brain injury and in EAE (Kiefer et al., 1998). In addition, 

also Schwann cells increase the TGF-β1 mRNA after peripheral nerve lesion, whereas in 

Alzheimer’s, Parkinson’s, and prion diseases, high level of TGF-β1 and/or TGF-β2 isoform 

are increased. On the contrary, studies conducted on animal model have revealed that TGF-β 

could also have anti-inflammatory and protective effects (Owens et al., 2001). 

Tumor Necrosis Factor Family 

The Tumor Necrosis Factor Family comprises 20 members mainly involved in the regulation 

of immune responses, inflammation, tissue homeostasis, and development. TNF is principally 

produced by macrophage and its action occurs after binding to functionally distinct receptors: 

TNFR1 (p55 TNF receptor) and TNFR2 (p75 TNF receptor). The most expressed isoform in 

the CNS is TNF-α which induces synthesis of adhesion molecules and chemokines implicated 

in leukocyte recruitment, cell proliferation, and apoptosis. 

TNF-α plays a role in microglia activation contributing to the pathogenesis of multiple 

sclerosis, EAE (Centonze et al., 2009; Owens et al., 2001), and to early neuronal injury 

following acute brain damage (Allan and Rothwell, 2001). One of the major potent stimuli for 

induction of TNF-α in microglia is mediated by lipopolysaccharide (LPS) through binding and 

activation of Toll-like receptors (TLR)-4 (Aloisi, 2001). In contrast, it has been shown that 

TNF-α exhibit distinct functions that can be beneficial as well (Kruglov et al., 2011). 

Interleukin Family 

Interleukin family are composed by a large mixture of cytokines with a different role as pro- 

and anti-inflammatory effects such as interleukin-1, -6, -17, and  Interleukin-4, -10, -13, 

respectively. 
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Interleukin-1 (IL-1) comprises two molecules, IL-1α and IL-1β which have similar affinity for 

the type I IL-1 receptor (IL-1R). Both IL-1 are produced as precursors called pro-IL-1 that are 

cleaved by the enzyme which in turn generate the final active molecule. IL-1 is a pro-

inflammatory cytokine that is produced predominantly by monocyte/macrophage after binding 

to the IL-1R, resulting in the amplification of the inflammatory responses. 

Interleukin-4 (IL-4) is produced by mature Th2 cells, mast cells and basophil. It is released in 

response to allergic diseases and it has a crucial role as in suppressing macrophage activation. 

Many levels of this cytokine have also been detected in autoimmune diseases such as MS and 

EAE model (Owens et al., 2001). Their protective role is due to its ability to inhibit NO and 

pro-inflammatory cytokines and to stimulate NGF releasing (Chao et al., 1993).   

Members of the interleukin-6 (IL-6) family comprises LIF, IL-6, IL-11, ciliary neurotrophic 

factor (CNTF), oncostatin M (OSM), cardiotrophin-1, and growth-promoting activity. The 

principal member is represented by IL-6 whose functions include pro-inflammatory actions 

and regulation of hematopoiesis, B cell growth, and antibody production. On the other hand, it 

can also act as an anti-inflammatory cytokine, blocking the strong production of pro-

inflammatory molecules. The IL-6 receptor is expressed in neurons and astrocytes and is 

increased during CNS inflammation. 

Interleukin-10 (IL-10) is a cytokine with major immunosuppressive and anti-inflammatory 

activities that downregulates cellular immunity by acting directly on T cells. In particular, IL-

10 production is induced in following infection and acute injury and during autoimmunity. In 

vitro, IL-10 inhibits the ability of microglia to function as antigen-presenting cells and to 

produce pro-inflammatory mediators (Aloisi, 2001).  

1.5 Inflammation in neurodegenerative and neuroimmunological disorders 

Neuroinflammation is a peculiar condition characterized by several sequential signals which 

in turn induce the release of cytokines and inflammatory mediators as a result of the activation 

of microglia and astrocytes. There is increasing evidence that neuroinflammation might 

contribute to the increase and the progression of several neurodegenerative disorders (Glass et 

al., 2010). One of the major challenges for scientists in this field is to understand deeply the 

mechanisms involved in the neuroinflammation in order to develop new strategies and 

therapies. One important example is represented by MS. 
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Multiple Sclerosis (MS) 

Different from AD, PD, and ALS, MS is an autoimmune and not hereditary disease 

characterized by inflammation, demyelination, and axon degeneration in the CNS (Fig. 6). The 

pathology occurs when immune system cells trigger an inflammatory response toward the 

myelin sheath. Afterwards, the infiltration of lymphocytes, the increasing in microglia and 

astrocytes, and demyelination into the perivascular region of the brain and spinal cord white 

matter promote axonal degeneration and neuronal loss (Lassmann et al., 2001; Frohman et al., 

2006). The symptoms of MS are associated with defects in sensation and in the motor, 

autonomic, visual, and cognitive systems. 

MS is typically diagnosed by supporting medical imaging and laboratory testing. In fact, 

magnetic resonance imaging (MRI) of the brain and spinal tissue may show plaques or lesions 

associated with demyelinated neurons.  

The development of MS is thought to be principally due to environmental factors, triggering 

an autoimmune response that targets the myelin sheath surrounding nerves (Fig. 6). 

Since MS is not considered a hereditary disease, its pathogenesis is closely correlated with 

viral and bacterial infections because regions of pathogen-associated proteins resemble myelin 

proteins, such as MBP. The onset of the disease occurs when naïve T cells recognize as antigen 

MBP presented by dendritic cells, macrophages, and microglia. A crucial role in the 

pathogenesis of MS is given by Th17 cells a subset of Th1 helper T cells (Cua et al., 2003). 

Th17 cells secrete the pro-inflammatory cytokine IL-17 that plays a key role in infection by 

pathogens (Korn et al., 2009).  More in detail, the demyelination phenomenon is due to the 

loss of oligodendrocytes, resulting in the breakdown of the axons and loss of electrical signals 

efficient propagation. In the majority of cases, remyelination could take place in early phases 

of the disease, but the oligodendrocytes are unable to restore completely the myelin sheath. 

Furthermore, repeated attacks toward myelin increase the damage around the axons, inducing 

the formation of new plaques (Chari, 2007; Compston and Coles, 2002).  

EAE animal model has been induced with peptide sequences from infectious agents that share 

structural homology with myelin components (Libbey and Fujinami, 2010).  

Integrin α4β1 (VLA4) is an adhesion molecule that allows autoreactive T cells to break the 

BBB and migrate into the brain parenchyma. In fact, an antibody directed against very late 

https://en.wikipedia.org/wiki/Medical_imaging
https://en.wikipedia.org/wiki/Oligodendrocyte
https://en.wikipedia.org/wiki/Axons
https://en.wikipedia.org/wiki/Action_potential
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229753/#b196
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VLA-4 are used as a therapeutic strategy to inhibit EAE and reduces the frequency of lesion 

formation in MS (Miller et al., 2003).  

 

 

Figure 6. Neuroinflammatory mechanisms in the neurodegenerative diseases. 

Neurodegenerative diseases such as AD, PD, ALS, and MS involve inflammatory mechanisms which contribute 

to degeneration and neuronal death. Different damage stimulate activation of both microglia and astrocytes which 

release several inflammatory factors, including NO, cytokines, chemokines, and ATP. These neuroinflammatory 

agents are crucial for activation of immune cells, recruitment of peripheral blood cells, and neuronal-glial 

communication (Glass et al., 2010). 
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1.6 Neuroinflammation and neuronal activity 

 

           

Figure 7. Cytokines action on ionotropic and metabotropic receptors. 

TNF-α and IL-1β are able to act different effects on AMPA and GABA receptors located in the separate area in 

the SNC. In particular, thanks to the modification in increasing or decreasing of the receptors expressed on 

neurons, cytokines are able to influence the frequency of the neuronal currents signal. Moreover, many evidences 

have demonstrated a further action operated exclusively by TNF-α on the NMDA receptors (Schäfers and Sorkin, 

2008) 

Astrocytes and microglia contribute to the development, plasticity and maintenance of 

neuronal circuits controlling neuronal signalling. In response to changes in the environment, 

activated microglia release NO, trophic factors, or cytokines, all known to control neuronal 

function and synaptic transmission. Studies conducted on neuronal cultures or acute brain 

slices stimulated by LPS have shown an increase of the excitatory post-synaptic currents 

(EPSCs) (Pascual et al., 2012). In fact, LPS-toll-like receptor 4 (TLR4) microglia activation 

release ATP that induce astrocytes-glutamate releases. As a result, glutamate enhances the 

AMPA glutamate receptor-mediated PSCs frequency giving to microglia a specific role in the 

modulation of excitatory neurotransmission (Pascual et al., 2012). In addition, ATP can also 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sch%C3%A4fers%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18420346
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increase miniature EPSCs (mEPSCs) frequency in hippocampal cultures apparently regulating 

structural features of synapses such as the probability of presynaptic vesicle release (Antonucci 

et al., 2012). 

Pro-inflammatory cytokines may also specifically interact with receptor and ion channels 

regulating neuronal excitability, synaptic plasticity and injury (Fig. 7).  

The pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) was found to initiate the 

activation cascade of other cytokines and growth factors (Schäfers and Sorkin, 2008). In 

addition, TNF-α induces an increase in the expression on neurons surface of AMPA receptors 

(AMPARs). In fact, blockade of TNF-α signalling reduces the surface level of AMPARs, 

suggesting that TNF-α plays a crucial role in the regulation of synaptic strength at excitatory 

synapses (Tancredi et al., 1992; Beattie et al., 2002). Moreover, additional TNF-α effects are 

observed also on the GABAA receptors, whose expression is reduced on the surface of 

hippocampal neurons (Stellwagen et al., 2005). In particular, through the TNFR1, TNF-α is 

able to regulate both AMPA and GABAA receptors trafficking by controlling mechanism of 

exocytosis and endocytosis, resulting in the alteration of excitatory and inhibitory transmission 

(Stellwagen et al., 2005). Furthermore, several effects on the expression of NMDA receptor 

are known as well (Wheeler et al., 2009).  

Interleukin-1β (IL-1β) is another potent pro-inflammatory cytokine that is produced and 

secreted under conditions that are associated with inflammation and degeneration. Similar to 

TNF-α, IL-1β is able to affect glutamate and GABA receptors, increasing the NMDA- and 

reducing GABAA-mediated transmission. In EAE similar changes in neurotransmission are 

reported to occur in the cerebellum where pro-inflammatory cytokines, in particular, IL-1β, are 

released from infiltrated lymphocytes (Mandolesi et al., 2015). On the contrary, IL-1β inhibits 

the activity of preoptic area/anterior hypothalamus neurons by increasing the presynaptic 

release of GABA through IL-1R signalling (Tabarean et al., 2006).  
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2. Spinal cord networks  

2.1 Structure and function of the spinal cord 

The spinal cord is considered as a gateway for information transfer between the peripheral 

body and the brain consisting of complex neuronal circuits that integrate and coordinate 

sensory, motor and autonomic functions (Hochman, 2007).  

The spinal cord is organized in segments and each segment is associated with a group of 

sensory neurons, whose cell bodies form the dorsal roots ganglia (DRG), from which axons 

leave to reach the periphery. In humans, depending on where they are localized, these segments 

are divided into cervical, thoracic, lumbar, and sacral. In addition, the segmental organization 

within the spinal cord is divided in white and grey matter. White matter surrounds the cord and 

comprises the axon tracts that relay signals to and from the brain and between spinal segments 

and consists almost of myelinated motor and sensory axons. Whereas, the grey matter with 

their peculiar butterfly shape is divided in dorsal and ventral horns that contain sites of 

termination of primary afferent neurons, neurons descending from the brain, interneurons, and 

ascending tract cells projecting to higher CNS levels (Fig. 8). Furthermore, it includes 

microglia, astrocytes, oligodendrocytes and unmyelinated axons as well (Hochman, 2007). 

The several hundred thousand neurons per segment are housed within cytoarchitectonically 

defined anatomical layers called laminae (I-X). Commonly, they are classified into three 

distinct groups: the sensory dorsal horn (laminae I-VI), the intermediate grey (lamina VII), and 

the ventral horn (VII-IX). Motor neurons are located in lamina IX. Moreover, dorsal and 

ventral horn consist of specific and complex systems that differ from each other by their 

distinct function and structure; the sensory system in the dorsal horn and the motor system in 

the ventral horn. 
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Figure 8. Segmental organization of the spinal cord  

Ventral and dorsal horn spinal organization with the presence of white and grey matter. Fibres arise from grey 

matter neurons are spread to the periphery that form the spinal nerves. These nerves send the signals from the 

ventral zone and the stimuli from the periphery come to the dorsal neurons located in the grey matter as well 

(studyblue) 

The somatosensory system 

The somatosensory system is a complex circuit that allows the organism to perceive a wide 

range of heterogeneous signals arising from the periphery thanks to various types of receptors 

widespread in the body. Depending on the type of signal, the receptors are classified in: 

chemoreceptors, thermoreceptors, mechanoreceptors and nociceptors, which translate physical 

stimuli into electrical signals. Moreover, the receptors have a corresponding anatomical 

representation in the spinal cord. Once reached the corresponding neuron, the signal 

transmitted and mapped along sensory pathways that enable a representation of the sensory 

stimulus to specified regions in the cortex (Craig, 2003). 

Somatosensory information starts when stimuli arise from multiple sensory modalities 

converge and interact spatiotemporally on spinal neurons whose response is transmitted to 

other behaviourally relevant regions such as the brain or segmental motor systems. This 

process is controlled by the interneurons that in the dorsal horn are glutamatergic (excitatory) 

and GABA or GABA/glycinergic (inhibitory) interneurons. Primary afferents release 

glutamate as a main neurotransmitter to evoke fast postsynaptic responses composed of early 

AMPA/kainate and late NMDA receptor-mediated components. The continuous signal coming 

from the periphery is well controlled to avoid an excess of transmission. In fact, depolarization 
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of their terminals via negative feedback depression of activated afferents lead to a reduction of 

the neurotransmitter release (Jankowska, 1992). One of the most important roles played by 

dorsal horn is to integrate and relay pain information.  

Glutamate is not the only neurotransmitter involved in the nociceptive signal. In fact, some 

primary afferents are able to co-release a variety of neurotransmitters including substance P, 

calcitonin gene-related peptide, galanin and neuropeptide Y (Millan, 2002). 

The motor system 

The ventral horn is composed by lamina VII-IX whose area is occupied by interneuronal 

populations divided into glutamatergic excitatory neurons and GABA/glycinergic inhibitory 

neurons. In addition, especially in the lamina IX, a wide range of cholinergic motor neurons 

are located, which send axons out of the ventral root to innervate skeletal muscle fibres. These 

motor neurons are divided into two distinct types: α-motor neurons that supply extrafusal 

muscle fibres responsible for movement; γ-motor neurons that innervate intrafusal muscle 

fibres to control muscle tone by regulating the sensitivity of muscle spindles to stretch. 

A peculiar mechanism used by the spinal cord to control the correct functioning of the motor 

outputs is represented by the reflex system. Spinal reflexes are involuntary responses to sensory 

stimuli arising from muscle, joints, and skins to determine stereotyped muscles recruitment. 

The mechanism is due to a correct excitation and inhibition combination between motor and 

interneurons in order to generate flexors and extensors contraction-release (Fig. 9).       

An intrinsic localized neuronal network called central pattern generator (CPG) resides in the 

spinal cord that can generate rhythmic pattern outputs such as walking, breathing, flying, and 

swimming in the absence of sensory inputs or descending commands from the brain cortex. Its 

role is to control the timing and pattern of the muscle activity underlying locomotion. In 

mammals, CPG is situated throughout the ventromedial portion of the lower thoracic and 

lumbar spinal cord (Kiehn and Kjaerulff, 1996; Cowley and Schmidt, 1997; Kremer and Lev-

Tov, 1997). Research conducted on invertebrate species, such as lamprey and Xenopus tadpole, 

has provided a detailed complex structure of CPGs controlling the locomotor movements 

(Grillner, 2003, McLean et al., 2000, Roberts et al., 1998). Despite this, less is known about 

locomotor CPGs in mammals.  
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Figure 9. Motor control network in the spinal cord 

Scheme of the motor system characterized by CPG in order to generate stimuli on motor neurons and interneurons. 

A) The interaction between glutamatergic and GABAergic neurons are able to control neural network for 

presynaptic inhibition of muscle spindle afferents. B) Inhibitory signals from Renshaw cells (R) and inhibitory 

interneurons (Ia) reduce the motor neurons (MN) transmission direct to the peripheral muscles. C) The CPG 

induces the activation of the neuronal network important for the alternation to flexor and extensor muscles 

(Hochman, 2007).   

2.2 Molecular and cellular development of the spinal cord 

Spinal cord development is regulated by specific genes that control cell proliferation, migration 

and patterning as well as later events such as neuronal circuit formation and synaptogenesis 

(Salie et al., 2005). Formation and maturation of spinal cord neurons occur along the three 

basic spatial axes of the embryonic body plan: rostral-caudal, dorsal-ventral, and medial-lateral 

(Fig. 10).  

The rostrocaudal formation is coordinated by a specific gradient of fibroblast growth factor 

(FGF) and retinoic acid (RA) concentrates in the opposite area, caudal and rostral respectively  

(Dasen et al., 2008). Indeed, the medial-lateral axis is separated into progenitor cells, medially, 

and differentiating progeny, laterally. The dorsal-ventral axis is driven ventrally by Sonic 
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hedgehog (Shh) produced by the floorplate, and dorsally by bone morphogenetic proteins 

(BMPs) and Wnts (integrin family) signals from the roof plate. These different morphogens 

form gradients, in turn, activates a specific transcriptional response which proteins can be 

divided into two classes: the class I are inhibited by Shh whereas the class II are contrarily 

activated by Shh (Briscoe et al., 2000; Jessell, 2000; Alaynick et al., 2011). This contrasted 

function between class II and class I proteins allows the consolidation of progenitor identity. 

These progenitor cells are divided into five ventral progenitor domains termed p0, p1, p2, pMN 

and p3, which in turn give rise to interneuron subtypes and motor neurons (Fig. 10). 

The Wnt signalling was also shown to be involved in the formation of DRG sensory neurons 

at early stage (Lee et al., 2004). In vertebrate, Wnt drives the correct direction undertaken by 

axons projection in the rostrocaudal axis in order to reach their target in the brain. In particular, 

this role is mediated by Wnt4 which drives axons toward either posterior or anterior path (Salie 

et al., 2005).  

Heterogeneous classes of interneurons during spinal cord development 

The heterogeneous classes of spinal interneurons play a major role in integrating sensory and 

motor signals in the spinal cord. One of the spinal research challenges is to identify the afferent 

input, output, and the specific role played by the different classes of interneurons in the spinal 

network (Grillner et al., 1998).  

Five classes of genetically distinct ventral neurons are generated by progenitor cells through 

the progressive changes in Shh concentration: V0, V1, V2, V3 interneurons and motor neurons 

(Goulding et al., 2002; Sapir et al., 2004; Alvarez et al., 2005; Nissen et al., 2005). In 

particular, the Shh gradient is driven by homeodomain proteins express by ventral progenitor 

cells; Pax7, Dbx1, Dbx2, Irx3 and Pax6 (Class I); Nkx6.1 and Nkx2.2 (class II) (Briscoe et al., 

2000) (Fig. 10). Post-mitotic neurons generated from these different progenitor domains induce 

differentiation leading to the segregation of the various classes (Jessell, 2000; Goulding et al., 

2002; Nissen et al., 2005). 

From ventral progenitor domains, p0 and p1 derive V0 and V1 that express Evx1/2 and En1 

respectively. Afterwards during the maturation V0 persists whereas the loss of V1 occurs 

gradually. V2 neurons that express Chx10 arise from the p2 domain. Finally, the region 

between floor plate cells and motor neurons generates Sim1 V3 interneurons, defined by 
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expression of Nkx2.2 which derived from cells within the p3 domain (Ericson et al., 1997a; 

Pierani et al., 1999; Briscoe et al., 2000; Jessell, 2000).  

 

Figure 10.  Transcriptional spinal cord development and neuronal formations.  

Different transcriptional factors are responsible for the gradient of proteins such as RA, BMP, and Shh, distributed 

according to the dorsal-ventral axis. The dissimilar progenitors area including p0, p1, p2, pMN, and p3 give rise 

to the specific spinal neurons. In addition, the temporal expression of a wide range of transcriptional factors 

delimits the four segmental spinal zone (Davis-Dusenbery et al., 2014). 

Previous work conducted on spinal neurons demonstrated that a different class of V0 

interneurons is responsible for left-right coordination during locomotion. In fact, glutamatergic 

interneurons located in lamina VIII are capable of generating rhythmic membrane potentials 

in phase with rhythmic motor outputs (Lanuza et al., 2004; Hinckley et al., 2005; Wilson et 

al., 2005). Otherwise, V1 neurons generate Ia inhibitory interneurons as well as Renshaw Cells 

(RC). This class of neurons exhibits different concentration and distribution of the 

GABA/glycine phenotypes from embryos to adult phase. Briefly, embryonic spinal 

interneurons express a high level of GABA, particularly in the ventral horn, which is 

downregulated immediately after birth followed by the increasing of glycinergic interneuron 

(Sauressig et al., 1999; Pierani et al., 2001; Sapir et al., 2004). In addition, it was suggested 
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that V1 neurons take part of the CPG by regulating the duration of locomotor step cycle and 

hence the speed of locomotion in mammals (Gosgnach et al. 2006). V2 are ipsilaterally 

projecting interneurons that extend axons caudally across several segments. They derive from 

progenitors residing dorsally to pMN domain and are divided in two different classes: V2a is 

glutamatergic while V2b is inhibitory which expresses both glycine and GABA. Finally, V3 

interneurons are predominantly glutamatergic neurons expressing Sim1 and VGluT2 which 

arise from the ventral p3 progenitor domain. The 80–85% of these cells project contralaterally 

and a lower proportion remains ipsilateral (Zhang et al., 2008). 

GABAergic and glycinergic changes in the developing spinal networks  

The interplay between the glycinergic and GABAergic synapses changes throughout 

development and is essential for the maturation of the spinal cord. GABA and glycine are 

neurotransmitters involved in the fast synaptic chloride-mediated transmission in the spinal 

cord. From the embryonic to the early postnatal phase, GABA and glycine act as depolarizing 

transmitters due to the high intracellular Cl- concentration (Reichling et al., 1994).   

Crucial for the formation of the interneuronal spinal synaptic connections is the interneurons 

heterogeneity, as well as the essential interaction of excitatory glutamatergic and inhibitory 

GABAergic/glycinergic synaptic transmission (Grillner et al., 1995, 2000).  

In the embryonic mouse spinal cord, the early glycinergic transmission sustains the 

propagation of activity bursts throughout contiguous spinal segments, while their generation 

locally relies on a network formed by motor neurons and GABAergic interneurons (Hanson 

and Landmesser, 2003; Moody and Bosma, 2005). Nevertheless, existing evidence suggests 

that GABA is the most important transmitter in the generation of early prenatal miniature 

currents in rodent motor neurons (Gao et al., 2001).  

During mouse embryogenesis, precisely at E13, glycine levels are higher than GABA ones, 

which progressively augment between E17 and P3, suggesting an already abundant presence 

of glycinergic neurons. Likewise, a gradual increase between E14 and P3 has been noted for 

the GABA neurons too (Miranda-Contreras et al., 2002). An extensive loss of glycinergic 

synapses in addition to a lower pronounced loss of GABAergic synapses occur during the first 

week, precisely between P3 and P7 (Miranda-Contreras et al., 2002).    
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The spatial and temporal development of GABA in the embryonic spinal cord has received 

much attention over the last two decades (Sibilla et al., 2009). The first GABA-

immunoreactive (GABA-ir) somata have been noted in rat at E12.5, following by a transient 

peak in the ventral region differently from the stable GABA-ir density in the dorsal horn (Ma 

et al., 1992, Tran and Phelps, 2000). In addition, the intracellular distribution of glutamic acid 

decarboxylase (GAD) proteins, is shifted from somatic and proximal axon to distal axons and 

terminal-like varicosities during spinal development (Tran et al., 2003). 

In the mouse spinal cord, a slight difference in terms of temporal expression occurs in the 

GABAergic neurons. In fact, the first GABA-ir somata occurs at E11.5, following by a rostro-

caudal gradient of maturation, as well as the increase in the dorsal area (Allain et al., 2004). 

This 1-day delay is essentially due to the different gestation time in the two species: 22 days 

for rat and 19 days for mouse.  

From E13.5 in mouse, the ventral area exhibits a large amount of GABA-ir cells, which is 

partially transposed at E17.5 with a higher GABA-ir density in the dorsal area (Allain et al., 

2004).  After birth, precisely at P0, a drastic reduction of ventral GABA cells occurs, following 

by an increase of the glycine density until the mature phase. In fact, Gao et al. (2001) suggest 

that only neurons expressing GABA phenotype at early stage of development maintain mature 

ventral position. Otherwise, neurons which fail to express GABA may switch phenotype to 

glycine ones. 

The functional role of GABAergic ventral synapses in the embryonic rat spinal cord is related 

to the connection between left and right sides, to the depolarization mediated by GABAA 

receptors, and to the generation of synchronous spontaneous burst of activity (Nakayama et 

al., 2002). Later, from E18.5, glycine receptors take over the role of GABAAR in modulating 

the left-right alternation and mediate the inhibition between the two sides of spinal segments.  

A major of GABAergic and glycinergic function is represented by their excitatory effect 

carried out in the early spinal cord. In fact, during the foetal period, the high intracellular 

concentration of Cl- ions provides a depolarizing activity, resulting in the elevated Ca2+ 

concentration in the spinal neurons (Cherubini et al., 1991; Ziskind-Conhaim, 1998). Using 

this mechanism, GABA and glycine promote neuronal development, control outgrowth and 

differentiation, induce synaptogenesis, crucial for establishing the inhibitory pathway between 
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the rhythm-generating networks (Ziskind-Conhaim, 1998; Phelps et al., 1999; Gao et al., 

2001).   

The switch from the excitatory to the inhibitory transmission of GABA/glycine occurs in the 

entire CNS during development as well as in the maturation of the spinal cord. Especially in 

the mouse, the first evidence of this transition appears after E14.5 persevering for the first two 

weeks (Branchereau et al., 2002; Deply et al., 2008).  The mechanism underlying this switch 

is related to changes in the intracellular Cl- concentration, resulting in the shift from 

depolarizing action of GABA/glycine toward a hyperpolarizing activity. In particular, the 

intracellular Cl- concentration depends on the reverse expression of the Na+-K+-2Cl- co-

transporters isoform 1 (NKCC1) and the K+-2Cl- type 2 co-transporters (KCC2). Typically, 

immature neurons are designated by a higher intracellular Cl- concentration associated with 

higher NKCC1 levels, which profile is completely reversed in mature cells (Fiumelli and 

Woodin, 2007; Ben-Ari et al., 2012).  

2.3 Synaptic activity and cytokines effect on the spinal networks   

Cytokines (CKs) are a large family of proteins released by immune cells in response to tissue 

damage or infections. CKs are powerful neuromodulatory molecules capable of influencing 

synaptic transmission and neuronal excitability (Schäfers and Sorkin, 2008). The effects of 

cytokines on neuronal networks are mediated indirectly, by the release of neuroactive 

molecules from glia, such as neurotransmitters, nitric oxide, and neurotrophins (Allan and 

Roshwell, 2001), or directly by activating neuronal receptors (Viviani et al., 2007; Zhang et 

al., 2014). Regardless the CKs role in triggering the immune response, cytokines exerts 

physiological functions in the immature CNS related to its growth and development. 

Nevertheless, any over-expression of CKs in the tissue leads to neuronal dysfunctions 

associated with neurodegenerative diseases (Glass et al., 2010; Burm et al., 2016; Chen et al., 

2016; Czubowicz et al., 2017).  

In the last decade, research on this subject has led to a deep understanding of the role of CKs 

in driving synaptic function and plasticity. Especially, TNF-α, IL-1β, and IL-6 are attracting 

considerable interest due to their implication in a wide range of synaptic dysfunctions typically 

concerning neurological disorders (Kawasaki et al., 2008; Centonze et al., 2009; Glass et al., 

2010).  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sch%C3%A4fers%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18420346
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The focus of recent research has been mainly on TNF-α and IL-1β which affect all principal 

classes of voltage-gated channel (VGCs), such as Na+ channels (Nav), Ca+ channels (Cav) and 

K+ channels (Kv), as well as receptor-operated ionic channels (Vitkovic et al., 2000; Viviani 

et al., 2007).  

TNF-α modulates glutamate and GABA receptors at the neuronal membrane, resulting in 

increased excitotoxicity stress and neuronal death. In particular, TNF-α can exhibit its function 

affecting AMPARs by TNF-R1 (Beattie et al., 2002; Stellwagen et al., 2005; Ferguson et al., 

2008). In addition, TNF-α can also modify extracellular glutamate levels by inducing 

glutamate release from microglia and as well as blocking the astrocytic glutamate re-uptake 

(Zou and Crews, 2005; Takeuchi et al., 2006). 

More recent evidence highlights that acute application or incubation of spinal cord slices with 

TNF-α modulates excitatory and inhibitory synaptic transmission (Kawasaki et al., 2008) 

precisely in the spinal cord dorsal horn (DH). Zhang et al. (2010) have demonstrated that TNF-

α increases the frequency of spontaneous EPSCs (sEPSCs) and also produce a robust decrease 

in the frequency of spontaneous IPSCs (sIPSCs). This enhancement is principally mediated 

through TNF-R1, but not TNF-R2, followed by the activation of neuronal p38 MAPK 

signalling. Hence, GABAergic neurons display a decrease in the spontaneous action potentials 

accompanied by a lowering of Ih currents which provide to the development of neuropathic 

and inflammatory pain. In addition, the main involvement of TNF-α in peripheral nerve injury 

is well delineated. In fact, the control of presynaptic TTX sensitive sodium channel activity by 

TNF-α increased the sensitivity of presynaptic TRPV1 receptors in the primary afferent fibres 

after injury (Spicarova et al., 2011). 

Similar to TNF-α, IL-1β plays a crucial role in synaptic modulation by binding to the IL-1 

receptor 1 (IL-1R1) and regulating the surface expression of NMDA receptors (Viviani et al., 

2003; Gardoni et al., 2011). This leads to the enhancement of Ca2+ influx through NMDARs, 

which in turn promote neuronal network hyperexcitability in vitro DRG and spinal slices 

(Viviani et al., 2003; Yan and Weng, 2013). Different studies conducted on lamina II neurons 

isolated from spinal slices have demonstrated that IL-1β increases frequency and amplitude of 

AMPA receptors, including modulation of NMDARs. Furthermore, IL-1β also reduces 

frequency and amplitude of the sIPSCs acting on GABA- and glycine-induced currents 

(Kawasaki et al., 2008).  
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In the spinal ventral horn, GABA and glycine provide the fast synaptic inhibitory transmission 

essential for motor outputs coordination (Kiehn et al., 1997). The GABA/glycine system 

mature from foetal stages via expressing important changes related to the locomotor spinal 

pattern development. Most of the motor circuits in the ventral spinal cord depend on the 

interplay between excitation mediated by glutamate and inhibition regulated by 

GABA/glycine. Especially in the adult spinal cord, GABA appears to have a crucial role in the 

optimization of motor patterns innervating the motor pattern-generating neurons (Christenson 

et al., 1990). 

CKs with their ability in modulating ion channels, receptors, and synapsis may contribute to 

altering motor synaptic function provoking a wide range of symptoms commonly expressed in 

several neurodegenerative disorders.  

3. Organotypic spinal cord cultures  

3.1 Ex-vivo spinal cord model from mouse embryos  

Organotypic spinal cord slices represent an ex vivo model of segmental microcircuit 

development in which subsets of interneurons can be directly investigated at different growth-

time in vitro (Streit et al., 1991; Gähwiler et al., 1997). Many studies conducted in our 

laboratory have shown that these long-term cultures preserve the basic tissue architecture, 

synaptic connections and dorsal-ventral orientation of the spinal segment (Rosato-Siri et al., 

2002; Avossa et al., 2003; Furlan et al., 2007). Differently, from others in vitro models, the 

organotypic spinal slices have many peculiar characteristics. In fact, processes as 

synaptogenesis and formation of myelin take place in these cultures. In addition, these cultures 

are characterized by a variety of neurons and glial cells and maintain the presence of DRG and 

their incoming output (Streit et al., 1991; Ballerini and Galante, 1998; Ballerini et al., 1999) 

(Fig. 11). Despite the absence of afferent and supraspinal inputs, this preparation represents a 

useful model for studying the dynamics of intra-segmental maturation processes which 

evidently rely on propriospinal circuits. 

In the mouse spinal cord, spontaneous rhythmic activity appears emerges at early 

developmental stages, before the completion of muscle innervations. The generation of this 

activity relies on the depolarizing drive of GABA and glycine receptor-mediated activity, 
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(Hansen and Landmesser, 2003), combined with synaptic short-term depression (O’Donovan 

et al., 1998).  

 

 

Figure 11. Immunocytochemistry of organotypic cultures with the anti-NF-H antibody SMI32 

A) The culture at 8 DIV labelled with SMI32 show processes exiting bilaterally from the ventral part of the slice 

(arrows). DRG cells present in the top part of the picture. B) The culture at 14 DIV show motoneurons located in 

the ventral region, bilaterally to the ventral fissure. C) Slice at 21 DIV notes motor neurons and DRG neurons in 

the ventral horn. All the images show the correct ventral-dorsal orientation typical of the spinal cord (Avossa et 

al., 2003). 

Since ontogeny and functional development of GABAergic interneurons observed in vivo is 

maintained in cultured spinal slices (Avossa et al., 2003; Furlan et al., 2005; Furlan et al., 

2007), validating the crucial importance of GABAergic connections for circuit assembly and 

activity (Barbeau et al., 1999).  

In the organotypic spinal slices, five different types of ventral interneurons have been 

identified, on the basis of their discharge patterns: tonic cells, that fired action potentials (APs) 

without apparent accommodation; adapting cells, that discharged an early burst of APs 

followed by adaptation; delay cells, that generated APs after a lag; irregular cells without 

discernible discharge patterns; transient cells, that generated a single AP only (Furlan et al., 

2007). Interestingly, the distribution of the five neuronal classes is maturation-dependent and 

reflects in addition to the heterogeneous nature of neuronal types of the spinal cord 

(Jankowska, 2001).  

The organotypic spinal model replicates some aspects of the vivo environment (Ravikumar et 

al., 2012). There are several advantages of using this model:  
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i. interneurons are easily visualized based on their shape and localization, allowing to 

conduct electrophysiological patch clamp experiments useful to observe the spinal 

network activity; 

ii. slices maintain the correct ventral-dorsal orientation providing the possibility to focus 

on a specific spinal area; 

iii. the correct structure of the pre-motor circuits is preserved along with the complex 

interplay between interneurons and motor neurons, supported by the DRG and their 

incoming output; 

iv. the ability to reproduce suitable inflammatory responses mediated by microglia, 

astrocytes, and oligodendrocytes following in vitro neuroinflammatory activation; 

v. the advantage of isolating a specific mediated-receptor current, such as excitatory 

(AMPA and NMDA) and inhibitory (GABA and glycine) transmission by 

pharmacological block.        

vi. the possibility to test pharmacological target fundamental for many neuroinflammatory 

diseases. 

Electrophysiological experiments such as patch clamp recordings, local field potential 

recordings and multi-electrode arrays combined with immunohistological tools can detect 

changes in neural mechanisms and activity when interfaced to different pathological 

environments.   

For all these reasons, this model allows elucidating the potential effects due to the alteration of 

spinal network, which is principally responsible for several inflammatory and degenerative 

diseases. 

In summary, the combination of a developing spinal network supported by different cell 

populations, complex synapses, and the interneurons electrical profile make the organotypic 

spinal slices an excellent model to clarify several mechanisms underlying network 

dysfunctions (Rosato-Siri et al., 2002; Avossa et al., 2003; Medelin et al., 2016; Medelin et al, 

2018).  

4. Fast inhibitory synaptic networks: the GABAergic transmission 

Fast inhibitory neurotransmission is modulated by two different neurotransmitters: GABA (γ-

aminobutyric acid) and glycine. GABA plays a crucial role in adjusting several functions 
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including sensory and motor processing, central autonomic control, sleep-wakefulness, 

emotions, and cognition. Moreover, GABA is capable of binding to ionotropic (GABAAR) 

and metabotropic (GABABR) receptors, ubiquitously expressed in the CNS (Barnard et al., 

1998; Bowery et al., 2002). Alteration in the GABAergic system leads to a wide range of 

neurological disorders, such as epilepsy, anxiety, ethanol dependence, and schizophrenia 

(Coulter et al., 2001; Malizia et al., 1999; Morrow et al., 2001; Blum and Mann, 2002). In 

particular, GABAA receptors represent a major site of action for clinically important drugs, 

including benzodiazepines, barbiturates, and some general anaesthetics (Rudolph and 

Antkowiak, 2004), as well as ethanol, and endogenous modulators, notably endozepines 

(Christian et al., 2013) and neurosteroids (Hosie et al., 2006). The endogenous modulators, in 

large part derived from glial cells, are implicated in the regulation of many functions under 

both physiological and pathological conditions.   

4.1 GABAA receptors: structural composition and function 

GABAAR belongs to a superfamily ligand-gated ion channels able to mediate fast inhibitory 

transmission by gating Cl- ions through the cell membrane.  This receptor is a pentameric 

subunit-complex and consists of a hydrophilic extracellular N-terminal domain containing the 

Cys-loop, followed by four transmembrane sequences (M1–M4) which are arranged around a 

central pore. In mammals, there are 21 different subunits, including α1–6, β1–4, γ1–4, δ, ρ1–

3, θ, π, ε (Barnard et al., 1998; Whiting, 1999) which make the GABAAR very heterogeneous 

when compared to any other ligand-gated ion channel. The majority of GABAARs contain two 

α- and two β-subunits, and one γ-subunit variant (Fig. 12), with the α1β2γ2 combination 

representing the largest population of GABAAR, followed by α2β3γ2 and α3β3γ2. The γ2 

subunit can be substituted by γ1 or γ3 subunits or by δ, and possibly ε, subunits.  

Pharmacological studies of GABAAR allowed distinguishing between the various GABAAR 

subunits. Precisely, the α1-, α2-, α3-, and α5-subunit correspond to diazepam-sensitive 

receptors, whereas the α4- and α6-subunit are insensitive to diazepam (Benson et al., 1998; 

Wingrove et al., 2002). The GABAARs are discriminated further by their affinity to zolpidem, 

a selective allosteric modulator belonging to the nonbenzodiazepine of the imidazopyridine 

class (Mohler et al., 1996). Aside from this classical pharmacological characterization, 

neurosteroids, which are positive allosteric modulators of GABAARs (Lambert et al., 2001), 
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are most selective on receptors containing the δ-subunit (Wohlfarth et al., 2002). It is also 

important to note, that, depending on the α-subunit expressed, GABAARs may display 

differences in the kinetics of receptor deactivation (Hutcheon et al., 2000).  

GABAAR subunit molecular heterogeneity allows to generate two distinct forms of inhibitory 

transmission, phasic or tonic, depending on their postsynaptic or extrasynaptic localization, 

respectively (Farrant and Nusser, 2005; Belelli et al., 2009; Brickley and Mody, 2012). 

Importantly, these two major populations of GABAARs are molecularly distinct, with 

postsynaptic receptors containing mainly the α1, α2 and α3 subunits, along with β and γ2 

subunit, and extrasynaptic receptors composed by α4, α5 and α6 subunits, often combined with 

the δ subunit as an alternative to γ2 subunit. 

In the adult brain and spinal cord, the expression of GABAA receptor subunits exhibits a 

remarkable region- and cell-specificity, suggesting that individual subunits are necessary for 

the distinct neuronal circuits. The segregated distribution of α1- and α2-GABAARs is 

correlated with the differential kinetics of deactivation. Indeed, α1-GABAARs are responsible 

for the faster kinetics of deactivation, as opposed to α2-GABAARs (Brussaard et al., 1997; 

Hutcheon et al., 2000; Jüttner et al., 2001; Vicini et al., 2001). 

 

 

 
Fig. 12. GABAA receptor subunits: structure and composition.  
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Typical schematic representation of  GABAAR characterized by the 5 subunits composition usually 2α2β1γ, 

resulting in the formation of pore core channel designed for the Cl- and HCO3
- ions transfer. The cartoon show 

also the spots used for binding different molecules such as GABA, neurosteroids, benzodiazepine, barbiturates, 

and picrotoxin, which are capable of modulating the GABAA-gated receptors (Meyer and Quenzer, 2013). 

GABAARs function is mainly characterized by their dependence on ion mechanisms, which 

provide the exchange of Cl- and HCO3- (Blaesse et al., 2009). Hence, the effects of GABAARs 

on the resting membrane potential, independently of their subunit composition, are determined 

by the action of K+/Cl- co-transporters and carbonic anhydrases. In fact, the increasing of 

KCC2, the main Cl- extrusion transporter, during the maturation of neurons leads to the switch 

from depolarising to hyperpolarising GABAAR actions (Ben-Ari, 2002). GABAAR-mediated 

transmission regulates multiple steps of neuronal development and maturation during 

ontogenesis and adult neurogenesis, including control of stem/precursor cell proliferation, cell 

fate decision, migration of precursor cells, survival of immature neurons, dendritic growth, and 

synaptogenesis (Platel et al., 2007; Dieni et al., 2013). 

4.2 GABAARs post-synaptic organization and plasticity  

In terms of molecular organisation, GABAergic post-synaptic sites consist of specific proteins 

which contribute to the trafficking and anchoring of GABAARs in a subtype-specific manner. 

More recent evidence proposes that GABAARs also clustered by gephyrin scaffold formation 

at postsynaptic sites (Sassoè-Pognetto et al., 2000; Saiepour et al., 2010). Gephyrin together 

with direct binding proteins, such as collybistin and NL2, represents the principal protein 

accountable for regulating GABAAR trafficking and GABAergic synapse formation (Luscher 

et al., 2011, Fritschy et al., 2012), α1, α2, and α3 subunits can interact directly with gephyrin 

via essential motifs located in their main intercellular loop, and hence be clustered 

postsynaptically (Tretter et al., 2008; Mukherjee et al., 2011; Kowalczyk et al., 2013). 

The formation and function of GABAergic synapses are due to the palmitoylation of the γ2 

subunit crucial for membrane anchoring of GABAARs. Consequently, multiple mechanisms 

such as phosphorylation of various GABAARs subunits, are responsible for regulating kinetic 

properties, or for stability, delivery, or further internalization of GABAARs (Jacob et al., 2008; 

Houston et al., 2009a, 2009b; Vithlani et al., 2011). Thus, gephyrin plays a key role as an 

anchor scaffold for protein kinase that regulates the efficiency of the inhibitory transmission.  
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Internalization of GABAARs is a key mechanism fundamental for the plasticity of synaptic 

transmission (Kittler and Moss, 2001; Kneussel, 2002). In fact, most synapses dynamically 

regulate synaptic receptor density by endocytosis, recycling, and degradation (Lin et al., 2000; 

Barnes et al., 2001).  

A major mechanism associated with recycling and degradation of membrane proteins is the 

clathrin-dependent endocytosis. This process is supported by the interaction between the 

clathrin adaptor protein (AP2) and the intracellular domains of β1-, β2-, and γ2-subunits, but 

not the α-subunits. In addition, Kittler et al., (2000) have shown that a large increase of mIPSCs 

amplitude occurs after blocking of clathrin-dependent endocytosis mechanism in neuron 

cultures.  

Neurotrophins, such as BDNF, play a role in excitatory synaptic plasticity by activation of 

TrkB signalling pathways. Likewise, BDNF produces a bi-phasic effect on the GABAAR-

mediated transmission via interference with the trafficking processes (Jovanovic et al.,2001). 

Particularly in the amygdala, BDNF causes the internalization of α1-GABAARs followed by a 

rapid degradation of gephyrin (Mou et al., 2013). In the hippocampus, on the contrary, an 

increased receptor expression on cell surface has been shown to be mediated by BDNF via the 

phosphorylation of γ2-subunit (Vithlani et al.,2013). In addition, other molecules, such as 

tyrosine kinase, ROS, and benzodiazepine are implicated in the regulation of trafficking and 

internalization of GABAARs (Ali and Olsen, 2001; Henneberger et al., 2002; Accardi et al., 

2014). 

4.3 The dynamic of intracellular chloride regulation  

In the brain and spinal cord, fast-synaptic inhibition is mediated by Cl- currents, supported by 

GABA and glycine receptors. Synaptic inhibition efficiency due to Cl- current flow, may 

emerge from the degree of GABA and glycine receptor activation or from the driving force of 

Cl- ions. The ionotropic GABA and glycine receptors associated channels are permeable to Cl- 

and the flow of the negatively charged chloride ions usually inhibits postsynaptic cells since 

the reversal potential for Cl- is more negative than the threshold for neuronal firing. In 

physiological conditions Cl- driving force is stable, but in the certain pathological conditions, 

the intracellular Cl- concentration ([Cl-]i) may be tuned by differential operations of membrane 

co-transporters. 
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 The individual concentrations of chloride ions outside and inside the cell define the chloride 

reversal potential (ECl
-), as described by the Nernst equation. ECl

- in the health, mature neurons, 

is approximate -85/-70 mV (Arosio et al., 2010). [Cl-]i is maintained at low concentrations 

(around 5 mM) that enable the influx of Cl- ions via opening of ionotropic GABA or glycine 

receptors (Payne et al., 2003; Ben-Ari et al., 2012; Kayla et al., 2014). This low concentration 

is maintained by the KCC2 co-transporter which extrudes Cl- ions against its gradient. KCC2 

takes advantage of the electrochemical K+ gradient due to the sodium-potassium ATPase, 

which is energy dependent (Fig. 13). Conversely, another co-transporter, named NKCC1, is 

essential for internalizing Cl- ions in the neurons. Particularly, NKCC1 allows Na+, K+, and Cl- 

transition inside the cell, using the same process of KCC2, thus exploiting the Na+/K+ ATPase.   

 

Fig. 13. Schematic Cl-/HCO3
- regulation.  

Cl-/HCO3
- flux through GABA/glycine receptors inside or outside the cell. Mechanisms associated with the 

cotransporters NKCC1/KCC2 important for the correct balance of the ion equilibrium. In addition, the energetic 

role carried out by Na+/K+ ATPase exploited by both cotransporters (Doyon et al., 2016). 

In immature neurons, the expression of KCC2 is low and KCC1 govern the Cl- membrane-

transport, generating typically a high (around 30 mM) [Cl-]i, fundamental for expressing 

depolarizing  GABAAR mediated responses (Achilles et al., 2007; Fig. 14).  

The expression profile of KCC2 mRNA is correlated with the sequential maturation of neurons 

(Li et al., 2002; Wang et al., 2002b; Stein et al., 2004). Generally, the ontogeny of KCC2 
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mRNA in mouse is similar to rat, with the singular difference concerning delays of 2 days in 

rat embryos (Li et al., 2002).   

Mouse spinal cord and brainstem show the earliest development of Cl- homeostasis. Expression 

of KCC2 mRNA starts at E10.5 while the KCC2 transcripts are found in the ventral motor as 

early as E12.5 (Hübner et al., 2001) and in sensory nuclei at later stages, E15.5  (Stein et al., 

2004). In mouse embryonic spinal cord, both KCC2 and NKCC1 are expressed and functional 

early in development (E11.5–E13.5), when GABAAR activation mediates excitatory responses 

(Delpy et al., 2008). After E15.5, NKCC1 progressively reduces its activity in motor neurons 

while KCC2 increases its function and provides more negative ECl
-, responsible of the 

inhibitory role of GABA and glycine receptor activation in the majority of spinal neurons at 

E17.5 (Branchereau et al., 2002). This switch corresponds to the transition phase in which the 

locomotor networks start to generate alternating flexor and extensor motor activities as well as 

the network expression of left-right alternation, indicating the presence of functional network 

inhibition (Delpy et al., 2008).  

4.4 Chloride regulation in CNS disorders  

Several pathological disorders in the CNS involve alterations in GABAergic synaptic 

signalling, affecting the physiological Cl- ion fluxes. These alterations may include (1) 

mutations in the GABAAR subunits composition and (2) dis-regulation in the NKCC1/KCC2 

balance (Lewis et al., 2005; Bavelier et al., 2010; Ben-Ari et al., 2012; Kaila et al., 2014).  

GABAAR mutations specifically of α, β3, γ2, and δ subunit are commonly correlated with 

various idiopathic epilepsies syndrome. In particular, the majority of this mutation is 

implicated in altering the orderly processes of trafficking and clustering (Bouthour et al., 

2012).  

GABAergic transmission also regulates neuronal plasticity by controlling the inhibitory-

excitatory balance in neuronal networks and is key in regulating the proper development of the 

CNS  

Potential dysfunctions of GABAAR are also implicated in a range of diseases which might be 

treated with benzodiazepine site ligands. This is the case of pathologies concerning the 

neuropathic pain. In fact, the anti-hyperalgesic effects mediated by certain benzodiazepine site 
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ligands take place via stimulation of α2-GABAAR in the spinal cord dorsal horn (Paul et al., 

2013).  

Alterations in the maturation of NKCC1/KCC2 balance during development have been 

correlated to various diseases, from childhood epilepsy to autism spectrum disorders (Ben-Ari 

et al., 2012; Kaila et al., 2014). In particular, mutations in the KCC2 gene have been associated 

with a partial or complete loss of chloride extrusion, which result in several modifications of 

the neuronal network activity (Stödberg et al., 2015; Fig. 14). 

 

Fig. 14. NKCC1/KCC2 expression during neuronal development and diseases. 

Divergent expression of NKCC1/KCC2 co-transporters in immature and adult neurons, which drive the [Cl-]i  

important for the excitatory-inhibitory GABAergic transmission. In the mature neurons, physiological conditions 

are characterized by high KCC2 and low KCC1 expression, which maintain low [Cl-]i. In contrast, during disease 

the NKCC1/KCC2 expression reflexes the same profile exhibit by early embryonic neuron, contributing to a 

GABAAR-mediated excitatory response (Ben-Ari, 2017).   

A similar loss of function of KCC2 has been reported in spinal cord dorsal horn, which 

therefore interferes with the sensory signalling associated with neuropathic pain pathologies 

(Doyon et al., 2013; Prescott, 2015). Many studies have shown that BDNF signalling via TrkB 

receptors is responsible for the KCC2 down-regulation. In fact, in experiments conducted on 

chronic pain models, BDNF appears to arise from microglia (Ferrini and De Koninck, 2013). 

Intriguingly, impaired Cl- homeostasis is also present in various pathological conditions of the 

brain and spinal cord, such as injury, neuroinflammation, and stress.  

Since a wide range of diseases are associated with Cl- dis-regulation, responsible for the failure 

of GABAA-mediated inhibitory transmission, several strategies have been developing in order 
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to restore the physiological low [Cl-]i  inside the neurons. One of these strategies is 

characterized by taking advantages of positive allosteric modulators, able to enhance the 

GABAAR (Knabl et al., 2008). Given that, the GABAAR allows the transition of both Cl- and 

HCO3
- ions reducing the inward currents generated by HCO3

- efflux representing an alternative 

strategy to restore inhibition (Prescott, 2015).  

In addition, emerging tools to re-establish the normal ion homeostasis provide the use of 

pharmacological drugs that act on NKCC1. In particular, bumetanide a powerful blocker of 

NKCC1 has been revealed potentially useful to treat some developmental seizure-prone 

conditions, as well as reducing the severity of autism symptoms (Dzhala et al., 2005; 

Lemonnier et al., 2012). New strategies focused on the excess of KCC2, which might lead to 

a huge extracellular K+ accumulation, ultimately increasing the network excitability (Doyon et 

al., 2011; Krishnan and Bazhenov, 2011).  
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Aims of the thesis 
The principal aim of my thesis was to investigate the mechanisms underlying 

neuroinflammation which are able to interfere with the synaptic transmission. Since several 

neurodegenerative disorders involving spinal cord circuits are frequently accompanied by an 

inflammatory profile, the consequences of which result in neuronal defects, I focused my 

attention on a specific area of the SNC, the ventral spinal cord. For these reasons, my goal was 

to understand the key role of inflammation and resident cells in affecting the regular spinal 

pre-motor networks.      

I used a combination of two distinct elements to integrate both inflammation and spinal 

circuits: 

1. the organotypic spinal cultures obtained from mice embryos which represent an 

excellent model well characterized in our laboratory; 

2. a specific cytokines cocktail composed by TNF-α, IL-1β, and GM-CSF whose are 

reported to be highly concentrated in blood and CSF from MS patients and EAE 

model. 

In the first part of my work, by using the patch clamp voltage-mode technique I recorded the 

synaptic activity from visually identified interneurons located in the pre-motor microcircuits. 

In particular, I addressed my study in understanding the effect of CKs, and later LPS, on 

GABAA receptor-mediated currents. In doing so I also monitored the astrocytes and microglia 

responses under inflammatory stress conditions by immunohistological methods. 

In the second part of my work, I assessed more specifically the mechanisms involved in the 

alteration brought about by CKs of GABAA receptor-mediated currents, dissecting 

experimentally the following potential mechanisms: 

1. disequilibrium in the intracellular chloride homeostasis associated with alterations in 

the chloride co-transporters (NKCC1 and KCC2); 

2. variation in the α-subunit GABAAR composition due to exchange mechanisms 

between membrane and cytoplasm. 
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Abstract

Multiple sclerosis is characterized by tissue atrophy involving the brain and the spinal cord, where reactive inflammation
contributes to the neurodegenerative processes. Recently, the presence of synapse alterations induced by the
inflammatory responses was suggested by experimental and clinical observations, in experimental autoimmune
encephalomyelitis mouse model and in patients, respectively. Further knowledge on the interplay between
pro-inflammatory agents, neuroglia and synaptic dysfunction is crucial to the design of unconventional protective
molecules. Here we report the effects, on spinal cord circuits, of a cytokine cocktail that partly mimics the signature of T
lymphocytes sub population Th1. In embryonic mouse spinal organ-cultures, containing neuronal cells and neuroglia,
cytokines induced inflammatory responses accompanied by a significant increase in spontaneous synaptic activity. We
suggest that cytokines specifically altered signal integration in spinal networks by speeding the decay of GABAA

responses. This hypothesis is supported by the finding that synapse protection by a non-peptidic NGF mimetic
molecule prevented both the changes in the time course of GABA events and in network activity that were left
unchanged by the cytokine production from astrocytes and microglia present in the cultured tissue. In conclusion, we
developed an important tool for the study of synaptic alterations induced by inflammation, that takes into account the
role of neuronal and not neuronal resident cells.

Keywords: Organotypic spinal slices, Network activity, Cytokines, Neuroinflammation, Neuroprotection, NGF-mimetic

Introduction
Inflammatory mechanisms have been closely linked to the
pathogenesis of heterogeneous diseases of the Central
Nervous System (CNS), including multiple sclerosis (MS),
Alzheimer’s disease (AD), amyotrophic lateral sclerosis
(ALS) and Parkinson’s disease (PD) [1, 2]. In these patholo-
gies, inflammatory cytokines (CKs) can be either delivered
by activated microglia and astrocytes (CNS resident cells)
or by peripheral immune cells able to infiltrate the CNS
parenchyma (lymphocytes, neutrophils and mast cells).
CKs release affects neurons and synapses, contributing to
gray matter pathology. In experimental multiple sclerosis
the harmful action of microglia on synaptic activity is
mediated by tumor-necrosis factor-alfa (TNF-α) and

interleukin-1beta (IL-1β), and pro-inflammatory condi-
tions in general have been reported to tune post-synaptic
NMDA and AMPA glutamate receptors, enhancing excita-
tory transmission and inhibiting the GABAergic one [3–5].
These observations have led to the awareness that multiple
sclerosis pathophysiology, traditionally viewed as a genuine
white matter autoimmune disorder with only secondary
neurodegenerative components [6], involves diffuse synap-
tic dysfunction and loss, i.e. synaptopathy, that concur-
rently with demyelination contributes to grey matter
atrophy. Inflammatory-dependent synaptopathy, reviewed
by Mandolesi et al. (2015), has been detected in MS
patients, representing a novel and promising target for
future therapies [7].
Nerve growth factor (NGF), extensively studied as

neuro-protector agent in neurodegenerative diseases [8], is
involved in neuronal survival and reparative processes.
NGF has been reported to confer CNS protection in
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experimental autoimmune encephalomyelitis (EAE) [9].
Recently, Xu et al. (2016) described the neuroprotective ef-
fects of a molecule (T-006) that mimic NGF activities and
potentiates NGF-protection against glutamate-induced
excitotoxicity [10]. In accordance to these strategies, the
strongest rationale behind mesenchymal stem cell (MSC)
transplantation as an effective therapeutic approach in MS,
AD, PD and ALS, resides also in MSCs ability to secrete
neurotrophic factors, preventing neuronal damage induced
by the inflammatory insult [11]. In the development of
novel therapies, the design of trophic molecules able to
cross the blood brain barrier (BBB) and thus to directly
target neurons, shielding them from synaptic alterations, is
a timely placed issue.
Mechanistic studies of the interplay between the release

of CKs, the activation of microglia, the emergence of
synaptic dysfunction and the role of novel protective
molecules, may require sophisticated in vitro models
tested in the laboratory to investigate CNS responses at
synaptic resolution.
Organotypic slice cultures developed from the embry-

onic mouse spinal cord represent a complex in vitro
model where sensory-motor cytoarchitecture, synaptic
properties and spinal cord resident cells are retained in a
3D–fashion [12, 13]. By the use of this model, we have
recently shown that in the SOD1G93A mouse, a genetic
ALS model, spinal synapses retain greater GABA and
glycine co-release than in the wild types and these
changes influenced synaptic integration [14].
Here, we further exploit organotypic cultures from the

embryonic mouse spinal cord to monitor the emergence
of synaptopathy in pre-motor circuits following CKs
transient exposure, and to test the neuroprotective
efficacy of NGF-mimetic molecule MT2 [15].
We monitored synaptic activity by patch-clamp record-

ing of visually identified ventral interneurons. Spinal
cultured tissue exposed to a cocktail of pro-inflammatory
CKs displayed a significant increase in spontaneous synap-
tic activity characterized by a speeding up of the decay
phase of GABAergic inhibitory currents, that may affect
temporal precision at post-synaptic site and synaptic
control of network excitability. These changes were accom-
panied by significant production of cytokines and chemo-
kines, astrogliosis and microglia activation. Although these
inflammatory features were untouched by MT2 applica-
tions, this drug reverted all synaptic changes, suggesting
the need of specific neuro-protective strategies during
chronic inflammation in the CNS.

Results
Organotypic spinal cord cultures express TrkA and TrkB
receptors
Organotypic spinal slices represent a biological model use-
ful for studying the dynamics of intra-segmental processes

that evidently rely on resident neuroglial cells, propriosp-
inal neurons and circuits [12–14]. To investigate the
impact of inflammation on spinal synaptic networks we
used co-cultured mouse DRG and spinal cord explants
after 2 weeks of in vitro growth (Fig. 1a). These cultures
contain heterogeneous cell populations belonging to the
neuronal and neuroglial phenotypes [12], including
GFAP-positive astrocytes and Iba1-positive microglia
(Fig. 1b). We exploited this model to evaluate the NGF-
mimetic molecule MT2 ability to prevent synaptic modu-
lation brought about by neuroinflammation, the latter
induced by incubating (for 4 and 6 h) the tissue with pro-
inflammatory CKs (TNF-α, IL-1β and GM-CSF, 10 ng/
mL) [16]. Since MT2 is a ligand of TrkA and TrkB recep-
tors, we first checked the expression of these receptors in
the cultured slices. Figure 1c shows the western blot
analysis obtained under basal conditions and upon CK
stress in the presence or in the absence of MT2 (10 μM).
We found that both receptors are expressed by organoty-
pic cultures, and the levels of expression were comparable
in all the experimental conditions. By immunofluores-
cence labeling (Fig. 1d) we observed that TrkA and TrkB
are mainly expressed by DRG neurons and with TrkB, in
part, by astrocytes (Fig. 1e).

NGF-mimetic MT2 counteracts CKs induced increase in
synaptic activity in organotypic slices
We triggered the neuro-inflammatory stress by incubating
organotypic cultures with a cocktail of CKs. To directly
assess the presence of changes at the level of spinal
network activity we patch clamped visually identified ven-
tral interneurons and compared, under voltage clamp
mode, the emergence of heterogeneous spontaneous post-
synaptic currents (sPSCs; Fig. 2a) between control (CTRL;
n = 48) and treated cultures (CKs4H and CKs6H; n = 32
and n = 34, respectively). Organotypic spinal slices display
prominent spontaneous electrical activity in the ventral,
premotor area [13, 14]. To enable a meaningful compari-
son of the shifts in communication dynamics in networks
exposed to CKs, we selected the 2 WIV stage, where
neurons are known to exhibit an intense synaptic activity
[13, 14]. In all culture groups, sPSCs were represented by
heterogeneous inward currents of variable amplitudes
(Fig. 2a and b). CKs treatments did not affect neuronal
passive membrane properties (see Methods), however both
CKs incubation protocols significantly increased the fre-
quency of sPSCs. The plot in Fig. 2c shows (small symbols)
data for six different culture series (between 5 and 8 cells
in CTRL and CK4H or CK6H for each series), and the dif-
ference in mean values, reported as larger symbols, is sta-
tistically significant (19.1 ± 12.7 Hz CTRL; 29.6 ± 10.0 Hz
CKs4H; 31.7 ± 14.7 Hz CKs6H; **P = 0.0048 CTRL vs
CKs4H and **P = 0.0002 vs CKs6H, two-way ANOVA).
This result is in agreement with previous works reporting
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the ability of pro-inflammatory CKs, such as TNF-α or IL-
1β, to enhance synaptic transmission in spinal cord acute
slices [17–19]. However, differently from other studies [20,
21], the neuroinflammatory milieu did not affect the
frequency and amplitude of miniature (recorded in the
presence of TTX, 1 μM), pharmacologically isolated (in
the presence of bicuculline 20 μM and strychnine 1 μM),
AMPA-glutamate receptor-mediated excitatory PSCs
(mEPSCs; CTRL n = 37, CKs4H n = 20, CKs6H n = 20;
Fig. 2d). mEPSCs are independent of network function and
should primarily help to localize observed changes in
synaptic transmission to pre- and/or post-synaptic level.

Our results suggest that CKs treatments were not affecting
network activity by tuning excitatory synapses at the
pre-synaptic level, increasing the probability of release or
the number of release sites, or at the post-synaptic one,
altering the properties of glutamate receptors [22].
In parallel, we tested the effects of MT2 applications

prior and during CKs 4H and 6H treatments (Fig. 2b).
MT2 did not affect the passive properties of CTRL spinal
neurons (see Methods) that exhibited a variable and slight,
although not significant (P = 0.3292), increase in sPSCs
frequency (24.5 ± 14.1 Hz CTRL +MT2, n = 43), as sum-
marized in the plot of Fig. 2c. In the presence of MT2,

Fig. 1 TrkA/B receptor expression in organotypic spinal cord cultures. a Low magnification immunofluorescence for SMI32 (green) of an organotypic
spinal cord slice cultured for 2 weeks. The arrow indicates the ventral fissure, localizing the ventral horns. Note the co-cultured DRGs (arrow heads).
Calibration bar 500 μm. b High magnification immunofluorescence labeling for microglia, astrocytes, and neurons, details of the ventral horn (left) or
DRG (right) are shown. Left) green: Iba1 (microglia); red: GFAP (astrocytes). Right) green: GFAP (astrocytes); magenta: SMI-32 (neurons). Calibration bar
20 μm. c Western blot analysis of Tropomyosin receptor kinases A and B (TrkA and TrkB) expression in organotypic cultures stimulated with a cocktail
of pro-inflammatory CKs (TNF-α, IL-1β and GM-CSF, 10 ng/ml each) for 4 or 6 h in the presence or in the absence of NGF-mimetic molecule
MT2 (10 μM). GAPDH was used as house-keeping gene. Each well of the electrophoresis gel was loaded with an equal amount of proteins
extracted from a pull of n = 5 organotypic slices. Note that TrkA and TrkB expression is not affected by treatments. This experiment is representative of
3 independent ones. d Immunofluorescence confocal and differential interference contrast (DIC) images for TrkA and TrkB expression in DRG neurons.
Green: TrkA (left panel), TrkB (right panel). Red: SMI-32. Yellow: merge. Calibration bar 50 μm. e Immunofluorescence confocal images for TrkB and
GFAP in the ventral horns. Green: TrkB; magenta: GFAP Calibration bar 20 μm
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CKs treatments at both 4H (n = 40) and 6H (n = 40) did
not further boost sPSCs frequency (26.8 ± 11.5 Hz CKs4H
+MT2; 26.6 ± 12.8 Hz CKs6H +MT2). MT2 ability to
control the increase in sPSCs frequency brought about by
CKs treatments is summarized in the inset of Fig. 2c,
where the frequency of synaptic currents is expressed as %
of each control.
mEPSCs frequency and amplitude were unchanged

when measured in the presence of MT2, with or without
CKs (see Additional file 1: Figure S1). These results sup-
port the hypothesis that MT2 prevented the increase in
network activity caused by the inflammation milieu,

apparently without targeting at the pre or post-synaptic
level the AMPA receptor mediated synapses.
In the next set of experiments we explored fast Cl− me-

diated synaptic transmission and, because of the relatively
low frequency of glycinergic events at this developmental
stage in culture [13], we compared CTRL (n = 16) vs CKs
treated GABAA receptor-mediated synaptic events
(IPSCs), recorded in the presence of CNQX (10 μM),
APV (25 μM) and strychnine (1 μM). Upon CKs treat-
ments at 4H (n = 13) and 6H (n = 11) IPSC frequency (4.6
± 3.0 Hz CTRL; 4.9 ± 2.3 Hz CKs4H; 4.7 ± 3.1 Hz CKs6H)
and amplitude (20.1 ± 8.9 pA CTRL; 20.7 ± 9.5 pA CKs4H;

Fig. 2 Pro-inflammatory CKs modulation of synaptic activity in organotypic spinal cord cultures is prevented by MT2. In (a) and (b) Spontaneous
PSCs (sPSCs) recorded from organotypic spinal cord ventral interneurons in control (CTRL) or after CKs treatments in the absence in (a) or in the
presence in (b) of MT2. Note that CKs ability to increase sPSCs occurrence is prevented by MT2 applications. c The plot summarizes the frequency
of sPSCs prior and after CKs incubation, note the significant increase in network activity, and the frequency of sPSCs prior and after CKs incubation in
the presence of MT2, note the absence of significant changes in network activity. Small symbols depict data for six different culture series (between 5
and 8 cells each); larger symbols report mean values. In the inset: the frequency of sPSCs is expressed in respect to each control group, note the
increase by 55.27% in CKs4H and by 65.94% in CKs6H. Virtually no increases were observed in MT2: 9.20% in CKs4H +MT2 and 8.63% in CKs6H +MT2.
d Box-plots summarize the mEPSC event frequency and amplitude values in control or after CKs treatments. Note that CKs applications did not affect
these parameters. See the Additional file 1: Figure S1 for mEPSCs in MT2 control and MT2 CKs-treated organotypic slices
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25.2 ± 13.6 pA CKs6H) were not changed by the
inflammatory conditions in control or in the presence of
MT2 (sample tracings in Fig. 3a and b; box plots in
Additional file 2: Figure S2; CTRL +MT2 n = 16, CK4H +
MT2 n = 14, CK6H +MT2 n = 18).
Superimposed IPSCs in Fig. 3a (right), show that their

decay time constant (τ) becomes progressively shorter
with CKs treatments. In Fig. 3c the box plot summarizes
the measured τ values (32.3 ± 7.8 ms CTRL; 24.3 ±
4.7 ms CKs4H; 21.8 ± 5.6 ms CKs6H; *P = 0.020 CTRL
vs CKs4H, **P = 0.0014 CTRL vs CKs6H, two-way
ANOVA; scaled IPSCs average are superimposed, top).
The absence of a significant correlation between IPSC
rise time vs decay time values (CTRL r = 0.3693; CKs4H
r = −0.1897; CKs6H r = 0.3419; CTRL +MT2 r = 0.3629;
CKs4H +MT2 r = 0.4652; CKs6H +MT2 r = 0.4420;
plots in Additional file 2: Figure S2) suggests that

differences in recording conditions, location of synapses
or electronic filtering are unlikely to have affected our
observations. We extend our characterization to the
properties of miniature IPSCs (mIPSCs; recorded in the
presence of TTX). The results in this group of cells
confirm that upon CKs treatments mIPSCs differ in
their decay kinetics (45.0 ± 8.6 ms CTRL; 31.2 ± 10.4 ms
CKs4H; 21.9 ± 2.1 ms CKs6H; *P = 0.024 CTRL vs
CKs6H, n = 4 for each of the three groups, one-way
ANOVA; Additional file 3: Figure S3) in a manner simi-
lar to that of spontaneous IPSCs. In the presence of
MT2, IPSCs show comparable τ in all CKs treatments,
as exemplified by the superimposed events in Fig. 3b.
The τ values are summarized in the box plot of Fig. 3c
(27.5 ± 7.7 ms CTRL +MT2, 27.8 ± 4.7 ms CKs4H +
MT2, 26.8 ± 7.2 ms CKs6H +MT2; scaled IPSCs average
are superimposed, bottom). The changes in GABAergic

Fig. 3 Pro-inflammatory CKs modulation of GABAA receptor-mediated event time course is prevented by MT2. Representative traces of IPSC recorded
from organotypic spinal slices prior and after CKs treatments in control (a) and in the presence of MT2 (b). Note that while CKs did not increase IPSC
frequency, they affected IPSC time course (superimposed tracings). c Box-plots summarize the decay time constant values in all conditions, in the insets
the scaled and superimposed average IPSC are depicted (control in black, CKs 4H in red and 6H in blue) in the absence or in the presence of MT2.
Note that in the presence of MT2 no changes in the IPSC time course were detected following CKs treatments. In the inset: the τ is expressed as % in
respect to each control group, note the reduction by 24.59% in CKs4H and by 32.48% in CKs6H. Virtually no decreases were observed in MT2: slight
increase by 1.12% in CKs4H +MT2 and slight reduction by 2.44% CKs6H +MT2. See the Additional file 2: Figure S2 for GABAergic PSCs in the absence
or in the presence of MT2
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τ induced by CKs treatments are summarized in the
inset of Fig. 3c, reported as % of changes in respect to
each control.
We can hypothesize that the MT2 was actually able to

protect inhibitory synapses from pro-inflammatory
stimulation.

Both CKs and MT2 are not interfering with spinal neurons
excitability
To elucidate the neuronal mechanisms mediating neuro-
inflammatory increase in spinal activity, we addressed
whether CKs changed neuronal excitability. In current
clamp mode, recorded interneurones did not differ in
terms of resting membrane potential and firing thresh-
old (see Methods). Ventral interneurons in organotypic
slices have been identified on the basis of their discharge

patterns [13]. We identified four different classes of in-
terneurons on the basis of their firing pattern (Fig. 4a)
[13, 23–26]: ‘transient’ cells, that generated a single AP
only; ‘adapting’ cells, that discharged an early burst of
APs followed by adaptation; ‘irregular’ cells without
discernible pattern of AP discharge; ‘tonic’ cells, that
continuously fired APs without apparent accommoda-
tion. A fifth category (i.e. ‘delay’ cells, that generated APs
after a lag) [13] was rarely (< 4%) observed and thus was
not quantified in these series of experiments.
We used depolarizing current steps (0.1 and 0.2 nA

amplitude) [13] to induce the firing patterns. The
histograms depicted in Fig. 4b report the similar
distribution of discharge patterns in CTRL and CK4H
(CTRL 16% transient, 64% adapting, 10% irregular,
10% tonic, n = 31; CKs4H 24% transient, 44% adapt-
ing, 16% irregular, 16% tonic, n = 25) and such a

Fig. 4 Pro-inflammatory CKs and MT2 do not alter neuronal excitability in organotypic spinal slices. a Discharge patterns of ventral interneurons.
The 500 ms depolarizing current commands induced different discharge patterns that identified four cell categories: transient, adapting, irregular
and tonic. b Bar-charts illustrate the probability distribution (expressed as percentage of sampled population) of each cell type in the various conditions
in the absence (left) or in the presence (right) of MT2. c Box-plots illustrate the absence of changes in the frequency of spontaneous action potentials
in all conditions tested
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distribution was not affected by MT2 treatments
(CTRL +MT2 19% transient, 52% adapting, 16%
irregular, 13% tonic, n = 31; CKs4H +MT2 14% transi-
ent, 53% adapting, 11% irregular, 22% tonic, n = 36).
The only different value observed was the virtual
absence in CKs6H of transient firing cells, on the
contrary well represented in CKs6H +MT2 (CKs6H
0% transient, 62% adapting, 11% irregular, 27% tonic,
n = 26; CKs6H +MT2 22% transient, 59% adapting,
3% irregular, 16% tonic, n = 37).
The box plots in Fig. 4c quantify the frequency of

spontaneous APs, and also in this case no differences
were detected among CTRL and CKs treated (CTRL
0.7 ± 0.8 Hz, n = 14; CKs4H 0.9 ± 0.8 Hz, n = 14;
CKs6H 1.0 ± 1.1 Hz, n = 12) or CTRL +MT2 and CKs
+MT2 (CTRL +MT2 1.3 ± 0.9 Hz, n = 14; CKs4H +
MT2 0.8 ± 0.8 Hz, n = 18; CKs6H +MT2 1.0 ± 1.0 Hz,
n = 13).
These results suggest that cell excitability was not af-

fected by CKs or MT2.

Inflammatory stress modifies cytokine and chemokine
production and induces astrogliosis
We evaluated the production of cytokines and chemo-
kines by organotypic spinal cord slices in response to
pro-inflammatory stress. The summarizing plots of
Fig. 5a show that the exposure to Th1 cytokine cock-
tail significantly increases the release of IL6 and IL10,
key players in regulating inflammation, as well as the
release of CXCL1, CXCL2 and CCL2, chemokines
implicated in the recruitment of innate immune cells
(*0.01 < P < 0.05; **0.001 < P < 0.01; ***P < 0.001; one-
way ANOVA). CXCL10, a T cell chemoattractant, is
not affected by these treatments. MT2, independently
on the inflammatory stimulation, does not exert any
effect in the release of any analyzed soluble factor. As
expected, the altered cytokine profile induced by
pro-inflammatory stress is accompanied by marked
astrogliosis and microglia activation, qualitatively
illustrated in the example of Fig. 5b (compare with
Fig. 1b).

Fig. 5 Effects of pro-inflammatory stress on soluble factor production and on astro/microglia morphology in organotypic spinal slices. a Production of
cytokines (IL6; IL10) and chemokines (CXCL1; CXCL2; CCL2; CXCL10) determined by Milliplex assay in organotypic culture supernatants after stimulation
with the pro-inflammatory cytokine cocktail (CKs) for 4 or 6 h in the presence or absence of MT2. Column graphs report mean values ± SEM of 25
independent experiments. The pro-inflammatory stimulus significantly increases the release of IL6, IL10, CXCL1, CXCL2 and CCL2 compared to control
(first column), both after 4 and 6 h of treatment. MT2 treatment did not alter the soluble factor production. b Immune fluorescence staining
for astrocytes (GFAP, green) and microglia (CD68, red). The pro-inflammatory stress (CKs) induces astrocyte spreading and microglia activation,
as indicated by the amoeboid shape. MT2 treatment did not affect these cellular patterns. The pictures show one field representative of 5 randomly
analyzed ones (one experiment representative of 5 independent ones). Calibration bar 20 μm
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MT2 modulates p38 MAPK activation induced by
cytokine stress
It is generally accepted that many highly conserved
serine/threonine mitogen-activated protein kinases
(MAPK), including p38 MAPK, are activated in response
by environmental and cellular stresses including CKs
[15]. We investigated the interplay between MT2 treat-
ment and p38 MAPK activation in organotypic slices
undergoing pro-inflammatory cytokines incubation.
Fig. 6a shows the result of western blot analysis with
specific antibody to phospho-p38 MAPK performed in
lysates of organotypic slices subjected to CKs stimuli.
The data show a de-phosphorylation of p38 MAPK in
MT2 treated slices. To better understand the modula-
tion of p38 MAPK activation elicited by MT2, we tested
whether MKP-1, a phosphatase highly specific for p38
MAPK and also for JNK, could have a role in this set-
ting. Figure 6b shows that, at 6H CKs treatment, MT2
caused an increase in MKP-1 expression. Taken together
these data suggest that MT2 has trophic effects on slices
undergoing metabolic derangement induced by pro-
inflammatory cytokines.

Discussion
The dogma of the CNS immune-privilege is progressively
weakening. In the last decade, an increasing amount of re-
sults suggested that, notwithstanding its being surrounded
by the BBB, the CNS is a highly immunological active
organ, characterized by complex immune cell activation
[27] resulting in beneficial (protective) as well as harmful
(degenerative) responses [28].

Inflammation, synaptic transmission and neuronal
damage are ultimately linked [7]. In this work we have
investigated pro-inflammatory CKs effects in spinal mi-
crocircuits developed in organotypic cultures containing
microglia, astrocytes and neurons, focusing on synaptic
activity and measuring soluble factor production. Last,
we exploited this model to demonstrate the synaptic
protective role of neurotrophins by treating the culture
with a non-peptidic mimetic molecule (MT2) that binds
TrkA/B receptors.
We selected a CKs cocktail able to mimic an inflam-

matory reaction that spreads in CNS containing IL-1β,
well known determinant of neuropathy [3, 7], TNF-α,
that is ubiquitary present during Th1/Th17 mediated
inflammatory reactions, and GM-CSF, key cytokine
responsible of pro-inflammatory effects in the CNS of
MS animal models [29]. GM-CSF receptors are
expressed in microglia, therefore the use of this soluble
factor allows targeting resident microglial cells, present
within the organotypic spinal explanted tissue. Indeed,
one of our aims was that to address synaptic function
in CNS circuits in the presence of astrocytes and
microglia exposed to CKs. We used factors known to
be released in EAE and able to directly and indirectly
(via activation of resident cells) target neuronal func-
tions. We adopted relatively acute treatments, which
triggered inflammatory responses, without affecting neur-
onal membrane properties or inducing direct neurotox-
icity, yet still able to alter synaptic transmission. This
protocol has allowed unmasking subtle early changes in
GABAergic synaptic currents, a significant player in the
excitation/inhibition balance of pre-motor outputs.

Fig. 6 Effects of MT2 on MAP Kinase pathway in organotypic spinal slices. Organotypic cultures were stimulated with pro-inflammatory CKs cocktail
for 4 or 6 h, in the presence or in the absence of MT2. a Slices lysates were blotted with rabbit anti-P-p38 and mouse anti-Tubulin as loading control.
Bar-charts represent the data of densitometric analysis and are expressed as the ratio between phospho-p38 and Tubulin proteins. b Slices lysates were
blotted with rabbit anti-MkP-1 and rabbit anti-ERK 1/2 as loading control. The bar-charts represent the data of densitometric analysis and are expressed
as the ratio between MKP-1 and ERK 1/2 proteins
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Pro-inflammatory CKs tune the excitability of organotypic
pre-motor circuit
In organotypic spinal tissue we confirmed the presence of
heterogeneous neuroglial cells after 2 weeks of in vitro
growth [9], and we further documented the expression
and cell-localization of TrkA/B receptors (see below). In
the present study, we have used a CKs cocktail and set a
tissue exposure protocol to these agents that did not alter
TrkA/B receptor expression, however such agents induced
a reliable release of cytokines and chemokines, mostly due
to the local generation and delivery of inflammatory
factors. In fact, upon CKs stimulus, we reported clear
inflammatory tissue reactivity expressed as IL6 and mono-
cytes recall-chemokines release, likely requiring the
involvement of the heterogeneous cell types present in the
slice culture. Our experimental model is ideally suited to
dissect spinal resident cells ability in modulating local
synapses, in the absence of any contributions from the
peripheral infiltrating cells, this mimics early phases of
multiple sclerosis where immune cells in brain perivascu-
lar spaces activate and produce inflammatory CKs that
easily diffuse before cells enter the CNS [30]. In particular,
CNS cultured explants allow investigating complex synap-
tic networks preserving the basic cytoarchitecture of the
original CNS area [31], but, differently from acute slices,
long term culturing allows the complete recovery from
the altered metabolic state caused by the tissue dissection
and promotes the effective clearance from the tissue
debris, due to the slicing procedure [32, 33].
We recorded from interneurons to assess how the

pro-inflammatory stress may regulate the ventral (pre-
motor) [14] circuit activity, and this was done within a
time-frame where the inflammatory pathological process
did not progress to the extent of excitotoxicity. The lack
of clear cell damage was supported by the absence of
changes in the values of resting membrane potential, in-
put resistance, cell capacitance and AP threshold in the
treated neurons in respect to control ones [34–36].
The present data show that, after 4 and 6 h CKs treat-

ments, the frequency of sPSCs was increased. An in-
creased synaptic transmission is a described feature of
pro-inflammatory stress in neural circuits, reported form
ex-vivo CNS slices isolated from EAE mouse models or
from healthy slices exposed to cerebrospinal fluid from
multiple sclerosis patients [3, 5, 37] as well as from acute
spinal cord slices transiently exposed to various pro-
inflammatory molecules [17–19]. Such increases in
synaptic transmission have been attributed to the up-
regulation of the glutamatergic system [3, 5, 37], to the
down-regulation of inhibitory transmission [17, 18, 38]
or to altered cell excitability [19, 39]. In spinal cultured
slices we did not detect the signatures of any of these
mechanisms. To understand the reason for the observed
boost in spinal network activity, we examined the

miniature excitatory currents [22] that did not suggest
the presence of changes in pre-synaptic release probabil-
ity and in the number of synaptic contacts or in post-
synaptic receptor sensitivity in glutamatergic synapses
due to CKs exposure, we also excluded alterations in
single cell excitability. We equally ruled out variations in
the general distribution of firing patterns [13, 19] and in
the frequency or amplitude of IPSCs.
We focused our attention to the fast Cl−-mediated

neurotransmission due to GABAA receptor activation,
recently indicated as a specific CKs target in spinal cir-
cuits [17, 19, 39]. Intriguingly, we found that both IPSCs
and mIPSCs from 4 and 6 h CKs slices decayed faster
than those from controls, in the absence of any other
changes, including differences in release synchronization
[14]. This is, to our knowledge, the first time that such a
modulation of GABAergic activity is reported due to
pro-inflammatory CKs exposure. We did not further
investigate in the present work the mechanisms respon-
sible for the altered kinetic properties of GABAergic
receptors and therefore the IPSC time course, which can
involve differences in the intracellular chloride concen-
tration [40, 41] as well as changes in the receptor
subunit composition [42].
Regardless the mechanisms involved, our experimental

conditions unmasked a sophisticated and specific synaptic
regulation during inflammatory states that may contribute
to the increase pre-motor circuit excitability via network-
mediated mechanisms. In fact, the faster decaying
GABAergic PSCs will lead to weaker and shorter-lasting
inhibition, resulting in a reduction in charge transfer in
the range 28–35%, perhaps associated with increased
network activity. This hypothesis is in agreement with the
MT2 ability to control both the CK-mediated increase in
network activity and the reduction in IPSC decay. It is
tempting to speculate that the different CKs cocktail, the
duration of the exposure used here, longer than in the
previous studies on acute spinal slices [17, 19, 39], and, in
particular, the presence of resident cells, are all factors
ultimately responsible of this divergence from previous
results. In addition, when compared to acute slicing, the
presence of full metabolic recovery from dissection in
organ cultures, might also play a significant role.
Interestingly, in previous reports, in dissociated cultures

exposed to inflammatory cues [38], the involvement,
during chronic EAE phases, of perturbed GABAergic
transmission, was suggested together with the need of
alternative neuroprotective strategies.

MT2 protective effect on spinal organotypic cultures
With the aim to restore spinal network activity following
the neuroinflammatory treatment, we turned our atten-
tion to NGF. NGF is a well-known regulator of neuronal
differentiation and plasticity [43]. More recently, NGF
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has been associated to inflammation and autoimmune
diseases. NGF, via TrkA receptors, down-regulates in-
flammatory CKs production while inducing the release
of anti-inflammatory mediators [44]. Moreover, adminis-
tration of NGF in vivo in EAE animals delays the onset
of clinical symptoms and prevents the full development
of EAE lesions [45–48]. Despite these exciting reports,
the therapeutic use of neurotrophins is a daunting task,
due to their limited ability to diffuse in tissues [15]. There-
fore, the design of small molecules able to interact with neu-
rotrophins receptors is of great therapeutic interest. In our
cultures, TrkA is specifically expressed in DRG and other
neurons; on the other hand, we found TrkB expression also
in astrocytes. TrkB expression in cultured DRG was not
unexpected [49], reviewed in [50]; the finding of TrkB ex-
pression in astrocytes is, although surprising for cultured
tissue, reminiscent of the complexity of the CNS in vivo. In
fact, in the adult rodent spinal cord TrkB expression has
been described in reactive astrocytes [51–53]. We did not
detect TrkB in CD68+ microglia, present in our culture
mostly in amoeboid (activated) form after CKs treatments,
in agreement with a previous report on the spinal cord
[54–56]. Notwithstanding TrkB expression in the organoty-
pic GFAP-positive astrocytes, (probably the main source of
IL-6), the sole addition of MT2 did not modify CK profile
in the supernatants, neither directly nor by neuron medi-
ated immune modulation [57]. However, MT2 controlled
the CKs electrophysiological signature, namely the induced
increase in the sPSCs frequency and the modulation of
IPSC time course. To note, MT2 provoked a slight increase
in synaptic activity per se, although not significant, and one
could argue that in this manner the CKs potentiating effect
was simply occluded. Against this interpretation, we also re-
ported the efficacy of MT2 in preventing IPSC decay time
modulation. Previous observations [15] suggested the possi-
bility of relatively fast transduction events, after engaging
the tyrosine kinase receptors; such mechanisms may explain
the short time (no more than 4 h) needed in order to ob-
serve the MT2 counteracting effect on electrophysiological
alterations. We also reported a trend of decrease in p-p38
accompanied by an increase in MKP-1. These results are,
although preliminary, suggestive of such pathways involve-
ment in rescuing GABAergic PSCs.
In conclusion, we developed an important tool for the

study of spinal cord alterations induced by inflammation,
that takes into account the role of resident cells: neur-
onal and not neuronal populations, this tool allowed us
to test a potential therapeutic molecule.

Methods
Preparation of spinal cord organotypic cultures and
neuroinflammation treatments
Briefly, organotypic slice cultures of spinal cord and dorsal
root ganglia (DRG) were obtained from mouse embryos

(C57BL/6 J of either sex) at days 12–13 of gestation as
previously described [13, 14, 58, 59]. Pregnant mice were
sacrificed by CO2 overdose and fetuses delivered by cae-
sarean section. Isolated fetuses were decapitated and their
backs were isolated from low thoracic and high lumbar
regions and transversely sliced (275 μm) with a tissue
chopper. After dissecting the spinal cord slices from the
surrounding tissue, slices were embedded into a thick
matrix obtained by chicken plasma (Rockland) and throm-
bin (Sigma) clot. Slices were cultured in plastic tubes with
1 mL medium [14]. The tubes were kept in a roller drum
rotating 120 times per hour in an incubator at 37 °C in
the presence of humidified atmosphere, with 5% CO2. Ex-
periments were performed on spinal cultures at 2-weeks
in vitro (WIV). The day of the experiment, organotypic
spinal cord slices were incubated with standard medium
(Control, CTRL) or, for 4 or 6 h (4H and 6H), with a
cocktail of the following mouse recombinant cytokines:
TNF-α (R&D Systems, #210-TA/CF), IL-1β (R&D
Systems, #M15330), and granulocyte-macrophage colony-
stimulating factor (GM-CSF; R&D Systems, #P04141),
10 ng/mL each, in order to induce an inflammatory state
(Hanisch, 2002). CKs were removed after 4H and 6H,
prior to electrophysiological recordings. In sister cultures,
controls and the incubation with the CKs cocktail was
done in the presence or absence of MT2, a NGF mimetic
non-peptidic TrkA and TrkB ligand, kind gift from Mime-
Tech srl, Rome, Italy. MT2 (10 μM for 4H) was tested in
the same three conditions (CTRL, CKs4H and CKs6H; in
CKs6H condition, MT2 was added after the first 2H of
the CKs treatment).

Immunofluorescence and microscopy
Organotypic cultures were fixed in 4% formaldehyde (pre-
pared from fresh paraformaldehyde; Sigma) in PBS for 1 h
at room temperature (RT; 20–22 °C), washed in PBS and
incubated at RT for 1 h in blocking/permeabilizing solu-
tion consisting of 3% FBS and 3% BSA (Sigma) and 0.3%
Triton-X 100 (Sigma) in PBS. Then, slices were incubated
over night at 4 °C with a combination of the following
primary antibodies, diluted in blocking/permeabilizing
solution: mouse monoclonal anti-glial fibrillary acidic
protein, (GFAP; Sigma, #G3893, RRID:AB_477010, 1:200);
rabbit polyclonal anti-ionized calcium-binding adapter
molecule 1, (Iba1; Wako, #019–19,741, RRID:AB_839504,
1:400); rat monoclonal CD68 (Abcam, #ab53444, RRI-
D:AB_869007, 1:200), rabbit polyclonal against Tropomy-
osin receptor kinase A (TrkA), (Santa Cruz, #SC-14024,
RRID:AB_2298807, 1:200); rabbit monoclonal against
Tropomyosin receptor kinase B (TrkB), (Cell Signaling
Technologies, #4607S, RRID:AB_2155128 1:100); mouse
monoclonal anti-Neurofilament H Non-Phosphorylated
(SMI-32; EMD-Millipore, #NE1023, RRID:AB_2043449,
1:200). Subsequently slices were PBS-washed and
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incubated with secondary antibodies diluted in blocking/
permeabilizing solution for 2 h at room temperature (RT)
in the dark. The secondary antibodies we used were: Alexa
635 goat anti-mouse (Invitrogen, #A31574, RRI-
D:AB_2536184, 1:250); Alexa 488 goat anti-mouse (Invi-
trogen, #A11001, RRID:AB_2534069, 1:400); Alexa 546
goat anti-mouse (Invitrogen, #A11003, RRID:AB_141370,
1:400); Alexa 488 donkey anti-rabbit (Abcam, #ab150061,
RRID:AB_2571722, 1:300). Samples were PBS-washed and
mounted on glass slides with ProLong® Diamond Antifade
Mountant with DAPI (Thermo Fisher Scientific). Stained
samples were examined with 20× and 40× magnification
on a Laser Scanning Confocal Microscopy (LSM 5109
Meta, ZEISS); sections were acquired at different focal
planes every 1 μm. The image analyses were performed
using the ImageJ software (http://rsbweb.nih.gov/ij/).

Western blot analysis
Organotypic slices (n = 5 for each experimental condition)
were lysed with RIPA buffer (50mM Tris-HCl, pH 7.4;
150mM NaCl; 2 mM EDTA; 1mM NaF; 1 mM sodium
orthovanadate, 1% NP-40) in the presence of phosphatase
inhibitor cocktail 2 and 3, protease inhibitor cocktail
(Sigma Aldrich) and centrifuged at 12.000 r.p.m. for 15
min. 40 μg of total proteins were loaded into SDS-PAGE
and blotted onto nitrocellulose filters (GE Healthcare,
Fairfield, CT, USA). Membranes were stained with rabbit
anti-TrkA, anti-TrkB, anti-MKP-1, anti-ERK ½, anti-P-
p38 (Cell Signaling), mouse anti-GAPDH (Cell Signaling),
mouse anti-α-tubulin (Santa Cruz Biotechnology); all the
antibodies were used at 1:1000, final dilution. HRP-
coniugated anti-rabbit IgG (GE Healthcare) or HRP-
conjugated anti mouse IgG (Santa Cruz Biotechnology)
were used as secondary antibodies at 1:2000 final dilution.
The reactions were visualized by the ECL detection system
as recommended by the manufacturer (GE Healthcare).

Electrophysiological recordings
For patch clamp recordings (whole-cell) a coverslip with
the spinal culture was positioned in a recording cham-
ber, mounted on an inverted microscope (Nikon Eclipse
TE200 and Nikon Eclipse Ti-U), and superfused with a
standard saline solution containing (in mM): 152 NaCl,
4 KCl, 1 MgCl2, 2 CaCl2, 10 HEPES and 10 glucose. The
pH was adjusted to 7.4 with NaOH (osmolarity
305 mOsm). Visually identified ventral interneurons
were patched with pipettes (4–7 MΩ) filled with a solu-
tion of the following composition (in mM): 120 K gluco-
nate, 20 KCl, 10 HEPES, 10 EGTA, 2 MgCl2, 2 Na2ATP.
The pH was adjusted to 7.3 with KOH (295 mOsm). All
recordings were performed at RT.
Under voltage clamp configuration, the voltage values

indicated are corrected for the liquid junction potential
(−14 mV) [14] if not otherwise indicated. Series

resistance values were < 10 MΩ enabling recordings of
synaptic currents without significant distortion, and
were not compensated for [13]. Recordings were
performed from ventrally located spinal interneurones
identified on the basis of previously reported criteria [13,
60, 61]. Electrophysiological responses were amplified
(EPC-7, HEKA; Multiclamp 700B, Axon Instruments),
sampled and digitized at 10 kHz with the pCLAMP
software (Axon Instruments) for offline analysis.
In voltage-clamp recordings, single spontaneous post-

synaptic currents (sPSCs) were detected by the use of
the AxoGraph X (Axograph Scientific) event detection
program [62] and by the Clampfit 10 software (pClamp
suite, Axon Instruments). On average, ≥ 400 events were
analysed from each cell in order to obtain mean kinetic
and amplitude parameters. From the average of these
events we measured the rise time defined as the 10–90%
time needed to reach the peak of the synaptic current,
the peak amplitude and the decay time constant
(expressed as τ) by fitting a mono-exponential function.
We detected no differences in membrane capacitance

(45 ± 21 pF CTRL, 46 ± 19 pF CKs4H, 48 ± 18 pF
CKs6H; n = 55, 41, 39, respectively; and 48 ± 21 pF
CTRL +MT2, 43 ± 16 pF CKs4H +MT2, 46 ± 24 pF
CKs6H +MT2; n = 53, 47, 47, respectively) and input
membrane resistance (417 ± 247 MΩ CTRL, 415 ± 328
MΩ CKs4H, 424 ± 404 MΩ CKs6H; and 400 ± 354 MΩ
CTRL +MT2, 430 ± 309 MΩ CKs4H +MT2, 407 ± 244
MΩ CKs6H +MT2) of ventral spinal interneurons
recorded in the different conditions. GABAergic post-
synaptic currents (IPSCs) were recorded at −84 mV
holding potential in the presence of CNQX (10 μM;
Sigma), strychnine (1 μM; Sigma) and APV (25 μM;
Sigma) and tetrodotoxin (TTX; 1 μM, Latoxan) was used
to isolate GABAA receptor-mediated miniature events
(mIPSCs). GABAA receptor-mediated PSCs were fully
blocked by the application of 10 μM SR-95531 (Sigma).
AMPA-glutamate receptor-mediated PSCs were recorded
at −70 mV holding potential in the presence of strychnine
(1 μM; Sigma) and bicuculline (10 μM; Sigma), and TTX
(1 μM, Latoxan) was used to isolate AMPA-glutamate
receptor-mediated miniature events (mEPSCs). AMPA-
glutamate receptor-mediated PSCs were fully blocked by
the application of 10 μM CNQX (Sigma).
During current clamp recordings, bridge balancing

was continuously monitored and adjusted [13]. Action
potentials (APs) were isolated off line by setting an
appropriate threshold (−34 mV). The fast (~ 3 ms dur-
ation) voltage transients that crossed this threshold were
identified as APs. The spontaneous firing frequency for
each neuron was calculated on a sample of at least
5 min of continuous recording at −74 mV resting mem-
brane potential. APs threshold was experimentally deter-
mined by depolarizing current steps [63].
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Induced AP discharge patterns were investigated by
delivering depolarizing current steps (500 ms duration)
of 0.1–0.2 nA amplitude while keeping the cells at
−74 mV resting potential with steady intracellular
current injection. We did not detect differences between
all the conditions tested in neither interneuron resting
membrane potential (−64 ± 9 mV CTRL, −65 ± 9 mV
CKs4H, −63 ± 12 mV CKs6H; n = 21, 16, 16, respectively;
and −66 ± 8 mV CTRL +MT2, −68 ± 6 mV CKs4H +
MT2, −64 ± 7 pF CKs6H +MT2; n = 24, 21, 22, respect-
ively), nor in the spike threshold (−53 ± 4 mV CTRL,
−54 ± 5 mV CKs4H, −53 ± 5 mV CKs6H; and −51 ±
5 mV CTRL +MT2, −53 ± 4 mV CKs4H +MT2, −52 ±
3 mV CKs6H +MT2). Electrophysiological data were ob-
tained from 20 different culture series.

Cytokines and chemokines measurement
IL6, IL10, CCL2, CXCL1, CXCL10 and CXCL2 concentra-
tions were measured in organotypic culture supernatants
by Milliplex assay (Merck Millipore, #MCYTOMAG-
70 k), using the Bio-Plex apparatus (Biorad), according to
the manufacturer’s recommendations.

Statistical analysis
All values from samples subjected to the same experimental
protocols were pooled together and results are presented as
mean ± S.D., if not otherwise indicated; n = number of neu-
rons. Two-way analysis of variance (two-way ANOVA) and
one-way ANOVA were used to determine significance
when multiple groups were compared. Statistical signifi-
cance was determined at P < 0.05.

Additional files

Additional file 1: Miniature excitatory PSCs were not affected by MT2
prior or after CKs treatments. The box plots summarize the mEPSCs
frequency (A) and amplitude (B) in control and CKs-treated organotypic
slices. (TIFF 294 kb)

Additional file 2: The frequency and amplitude of GABAergic PSCs were
not affected by CKs treatments in the absence of in the presence of MT2.
Box-plots summarize the frequency (A) and the amplitude (B) of IPSCs prior
and after CKs incubation in both the absence and the presence of MT2. (C)
The plots show the absence of linear correlation between the decay time
constant and rise time of IPSCs in all the conditions tested. (TIFF 777 kb)

Additional file 3: Miniature inhibitory PSCs were faster after CKs
treatments. Box-plots summarize the decay time constant values of
mIPSCs in all conditions (A). Note the speeding up of the event time
course following CKs treatments. (TIFF 89 kb)
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Methods 

Organotypic spinal cord cultures, pro-inflammatory treatments, and pharmacology 

All experiments were performed in accordance with the EU guidelines (2010/63/UE) and 

Italian law (Decree 26/14) and were approved by the local authority veterinary service and by 

our institution (SISSA-ISAS) ethical committee. All efforts were made to minimize animal 

suffering and to reduce the number of animals used. Animals use was approved by the Italian 

Ministry of Health, in agreement with the EU Recommendation 2007/526/CE. 

Organotypic spinal cord slices and dorsal root ganglia (DRG) were obtained from mouse 

embryos (C57BL/6J) at E12-13 of gestation as previously described (Furlan et al., 2007; 
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Fabbro et al., 2012; Medelin et al., 2016; Usmani et al., 2016; Medelin et al., 2018). 

Experiments were performed on spinal cultures at 2 and 3 weeks in vitro (WIV). 

Stimulation of neuroinflammation was achieved by incubating the cultured slices, 4 and 6 hour 

(4H and 6H), with the following pro-inflammatory molecules: i. a cocktail of the mouse 

recombinant cytokines (CKs; 10 ng/mL each; Medelin et al., 2018) tumour necrosis factor-α 

(TNF-α; R&D Systems), interleukin-1β (IL-1β; R&D Systems), granulocyte macrophage-

colony stimulating factor (GM-CSF; R&D Systems);]. ii. lipopolysaccharide (LPS; Sigma) at 

1 μg/mL. For LPS we also tested a longer incubation timepoint (24H). Control cultures 

underwent the same medium changes, but without CKs or LPS. After incubations (4H, 6H and 

24H) CKs and LPS were washed out prior to electrophysiological recordings. 

Bumetanide (Sigma) was used to block the Na+/K+/Cl- co-transporter (NKCC1), and to inhibit 

chloride uptake. To decrease the cytoplasmic chloride concentration, slices were incubated for 

24 hours at 37° C with bumetanide at 10 μM (BUM24H) and then the CKs cocktail was added 

for 4 hours (BUM24H + CKs4H). 

Immunofluorescence, imaging, and analysis 

Organotypic cultures were fixed with 4% formaldehyde (prepared from fresh 

paraformaldehyde, Sigma) in phosphate buffer solution (PBS 1, Sigma) for 1 hour at room 

temperature (RT; 20 ÷ 22 °C) and washed in PBS. Free aldehyde groups were quenched in 0.1 

M glycine in PBS for 10 minutes. Slices were permeabilized and blocked in PBS 1, 5 % FBS 

(Sigma), 1 % BSA (Sigma), and 0.3 % Triton-X 100 (Sigma) at RT for 1 hour and then 

incubated overnight at 4 °C with anti-GFAP (mouse monoclonal, 1:400, Sigma), anti-Iba1 

(rabbit polyclonal, 1:200, Wako), anti-SMI32 (mouse monoclonal, 1:200, EMD-Millipore), 

and anti-MAP2 (mouse monoclonal, 1:200, Sigma) primary antibodies. 

For β-tubulin III and GAD65/67 co-immuno-labelling, fixed samples were quenched with Na 

(meta)periodate 2.3% in deionized water for 5 min and Na borohydride 1% in TRIS 0.1M for 

10 minutes. Slices were blocked in free-floating with PBS 1, 10 % FBS (Sigma), 1 % BSA 

(Sigma), 1 % fish gelatin and 0.3 % Triton-X 100 (Sigma) at RT for 1 hour and then incubated 

overnight at 4 °C with anti-β-tubulin III primary antibody (mouse monoclonal; 1:500, Sigma) 

and anti-GAD65/67 (rabbit polyclonal; 1:500, ABCAM). 
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Subsequently, the slices were PBS-washed and incubated with secondary antibodies diluted in 

blocking solution for 2h at RT in the dark. The secondary antibodies were: Alexa 488 goat 

anti-mouse (1:500, Invitrogen); Alexa 488 goat anti-rabbit (1:500, Invitrogen); Alexa 594 goat 

anti-mouse (1:500, Invitrogen); Alexa 594 goat anti-rabbit (1:500, Invitrogen); DAPI (Thermo 

Fisher Scientific). Samples were mounted on glass coverslips using Vectashield mounting 

medium (Vector Laboratories). 

Images were acquired using Nikon C2 Confocal microscopes with Ar/Kr, He/NE, and UV laser 

with 20 , 40  or 63  oil objectives (1.4 n.a.) using oil mounting medium (1.515 refractive 

index). Confocal sections were acquired every 0.5 μm up to a total Z-stack thickness of 5 μm. 

For each condition, we performed n = 3 ÷ 6 independent cultures, from each culture series we 

used 3 ÷ 4 slices, where 3 ÷ 8 fields were randomly acquired. Offline analysis of the image Z-

stack was performed using the open source image-processing package FIJI (http://fiji.sc/Fiji).  

Analysis of microglia morphology was performed by creating a camera lucida with Photoshop 

(PhotoshopCS6Portable) and then processed by NeurphologyJ FIJI plug-in (Ho et al., 2011).  

Quantification of GAD65/67 immunoreactivity was performed measuring the intensity of 

fluorescence, the voxel count and the number of GAD65/67 clusters using the Volocity3D 

Image Analysis Software. Clusters were determined after thresholding of images.  Thresholds 

were determined using the ‘voxel spy’ facility of the software and chosen such that all 

recognizable punctuate structures were included into the analysis (size higher than 0.03 μm3 

and separate touching objects of 0.5 μm3). 

Electrophysiological recordings and data analysis 

For patch clamp recordings (whole-cell, voltage clamp mode), a coverslip with the spinal 

culture  (2 and 3 WIV) was positioned in a recording chamber, mounted on an inverted 

microscope (Nikon Eclipse TE200) and superfused with a standard saline solution containing 

(mM): 152 NaCl, 4 KCl, 1 MgCl2, 2 CaCl2, 10 HEPES and 10 glucose, the pH was adjusted to 

7.4 by NaOH (305 mOsm). Patch pipettes were pulled from borosilicate glass capillaries (4 ÷ 

7 Mand filled with intracellular solution containing (mM): 120 K gluconate, 20 KCl, 10 

HEPES, 10 EGTA, 2 MgCl2, 2 Na2ATP. The pH was adjusted to 7.3 with KOH (295 mOsm). 

All electrophysiological recordings were performed at RT. 

http://fiji.sc/Fiji
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The reported voltage values are corrected for the liquid junction potential (14 mV) (Medelin 

et al., 2016). Electrophysiological responses were amplified (EPC-7, HEKA), sampled and 

digitized at 10 kHz with the pCLAMP software (Axon Instruments) for offline analysis. The 

value of series resistance was <10 MΩ enabling recordings of synaptic currents without 

significant distortion and thus was not compensated for (Furlan et al., 2007; Medelin et al., 

2016). Recordings were performed from ventrally located spinal interneurons visually 

identified based on previously reported criteria (Galante et al., 2000). Spontaneous 

postsynaptic currents (PSCs) were recorded at 70 mV holding potential by the Clampfit 10 

software (pClamp suite, Axon Instruments). On average, ≥ 300 events were analyzed from 

each cell in order to obtain mean kinetic and amplitude parameters. From the average of these 

events, we measured the rise time defined as the 10 – 90 % time needed to reach the peak of 

the synaptic current, the peak amplitude and the decay time constant (τ) that was obtained by 

fitting a mono-exponential function. 

We compared the passive membrane properties among Control, CKs- and LPS-treated spinal 

interneurons. We detected no differences in capacitance (51 ± 31 pF Control; 43 ± 23 pF CKs 

4H; 43 ± 21 pF CKs 6H; n= 62, 47, 54 respectively; 55 ± 23 pF Control; 44 ± 18 pF LPS 4H; 

48 ± 22 pF LPS 6H; n= 35, 38, 34, respectively) and input resistance (470 ± 395 MΩ Control; 

587 ± 537 MΩ CKs 4H; 481 ± 414 MΩ CKs 6H; 430 ± 323 MΩ Control; 399 ± 221 MΩ LPS 

4H; 439 ± 246 MΩ LPS 6H). 

GABAergic postsynaptic currents (IPSCs) were recorded at 84 mV holding potential in the 

presence of CNQX (10 μM; Sigma), strychnine (1 μM; Sigma) and APV (25 μM; Sigma). 

Tetrodotoxin (TTX; 1 μM, Latoxan) was used to isolate GABAA-receptor-mediated miniature 

events (mPSCs). GABAA-receptor-mediated PSCs were fully blocked by the application of 10 

μM SR-95531 (Sigma).  

Recordings of the IPSCs at different holding potentials were used to measure the chloride 

equilibrium potential (ECl), which was determined as the x-axis intercepts point of the resulting 

I-V curve extrapolated by linear regression.  

The imidazopyridine zolpidem (Sigma), a benzodiazepine ligand with high selectivity for 

GABAARs containing the 1-subunit and moderate affinity to 2- or 3-subunit, (Maric et al., 

1999), was dissolved in water stock solution (1 mM) and diluted to the concentration of 100 

nM (Chen et al., 2004) in extracellular solution for bath application (15-20 min).  
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Cytokines and chemokines measurement 

TNF-α, IL-4, IL-6, IL-10, INF-γ, CXCL1, and CXCL2 concentrations were measured in 

organotypic culture supernatants by Milliplex assay (Merck Millipore, #MCYTOMAG-70k), 

using the Bio-Plex apparatus (Biorad), according to the manufacturer’s recommendations. 

Statistical analysis 

All values from samples subjected to the same experimental protocols were pooled together 

and results are presented as mean (± S.D., if not otherwise indicated, with n = number of 

neurons, if not otherwise indicated). In box-plots, the thick horizontal bar indicates the median 

value, the boxed area extends from the 25th to 75th percentiles while whiskers from the 5th to 

the 95th percentiles. The homogeneity of variances was assessed through the Levene's test.  

Statistically significant difference between two data sets was assessed by Student's t-test for 

parametric data and by Mann-Whitney for non-parametric ones. Differences between the 

logarithmic values of the analyzed variables were assessed using one-way ANOVA and 

multiple comparisons were adjusted by Tukey correction.  

Statistical significance was abbreviated as follows: *P<0.05, ** P<0.01, *** P<0.001. 

Results 

CKs and LPS differently affect GABAergic transmission in organotypic spinal slices  

We exploited organotypic spinal cord and DRG co-cultures (Fig. 1 A) to model 

neuroinflammation in vitro and to investigate the impact of pro-inflammatory agents on 

neuronal network activity. In particular, we addressed the modulation of inhibitory, 

GABAergic synaptic transmission. We compared two different danger signals to trigger 

neuroinflammation in cultured slices: a pro-inflammatory cocktail of CKs (Medelin et al., 

2018) and LPS. In both conditions, after 4H and 6H treatments (see methods), patched clamped 

ventral interneurons displayed a comparable and significant increase in the frequency of 

spontaneous PSCs (represented by heterogeneous inward currents of variable amplitude), in 

accordance with previous reports (Kawasaki et al., 2008; Zhang et al., 2010; Zhang et al., 

2011; Medelin et al., 2018; Fig. S1 A-D; Control, CKs 4H, and CKs 6H; n = 62, 48, 54, 

respectively; Control, LPS 4H, and LPS 6H; n = 35, 38, 34, respectively 



 
 

68 

 

Figure 1. CKs and LPS differently affect GABAA receptor-mediated synaptic currents in 

organotypic spinal culture.  
A, Immunofluorescence labelling of organotypic co-cultured DRG and spinal cord slice (2 

WIV), mature neurons and neuronal processes are visualized by SMI-32 (in red) and MAP2 

(in green) markers. The dashed area is shown at higher magnification in the right panels. VH 

= ventral fissure, DH = dorsal horn, DRG = dorsal root ganglia. B, Pharmacologically isolated 

IPSCs recorded from ventral interneurons at 2 WIV. CKs 4H (in red, left) and 6H (in blue, left) 

enhanced IPSC frequency, on the opposite LPS 4H (in red, right) and 6H (in blue, right) did 

not affect IPSCs occurrence. C, Box plots summarized  values from pooled experiments in 

CKs (top) or LPS (bottom), insets show superimposed, averaged IPSCs (same cells as in B), 

note the changes in IPSCs duration in CKs D, Box plots summarized  values from pooled 

experiments in CKs (top) or LPS (bottom), insets show superimposed, averaged mIPSCs, note 

the changes in IPSCs duration in CKs. Box plot are mean ± SD while column graph is mean ± 

SEM analyzed with one-way ANOVA: *P<0.05, ** P<0.01, *** P<0.001. 
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Thus, in spinal explants, global network activity was similarly affected by the two danger 

signals, CKs and LPS. We next focused our attention on the fast Cl- mediated 

neurotransmission due to GABAA receptor activation, a potential CKs target in spinal circuits 

(Kawasaki et al., 2008; Zhou et al., 2011; Zhang and Dougherty, 2011; Medelin et al 2018).  

We recorded GABAA receptor-mediated synaptic events (IPSCs; Fig. 1 B) pharmacologically 

isolated in the presence of CNQX (10 µM), APV (25 µM) and strychnine (1µM). CKs 

treatments (4H and 6H; n = 30, 31; respectively) significantly increased IPSCs frequency (4.9 

± 1.9 Hz CKs 4H; 4.6 ± 2.2 Hz CKs 6H; box plots in Fig. S2 A) when compared to Control 

(3.1 ± 1.6 Hz, n = 35; ***P < 0.001 Control vs CKs 4H and **P = 0.006 vs CKs 6H, one-way 

ANOVA; box plots in Fig. S2 A). Conversely, in LPS treatments (LPS 4H, LPS 6H; n = 34, n 

= 28, respectively; Fig. 1 B, right tracings) IPSCs frequency was slightly, although not 

significantly affected by the inflammatory stimulus (3.0 ± 2.6 Hz LPS 4H; 3.3 ± 2.7 Hz LPS 

6H) when compared to their relative Control (2.0 ± 1.5 Hz, n = 37; box plots in Fig. S2 A). 

We next explored the kinetic properties of the IPSCs. Consistent with our previous findings 

(Medelin et al., 2018), CKs treatments significantly accelerated the IPSCs decay time constant 

(τ) after both CKs 4H and CKs 6H exposures (23.9 ± 6.3 ms CKs 4H; 25.5 ± 6.4 ms CKs 6H; 

Fig. 1 C, top, box plot and inset) when compared to Control (31.8 ± 9.4 ms Control; ***P < 

0.001 CTRL vs CKs4H, ***P < 0.001 Control vs CKs 6H, one-way ANOVA; Fig. 1 C). 

Differently, LPS (4H and 6H) did not modulate the τ of the IPSCs that remained unchanged 

(27.9 ± 7.1 ms LPS 4H; 28.1 ± 6.3 ms LPS 6H) in respect to Control (29.1 ± 7.4 ms Control; 

Fig. 1 C, bottom box plot and inset). The values of IPSCs amplitude (18.0 ± 10.1 pA Control; 

19.1 ± 8.8 pA CKs 4H; 17.7 ± 11.2 pA CKs 6H; 15.7 ± 8.9 pA Control; 11.3 ± 4.5 pA LPS 

4H; 13.1 ± 7.3 pA LPS 6H; Fig. S2 B) and rise time (2.5 ± 0.9 ms Control; 2.1 ± 0.8 ms CKs 

4H; 2.4 ± 1.1 ms CKs 6H; 2.6 ± 1.0 ms Control; 2.5 ± 1.0 ms LPS 4H; 2.6 ± 0.9 ms LPS 6H; 

Fig. S2 C) were unaffected by all treatments. We extended our characterisation to the properties 

of miniature GABAergic currents (mPSCs; recorded in the presence of TTX). The results in 

this group of cells (Fig. 1 D) confirmed that Control and CKs 6H mPSCs differed significantly 

in their decay kinetics (mPSCs τ value: 40.9 ± 11.7 ms Control; 29.4 ± 11.6 ms CKs 4H; 24.3 

± 6.4 ms CKs 6H; n=9, 7, 9, respectively; *P = 0.024 Control vs CKs 6H, one-way ANOVA) 

in a manner similar to that of spontaneous IPSCs. mIPSCs decay time remained unchanged 
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upon LPS treatments (30.2 ± 5.9 ms Control; 29.3 ± 4.3 ms LPS 4H; 30.2 ± 5.3 ms LPS 6H; 

n=5, 5, 5, respectively; Fig. 1D, bottom) in accordance with the spontaneous IPSCs. 

Since IPSCs decay time may be developmentally regulated (Liu and Wong-Riley, 2004), we 

plotted the τ values detected in Control and in CKs 4H and 6H against the time of growth in 

vitro.  Bar plots in Fig. 1 E show that the effects of CKs on the GABAergic current duration 

were effective at any age of maturation in vitro, excluding a correlation between the 

modulation of IPSCs decay time and the developmental stage of spinal cord slices in vitro (13-

15 DIV: 36.3 ± 2.7 ms Control; 26.5 ± 2.2 ms CKs 4H; 24.5 ± 1.6 ms CKs 6H; n=14, 10, 15, 

respectively; *P = 0.011 Control vs CKs 4H; ***P < 0.001 Control vs CKs 6H; 16-17 DIV: 

30.8 ± 2.7 ms Control; 20.9 ± 2.0 ms CKs 4H; 26.3 ± 2.3 ms CKs 6H; n=17, 15, 12, 

respectively; *P = 0.013 Control vs CKs 4H; 20-22 DIV: 37.6 ± 3.6 ms Control; 22.5 ± 2.6 ms 

CKs 4H; 26.2 ± 2.3 ms CKs 6H; n=8, 6, 6, respectively; *P = 0.011 Control vs CKs 4H; *P = 

0.041 Control vs CKs 6H; one-way ANOVA). 

Thus, both CKs and LPS treatments boosted PSCs frequency, but only CKs specifically 

affected the GABAergic synaptic transmission.  

We next examined the presence and distribution of GABAergic neurons 

immunohistochemically targeting either isoforms of GABA-synthesizing enzyme (GAD), 

namely GAD65/67 (Pribiag et al., 2013). We quantified and compared GAD65/67 labelling in 

all conditions (Fig. S3, A-D). Immunoreactivity for GAD65/67 was visible throughout the 

spinal explants where neurons were identified by a specific immunofluorescence marker (class 

III β-tubulin, Fig. S3 A and C). At lower magnification, scattered soma, extensive neural 

processes, and bouton-like structures appeared to be stained for both GAD isoforms and were 

not affected by CKs or LPS treatments, quantified in Fig. S3 B and D.   

 

CKs and LPS promote diverse responses in the spinal explants glial resident-cells 

In response to different microenvironment stimuli, microglia and astrocytes may switch to 

active states, highlighted by changes in cell number and morphology. Microglia and astrocytes 

were visualized in organotypic spinal explants by Iba1 and GFAP co-immunolabelling, shown 

in Fig. 2 A and B.  

CKs 4H and 6H treatments promoted a significant increase in Iba1+ cells (99.8 ± 5.5 cells/mm2 

Control; 155.3 ± 21.5 cells/mm2 CKs 4H; 183.7 ± 15.7 cells/mm2 CKs 6H; *P = 0.032 Control 
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vs CKs 4H; ***P < 0.001 Control vs CKs 6H; one-way ANOVA; Fig. 2 C, left). The same 

treatments promptly induced a significant increase in GFAP intensity (158.1 ± 35.7 % CKs 

4H; 229.3 ± 37.3 % CKs 6H; *P = 0.024 Control vs CKs 4H, ***P < 0.001 vs CKs 6H; ***P 

< 0.001 CKs 4H vs CKs 6H; one-way ANOVA; Fig. 2 C, middle) with no major changes in 

GFAP voxel (119.0 ± 22.4 % CKs 4H; 121.3 ± 37.1 % CKs 6H; Fig. 2 C, right). On the 

opposite, LPS, summarized in the plots in Fig. 2 D, provoked only mild increases in Iba1+ cells 

(100.8 ± 8.2 cell/mm2 Control; 112.8 ± 7.4 cell/mm2 LPS 4H; 132.2 ± 11.7 cell/mm2 LPS 6H), 

and in the GFAP intensity (110.4 ± 18.7 % LPS 4H; 141.1 ± 15.1 % LPS 6H), with no changes 

in GFAP voxel (102.5 ± 4.1% LPS 4H; 99.4 ± 3.3% LPS 6H). These observations suggest that 

CKs, differently from LPS, promoted a significant increase in microglia proliferation and 

astrogliosis in spinal cord cultures.   

 

Figure 2. CKs and LPS induced different tissue reactivity in spinal organotypic slices.  

A-B, Representative confocal images of organotypic spinal slices immunolabelled for Iba1 (in 

red) and GFAP (in green), visualizing microglia and astrocytes, respectively, prior and after 

CKs or LPS treatments (4H and 6H) C, Bar plots summarize Iba1+ cells/mm2, GFAP intensity 

(express as % of control) and GFAP voxel (express as % of control) prior and after CKs 

treatments (4H and 6H). D, Bar plots summarize Iba1+ cells/mm2, GFAP intensity (express as 

% of control) and GFAP voxel (express as % of control) prior and after LPS treatments (4H 
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and 6H). Bar plots report mean values ± SEM analyzed with one-way ANOVA: *P<0.05, ** 

P<0.01, *** P<0.001. 

 

CKs and LPS modulate microglia morphology with opposite effects on cell complexity    

In this set of experiments, we assessed CKs and LPS ability to shape the morphology of Iba1+ 

cells. To this aim, we quantified the total dendrites length, an accepted index to measure the 

cellular processes growth (Sidharth et al., 2011), and the ratio between dendrite end- and 

attachment-points, a measure of the degree of ramification within each dendrite branching of 

Iba1+ cell (Fig. 3 A and B). Upon CKs 4H and 6H treatments, microglia (Fig. 3 A) showed a 

significant decrease in both the total dendrite lengths (270.3 ± 144.8 µm Control; 99.7 ± 65.6 

µm CKs 4H; 93.8 ± 81.2 µm CKs 6H; ***P < 0.001 Control vs CKs 4H; ***P < 0.001 Control 

vs CKs 6H; one-way ANOVA; Fig. 3 C, top) and end/attachment points ratio (2.4 ± 1.4 

Control; 1.2 ± 0.4 CKs 4H; 1.2 ± 0.5 CKs 6H; ***P < 0.001 Control vs CKs 4H; ***P < 0.001 

Control vs CKs 6H; one-way ANOVA; Fig. 3 C, bottom). These changes are indicative of a 

switch in microglia morphology from the ramified shape to the amoeboid one. In parallel, in 

slices stimulated by LPS, we observed opposite changes in cell morphology. In fact, Fig. 3 A 

and D show a significant increment of the Iba1+ cell dendrites at LPS 6H (346.6 ± 194.9 µm 

Control; 306.1 ± 126.2 µm LPS 4H; 472.6 ± 255.9 µm LPS 6H; ***P < 0.001 Control vs LPS 

6H; ***P < 0.001 LPS 4H vs LPS 6H; one-way ANOVA) with no reduction in the ramification 

of dendritic branching (2.6 ± 1.3 Control; 2.3 ± 1.1 LPS 4H; 2.7 ± 1.3 LPS 6H). Finally, we 

evaluated and compared the production of cytokines and chemokines by spinal slices in 

response to pro-inflammatory stress. The summarizing plots of Fig. 3 E show that the exposure 

to CKs (top) and LPS (bottom) significantly increased the release of pro-inflammatory 

cytokines, measured in the supernatant, such as TNF-α (in LPS), IL-6, INF-γ (in both LPS and 

CKs), as well as the release of chemokines including CXCL1 and CXCL2 necessary for the 

recruitment of innate immune cells (*0.01 < P < 0.05; **0.001 < P < 0.01; ***P < 0.001, n=14, 

one-way ANOVA). On the other hand, IL-4 and IL-10 are significantly raised upon CKs 

stimuli, while a reduction in IL-4 accompanied by no changes in IL-10 levels were detected 

after LPS treatments. The release of pro- and anti-inflammatory cytokines, in addition to the 

production of chemokines, suggests that the activation of inflammatory mechanisms, although 
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different, occurred in spinal slices stimulated by both CKs and LPS at any time point (4H and 

6H).  

 

Figure 3. Microglia morphology is differentially modulated by CKs and LPS treatments 

in organotypic slices.  

A, Representative confocal images comparing Iba1 immunolabelling in untreated (control), 

CKs and LPS treated cultures (4H and 6H). B, High magnification confocal micrograph 

illustrates the morphological analysis: dendrites length and their end/attachment points are 

indicated by arrows. C-D, Plots summarize the measured parameters in pooled experiments, 

note the significant decrease in total dendrites length and end/attachment points ratio upon CKs 

4H and 6H (C), on the opposite, a significant increase in total dendrites length is reported at 

LPS 6H with no changes in end/attachment point ratio (D). E, Production of cytokines (TNF-

α; IL-4; IL-6; IL-10; INF-γ) and chemokines (CXCL1; CXCL2) determined by Milliplex assay 

in organotypic culture supernatants after incubation with CKs (top) and LPS (bottom) for 4H 

or 6H. Column graphs report mean values ± SEM of 22 and 14 independent experiments 

respectively analyzed with one-way ANOVA: *P<0.05, ** P<0.01, *** P<0.001. 
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Prolonged exposure to LPS does not change the spinal tissue response  

In the central nervous system LPS binds to the Toll-like receptors (TLRs), especially TLR4, 

expressed on the microglia surface. This signal involves several proteins resulting in the 

production and release of cytokines, chemokines and other inflammatory factors (Rahimifard 

et al., 2017). Since LPS, differently from CKs (Maria Schäfers and Linda Sorkin, 2008), does 

not act directly on neurons, we tested whether a longer (24H) exposure to LPS may ultimately 

lead to changes in GABAergic transmission and kinetic. Fig. 4 reports the effects of LPS 24H 

in terms of PSCs frequency (21.7 ± 6.7 Hz Control; 30.5 ± 5.0 Hz LPS 24H; n = 8 and 12, 

respectively; **P = 0.003 Control vs LPS 24H; Student’s t-test; Fig. 4 A), IPSCs frequency 

(1.2 ± 0.8 Hz Control; 2.5 ± 0.9 Hz LPS 24H; **P = 0.007 Control vs LPS 24H; Student’s t-

test; Fig. 4 B) and IPSCs decay time constant (32.7 ± 10.2 ms Control; 29.7 ± 5.5 ms LPS 24H, 

Fig. 4 C, scaled averaged IPSCs are superimposed in the inset). In addition, Iba1+ cells at LPS 

24H (Fig. 4 D) displayed the characteristic morphology with longer branching in ramified cells 

(quantified in plots of Fig. 4 D, total dendrites length: 249.6 ± 96.0 µm Control; 393.4 ± 216.9 

µm LPS 24H; ***P < 0.001 Control vs LPS 24H; Student’s t-test; end/attachment points ratio: 

1.2 ± 1.5 Control; 1.3 ± 1.5 LPS 24H) in the absence of changes in terms of Iba1+ cells (53.1 

± 2.9 cells/mm2 Control; 55.3 ± 2.9 cells/mm2 LPS 24H). These results indicated that while the 

trend in increasing IPSCs frequency brought about by LPS turned into a significant change 

upon prolonged exposure (compare Fig. S2 A to Fig. 4 B), the kinetic of GABAergic currents 

was not modulated by longer danger signal, and the effects on microglia dendrite lengths 

stabilized after 6H.  
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Figure 4. LPS-prolonged exposure in organotypic spinal slices does not alter IPSCs 

decay.  

A, Representative traces of spontaneous PSCs recorded from control (in black) and LPS 24H 

(in orange) ventral interneurons. Polled data are summarized by the box plot showing a 

significant increase of PSCs frequency upon LPS 24H. B, Pharmacologically isolated IPSCs 

are recorded from control (in black) and LPS 24H (in orange) ventral interneuron (same cells 

as in A). The box plot summarizes the IPSCs frequency from pooled experiments and exhibits 

a significant increased frequency brought about by LPS 24H. C, The boxplot summarizes the 

values of  for control and LPS, in the inset averaged, scaled, superimposed traces of the two 

conditions are shown. Note that no changes were detected in IPSCs decay time constant. D, 
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Left, representative image of the LPS 24H-treated organotypic culture labelled with GFAP 

(green) and Iba1 (red). High magnification Iba1 micrographs are shown (middle), and plots 

summarize the morphology changes of microglia at LPS 24H. Note the significant increase in 

total dendrites length (top). 

CKs modulate GABAergic current duration by tuning GABAAR subunit composition 

We found that GABAA-PSCs from 4H and 6H CKs slices, but not from LPS ones, decayed 

faster than those from Controls (Medelin et al., 2018). This tuning in inhibitory synaptic signals 

appears specifically exerted by CKs-induced neuroinflammation. We further investigated in 

the present work the mechanisms responsible for this effect on the kinetic properties of 

GABAergic receptors and therefore the GABAA-PSC time course. Our results on mIPSCs 

excluded the involvement of presynaptic processes (such as GABA release synchronization) 

that may affect synaptic time course, in fact, the decay of IPSCs is also faster for unitary 

synaptic events (mPSCs). 

We addressed whether differences in the intracellular chloride concentration [Cl-]i might affect 

IPSC kinetics (Funk et al., 2008; Moroni et al., 2011).  

We incubated the slices with Bumetanide (10 μM; 24H), a pharmacological agent that blocks 

the activity of NKCC1, the most abundant co-transporter membrane-protein determining 

intracellular chloride levels (Ben-Ari, 2017), to experimentally reduce [Cl-]i prior to CKs 4H 

(see sketch of the experimental settings in Fig. 5 A). 

Bumetanide per se induced an increase in PSCs and IPSCs frequencies that were not 

significantly improved by CKs 4H (Fig. 5 B and Fig. S4).  More intriguingly, Bumetanide 

reduced significantly the duration of GABAergic currents that were not further shortened by 

CK 4H (33.1 ± 8.1 ms Control; 22.3 ± 6.2 ms BUM 24H; 22.3 ± 6.5 ms BUM 24H + CKs 4H; 

n=10, 11, 10, respectively; **P = 0.005 Control vs BUM 24H; *P = 0.012 Control vs BUM 

24H + CKs 4H; one-way ANOVA; Fig. 5 C).  

Fig. 5 D shows the measurement of the reversal potential of IPSCs in Control, Bumetanide and 

Bumetanide plus CKs 4H. The ECl value in Control (–48.5 ± 3.7 mV; n = 7) was close to the 

approximate theoretical value expected for the Cl− equilibrium potential for our intracellular 

and extracellular chloride concentrations (–50 mV; Medelin et al., 2016). However, the 

reversal potential was significantly shifted to more negative values by blocking NKCC1 (–54.2 

± 4.3 mV BUM 24H, n = 8; *P = 0.025 Control vs BUM 24H; one-way ANOVA), suggesting 

that local intracellular chloride concentrations are lower. It is important to note that in 
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organotypic cultures, upon Bumetanide treatments, the Cl− reversal potential differed from the 

predicted theoretical value, suggesting a real shift in the internal chloride concentration as a 

result of improved extrusion (DeFazio et al., 2000; Ostroumov et al., 2011), regardless the 24 

mM Cl− intracellular pipette solution. 

Pro-inflammatory CKs, in the presence of NKCC1 block, slightly increased such a shift (–56.2 

± 3.5 mV BUM 24H + CKs 4H; n = 8; **P = 0.003 Control vs BUM 24H + CKs 4H; one-way 

ANOVA). The absence of significant changes in IPSCs decay time constant and reversal 

potential when CKs were incubated in the presence of Bumetanide might indicate an occluding 

mechanisms in regulating [Cl-]i.  

To shed light in CKs potential regulation of intracellular chloride, and thus of IPSCs , we 

estimated and compared ECl in CKs and LPS treatments. Fig. 5 E and F show that the reversal 

potential of IPSCs was not altered by these treatments alone (–52.0 ± 7.5 mV Control; –51.5 ± 

5.2 mV CKs 4H; –54.1 ± 6.0 mV CKs 6H; n = 9, 10, 8, respectively; –49.6 ± 7.8 mV Control; 

–49.7 ± 9.9 mV LPS 4H; –52.3 ± 6.0 mV LPS 6H; n = 13, 8, 8, respectively). Regardless the 

similar ECl extrapolated in all the recording conditions, only CKs 4H and 6H induced the 

expected changes in the IPSCs duration ( = 31.8 ± 5.1 ms Control; 23.9 ± 8.1 ms CKs 4H; 

20.7 ± 3.4 ms CKs 6H; n=9, 10, 8, respectively; *P = 0.031 Control vs CKs 4H; **P = 0.003 

Control vs CKs 6H; one-way ANOVA;  = 26.4 ± 5.2 ms Control; 26.2 ± 6.3 ms LPS 4H; 27.5 

± 6.9 ms LPS 6H; n=13, 8, 8, respectively). These results show that changes in ECl might indeed 

modulate IPSCs duration in the organotypic spinal interneurons, however, CKs apparently are 

not tuning the inhibitory current duration by shifts in the ECl. 
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Figure 5. Bumetanide but not CKs and LPS affected the IPSCs reversal potential in 

organotypic slices  

A, Sketch of the protocol used to treat slices with bumetanide for 24H (BUM 24H) followed 

by CKs 4H. B, Representative traces (left) and superimposed isolated events (right) of IPSCs 

in control, after BUM 24H (green), and BUM 24H + CKs 4H (magenta) ventral interneurons. 

C, The boxplot summarizes the  values measured in the three conditions, note the similar and 
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significant reduction in  at BUM 24H and BUM 24H + CKs 4H; in the inset superimposed 

averaged and scaled IPSCs in the three conditions. D, IPSCs averaged and superimposed traces 

(top) recorded at different Vh in control (black), BUM 24H (green) and BUM 24H + CKs 4H 

(magenta). I–V curves were obtained by plotting GABAA-PSCs mean amplitude against Vh. 

Note the significant differences in the approximate calculated reversal potential at BUM 24H 

and BUM 24H + CKs 4H compared to control. E, IPSCs averaged and superimposed traces 

(top) recorded at different Vh in control (black), CKs 4H (red) and CKs 6H (blue). I–V curves 

were obtained by plotting GABAA-PSCs mean amplitude against Vh. Note the similar 

approximate calculated reversal potential in all conditions. F, IPSCs averaged and 

superimposed traces (top) recorded at different Vh in control (black), LPS 4H (red) and LPS 

6H (blue). I–V curves were obtained by plotting GABAA-PSCs mean amplitude against Vh. 

Note the similar approximate calculated reversal potential in all conditions. 

 

Another well-documented process that changes GABAergic inhibition is the switch in the α1-

subunit expression that is traditionally associated with a modulation in IPSCs kinetics, which 

become faster (Vicini et al. 2001). To address the potential changes in the receptor subunit 

composition due to CKs treatment, we tested IPSCs kinetics in the presence of Zolpidem (100 

nM; 15-20 min), an allosteric modulator of GABAAR subunits that at low concentration is 

highly selectively for the GABAAR α1 subunit (Perrais and Ropert et al., 1999). Fig. 6 A shows 

sample superimposed isolated IPSCs recorded from Control, CKs 4H, and CKs 6H, before and 

after Zolpidem applications. After CKs 4H and 6H, IPSCs  was, as expected, significantly 

reduced (33.3 ± 4.5 ms Control; 25.4 ± 4.7 ms CKs 4H; 26.0 ± 4.0 ms CKs 6H; n=9, 10, 9, 

respectively; *P = 0.019 Control vs CKs 4H; *P = 0.045 Control vs CKs 6H). Subsequent 

applications of Zolpidem did not alter IPSCs  in Control (36.3 ± 3.9 ms), while significantly 

prolonged  values detected in CK 4H and 6H (34.5 ± 6.9 ms CKs 4H; 34.2 ± 6.0 ms CKs 6H; 

**P = 0.003 CKs 4H -Zolpidem vs CKs 4H +Zolpidem; *P = 0.017 CKs 6H -Zolpidem vs 

CKs 6H +Zolpidem; two-way ANOVA) which did not differ anymore from Control IPSCs 

(summarized in plots of Fig. 6 B). These results strongly suggest that CKs treatments regulated 

the duration of GABAergic inhibition via postsynaptic changes of the α1 subunit.  
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Figure 6. Block of GABAA receptor α1 subunit by Zolpidem prolonged IPSCs in CKs but 

not in control.  

A, Superimposed IPSCs recorded in control and CKs (4H and 6H) in the presence or in the 

absence of zolpidem. Averaged IPSCs are shown in black (control, left), in red (CKs 4H, 

middle) and in blue (CKs 6H, right) B, Bar plot summarizes the values of  in Control, CKs 

4H, and CKs 6H IPSCs, before and after bath application of zolpidem. Note that the significant 

decrease in IPSCs  upon CKs treatments (4H and 6H) was reversed by zolpidem. In the inset: 

the plot summarizes the % of τ increase in zolpidem, note the increase by 8.71% in control, by 

34.09% in CKs 4H, and by 31.69% in CKs 6H.  
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Conclusions 

Together, these results suggest that the CKs specifically regulate post-synaptically the efficacy 

of GABAergic inhibition in spinal ventral interneurons. Such a regulation of spinal pre-motor 

interneuron activity implies a modulation of GABAA subunit expression and may impair spinal 

network operation. Shortening of IPSCs together with microglia and astrocytes activation may 

represent a specific mechanism of certain CKs combinations, potentially a targetable pathway 

in spinal neuroinflammatory diseases. 

Abbreviations  

APV, (2R)-amino-5-phosphonovaleric acid 

BSA, bovine serum albumin 
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CKs, cytokines 
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DIV, days in vitro 
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FBS, fetal bovine serum  

GAD65/67, Glutamate decarboxylase 
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Iba1, ionized calcium-binding adapter molecule 1 

IL-1β, interleukin-1beta 
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MAP2, microtubule-associated protein 2 

mPSCs, miniature post-synaptic currents 
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PSCs, post-synaptic currents 

RT, room temperature 

SMI-32, neurofilament H non-phosphorylated 

TNF-α, tumor-necrosis factor-alfa 

TTX, tetrodotoxin 
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WIV, week in vitro 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

83 

Supplementary Figures 

 

Supplementary Figure S1. CKs and LPS significantly increased spontaneous PSCs in 

organotypic slices. 

A-B, Representative traces of PSCs in control (black), upon incubation in CKs (4H red and 6H 

blue; left) and in LPS (4H red and 6H blue; right). C-D, Box plots summarize the frequency 

values recorded in all conditions. 
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Supplementary Figure S2. CKs and LPS impact on pharmacologically isolated GABAA 

receptor-mediated IPSCs.  

A-C, Box plots illustrate the mean value of IPSCs frequency, amplitude and rise time upon 

CKs and LPS treatments. A significant increase is observed only in the IPSCs frequency at 

CKs 4H and 6H compared to control.  

 

 

 

 

 



 
 

85 

 

Supplementary Figure S3. GAD65/67 distribution in organotypic slices treated by CKs 

and LPS. 

A, C, Representative images of spinal slices labelled for β-tubulin III (in blue) and GAD65/67 

(in red) show GABAergic neurons and processes B, D, Bar plots summarize the number of 

GAD65/67 voxel, the number of cluster and the cluster intensity in all conditions. Note the 

absence of changes in any measured parameter. 
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Supplementary Figure S4. Spontaneous PSCs and IPSCs frequency after bumetanide 

24H and in bumetanide plus CKs.  

A, Quantification of PSCs frequency recorded from control, bumetanide-treated slices prior 

and after CKs. Note the significant increase in PSCs frequency BUM 24H and BUM 24H + 

CKs 4H compared to control. B, Bar plots summarized a significant increase in IPSCs 

frequency upon BUM 24H and BUM 24H + CKs 4H compared to control.  
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Conclusion 
Neuroinflammation is a powerful mechanism used by the CNS as defence, which is typically 

activated in response to damage and infection. A non-resolution of the inflammatory processes 

lead to a chronic phase that represents a key event in several neurodegenerative diseases. In 

this work, we further confirmed organotypic spinal slices as a good model to test the spinal 

network synaptic activity during neuroinflammatory stress due to the easy access to pre-motor 

interneurons with electrophysiological techniques. Especially, these complex tissue maintains 

the basic spinal cord architecture as well as the neuronal and glial resident cells. This represents 

an essential feature to investigate the neuronal excitability and specific synaptic changes of a 

precise region of interest under physiological and pathological condition.  

The principal findings of this work is that in CKs-treated slices, the interneuronal GABAergic 

transmission is affected, resulting in an impaired in the pre-motor spinal circuits. This effect 

was exclusively mediated by CKs, in contrast to LPS, which did not affect the GABAAR 

kinetic. Our data support the hypothesis that CKs act by post-synaptic modification resulting 

in the inhibitory transmission alteration.  

A part from the intrinsic synaptic activity, environmental factors are surely able to trigger 

neuronal dysregulation and among them, we decided to focus, therefore, on glial cells. An 

essential contribution in neuroinflammatory disorders is mediated by microglia and astrocytes, 

which represents the principal mediators of the inflammatory response. In fact, depending on 

different stimuli (CKs or LPS) they show distinct behaviour that reflects the alteration exhibits 

by spinal interneurons in their synaptic activity.  

Furthermore, we investigated the mechanisms by which pro-inflammatory cytokines induce 

modification on the inhibitory component, and in particular, we assessed two processes capable 

of modifying the GABAAR kinetic: changes in the intracellular chloride concentration ([Cl-]i) 

and receptor subunit composition. Despite CKs induce faster GABAergic synaptic currents, 

they do not affect the [Cl-]i  excluding the hypothesis of a possible action on the chloride 

homeostasis. Moreover, using Zolpidem a selective modulator of the α1 subunit we restored 

the regular GABAAR kinetic. These results clarify the path by which CKs are able to modulate 

mechanisms such as synthesis, trafficking, or assembling associated with the GABAAR 

subunits. 



90 
 

In conclusion, expanded our knowledge about the communication between 

neuroinflammation, glial cells and neuronal spinal networks. Furthermore, understanding the 

molecular pathways that promote the dysregulation of inhibitory spinal synaptic represents a 

future perspective to produce new therapies that could be essential for the spinal 

neurodegeneration disorders.  
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