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Abstract

The paper studies covert communication over a continuous-time Gaussian channel. The covertness condition
requires that the channel output must statistically resemble pure noise. When the additive Gaussian noise is “white”
over the bandwidth of interest, a formal coding theorem is proven, extending earlier results on covert Gaussian
communication in discrete time. This coding theorem is applied to study scenarios where the input bandwidth can
be infinite and where positive or even infinite per-second rates may be achievable.

Keywords: Covert communication, Low probability of detection, Gaussian channel, Continuous time, Waveform
channel, Prolate spheroidal wave functions

1 Introduction
Covert communication, or communication with low
probability of detection [1–4], refers to scenarios where
the transmitter and the receiver must keep a warden
from discovering the fact that they are using the chan-
nel to communicate. On an additive white Gaussian noise
(AWGN) channel, this means that the warden’s observa-
tion should be statistically close to pure noise. It was first
shown in [1] that the AWGN channel obeys the so-called
square-root law for covert communication: the number of
information nats that can be communicated covertly over
the channel can only grow proportionally to the square
root of the total number of channel uses. The exact scal-
ing law, when covertness is measured in terms of relative
entropy, was determined in [3]. Similar results have been
obtained for the binary symmetric channel [2] and general
discrete memoryless channels [3, 4]. A number of further
works have extended these results in several directions.
Among them, some also consider total variation distance
in place of relative entropy as the measure for covertness
[5, 6].
A discrete-time AWGN channel is usually used to

model a continuous-time communication channel with
a bandwidth constraint on its input waveform, cor-
rupted by Gaussian noise that is “white” with respect
to that bandwidth. Using the sampling theorem, such a
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continuous-time channel with bandwidth W Hz over the
time interval [0, T] is approximately equivalent to 2WT

uses of a discrete-time AWGN channel [7]. Hence, one
can roughly say (as in, e.g., a brief remark in [1]) that the
number of nats that can be covertly communicated over
this continuous-time channel is proportional to

√
WT.

In this paper, we first provide a rigorous mathemati-
cal framework to study covert communication over the
continuous-time channel with AWGN over the band-
width of interest. Formal treatment of continuous-time
Gaussian channels is nontrivial because, in short, no
nonzero signal can be both band-limited and time-limited
(see, e.g., [8], Theorem 6.8.2). Indeed, Shannon’s capacity
formula for the band-limited Gaussian channel [7] called
for several follow-up works to acquire a clear physical
meaning; see [9, 10] and references therein. In this paper,
we adopt a model proposed by Wyner [9] where the input
is required to be “strictly band-limited and approximately
time-limited” and introduce a covertness constraint to
that model.
There are some important technicalities in formulating

the continuous-time model. In particular, we find it
important to let the warden observe the output wave-
form over the entire real line. Indeed, even when the
transmitted signal is strictly time-limited, one should not
assume that the warden can only observe the channel
output within the time period that the input occupies. We
demonstrate this by constructing a slightly differentmodel
and proving a pathological result under that model.
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Under the proposed framework, we prove that the
maximum number of nats that can be covertly com-
municated over T seconds and bandwidth W Hz is
indeed proportional to

√
WT. Additionally, we show

that binary phase shift keying (BPSK) is optimal in the
sense that it achieves the dominant term in this maxi-
mum number of nats. The latter is related to the fact
that BPSK can achieve the capacity per unit cost on
the AWGN channel [11], i.e., BPSK is asymptotically
optimal in the limit where the signal-to-noise ratio goes
to zero.
Using the continuous-time result, we then investigate

the regime where W is infinity or grows to infinity
together with T. Our intention is to capture engineer-
ing insights to scenarios where information is transmitted
over a large bandwidth and a relatively short time, such as
in “spread-spectrum” communication [12]. We prove that,
if W is infinity or grows large fast enough compared to T,
then covert communication can have positive rates in nats
per second. This is not surprising, since we already argued
that information throughput grows like

√
WT. Addition-

ally, we show that, if available bandwidth grows large fast
enough, then, under the same average-power constraint
on the input, the covert communication capacity is the
same as the capacity without covertness constraint. Note,
however, that traditionally, the capacity of the “infinite-
bandwidth” AWGN channel is computed by bringing W

to infinity after letting T → ∞.
Our framework only applies to the case where the Gaus-

sian noise is white over the bandwidth of interest. When
the noise is colored, we are not able to prove a rigorous
coding theorem. Instead, we use known formulas to calcu-
late relative entropy and mutual information [13], which
lead us to some conjectures.
The infinite-bandwidth results are related to our recent

work [14], which shows that the continuous-time Poisson
channel with neither bandwidth nor peak-power con-
straint permits transmission of infinitely many informa-
tion nats per second. However, a close look at the two
works reveals fundamental differences between the two
channels. For example, in the Poisson case, a constraint
on the average input power has no effect on covert com-
munication, whereas in the Gaussian case, it generally
does.
The recent work [15] also treats covert communica-

tion over a continuous-time Gaussian channel. It adopts
a different model from the current paper: the transmit-
ted signal is required to be strictly time-limited while
satisfying some “spectral mask” constraints in the fre-
quency domain. Under these constraints, the authors of
[15] show that

√
WT growth of covert information is

achievable using raised-cosine modulation. However, they
do not prove any continuous-time converse result under
that model.

The rest of this paper is arranged as follows. After
introducing some notation, we formulate and solve
the continuous-time covert communication problem in
Section 2. We then study the infinite-bandwidth scenario
in Section 3. We propose a slightly different model and
show its deficiency in Section 4. The paper is concluded
with some discussion in Section 5.

1.1 Some notation
We use uppercase letters like X to denote random vari-
ables, and corresponding lowercase letters like x to denote
their realizations. We write a random real function on the
interval [a, b] as X(t), t ∈[a, b]; sometimes we also use the
shorthand notation Xb

a , where a and b might be replaced
with −∞ or ∞, respectively. When the domain of the
function is clear from context, we may further shorten it
as X(·). To denote the realization of a random function,
we replace X in the above by x. A vector (Xi,Xi+1, . . . ,Xj)

is written as Xj
i , where jmay be replaced by ∞.

We slightly deviate from standard notation to express
the relative entropy in terms of two random variables (as
opposed to in terms of their distributions). For example,

D
(
Y∞−∞

∥∥Z∞−∞
)

denotes the relative entropy between the distributions of
Y (t), t ∈ (−∞,∞), and Z(t), t ∈ (−∞,∞), respectively.
Mutual information between two continuous-time ran-
dom processes or continuous-valued random variables is
written, for example, like

I(X∞−∞;Y∞−∞).

For definition of relative entropy and mutual information
for general probability distributions, we refer to [13].
We useW to denote the bandwidth that the input signal

can employ, and T to denote the total time of communi-
cation. We shall often study the limit where the product
WT → ∞. Here, W and T can be functions of each other,
or be such thatW is fixed while T → ∞, or vice versa. Fur-
ther, we use δ to denote the covertness parameter, which
can be a positive constant, or a positive function of WT

satisfying

lim
WT→∞

WTδ = ∞, (1)

lim
WT→∞

δ

WT
= 0. (2)

We use o(a) to denote a “higher-order term” than a, in
the sense that the ratio o(a)/a approaches zero in the limit
where a ↓ 0; this limit usually coincides withWT → ∞.
Finally, information is measured in nats, and log denotes

the natural logarithm.



Wang EURASIP Journal onWireless Communications and Networking        (2019) 2019:283 Page 3 of 10

2 A formal continuous-time treatment
Consider the continuous-time channel described by

Y (t) = X(t) + Z(t), t ∈ R, (3)

where X(·) is the (potentially random) channel input
sent by the transmitter, which we require to be square-
integrable: with probability one,

∫ ∞

−∞
X(t)2dt < ∞; (4)

Y (·) is the channel output observed by both the intended
receiver and the warden; and Z(·) is the additive noise to
the channel, which we assume to be generated randomly
according to a zero-mean stationary Gaussian process and
independent of X(·).
A codebook is specified by an encoder, which is a map-

ping from a message m taken from the message set M to
an input waveform x(·), and a decoder, which is a mapping
from an output waveform y(·) to the decoded message
m̂ ∈ M. We allow the transmitter and the receiver to use
a random codebook: the distribution according to which
the codebook is drawn is known to the warden, but the
realization of the codebook is not.
We require that the input waveform be “strictly band-

limited to [−W,W] and approximately time-limited to
[0, T]” in the sense of Wyner [9]. Formally, for every
messagem ∈ M:

1. The Fourier Transform of x(·), which is given by

f �→
∫ ∞

−∞
x(t)e−i2π ftdt, f ∈ R, (5)

must equal zero for all f /∈[−W,W];
2. The ratio

∫ T
0 |x(t)|2dt

∫ ∞
−∞ |x(t)|2dt ≥ 1 − η (6)

for some η ∈ (0, 1);
3. The receiver maps y(t), t ∈ (−∞,∞), to a decoded

message; and
4. For some given δ > 0, the following covertness

condition must be satisfied:

D
(
Y∞−∞

∥
∥Z∞−∞

) ≤ δ. (7)

Let M(W, T, ε, η, δ) be the largest possible value of |M|
such that the above conditions are satisfied and that the
average probability of a decoding error for a uniformly
chosen message is less than or equal to ε.
In the rest of this section, we assume that Z(·) has power

spectral density (PSD) N(·) that is constant within the
bandwidth of interest:

N( f ) = N0
2

, | f | ≤ W. (8)

Remark 1 In some parts of this paper, e.g., the next
theorem,W is allowed to grow to infinity. There is no single
noise process to satisfy (8) for every finiteW, because a ran-
dom process having a PSD that is constant over the entire
real line does not exist. In cases whereW → ∞, our setting
should be understood in such a way that the noise pro-
cess “adapts” itself with our choice of input bandwidth W.
Although this formulation (that the noise process adapts
to the input signal) has no physical meaning, it serves as a
mathematically valid route to study the limit where W →
∞, providing engineering insights to wideband scenarios.

The next theorem extends Theorem 5 of [3] to the
continuous-time setting. Furthermore, it shows that BPSK
is optimal up to the dominant term in total throughput.
Here, by BPSK, we mean a signaling scheme where the
symbols take values in the set {−a, a} for some constant
a. It is clear from the proof in Section 2.4 that BPSK
is also optimal in achieving the discrete-time result ([3],
Theorem 5)1.

Theorem 1 If, for every finite W that we consider, the
additive Gaussian noise has PSD satisfying (8), then, irre-
spectively of the value ofN0,

lim
η↓0 limε↓0 lim

WT→∞
logM(W, T, ε, η, δ)√

2WTδ
= 1. (9)

Furthermore, the limit (9) can be achieved by modulating
a set of waveforms with BPSK.

Proof See Sections 2.3 and 2.4.

The next corollary follows immediately from
Theorem 1.

Corollary 1 If W is a constant that does not depend on
T, then

lim
η↓0 limε↓0 lim

T→∞
logM(W, T, ε, η, δ)√

Tδ
= √

2W. (10)

Hence, not surprisingly, when available bandwidth is
fixed, the amount of information that can be covertly com-
municated over the continuous-time Gaussian channel is
approximately proportional to

√
Tδ.

In the rest of this section, we first review some mathe-
matical tools (Section 2.1), which will allow us to reduce
the continuous-time channel to a discrete-time one
(Section 2.2). We then prove the converse (Section 2.3)
and direct (Section 2.4) parts of Theorem 1. Some inter-
mediate steps in the proof will be borrowed from [3].

1Optimality of BPSK in the discrete-time case was first observed by the author
in 2015. That result has circulated among some researchers as private
communication.
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2.1 Prolate spheroidal wave functions
We provide a very brief introduction to the prolate
spheroidal wave functions (PSWFs), which are powerful
tools in formal treatment of continuous-time Gaussian
channels; for more details, we refer the reader to [9, 10, 16,
17] and references therein.
Given anyW, T > 0, there exists a countably infinite set

of positive real numbers {λi} satisfying
1 > λ1 > λ2 > · · · (11)

and a corresponding set of real functions {ψi : R → R}∞i=1
such that the following properties are satisfied:

• Each ψi(·) is band-limited toW Hz. Further, the
functions {ψi(·)} are orthonormal on R, and
complete in the space of square-integrable functions
that are band-limited toW Hz;

• The restrictions of {ψi(·)} to the time interval [0, T]
are orthogonal:

∫ T

0
ψi(t)ψj(t)dt =

{
λi, i = j,
0, i 
= j.

(12)

Further, the restrictions of {ψi} to [0, T] are complete
in the space of square-integrable functions on [0, T].

It was shown by Slepian [17] that the coefficients {λi}
above satisfy the following: for any α ∈ (0, 1) (not depen-
dent onW and T), asWT → ∞,

λ2(1−α)WT → 1 (13)
λ2(1+α)WT → 0. (14)

Finally, for a zero-mean stationary Gaussian process Z(·)
with PSD

N(f ) =
{

N0
2 , |f | ≤ W

0, |f | > W, (15)

we have the following Karhunen-Loève expansion in
terms of the above PSWFs:

Z(t) =
∞∑

i=1
Ẑiψi(t), t ∈[0, T] , (16)

where {Ẑi} are independent and identically distributed
(IID) Gaussian random variables of mean zero and vari-
anceN0/2.

2.2 Reduction to discrete time
Recall Condition 1 that the input signal x(t), t ∈ R, must
be band-limited toWHz. Since the set {ψi(·)} is complete
in the space of square-integrable functions that are band-
limited toW Hz, we can write X(·) as

X(t) =
∞∑

i=1
X̂iψi(t), t ∈ R (17)

for an infinite sequence of random variables X̂1, X̂2, . . ..
Furthermore, the output Y (·) can be passed through an
ideal low-pass filter of cut-off frequency W. Doing so
does not affect X(·), but will change the PSD of Z(·) to
the one given by (15), so that the resulting noise process
will satisfy the expansion (16). We can then decompose
the continuous-time channel into an infinite sequence of
parallel discrete-time channels:

Ŷi = X̂i + Ẑi, i = 1, 2, . . . , (18)

where Ẑ1, Ẑ2, . . . are IID zero-mean Gaussian of variance
N0/2. One can see that the above reduction is optimal for
both the receiver (i.e., decoding) and for the warden (i.e.,
detection of communication).We can hence base both the
converse and the direct parts of the proof of Theorem 1
on the channel (18).

2.3 Converse part of Theorem 1
Consider a random code for the message set {1, . . . ,M}
that satisfies all aforementioned conditions. By a standard
argument using Fano’s inequality and the chain rule of
mutual information, we have

(1 − ε) logM − 1 ≤
∞∑

i=1
I(X̂i; Ŷi). (19)

Further, noting that, under a second-moment constraint,
the Gaussian input maximizes mutual information over a
Gaussian channel [18], we have, for every i,

I(X̂i; Ŷi) ≤ 1
2
log

(
1 + 2ρi

N0

)
≤ ρi

N0
, (20)

where we defined

ρi � E
[
|X̂i|2

]
, i = 1, 2, . . . . (21)

(The expectation is computed over the possibly random
codebook and a uniformly chosen message.) Combining
(19) and (20) yields

(1 − ε) logM − 1 ≤ 1
N0

∞∑

i=1
ρi. (22)

To bound the right-hand side of (22), consider the
covertness requirement. Recall that the processing on
Y∞−∞ described in Section 2.2 maps it to Ŷ∞

1 . Clearly, it
also maps Z∞−∞ to Ẑ∞

1 . Also recall that this reduction is
optimal for the warden. Hence

D
(
Y∞−∞

∥
∥Z∞−∞

) =D
(
Ŷ∞
1

∥
∥
∥ Ẑ∞

1

)
. (23)

It then follows by Condition 4 that

δ ≥D
(
Ŷ∞
1

∥
∥
∥ Ẑ∞

1

)
≥

∞∑

i=1
D

(
Ŷi

∥
∥
∥ Ẑi

)
, (24)

where the second inequality follows by the same steps as
Eq. (13) of [3]. For a fixed second moment, the relative
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entropy on the right-hand side above is maximized by X̂i
being zero-mean Gaussian ([3], Eq. (74)):

D
(
Ŷi

∥
∥
∥ Ẑi

)
≥ ρi

N0
− 1

2
log

(
1 + 2ρi

N0

)
. (25)

Fix any α ∈ (0, 1). We combine (24) and (25), drop all
summands with i > �2(1+α)WT� (note that they are non-
negative), and use the convexity of the right-hand side of
(25) in ρi to obtain

δ ≥
�2(1+α)WT�∑

i=1

ρi
N0

− 1
2
log

(
1 + 2ρi

N0

)

≥ �2(1 + α)WT�
(

ρ̄

N0
− 1

2
log

(
1 + 2ρ̄

N0

))
, (26)

where we defined

ρ̄ � 1
�2(1 + α)WT�

�2(1+α)WT�∑

i=1
ρi. (27)

Recall (2), which together with (26) implies that ρ̄ must
tend to zero as WT → ∞. Furthermore, by applying the
Taylor expansion

log
(
1 + 2ρ̄

N0

)
= 2ρ̄

N0
− 2ρ̄2

N2
0

+ o(ρ̄2) (28)

to (26), we see that ρ̄ must satisfy

ρ̄ ≤
√

δ

�2(1 + α)WT� · N0 + o
(√

δ

WT

)

. (29)

Next consider Condition 2. Since the functions ψi(·)
have unit energy and satisfy (12), Condition 2 requires

∑∞
i=1 λiρi∑∞
i=1 ρi

≥ 1 − η. (30)

Further using (14), we have the following requirement:

1 − η ≤ lim
WT→∞

∑�2(1+α)WT�
i=1 ρi∑∞

i=1 ρi

= lim
WT→∞

�2(1 + α)WT�ρ̄
∑∞

i=1 ρi
. (31)

Together with (22), this implies

(1 − ε) lim
WT→∞

logM√
2WTδ

≤ 1
N0

· lim
WT→∞

∑∞
i=1 ρi√
2WTδ

= 1
N0

· lim
WT→∞

∑∞
i=1 ρi

�2(1 + α)WT�ρ̄ · �2(1 + α)WT�ρ̄√
2WTδ

≤ 1
(1 − η)N0

lim
WT→∞

�2(1 + α)WT�ρ̄√
2WTδ

= 1 + α

(1 − η)N0
lim

WT→∞

√
2WT

δ
· ρ̄

≤ 1 + α

1 − η
lim

WT→∞

√
2WT

δ

√
δ

�2(1 + α)WT�

=
√
1 + α

1 − η
, (32)

where the second-to-last line follows by (29). Letting ε, η,
and α go to zero in the above yields the desired converse
result.

2.4 Direct part of Theorem 1
Fix some α, γ ∈ (0, 1), both of which will be chosen to be
close to zero later. We use the first �2(1−α)WT� channels
in (18) to communicate and discard the remaining chan-
nels. On these channels, we generate a random codebook
by picking every entry in every codeword independently
and equally likely to be a or −a, where

a � (1 − γ )
√
N0 ·

(
δ

�2(1 − α)WT�
) 1

4
. (33)

(Every X̂i with i > �2(1−α)WT� is chosen to be zero with
probability one.) The bandwidth constraint is obviously
satisfied. The time-limit constraint is also satisfied for any
η > 0 when WT is sufficiently large, by virtue of (13). For
covertness, we have

D(Y∞−∞‖Z∞−∞) =D
(
Ŷ �2(1−α)WT�
1

∥
∥
∥ Ẑ�2(1−α)WT�

1

)

=
�2(1−α)WT�∑

i=1
D(Ŷi‖Ẑi)

= �2(1 − α)WT� ·D(Ŷ‖Ẑ), (34)

where we dropped the subscript in the last line, as all pairs
(X̂i, Ŷi), i = 1, . . . , �2(1 − α)WT�, have the same joint
distribution. Note that, by our choice of X̂, the random
variable Ŷ has the following probability density function
(PDF):

f (y) = 1
πN0

(
1
2
e−

(y−a)2
N0 + 1

2
e−

(y+a)2
N0

)
, y ∈ R. (35)
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The PDF of Ẑ is that of the Gaussian:

g(z) = 1
πN0

e−
z2
N0 , z ∈ R. (36)

We hence have

D(Ŷ‖Ẑ) =
∫ ∞

−∞
f (y) log

1
2e

− (y−a)2
N0 + 1

2e
− (y+a)2

N0

e−
y2
N0

= − a2

N0
+

∫ ∞

−∞
f (y) log

(
1
2
e

2ay
N0 + 1

2
e−

2ay
N0

)
.

(37)

For the integrand above, we have the following upper
bound:

log
(
1
2
e

2ay
N0 + 1

2
e−

2ay
N0

)
≤ 2a2y2

N2
0

− 4a4y4

3N4
0

+ 64a6y6

45N6
0
.

(38)

Further note that, by (35), the second moment of Ŷ is(
a2 + N0

2

)
, the fourth moment is

(
a4 + 3a2N0 + 3N2

0
4

)
,

and the sixth moment is finite. We can thus continue (37)
as

D(Ŷ‖Ẑ) ≤ − a2

N0
+ 2a2

N2
0

(
a2 + N0

2

)

− 4a4

3N4
0

(

a4 + 3a2N0 + 3N2
0

4

)

+ o
(
a4

)

= a4

N2
0

+ o
(
a4

)

= (1 − γ )4 · δ

�2(1 − α)WT� + o
(

δ

WT

)
. (39)

Combining (34) and (39), we get

D(Y∞−∞‖Z∞−∞) ≤ (1 − γ )4δ + o(δ), (40)

which is smaller than δ for large enoughWT.
We now analyze the maximum possible values forM for

which the decoder can decode correctly. To this end, like
[3], we use an information-spectrum result [19, 20], which
guarantees that a sequence of codes can have vanishing
error probability provided

lim
WT→∞

logM√
2WTδ

≤ p - lim inf
WT→∞

1√
2WTδ

log
p(Ŷ n

1 |X̂n
1 )

p(Ŷ n
1 )

= p - lim inf
WT→∞

�2(1 − α)WT�√
2WTδ

log
p(Ŷ |X̂)

p(Ŷ )
, (41)

where p - lim inf denotes the limit inferior in probability,
namely, the largest number such that the probability that
the random variable in consideration is greater than this
number tends to one in the limit, and where we slightly

abuse notation to use p(·) and p(·|·) to denote PDF and
conditional PDF of the corresponding random variables
or random vectors. Recall that p(Ŷ ) = f (Ŷ ), where f (·) is
given by (35), while given X̂ = x, Ŷ is Gaussian with mean
x and variance N0

2 . Also recall that x equals either a or−a.
We hence have

p(Ŷ |X̂)

p(Ŷ )
= e−

(Ŷ−X̂)2
N0

1
2e

− (Ŷ−a)2
N0 + 1

2e
− (Ŷ+a)2

N0

= e
2X̂Ŷ
N0

1
2e

2aŶ
N0 + 1

2e
− 2aŶ

N0

. (42)

Using

log
(
1
2
e
2aŶ
N0 + 1

2
e−

2aŶ
N0

)
≤ 2a2Ŷ 2

N2
0

, (43)

we obtain

log
p(Ŷ |X̂)

p(Ŷ )
≥ 2

N0
X̂Ŷ − 2a2

N2
0
Ŷ 2. (44)

Noting that

E
[
X̂Ŷ

]
= a2 (45)

E
[
Ŷ 2

]
= a2 + N0

2
, (46)

we can compute the expected value of the right-hand side
of (44) to be

E

[
2
N0

X̂Ŷ − 2a2

N2
0
Ŷ 2

]

= a2

N0
− 2a4

N2
0
. (47)

Similarly, the variance can be shown to be

Var

[
2
N0

X̂Ŷ − 2a2

N2
0
Ŷ 2

]

= 2a2

N0
+ o

(
a2

)
. (48)

Using (44), (47), (48), and Chebyshev’s inequality, we
obtain

p - lim inf
WT→∞

�2(1 − α)WT�√
2WTδ

log
p(Ŷ |X̂)

p(Ŷ )

≥ p - lim inf
WT→∞

�2(1 − α)WT�√
2WTδ

(
2
N0

X̂Ŷ − 2a2

N2
0
Ŷ 2

)

= lim
WT→∞

�2(1 − α)WT�√
2WTδ

· a2

N0

= (1 − γ )2
√
1 − α. (49)

Recalling (41), the proof is completed when we bring both
γ and α to zero.

3 Exploring infinite bandwidth
In this section, we study cases where available bandwidth
grows without bound. Section 3.1 considers the scenario
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where the additive white Gaussian noise also has unlim-
ited bandwidth. To this end, we assume the noise PSD is
constant over a finite bandwidth W and then let W grow
to infinity, either together with T or with T held fixed;
recall Remark 1. Section 3.2 considers the case where the
noise PSD is constant within a certain bandwidth and
zero elsewhere (while no bandwidth limit is imposed on
the input). Both these sections directly use Theorem 1
to obtain the desired results. Finally, Section 3.3 consid-
ers colored noise, where our analysis is less rigorous and
does not lead to an explicit coding theorem; we state our
findings there as “conjectures”.

3.1 White noise with unbounded bandwidth
Corollary 2 Assume that the noise process satisfies (8)

for every finiteW that we consider. If the limit

lim
WT→∞

Wδ

T
= c (50)

exists, where c may equal infinity, then the per-second
covert communication capacity is

lim
η↓0 limε↓0 lim

WT→∞
logM(W, T, ε, η, δ)

T
= √

2c. (51)

We note the following. If W grows large more slowly
than T, then the per-second capacity for covert communi-
cation is zero for any finite δ, as in the finite-bandwidth
case. If W grows large linearly with T, then a positive
covert communication rate is achievable as long as δ is
positive and bounded away from zero. If W grows large
faster than T, i.e., if W/T → ∞ as WT → ∞, then
there exists some δ that tends to zero slowly enough
when WT → ∞, for which the largest per-second covert
communication rate is infinity.
Next, consider an average-power constraint P that is

imposed on the input: every input signal must satisfy

1
T

·
∫ ∞

−∞
x(t)2dt ≤ P. (52)

As the next theorem shows, when W grows sufficiently
fast, the covert communication capacity equals the capac-
ity of the infinite-bandwidth Gaussian channel under the
same power constraint. In other words, the covertness
requirement has no effect on capacity in this case.

Theorem 2 If

P

N0
≤ √

2c, (53)

where c is given in (50), then

lim
η↓0 limε↓0 lim

T→∞
logM(W, T, ε, η, δ)

T
= P

N0
. (54)

Proof The converse holds because one cannot achieve
a larger per-second capacity than the right-hand side of
(54) even without a covertness constraint, and when the
power constraint (52) is imposed on the average over all
codewords instead of every codeword; see [9].
The achievability proof is similar to that of Theorem 1

given in Section 2.4, but, instead of (33), we choose

a �
√

P

2W
. (55)

The power constraint is satisfied: every x(·) satisfies
∫ ∞

−∞
x(t)2dt = �2(1 − α)WT� · a2 ≤ PT. (56)

For covertness, instead of (39), we now have

D(Ŷ‖Ẑ) ≤ P2

4W2N2
0

+ o(W−2), (57)

so (40) becomes

D(Y∞−∞‖Z∞−∞) ≤ �2(1 − α)WT�P2
4W2N2

0
+ o

(
T

W

)

≤ (1 − α)
T

2W
· P2

N2
0

+ o
(

T

W

)
. (58)

The right-hand side of (58) is less than δ when WT is
large enough, by (50) and (53). Thus, we conclude that the
covertness condition is satisfied for large enoughWT.
Using the information-spectrum method, we know that

a sequence of codes can have vanishing probability of
decoding error if

lim
WT→∞

logM
T

≤ p - lim inf
WT→∞

1
T
log

p(Ŷ n
1 |X̂n

1 )

p(Ŷ n
1 )

= p - lim inf
WT→∞

�2(1 − α)WT�
T

log
p(Ŷ |X̂)

p(Ŷ )
.

(59)

In place of (49), we now have

p - lim inf
WT→∞

�2(1 − α)WT�
T

log
p(Ŷ |X̂)

p(Ŷ )
≥ (1 − α)

P

N0
.

(60)

The proof is completed by letting α ↓ 0.

3.2 White noise with finite bandwidth
In this section, we assume that W = ∞, i.e., there is no
bandwidth constraint at all on the input (as opposed to
lettingW → ∞ together with T as in Section 3.1). But we
assume that the additive Gaussian noise is band-limited
and has PSD

N(f ) =
{

N0
2 , |f | ≤ W0
0, |f | > W0,

(61)



Wang EURASIP Journal onWireless Communications and Networking        (2019) 2019:283 Page 8 of 10

whereW0 is some constant that depends on neither T nor
δ. Not surprisingly, the input bandwidth will be effectively
limited by the noise bandwidthW0.

Corollary 3 If the additive Gaussian noise has PSD
given by (61), then

lim
η↓0 limε↓0 lim

T→∞
logM(∞, T, ε, η, δ)√

Tδ
= √

2W0. (62)

Proof If the input signal has nonzero energy outside the
frequency range [−W0,W0], thenD(Y∞−∞‖Z∞−∞) will be
infinity, violating the covertness constraint for any finite
δ; this can be seen either using Theorem 10.5.1 of [13] or
by noting that Z(·) has an orthonormal expansion in the
PSWFs for W0 and T, but X(·) and Y (·) do not. Hence,
the input frequencymust be restricted to [−W0,W0]. The
claim then follows by replacingW withW0 in Theorem 1.

Remark 2 In the context of Corollary 3, one could
restrict the receiver to only observing y(t), t ∈[0, T], without
affecting (62). This is because the receiver can perform the
reduction to discrete time as in Section 2.2merely using its
observation on [0, T], thanks to the orthogonality property
(12). (This would not be possible if the noise were not band-
limited, because the receiver would then need to first use
an ideal low-pass filter, which cannot operate on the finite
interval [0, T].)
Note that, in this slightly different setting, we still allow

the warden to observe the entire real line. As we shall see in
Section 4, restricting the warden’s observation to [0, T] will
result in serious artifacts.

3.3 Colored noise
We shall not study colored noise with the same rigor as we
studied white noise, due to technical difficulties. Instead,
we turn to formulas for mutual information and relative
entropy of continuous-time Gaussian processes in terms
of PSD [13]. These formulas provide useful engineering
insights, but are not sufficient to prove rigorous coding
theorems like Theorem 1. Our findings below therefore
remain conjectures.
We first consider the scenario where the additive noise

occupies infinite bandwidth, but has finite energy. (Unlike
white noise as considered in Section 3.1, colored noise
can have infinite bandwidth.) Formally, let the stationary
Gaussian noise Z(t), t ∈ R, have PSD N(f ), f ∈ R, that is
positive for all f ∈ R and symmetric around f = 0, and
satisfies

∫ ∞

−∞
N(f ) df < ∞. (63)

We choose the input signal X(t), t ∈ R, to be generated
from a stationary Gaussian process with PSD

S(f ) =
{

βN(f ), f ∈ [−W,W]
0, otherwise, (64)

where β and W will be specified later. (Recall that there
is no bandwidth constraint on the input, so W can be
arbitrarily large.) We then have (Theorem 10.5.1 of [13])

D(Y∞−∞‖Z∞−∞)

= T · 1
2

∫ W

−W

(
S(f )
N(f )

− log
(
1 + S(f )

N(f )

))
df

≤ T · 1
4

∫ W

−W

(
S(f )
N(f )

)2
df

= β2WT. (65)

Hence, the covertness condition is satisfied if we choose

β =
√

δ

WT
. (66)

With this choice, we can compute the mutual information
using ([13], Theorem 10.3.1):

I(X∞−∞;Y∞−∞) = T ·
∫ W

−W

1
2
log

(
1 + S(f )

N(f )

)
df

= WT

2
log (1 + β)

≈
√
WTδ

2
. (67)

SinceW can be chosen arbitrarily large, we are allowed to
choose it as a function of T such that

lim
T→∞

Wδ

T
= ∞, (68)

in which case the per-second mutual information, given
by (67) divided by T, will grow to infinity as T grows large.
Also note that the power in the above-chosen input signal
is given by

β ·
∫ W

−W

N(f ) df ≤ β ·
∫ ∞

−∞
N(f ) df . (69)

For any δ (which may be a function of T), one can choose
W to grow fast enough so that β as defined in (66) tends
to zero as T → ∞. This will ensure that (69) tends to zero
as T grows large, namely, that the input power vanishes as
T grows large.
To summarize, we make the following conjecture.

Conjecture 1 If the Gaussian noise process has PSD
N(f ) that is positive on the entire real line, then the per-
second covert communication capacity without bandwidth
constraint on the input is infinity. Furthermore, this holds
irrespectively of whether an average-power constraint is
imposed on the input or not.
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We next consider the case where the noise is band-
limited:

N(f ) > 0 ⇐⇒ |f | ≤ W0, (70)

whereW0 is a constant that does not depend on T. Assume
that the input follows some stationary Gaussian process.
Note that, if the input PSD S(f ) is positive on any inter-
val where N(f ) = 0, thenD(Y∞−∞‖Z∞−∞) will be infinity.
Hence, the input process must also be limited to the
frequencies in [−W0,W0]. Let

λ(f ) � S(f )/N(f ), f ∈[−W0,W0] . (71)

By the covertness condition (7) and by Theorem 10.5.1 of
[13], we require

δ ≥D(Y∞−∞‖Z∞−∞)

= T · 1
2

∫ W0

−W0

(
λ(f ) − log(1 + λ(f ))

)
df . (72)

The integrand is convex in λ(f ), so we obtain

λ̄ − log(1 + λ̄) ≤ δ

W0T
(73)

where

λ̄ � 1
2W0

∫ W0

−W0
λ(f )df . (74)

From (73) we obtain that, for large T,

λ̄ �
√

2δ
W0T

. (75)

This implies the following (approximate) upper bound on
the mutual information:

I(X∞−∞;Y∞−∞) = T ·
∫ W0

−W0

1
2
log(1 + λ(f ))df

≤ W0T log(1 + λ̄)

�
√
2W0Tδ, (76)

where the first inequality follows because the integrand is
concave in λ(f ). This expression is the same as in the case
whereN(f ) is constant for f ∈[−W0,W0]. Also note that,
if we choose

λ(f ) = λ̄ ≈
√

2δ
W0T

, f ∈ [−W0,W0] , (77)

then we obtain approximate equality in both (72) and (76).
We hence make the following conjecture.

Conjecture 2 Corollary 3 holds whenever the Gaus-
sian noise Z(t), t ∈ R, has PSD that is positive within
[−W0,W0] and zero elsewhere.

4 Deficiency of a time-limitedmodel
If there is no bandwidth limit on the input signal x(·), as is
the case in Corollary 3, then x(·) can be made to be strictly
time-limited to an interval [0, T]. One naturally wonders
whether it is possible to formulate a time-limited covert
communication model, where all parties have access only
to the interval [0, T]. In this section, we show that, at least
in the way we construct it below, such a model is invalid,
because it leads to serious artifacts.
Our time-limited model is characterized as follows.

1. The transmitter maps a message to x(t), t ∈[0, T].
2. The receiver maps y(t), t ∈[0, T], to a decoded

message.
3. The covertness constraint is

D(XT
0 ‖YT

0 ) ≤ δ. (78)

Let M̄(T, ε, δ) denote the largest possible cardinality of the
message set such that the above conditions are satisfied
and that the average probability of a decoding error is at
most ε.
Let us now assume that the additive noise Z(·) has PSD

given by (61). Under the model in Section 2, we have
shown that the maximum amount of information that can
be communicated in T seconds is proportional to

√
Tδ;

see Corollary 3. Under the new time-limited model, how-
ever, one can communicate an arbitrarily large amount of
information over any fixed period of time.

Theorem 3 Let Z(t), t ∈ R, have PSD given by (61).
Under the above model, for any positive T, ε, and δ,

M̄(T, ε, δ) = ∞. (79)

Proof Only the direct part needs proof. To this end, for
a positive integer k, we generate k3 IID Gaussian random
variables {Xi} of mean zero and variance k−2. Let

X(t) =
{ ∑k3

i=1 Xiψi(t), t ∈[0, T] ,
0, otherwise,

(80)

where {ψi(·)} are the PSWFs forW0 and T; see Section 2.1.
Clearly, X(t) is strictly time-limited to [0, T]. By (12), the
channel can be reduced, for both the warden and the
receiver, to k3 parallel Gaussian channels

Yi = Xi + Zi, i ∈ {1, . . . , k3}. (81)

For covertness, we have the following bound:

D(YT
0 ‖ZT

0 ) = k3
(
2k−2

N0
− log

(
1 + 2k−2

N0

))
≤ 2

kN2
0
.

(82)

Hence, when we let k → ∞, the covertness condition (78)
will be met for any positive constant δ. The input-output
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mutual information can be calculated to be

I(XT
0 ;YT

0 ) = k3

2
log

(
1 + 2k−2

N0

)
, (83)

which grows to infinity when k → ∞. As in Section 2.4,
one can use information-spectrum methods to show that
the amount of information that can be communicated
with arbitrarily small probability of error indeed grows to
infinity with k; details are omitted.

We provide some intuitive explanation to this artifact.
A time-limited warden cannot employ an ideal low-pass
filter, because the impulse response of such a filter occu-
pies the entire real line. Hence, the time-limited warden
cannot fully exploit the fact that the noise is band-limited.
It is perhaps also interesting to understand this from the
perspective of memory. Because the additive noise Z(·)
has memory (due to its finite bandwidth), its values on
(−∞, 0) and (T,∞) can provide information about its
values within [0, T], helping the warden detect communi-
cation. For example, consider a communication scheme
where X(0) 
= 0 with a nonzero probability (which
would be the case for the scheme used in the proof of
Theorem 3). A time-unlimited warden will see a discon-
tinuity in Y (·) at t = 0, from which it can immediately
determine that communication is taking place. This is not
possible for a warden that is limited to [0, T].

5 Discussion
We provided a rigorous mathematical framework for
studying covert communication over the continuous-time
Gaussian channel. We then used this framework to study
the scenario where the input bandwidth can be infinitely
large. We showed that, roughly speaking, over an AWGN
channel where the transmitter can employ unbounded
bandwidth, covert communication has the same per-
second capacity as standard, non-covert communication.
We pointed out that one must be careful when for-

mulating the continuous-time model. In particular, we
believe that the model should allow the warden to observe
not only the time window when communication might
take place, but also before and after that time window.
Essentially, this is because the channel has memory. The
same issue would also arise in discrete-time channels with
memory, unless one assumes, for example, that the chan-
nel behaves independently before, during, and after the
communication window, as in [21, 22].
It remains to prove Conjectures 1 and 2 on colored noise

in a fashion similar to our treatment of white noise. Doing
so seems to require additional tools in functional analysis.
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