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Abstract 
 
The dynamical charge-density response of bulk bismuth has been studied within time-dependent density 
functional perturbation theory, explicitly accounting for spin-orbit coupling. The use of the Liouville–
Lanczos approach allows us to calculate electron energy loss spectra for excitation energies as large as 
100 eV. Effects of 5d semicore electronic states, spin-orbit coupling, exchange and correlation, local 
fields, and anisotropy are thoroughly investigated. The account of the 5d states in the calculation turns 
out to be crucial to correctly describe the loss spectra above 10 eV and, in particular, the position and 
shape of the bulk-plasmon peak at 14.0 eV at vanishing transferred momentum. Our calculations reveal 
the presence of interband transitions at 16.3 eV, which had never been discussed before. The origin of 
the peak at 5.8 eV is revisited as due to mixed interband and collective excitations. Finally, our study 
supplements the lack of experiments at finite transferred momenta. 
 
DOI: 10.1103/PhysRevB.95.094301 
 

I. INTRODUCTION 
 

Electron energy loss (EEL) spectroscopy in a transmission electron microscope is the experimental 
technique established in the early 1960s to probe (neutral) fluctuations of the electronic density induced 
by an electronic beam, and in particular plasma oscillations [1]. The energy loss of incoming-beam 
electrons is measured from the double-differential cross section, a quantity related to the imaginary part 
of the inverse of the dielectric function. On the other hand, time-dependent density functional theory 
(TDDFT) [2,3] in the adiabatic local density approximation offers the best compromise between 



computational cost and accuracy for the calculation of plasmons in cases where static excitonic effects 
are not essential [4]. However, its use within the plane-wave pseudopotential (PP) approach is limited to 
the description of low (valence) energy losses, and alternate methods are required to treat losses from the 
(deep) inner core [5–7]. 

The intermediate energy range—describing electronic excitations spanning up to hundred 
electronvolts—is associated with a considerable quantity of possible final (empty) states. Because 
including this big number of states in the calculation is hardly possible using standard methods, we have 
recently proposed the Liouville–Lanczos (LL) approach to EEL and inelastic x-ray scattering (IXS) 
spectroscopies [8–10]—a new approach which enables us to cover any extended energy range at a low 
computational cost. In this work, the LL method is applied to compute the electronic susceptibility of 
bismuth up to 100 eV, including excitations from 5d semicore states, and enables us to supplement the 
lack of experimental data for finite transferred momenta. 

Bismuth (Bi) has the heaviest nucleus among group-V semimetals and requires a proper treatment of 
relativistic effects. Instead of solving nonrelativistic Kohn–Sham (KS) equations for scalar orbitals in 
combination with non- or semirelativistic PPs, one has to account for the large spin-orbit coupling (SOC) 
by solving Pauli-type KS equations for two-component spinor wave functions and use fully relativistic 
PPs. This theoretical problem is doubled by the computational difficulty to handle twice the number of 
electronic bands and, in fact, few studies including the effect of SOC have been reported so far [11–15]. 
A notable exception is provided by Refs. [13–15], which detail the effect of including both 5d semicore 
states and SOC when calculating the dielectric properties of lead. 

The semimetallic character of the band structure of Bi, i.e., the tiny overlap between the highest 
valence band and the lowest conduction band, is due to the very large SOC, and it leads to many 
interesting phenomena: very large de Haas–van Alphen and Shubnikov–de Haas quantum oscillatory 
effects, thermoelectricity, excitations of coherent phonons [8,16]. Plasmon excitations have been less 
studied, and the effect of SOC on plasmons in Bi is unknown. At finite transferred momenta, EEL spectra 
have not been studied, neither theoretically nor experimentally. For vanishing transferred momentum, 
the EEL spectrum has been studied for bulk bismuth experimentally [17–23], and there is only one, to 
the best of our knowledge, theoretical study which was performed by using the random-phase 
approximation (RPA) [11]. More recently, Bi nanostructures were studied experimentally [24–29]. In 
this work we present a TDDFT study of the EEL spectra of bulk Bi in the wide (0–100 eV) energy range 
for vanishing transferred momentum and predict EEL spectra for various finite transferred momenta. We 
believe that our results will be helpful for future studies of bulk bismuth and its compounds and 
nanostructures. 

The rest of this paper is organized as follows: In Sec. II we describe the computational method and 
provide numerical details of our calculations. In Secs. III and IV we present EEL spectra of Bi at 
vanishing and finite transferred momenta, respectively. Finally, Sec. V contains the conclusions, and the 
appendix recalls details of the band structure of Bi [8]. 

 
II. COMPUTATIONAL METHOD 

 
A. Link between experiment and theory 

 



In an EEL experiment, incident electrons with wave vector ki undergo an inelastic scattering due to 
Coulomb interaction with electrons and ions of the target sample [1]. They thus transfer to the target an 
energy h̄ω—observed as a loss of their kinetic energy—and a wave vector Q = ki − kf, where kf is the 
wave vector of the outcoming electron. The double-differential cross section describes how many 
incident electrons were scattered in the solid angle dΩ and transferred the energy ̄hdω [30]: 
 

 
 

where a0 = ¯h2/(m0e2) is the Bohr radius, −e is the electron charge, and m0 is the free-electron mass. In 
periodic solids the transferred momentum can be presented as a sum of the wave vector in the first 
Brillouin zone (BZ) q and the reciprocal lattice vector G: Q = q + G. In Eq. (1), ϵ−1(Q, ω) is the inverse 
dielectric function which is the diagonal element of the inverse dielectricmatrix, ϵ−1 (Q, ω) ≡ ϵ−1 (q + G, 
q + G; ω), defined as [31,32] 
 

 
where χ is the charge-density susceptibility, the poles of which correspond to plasmon frequencies and 
single-particle excitations. 
For many systems, χ(Q,Q; ω) can be conveniently and accurately computed by using TDDFT. Within 
the “conventional” approach one first computes the independent-particle polarizability, which involves 
the calculation of a large number of empty states, and then solves the Dyson-like screening integral 
equation in order to obtain the full susceptibility [4], which implies the inversion and multiplication of 
large matrices. Such a procedure must be repeated for each value of the frequency, which precludes its 
use for large energy ranges. While Bi can be studied by using such a “conventional” approach, we have 
used our recently proposed LL approach to EEL and IXS spectroscopies [8–10] within time-dependent 
density functional perturbation theory (TDDFpT) [33–35], which overcomes the drawbacks of the 
“conventional” approach and hence is more convenient for calculations of EEL spectra in the extended 
energy range. 
 

B. Liouville–Lanczos approach within time-dependent density functional perturbation theory 
 
In the LL approach, the frequency-dependent chargedensity susceptibility for any given transferred 
momentum χ(Q,Q_; ω) is expressed as the matrix element—diagonal with respect to Q and Q’—of the 
resolvent of the Liouvillian L of the system. The charge-density susceptibility describes the response of 
the monochromatic Q component of the chargedensity operator, ˆnQ → eiQ·r, to amonochromatic 
perturbation of the same wave vector, ˆ Vext,q = ˆnQ; namely [8–10], 
 



 
where ρˆ° is the unperturbed density matrix, and (·,·) denotes a scalar product. 

We point out that no empty states are computed in the LL approach, and the techniques of the (static) 
density functional perturbation theory [33,36] are used: the projector on empty states is expressed as the 
difference between the unity operator and the projector on occupied states. Thus, only the occupied 
(valence and semicore) states are computed. 

Moreover, we do not perform the computationally expensive inversion of the matrix (h¯ω − Lˆ)−1, 
and instead we use the Lanczos recursion algorithm [37]: the Liouvillian is applied to an initial perturbed 
state, and afterwards the result is iteratively continued yielding a series of Lanczos coefficients. Such a 
recursive procedure is independent of frequency. Using a small tridiagonal matrix composed of the 
Lanczos coefficients, the charge-density susceptibility for a given transferred momentum is obtained at 
any frequency by inverting this tridiagonal matrix for the desired frequency.  

Details of the LL approach to EEL and IXS spectroscopies can be found in Refs. [8–10]. The 
limitations of the LL approach (as well as of the “conventional” TDDFT approach) in the TDDFT 
pseudopotential framework are dictated by the PP approximation and the accuracy of the exchange-
correlation (XC) functionals to describe the semicore electrons that are excited in the extended energy 
range. They are discussed in Sec. III. To plot the loss function, −Im[ϵ−1(Q, ω)], we added a small 
imaginary component to the frequency, ω → ω + iη, leading to a Lorentzian broadening of the EEL 
spectra. 
 

C. Spin-orbit coupling in the linear-response problem 
 

The major contribution of relativistic effects comes from the core region and is accounted for in the 
construction of fully relativistic PP, by solving in the atom the relativistic Diractype KS equation for 
four-component spinor wave functions [38–42]. Nonrelativistic (Pauli-type) KS equations are then 
solved for valence electrons, the states of which are represented by two-component spinor wave functions 
by using the fully relativistic PP. This accounts for relativistic effects up to order α2, where α is the fine-
structure constant. The mass-velocity and the Darwin correction form the scalar-relativistic (SR) term, 
and SOC is due to the coupling of the spin and orbital angular momenta. The latter is particularly 
important in a heavy element like bismuth. 

Formally, the time-independent Pauli-type KS equations read 
 

 
and allow us to determine the ground-state two-component KS spinor wave functions Ψ°n,k, energies 
ϵ°n,k, charge density, and potentials. Here, n is the band index, and k is the point in the first BZ. The 
ground-state 2 × 2 Hamiltonian reads: 
 

 



where T^° is the kinetic-energy operator for independent electrons, V^° H is the Hartree potential, V^° XC 
is the XC potential. The PP is described by two contributions: Vˆ°loc is the local part of PP, and Vˆ° NL 
is the nonlocal part, which is a sum of the SR and SOC contributions. The reader is referred to Ref. [42] 
for more details. 

The time-dependent (TD) linearized Pauli-type KS equations are solved by mapping them onto a 
quantum Liouville equation for the response density matrix. For a monochromatic perturbation with 
wave vector Q, this equation in the frequency domain reads [8–10] 

 

 
where ρ^′

q (ω) is the response density matrix operator. Equation (6) is defined in the two-component 
spinor space and, hence, it must be understood as a 2 × 2 matrix equation in such a space. The Liouvillian 
superoperator Lˆ is defined through the “non-interacting” and “interacting” operators (see Refs. [8–10]). 
The former is defined as ˆH° − ε°n,k and includes the SOC contribution explicitly [Eqs. (4) and (5)]. The 
interacting operator is defined as the response Hartree and XC potentials, which are expressed via the 
response charge density [i.e., the local in space element of ρˆ′q (ω)]. It is worth noting that the response 
charge density does not depend explicitly on SOC (i.e., does not contain any extra term due to SOC) but 
implicitly through the response KS spinor wave functions, coming from the self-consistent iterative 
solution of the quantum Liouville equation using the Lanczos recursive algorithm. We would like to 
stress that, in our study, both ground-state and TDDFpT equations have been solved including SOC self-
consistently. 

In this work we use fully relativistic norm-conserving PPs which we had developed for bismuth, using 
the method of Ref. [42] as implemented in the QUANTUM ESPRESSO package [43]. Neglecting SOC 
will mean that we neglect the SOC nonlocal term in Vˆ°NL in Eq. (5) and keep only the SR term. In this 
case no splitting of the KS energy levels due to SOC is present. Obviously, in the SR approximation, 
usual KS wave functions are used instead of two-component spinors, and the nonrelativistic (TD) KS 
equations are solved. 
 

D. Numerical details 
 

The calculations have been performed by using density functional theory (DFT) [44,45] and TDDFpT 
in a plane-wave and PP framework using the QUANTUM ESPRESSO package [43]. The EEL spectra 
have been computed by using the turboEELS component [10], which contains the implementation of the 
LL approach to EEL and IXS spectroscopies. Bismuth crystallizes in the A7 rhombohedral structure with 
two atoms in the primitive unit cell, and can be viewed as a Peierls distortion of the simple cubic lattice 
[46]. A detailed description of the geometry of Bi crystal can be found, e.g., in Refs. [47–50]. We have 
used fully relativistic norm-conserving PPs in the fully nonlocal (separable) form, in which the 5d 
semicore electrons were either included in the valence region [8,48], or frozen in the atomic core [49–
51]. 

Spin-orbit coupling has been included in the calculations self-consistently as explained in Sec. IIC. 
When including or neglecting SOC in the calculations, we have used the corresponding theoretical 
equilibrium lattice parameters optimized with or without SOC, respectively (see Table 5.1 of Ref. [8]). 



We have considered two approximations for the XC energy; namely, the local density approximation 
(LDA) using Perdew–Zunger parametrization of the Ceperley–Alder functional [52], and the generalized 
gradient approximation (GGA) using Perdew–Burke–Ernzerhof parametrization [53]. Within each of 
these approximations we have used the corresponding theoretical equilibrium lattice parameters (see 
Table 5.1 of Ref. [8]). 

The two-component KS spinor wave functions have been expanded in planewaves up to a kinetic-
energy cutoff of 60 Ry, which was sufficient to obtain converged EEL spectra in the 0–100 eV range. 
The firstBZwas sampledwith a 14 × 14 × 14 uniform k point mesh centered at the _ point, and we have 
used aMethfessel–Paxton smearing scheme [54] with a broadening parameter of 0.02 Ry. The TDDFpT 
calculations have been performed by using an adiabatic approximation for the XC kernel (LDA or GGA). 
We used 2500 Lanczos iterations when the 5d semicore states were included in the valence region, and 
8000 Lanczos iterations when they were frozen in the core region, as well as the extrapolation scheme 
[9,55]. To plot the EEL spectra we have used a Lorentzian smearing with a broadening of 0.035 Ry. The 
crystal and XC local field effects have been included. 

 
III. ELECTRON ENERGY LOSS SPECTRA AT VANISHING TRANSFERRED 

MOMENTUM (Q → 0) 
 

This section is devoted to the study of the main factors which influence peak positions and intensities 
of the EEL spectrum calculated at vanishing transferred momentum. We analyze in particular the 
magnitude of the intensity integrated up to 20 eV. By decreasing importance, we find the inclusion of 
the 5d semicore states in the valence region (Sec. IIIA), local field effects (LFE), the SOC effect (Sec. 
IIIB), and the choice of the XC functional. The respective roles of LFE and of the XCfunctional are 
reported in the SupplementaryMaterial [56]. 

A careful attribution of the peaks is performed in Table I, which is the main result of present section, 
and a detailed comparison is made with available experimental data (Sec. IIIC). We show, in particular, 
that the inclusion of the 5d semicore states in the valence region is crucial not only to reproduce the peaks 
between 20 and 30 eV and the broad structure between 40 and 100 eV, but also to obtain the correct 
position and shape of the bulk-plasmon peak at 14 eV. This analysis gives us confidence in the reliability 
of the predictions made in Sec. IV. 

Only the [111] trigonal direction is investigated and the study of anisotropy is postponed to Sec. IVC. 
 

A. Effect of 5d semicore states 
 

The EEL spectra are widely different when 5d semicore states are included in the valence region or 
when they are frozen in the core (see Fig. 1). When 5d states are included in the valence region, the 
integrated intensity of theEELspectrum over the range 0–500 eV is markedly increased by 60%. Indeed, 
without an explicit account of the 5d semicore states in the valence region, the broad structure between 
40 and 100 eV is not present in the spectrum, indicating that this structure is due to interband transitions 
from the 5d semicore states to higher conduction bands (see Table I and appendix for the details of the 
band structure). Neither are there peaks in the range 20–30 eV, which are due to interband transitions 
from the 5d semicore states to the lowest conduction bands. The authors of Ref. [57] have also shown 



that the EEL spectra of noble metals at high energies do have structures due to excitations from the 
semicore states. This is also true for some oxides, like titania and zirconia [58,59]. In cuprous oxide 
instead, the 3s and 3p semicore states are located at respectively−115 eV and −70 eV belowthe top of the 
valence band and their inclusion in the calculation has only a small effect on the plasmon position [60]. 

More remarkably, the inclusion of the 5d semicore states in the valence region turns out to be crucial 
to correctly find out the position and shape of the bulk plasmon, which is defined as a collective excitation 
of valence electrons. The bulk-plasmon peak occurs at 14 eV (see Table I, peak 3), whereas when 5d 
states are frozen in the core, it appears as a shoulder at 15.1 eV and the spectrum is dominated by a peak 
at 18.4 eV (which is otherwise not present in the EEL spectrum when 5d states are included in the valence 
region, see Fig. 1). We point out the fact that 5d states are localized and lie at low energies, −24.2 and 
−21.1 eV, and that the valence band structure is extremely well reproduced when 5d semicore states are 
frozen in core [51], but this turns out to be insufficient to correctly reproduce the dielectric function 
beyond 10 eV. 

When 5d states are included in the valence region, the plasmon is redshifted by 1.1 eV and the shape 
of the spectrum is widely different, as for instance the integrated intensity from 0 up to 20 eVis decreased 
by 18.3%. In consequence, in the rest of the paper we show the results when 5d states are included in the 
valence region. 

 

 
 



 
 
B. Effect of spin-orbit coupling 
 

The effect of spin-orbit coupling is responsible for a very large splitting of the electronic energy states 
in Bi (see appendix) and, therefore, the EEL spectrum is expected to be sensitive to it. Although not as 
large as for the band structure, the effect of SOC on the EEL spectrum of Bi is significant, as can be seen 
in Fig. 2 [61]. When SOC is included, the position of the bulk-plasmon peak at 14 eV does not change 
while the integrated intensity up to 20 eV is decreased by 4.1%. We note that the change in the intensity 
of the plasmon peak in Bi due to SOC is similar to that in Pb (see Fig. 7.12 in Ref. [13]). Contrastingly, 
the peak at 5.8 eV is hardly affected by SOC. The peaks between 20 and 30 eV redshift with the inclusion 
of SOC and their intensity changes only slightly. Such a shift is due to the energy change of interband 
transitions, which is itself a consequence of the SOC-induced splitting of the 5d energy bands into O4 
and O5 subshells [see Fig. 8(b)]. In the rest of this paper we present the results obtained when SOC was 
included in the calculations (except Sec. IVA, where we also show spectra without SOC). 
 

C. Comparison with experiment in large energy range (up to 100 eV) 
 

The EEL spectra calculated using the LDA and GGA XC functionals at vanishing transferred 
momentum agree remarkably up to 100 eV with the experimental spectrum of Ref. [23] (see Fig. 3). We 
summarize all the structures in the EEL spectrum of Bi in Table I and define the error bar in this work as 
the difference between peak positions computed within TDDFpT by using the LDA and GGA XC 
functionals. A detailed comparison of theoretical results obtained with the LDA and GGA XC functionals 
can be found in the Supplementary Material [56]. 

Peak 1 at 5.8 eV is found in our calculations. This peak is observed as a shoulder in the experimental 
spectrum of Ref. [23] and was clearly resolved in other measurements [18,20–22]. As will be discussed 
later in Sec. IVA, our results suggest that this peak is not solely due to interband transitions, as believed 



before the present work: it is a resonant excitation between interband transitions from the occupied 6p 
states to empty 6p states, and the bulk plasmon, and thus, this excitation has a mixed character. The 
discrepancy with experiment on peak 1 is found to be in the range 0.2–0.8 eV (see Table I). 

Remarkably, the position of the bulk plasmon at 14.0 eV coincides between theory (both LDA and 
GGA) and experiment (peak 3), and our results about Bi are an illustration of the success of TDDFT in 
predicting plasmon peak positions. Moreover, our calculations reveal the existence of an extra structure 
(peak 4), which was not resolved in the experiments. Such a structure is due to interband transitions and 
it appears as a shoulder when using LDA, while within GGA peaks 3 and 4 have very similar intensities 
and hence they form a unique broad structure. Such a plateau-like structure was not observed 
experimentally, and hence LDA shows a closer agreement to the experimental EEL spectrum in the range 
10–20 eV. 

Peaks 5 and 6 in the energy range between 20 and 30 eV are due to interband transitions from the 5d 
semicore states to the Fermi level and lowest empty states. These peaks show a redshift of 1.1–2.2 eV 
with respect to the experimental peak positions of Ref. [23] (see Table I), the scattering between the 
experimental results themselves amounting for the nonnegligible value of ≈0.8 eV. The discrepancy 
between theory and experiment can be due to two factors: First, the imprecision of the energy position 
of the 5d semicore states within both LDA and GGA is in part responsible for the discrepancy, as for 
instance, with respect to the quasiparticle energies obtained in photoemission experiments, the 
discrepancy on the 5d semicore bands amounts to 2.8 eV (see appendix). TDDFT has thus a limited 
accuracy for interband transitions, because the positions of single-particle excitation energies depend on 
the LDA and GGA KS energies, and our study illustrates the need of GW corrections to blueshift this 
kind of excitations [62]. Second, one can expect a semicore hole effect in the 5d states caused by the 
interaction between the excited electron and the hole created in the 5d semicore state during the interband 
transition. This electron-hole interaction is usually treated with the Bethe–Salpeter approach [4,63,64] 
for valence electrons, or with the Z + 1 approximation for core excitations [65], and in both cases the 
excitation energy is redshifted. 

 



Figure 3 shows that TDDFpT remarkably reproduces the broad structure extending between 40 and 
100 eV (peak 9), thus validating our PP approximation for high-energy excitations [66]. The most recent 
EEL experiments on bulk bismuth [11] show that instead of one broad peak 9 (with a maximum intensity 
at around 51–52 eV), two peaks were found; namely, peaks 8 and 10 appearing at 41.5 and 57.5 eV, 
respectively, in contradiction with all other experiments and present theoretical study (see Table I). Such 
a discrepancy should be attributed to some artifacts in the experiments of Ref. [11]. Newexperimentswith 
a higher accuracy are required to clarify whether there is one or two bands. 

Moreover, we do not find the surface-plasmon peak 2 at ∼10 eV, which was observed in several 
experiments reported in Refs. [17,18,21,22], because we did not model a surface but a bulk material. 
Neither do we find peak 7 at ∼29 eV. In fact, the occurrence of some oxidation of bismuth can be 
suspected in the experiments in which this peak has been observed [17,18,21,22], because Bi2O3 has a 
peak at 29 eV, as was pointed out by Wehenkel and Gauthe [23]. Our calculations confirm that peak 7 
does not come from the response of nonoxidized bulk Bi. 

As can be seen from Table I, the comparison of TDDFpT results with the experimental ones in bismuth 
shows that the more collective the character of the excitation, the more precise the TDDFpT with respect 
to the experimental data. 

Finally, it is worth noting that the RPA studies of EEL of Bi of Ref. [11] do not show as good 
agreement with the experimental EEL as our TDDFpT studies. In particular, in Fig. 26 of Ref. [11], the 
RPA loss function has intense spurious peaks in the range from 0 to 12 eV, which are not observed 
experimentally, the main plasmon peak position is underestimated by ∼2 eV, and the broad structure in 
the range from 40 to 100 eV decays too fast to zero intensity (probably because of not enough number 
of empty states included in the calculations). Our calculations using the LL approach to TDDFpT give 
instead a remarkable agreement with the experimental data of Ref. [23] thanks to the full TDDFpT level 
of approximation and, in particular, the broad structure decays correctly because of the (in principle) 
infinite number of empty states implicitly included in our calculations due to the use of techniques of 
density functional perturbation theory [33]. 

 
D. Real and imaginary parts of dielectric function 
 
In this sectionwe perform amore detailed comparison of the theoretical EEL spectrum within the LDA 

and the experimental EEL spectra of Bi (Refs. [21,23]) in the 0–35 eV range and discuss the origin of 
the peaks by considering the real and imaginary parts of the dielectric function, Re[ϵ (Q, ω)] and Im[ϵ 
(Q, ω)], for Q → 0. We have computed the dielectric function according to the definition, ϵ (Q, ω) ≡ 1/ 
ϵ −1(Q, ω), as explained in Ref. [10]. As shown in Fig. 4, overall there is a very good agreement between 
theoretical data of this work and the experimental ones. Re[ϵ] and Im[ϵ] follow closely the experimental 
data and capture all the prominent features. 



 
 
From Figs. 4(a) and 4(b) the information about the origin of the peaks can be obtained. Peak 1 in Im[ϵ] 

was also found by Cardona and Greenaway at 5.3 eV in the optical absorption experiment [67] and it 
was attributed to the interband transitions from the occupied 6p states to empty 6p states. Since peak 1 is 
also present in the loss function [see Fig. 4(c)], it has been also attributed to interband transitions [18]. 
However, as will be shown in Sec. IVA, a strong dispersion with Q of peak 1 reveals that its origin is 
due in part to collective excitations. Therefore, we draw the conclusion that peak 1 has a mixed nature. 

We would like to point out a remarkable agreement of the lower-energy part (ω < 14 eV) of the 
plasmon peak (peak 3, Table I) with the experimental data of Ref. [21] [see Fig. 4(c)]. In the theoretical 
loss function the plasmon peak occurs [68] when Re[ϵ] = 0.16 and Im[ϵ] = 0.49, which is in good 
agreement with the results reported in Ref. [23]; namely, Re[ϵ] = 0.06 and Im[ϵ] = 0.50. 

As was reported in Sec. IIIC and as can be seen in Fig. 4(c) in the theoretical EEL spectrum there is a 
shoulder at 16.3 eV (peak 4), which is due to interband transitions. This is so because in Im[ϵ] there is a 
very weak shoulder at the same energy, which was not resolved in the experiments due to its low 
intensity. 

It is known that, in general, a shift (from a fraction of 1 eV to several eV) can be observed between 
peaks due to interband transitions in Im[ϵ] and −Im[ϵ −1] (see, e.g., Ref. [69]). However, such a shift in 
Bi is negligible for peaks 5 and 6. Indeed, these peaks in the EEL spectrum [Fig. 4(c)] coincide with the 
peaks in the imaginary part of the dielectric function [Fig. 4(b)], and hence they can unambiguously be 
attributed to interband transitions.  

The remaining differences between theory and experiment in the real and imaginary parts of the 
dielectric function can be attributed to the fact that, first, the plasmon peak is very broad and, hence, it is 



not easy to find its maximum very precisely and thus, also the values of Re[ϵ] and Im[ϵ] satisfying the 
plasmon resonant condition, and second, the authors of Ref. [23] used the Kramers–Kronig analysis 
which introduces some uncertainty into the values of the dielectric function. 

 

 
 

IV. ELECTRON ENERGY LOSS SPECTRA AT FINITE TRANSFERRED MOMENTA (Q ≠ 0) 
 
In this section we present results which are totally predictive. They have been obtained by using the 

best level of approximation which we could reach in this work; namely, TDDFpT including 5d semicore 
states in the valence region, including SOC, including LFE, and using the LDA XC functional. Moreover, 
in this section we analyze the effect of SOC and anisotropy at finite transferred momenta. Qualitatively 
similar results (not shown) were obtained by using theGGAXCfunctional, the geometrical effect 
discussed in the Supplementary Material [56] being the main source of difference between GGA and 
LDA. 

 
A. Dispersion and nature of the peaks 

 
Figure 5 shows the EEL spectra of Bi at various values of the transferred momentum Q along the 

[111] direction in the framework of the reciprocal basis vectors of BZ, i.e., along the trigonal axis (see, 
e.g., Ref. [48]). The analysis of the dispersion of the peaks complements our analysis of the origin of the 
peaks, which are summarized in the last column of Table I. 

When the transferred momentum Q is increased, the bulk-plasmon peak 3 at 14 eV is blueshifted, 
showing a quadraticlike dispersion, while the peaks 5 and 6 in the 20–30 eV range do not change visibly 
their positions, which confirms that they are caused by the interband transitions from the 5d semicore 
states to the Fermi level and lowest empty states (see appendix for the initial and final electronic states, 
Figs. 8(a) and 8(b), respectively). The shoulder at 16.3 eV (peak 4) shows a weak dispersion withQ, 
confirming that it is due to interband transitions. When Q increases and reaches the critical value of Qc 
≈ 1.2 °A−1, bulk-plasmon peak 3 merges with peaks 4, 5, and 6 which are due to the interband transitions, 



the spectrum becomes very broad and its intensity is decreased. Such a broadening of the EEL spectrum 
occurs because the energy of the plasmon is transferred to excitations of the electron-hole pairs [70]. 

As for peak 1 at 5.8 eV, it blueshifts largely when Q increases. This observation suggests that the 6p 
→ 6p interband transitions are mixing with the bulk-plasmon excitation, hence creating an excitation of 
a resonant mixed character. Thus, its attribution is reconsidered by our results and the peak should be 
regarded as having a mixed nature. 

The EEL spectra at various values of Q were computed when SOCwas included and neglected by 
using corresponding theoretical lattice parameters (see Table 5.1 of Ref. [8]). From Fig. 5 one can see 
that the effect of SOC is more pronounced for smaller values of Q, while for large Q it is less important. 
More investigation are needed in order to explain such a trend. 

 
B. Dielectric function at finite Q 

 
Figure 6 shows a comparison of the loss function, −Im[ϵ−1(Q, ω)], and the real and imaginary parts of 

the dielectric function, Re[ϵ (Q, ω)] and Im[ϵ (Q, ω)], respectively, for various values of the transferred 
momenta Q along the [111] direction. It can be seen that, for small Q, the loss function and the imaginary 
part of the dielectric function are very different, but for large Q they become almost identical. This is 
due to the fact that, for small transferred momentaQ, the long-range component of the Coulomb potential 
is important, whereas for large Q the short-range effects dominate [71,72]. The same trend has been 
observed byWeissker and co-workers in silicon (see Fig. 20 in Ref. [72]). 
 

C. Effect of anisotropy 
 
The anisotropy is determined by the electronic band structure and crystal local field effects [58,72]. 

We computed EEL spectra of Bi at several transferred momenta Q along the directions [111], [110], and 
[100] in the BZ (in the framework of the reciprocal basis vectors) within TDDFpT by using the LDA XC 
functional and including SOC.We find that the EEL spectra are anisotropic at large transferred momenta 
Q, as can be seen in Fig. 7. However, at small transferred momenta, e.g., Q = 0.2 Å−1, the anisotropy is 
very small. When Q is increased up to, e.g., 0.8 Å−1 or larger, the anisotropy becomes very significant. 
At Q = 0.2 Å−1 and Q = 0.8 Å peaks 5 and 6 due to the interband transitions from the 5d semicore states 
are isotropic, in contrast with the plasmon peak 3, peak 4 due to interband transitions, and peak 1 of the 
mixed nature. Also, we find that, by switching off SOC, the EEL spectra show qualitatively the same 
anisotropic behavior with increasing Q as when SOC is included in the calculations [8]. 



 
 
 
 
 
 

 
V. CONCLUSIONS 

 
We have presented a theoretical study of the EEL spectra of bulk Bi at vanishing and finite transferred 

momenta.The study has been done by using our recently developed Liouville–Lanczos approach to EEL 
and IXS spectroscopies, which allowed us to study energy losses up to 100 eV, a wide excitation energy 
range of interest in bismuth. Spinorbit coupling has been included self-consistently in our calculations. 

The EEL spectrum at vanishing transferred momentum have been found to be in remarkable 
agreement with available experimental data. Including 5d states in the calculations is crucial, as we have 
shown that the dielectric function is not correctly described for energies larger than 10 eV when they are 
frozen in the core. Our calculations reveal the presence of interband transitions at 16.3 eV, which were 
previously not identified because they were not distinguished from the bulk plasmon. A careful 
experimental analysis of the relative dispersion of the bulk plasmon and of the shoulder at 16.3 eV, as 
done in present theoretical work, is called for. We have presented the dependence of the dielectric 
function and of the loss function on the value of the transferred momentum, and have studied the 
influence of various effects such as SOC, crystal and exchange-correlation local fields, and anisotropy. 

Our results complement the lack of experimental data at finite transferred momenta, and we have 
shown in particular that, for values of Q larger than ≈1.2 Å−1, the plasmon decays into electron-hole 
pairs. Finally, the peak at 5.8 eV is attributed by the present work to a resonant coupling between 6p → 



6p interband transitions and the bulk plasmon. Measurements of the EEL spectra of bulk Bi at vanishing 
and finite transferred momenta are called for. 
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APPENDIX: KOHN-SHAM BAND STRUCTURE 

 
The electronic configuration of Bi consists of 6s26p3 valence electrons, 5d10 semicore electrons, and 

the lower-lying electrons forming the core. In the DFT and tight-binding calculations the 5d semicore 
electrons can be treated either on the same footing as 6s and 6p valence electrons [48,73] or frozen in the 
core [49,50,74–78]. In Ref. [48] it was reported, however, that the inclusion of the 5d semicore electrons 
in PP improves its transferability properties. 

The KS band structure of Bi along some high-symmetry directions in the BZ is illustrated in Fig. 8, 
which was calculated within DFT-LDA with and without SOC. The KS band structure within DFT-GGA 
can be found in Ref. [8]. Here we present the DFT-LDA KS band structure for the analysis of the EEL 
spectra within TDDFpT by using the LDAXC functional. 

The effect of SOC on the band structure of Bi is crucial. The first study showing this effect is Ref. 
[75]. Here we summarize the results [8] which are needed for discussions in this work. When SOC is not 
included in the calculations, Bi turns out to be metallic, because there is an artificial crossing of bands at 
the Fermi level [see Fig. 8(a)]. The semimetallic characterof the band structure is entirely due to SOC, 
which leads to large splittings of all energy bands except s bands [e.g., 6s bands in Fig. 8(a)]. The large 
splitting of 6p bands, in turn, leads to an extremely small overlap around the Fermi level between the 
lowest conduction band and the highest valence band (see Tables 5.2 and 5.3 in Ref. [8]), resulting in a 
Fermi surface consisting of one hole pocket at the T point and three equivalent electron pockets at the L 
points [48,75,76]. The localized 5d semicore states lie more deeply and also split due to SOC forming 
two groups of bands—O4 and O5 subshells [see Fig. 8(b)]. The 5d semicore bands show very weak 
dispersion with respect to valence and conduction bands. 

Both in DFT-LDA and DFT-GGA the 5d semicore states appear on average at −24.2 and −21.1 eV 
when SOC is included, and in the range [−22.2;−22.6] eV without SOC [see Fig. 8(b)]. The 
photoemission data on Bi indicate that the binding-energy values of the O4 and O5 subshells relative to 
the Fermi level, which is taken to be zero, are −26.5 ± 0.5 and −24.4 ± 0.6 eV, respectively [79]. This 
average discrepancy of 2.8 eV between LDA (GGA) and photoemission data in the description of the O4 
and O5 subshells of the 5d semicore shell is due to the limited accuracy of our approximations of the XC 
energy, and a possible need to account for quasiparticle corrections to the KS band structure by using the 
GW method [80,81], which has been recently applied to Bi including SOC [82]. Consequently, this has 



an effect on the peak positions in the EEL spectra of Bi, which are due to transitions from the 5d semicore 
states to unoccupied states. 
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