
№6

ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА

ПРИЛОЖЕНИЕ Сентябрь 2013

С е к ц и я 5

МАТЕМАТИЧЕСКИЕ ОСНОВЫ
ИНФОРМАТИКИ И ПРОГРАММИРОВАНИЯ

УДК 004.43, 004.056

CRYPTOGRAPHIC EXTENSION
OF RUSSIAN PROGRAMMING LANGUAGE

G.P. Agibalov, V.B. Lipsky, I. A. Pankratova

An extension of the Russian programming language LYaPAS called LYaPAS-T is pre-
sented. The extension concerns the size of operands and the set of elementary op-
erations over them. It is caused by the need of trustworthy and effective soft and
hard implementations of contemporary cryptographic algorithms in secure computer
systems applied for the logical control of critically important objects such as cosmic
systems, nuclear weapons, energetic plants, submarines, etc. A LYaPAS-T compiler
generating a load module for operating system Linux is presented too.
Keywords: Russian programming language, cryptographic extension, LYaPAS-T,
compiler.

Introduction

Here by the Russian programming language is meant the algorithmic language LYaPAS
elaborated at the beginning of the 1960th years at Tomsk State University (Russia) by the
leadership of A. D. Zakrevskij and designed for the representation of logical combinatorial
algorithms solving the problems of applied discrete mathematics appearing in the synthesis
of discrete automata [1, 2]. The name of Russian programming language was given to it
by American scientists [3]. Up to 1990th years, LYaPAS was applied in USSR [2], USA [4],
Germany, Poland, Czechoslovakia and other countries. This time, LYaPAS is successfully
reanimated at Tomsk State University by the Information Security and Cryptography De-
partment especially for elaborating the trustworthy system and applied software destined
for the computer-aided design of secure logical control computer systems and for the secure
and effective implementation of cryptographic algorithms [5]. Among many programming
languages known today, LYaPAS seems to be the most appropriate one for these purposes.

At the same time, there is an essential and perhaps single drawback of LYaPAS — the
lack of many elementary operations that are widely used in contemporary cryptographic
algorithms: for the long integer arithmetic, for calculating in many-dimensional spaces over
finite fields and rings, for solving combinatorial problems on large sets, etc. By the way, this
drawback is usual for all other programming languages including ones being much younger
than LYaPAS. In some of them, the drawback is got over by writing classes of long integers,
large discrete functions and others. As for LYaPAS, this its lack is more effectively got
over by extending the language itself by spreading elementary operations in LYaPAS for
logical complexes and by adding to it some new elementary operations defined for variables
and logical complexes with the wanted purposes. The last version of LYaPAS known as
LYaPAS-M [6, 7] slightly revised and then exTended in such a way is called LYaPAS-T.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287448939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


94 Прикладная дискретная математика. Приложение

The revision of LYaPAS-M concerns the symbol alphabet of the language and the arith-
metic operations of multiplication and division for integers. The result of the revision is
called vLYaPAS (from reVised LYaPAS). In it, small Latin letters are used instead of capital
Russian ones, symbols of some operations are replaced by other more proper ones, and mul-
tiplication and division operations are defined saving the values of overflow and remainder
respectively. For keeping them, a special variable — Z is inserted in the language.

The objective of the paper is to present an information about vLYaPAS, its extension
LYaPAS-T motivated by the requirements of cryptographic algorithms, and a LYaPAS-T
compiler generating code in the executive file format of the operating system (OS) Linux.

The project of a processor implementing LYaPAS-T programs in hardware, and a pre-
processor translating LYaPAS-T programms to executive code for the processor are pre-
sented in [8], the program in vLYaPAS-T representing the cryptographic algorithm AES is
demonstrated in [9].

1. Revised LYaPAS

A program in vLYaPAS is a series of sentences each starting with a pair §s where s is
a non-negative integer called the number of the sentence. Every sentence is a sequence of
operations applied to operands.

1.1. O p e r a n d s

Operands in vLYaPAS are constants, variables, complexes and complex elements. They
are used for representing non-negative integers, Boolean vectors, Unicode symbols and se-
quences of them. In vLYaPAS, non-negative integers are bounded by 232 − 1, the length
of Boolean vectors does not exceed 32. Boolean vectors of length 32 are also called words.
Components in a Boolean vector are numbered beginning with 0 in the direction from the
right to the left end, and the vector itself can be considered as a non-negative integer (writ-
ten in the binary form). A Boolean vector of any length n > 1 with only one component 1
is called a unit or identical vector.

There are natural, unit and symbol constants. Natural constants are written as decimal,
hexadecimal, octal or binary numbers. A unit constant is a Boolean vector with only one
component 1. It is denoted by Ii if the number of component 1 in it equals i. Symbol
constant is a sequence of Unicode symbols.

Variables in vLYaPAS take values of Boolean vectors of length 32. The number of
variables equals 27. They are denoted by letters a, b, . . ., z, Z where Z is used for specialized
purposes mentioned above. Besides, there is a virtual variable also called the own or internal
variable in LYaPAS. Unlike the other variables, it is not written in LYaPAS programs, but it
appears in them in implicit way as a result of any elementary operation and can be used as
operand by any next operation in the program. For convenience of exposition, this variable
is accepted to name τ .

Complex is a linearly ordered set of elements being symbols in a symbol complex or
Boolean vectors of length 32 in a logical complex. Every complex has its own unique
number from the series 0, 1, 2, . . . The logical or symbol complex having number i is
denoted by the symbol Li or Fi respectively. The real number and the greatest number of
elements in a complex are the parameters of the complex and are called its cardinality and
capacity respectively.

Unlike the other programming languages, the value types in vLYaPAS are not fixed.
The value type (an integer or a vector) for a constant, variable and complex element is
determined by the type of an operation (arithmetic or logical respectively) which is applied
to this operand.



Математические основы информатики и программирования 95

1.2. O p e r a t i o n s

In vLYaPAS, there are elementary, complex, input-output and macro operations. Ele-
mentary operations are, in turn, of the following classes:

— value transfer: O — assigning 0s, − — assigning 1s, x — assigning x, ⇒ — assign-
ing τ , X — assigning an output value from a computer pseudorandom number generator
(PRNG), ⇒ X — assigning τ to to the seed of PRNG, T — assigning computer time,
= (x, y) — value swop;

— logical: ¬ — negation, ∨ — disjunction, & — conjunction, ⊕ — exclusive disjunction,
< — left shift, > — right shift;

— arithmetic: ! — right 1 number calculation, % — Boolean vector weight calculation,
+ — modulo 232 addition, −— modulo 232 subtraction, ∗— modulo 232 multiplication
(Z := overflow), : — double number division (Z := remainder), / — integer division
quotient (Z := remainder), ; — integer division remainder (Z := quotient),4— increase
by 1, 5 — decrease by 1;

— transition: →— unconditional transition, ↪→— transition under condition τ = 0, 7→—
transition under condition τ 6= 0,→ (x�y) — transition under relation � ∈ {=, 6=, <,>,
6,>}, →: — transition with return, →! — return back, → (x) — transition in case if
the running time exceeds x; →Xabc — ones enumeration: if a = 0 then b := 0 and→ c,
otherwise right 1 in a is replaced by 0, its number ⇒ b and next operation;

— {assembly program} — assembly insertion (the assembly program pointed between
{ and } is executed).

Among complex operations there are forming (creating) a complex of a given cardinality,
annihilation, decreasing complex capacity up to cardinality, complex clearance (without
changing cardinality), addition of symbols to symbol complex, element insertion, element
exclusion, subcomplex copying to another complex.

In future a complex created with a constant or variable capacity will be called respec-
tively static or dynamic one.

Note that the operation of taking subcomplex existing in LYaPAS is not included in
vLYaPAS because of its potential insecurity.

Input-output operations are the following: /F>C — output of symbol complex F to
console; /′ς ′ >C — output of symbol constant ς to console; /F<C — symbol constant
input from keyboard: symbols are added to a symbol complex F, complex cardinality is
increased.

Macro operations are calls for subprograms with the given external (input/output)
parameters.

2. LYaPAS extension

2.1. L o n g a r i t h m e t i c s

Natural constants in LYaPAS-T are integers 0, 1, . . . , 2n − 1 where n is a multiple of 32
and depends on actual implementation of LYaPAS-T. Nowadays the value n = 214 seems
to be quite sufficient for contemporary cryptographic applications.

By letting δ be 232 a natural constant c may be expressed by the following series:

c = c0 + c1δ + c2δ
2 + . . .+ cr−1δ

r−1 (1)

for some r > 0 and ci ∈ Ω = {0, 1, . . . , 232− 1}, i = 0, 1, . . . , r− 1. In their standard binary
representation, the elements of the set Ω are Boolean vectors of length 32. Therefore in



96 Прикладная дискретная математика. Приложение

LYaPAS-T, the sequence c0, c1, . . . , cr−1 is represented by a logical complex Lj of length r
with ci being the ith element of Lj.

All operations defined in vLYaPAS for variables can be used in LYaPAS-T for logical
complexes. In case of arithmetic operation the sequence of complex elements is considered
as a natural constant c expressed by the series in (1). Different operands for an arithmetic
operation may be of different lengths and types (one of them — a variable, another — a
complex). In case of logical operation the complex value is considered as a Boolean vector
being the concatenation of the complex elements. Logical complexes of cardinality n/32
with values being unit vectors are unit constants Ii, i = 0, 1, . . . , n− 1, in LYaPAS-T.

2.2. P l u r a l i t y o f o w n v a r i a b l e

So, unlike LYaPAS, there are two types of operands for elementary operations in
LYaPAS-T: variables of the length of one word and logical complexes of different lengths —
from 1 to n/32 words. Accordingly, in LYaPAS-T, there are two types of the own variable —
prime and complex. The first one is the traditional τ from LYaPAS. It has the length of
one word and may take the values of any variable of the language. In any implementation
of LYaPAS-T, soft or hard, it is kept in a processor register. The own variables of the
2nd type take values of logical complexes and have their lengths. In hard implementation
of LYaPAS-T, each of them is kept in one and the same register of the maximal possible
length — n. In soft implementation of LYaPAS-T, to exclude time-spending operations for
transferring complex between a register and data memory, it is expediently, for the time of
executing a series of operations beginning with the address to a logical complex, to pass the
role of the complex own variable directly to this complex and to keep it in data memory
where the complex is kept.

2.3. A d d i t i o n a l o p e r a t i o n s

In addition to operations in vLYaPAS, the extension LYaPAS-T contains some new
logical operations used in cryptographic algorithms including the following ones:

1) mL — permutation: components of Boolean vector τ are re-arranged according to
the order of their serial numbers pointed in a logical complex L;

2) −(a, b) — projection: the part of Boolean vector τ with components having numbers
in an interval (a, b) is chosen;

3) ⇑ b(i) — insertion: a Boolean vector b is put in τ before the ith element;
4) ⇓ (a, b) — reduction: the part of Boolean vector τ with components having numbers

in an interval (a, b) is deleted from the vector;
5) | b — concatenation: a Boolean vector b is added to τ ;
6) � i or � i — left or right cyclic shift: Boolean vector τ is cyclically shifted i bits

left or right respectively;
7) > κ(a) — most element: a maximal element is found in a complex κ whose elements

are considered as non-negative integers, its value is given to τ , its number — to a;
8) 6 κ(a) — least element: analogously.
As for arithmetic operations modulo N (for any natural N) such as addition (modN),

multiplication (modN), exponentiation (modN) and others which are widely used in cryp-
tography, there is no real possibility to include them in the list of the elementary operations
in LYaPAS-T because of the existence of many algorithms implementing them with the dif-
ferent efficiencies in many cases. Instead, it is decided to implement these algorithms in an
assembly language and (or) in LYaPAS-T and to include them in the LYaPAS-T library for
applying them by users in LYaPAS-T programs as subprograms.



Математические основы информатики и программирования 97

3. LYaPAS-T compiler

3.1. W h a t i s t h i s ?

For short, any LYaPAS-T program and its subprograms are called L-program and
L-subprograms respectively. For being implemented by a computer, an L-program should
be used as a parameter of LYaPAS-T compiler that converts it to a load module for the OS
Linux.

The compiler starts under the command line of OS Linux
>$ lc <prog>.l

where <prog>.l is the name of a file with the L-program being a list of L-subprograms.
(It is recommended to call an L-program file using the extension l but it is not necessarily.)
The first L-subprogram in the list is the head one. OS Linux transfers the control to it after
the file loading to RAM. The order of the other L-subprograms in the list does not matter.
The file may contain not all necessary L-subprograms. In this case the compiler looks for
them in the file libl0.l being the user library. It is the library where it is convenient to
keep the often used L-subprograms.

The result of the compiler working is a load module which is kept with the name <prog>
(without extension) at the same folder where the L-program is located. For executing it
the following command is used:
>$ ./<prog>

Compiler is written in C++ with the using the library of regular expressions making it
absolutely simple and transparent.

3.2. L o a d m o d u l e s t r u c t u r e

The load module consists of two segments — program segment (.text) and data seg-
ment (.data). In turn, the first one consists of subprograms generated by the compiler
for L-subprograms called in the process of the L-program execution. The data segment
contains: the current address in the memory for placing new complexes, and the bound of
memory granted for complexes by OS; the current state of the PRNG; unit constants; the
weights of all Boolean vectors in {0, 1}8 (need for the implementation of the operation %);
and all symbol constants met in the L-program.

3.3. M e m o r y o r g a n i z a t i o n

For every L-subprogram, all its local variables, beginnings, cardinalities and capacities
of its local complexes are placed in a stack forming a frame of 1420 bytes. An access to the
local data is made by using fixed shifts from the frame beginning (register ebp). For the
frame of a parental L-subprogram, the value of the register ebp is also saved in the frame.
So, the list of frames is created for the L-subprograms called.

The local complexes of an L-subprogram are placed in a heap. The address of the free
section in the heap at the moment of calling for the L-subprogram is also kept in the frame.

The operation of creating local complex is accompanied with the control of the free
section of a necessary size. It is done by comparing the values of the complex capacity,
address of the free area, and the memory bound granted by OS for complexes. In the case
of enough place, the address of the complex beginning takes the value of the free section
address, and the free section address is increased by the value of the complex capacity. If
the place is not enough then an appeal to OS is made for increasing the accessible memory
bound.

Under this organization, the memory is protected against attacks through the stack or
heap overflow because, first, buffers (complexes) are taken away from the stack, and there is



98 Прикладная дискретная математика. Приложение

no possibility to rewrite the return address, and, second, there are no operations for setting
memory free by means of OS.

BIBLIOGRAPHY
1. LYaPAS, a Programming Language for Logic and Coding Algorithms / eds. M.A. Gavrilov

and A.D. Zakrevskii. New York, London: Academic Press, 1969. 475 p.
2. Toropov N.R. Programming language LYaPAS // Applied Discrete Mathematics. 2009.

No. 2(4). P. 9–25. (in Russian).
3. Nadler N. User group for Russian programming language // IEEE, Newsletter for Computer-

Aided Design. 1971. Iss. 3.
4. Charles J. and Albright Jr. An Interpreter for the Language LYaPAS. University of North

Carolina at Chapel Hill: Department of Computer Science, 1974. 125 p.
5. Agibalov G.P. To reanimation of Russian programming language // Applied Discrete

Mathematics. 2012. No. 3(17). P. 77–84. (in Russian).
6. Zakrevskij A.D. and Toropov N.R. Programming system LYaPAS-M. Minsk: Nauka i Technika,

1978. 240 p.(in Russian).
7. Toropov N.R. Dialogue programming system LES. Minsk: Nauka i Technika, 1985. 263 p. (in

Russian).
8. Agibalov G.P., Lipsky V.B., and Pankratova I. A. Project of hardware implementation of

Russian programming language // Applied Discrete Mathematics. Application. 2013. No. 6.
P. 98–102.

9. Broslavskiy O.V. AES in LYaPAS // Applied Discrete Mathematics. Application. 2013. No. 6.
P. 102–104.

УДК 004.43, 004.056

PROJECT OF HARDWARE IMPLEMENTATION
OF RUSSIAN PROGRAMMING LANGUAGE

G.P. Agibalov, V.B. Lipsky, I. A. Pankratova

The projects of a LYaPAS-T processor implementing the programming language
LYaPAS-T in hardware and of a preprocessor translating LYaPAS-T programs into
the executive code of the processor are presented. It is also told that for a LYaPAS-T
subset containing neither subprograms, nor operations over complexes and long
operands, the architecture of the processor was described in VHDL, tested by means
of a computer simulation, and implemented in a programmable logical integrated cir-
cuit obtained with the help of a computer-aided design.
Keywords: Russian programming language, LYaPAS-T, hardware implementation,
LYaPAS-T preprocessor.

In [1] a cryptographic extension LYaPAS-T of Russian programming language and a
compiler for its implementation in software were presented. The objective of this paper
is to present an information about the project of a processor implementing LYaPAS-T
programs in hardware, and a preprocessor translating LYaPAS-T programs to executive
code for the processor.

1. Parameters

In LYaPAS-T implemented in hardware, the operand length, the largest number of a
complex and the maximal quantity of subprograms in the hierarchical structure of a program
are assumed to be bounded by natural n, m and k respectively. Hence, the quantities of


