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Using the present upper bound on the neutron electric dipole moment, we give an estimate for
the upper limit of the CP -violating couplings of the η(η′) to the nucleon. Using this result, we then
derive constraints on the CP -violating η(η′)ππ couplings, which define the two-pion CP -violating
decays of the η and η′ mesons. Our results are relevant for the running and planned measurements of
rare decays of the η and η′ mesons by the GlueX Collaboration at JLab and the LHCb Collaboration
at CERN.

PACS numbers: 12.39.Fe, 13.25.Jx, 14.40.Be, 14.65.Bt
Keywords: pion, η, η′ mesons, nucleon, ∆ isobar, strong decays, CP violation

I. INTRODUCTION

The CP violation (CPV) is crucial for understanding the observed baryon asymmetry of the Universe (BAU). In
the Standard Model (SM), CP is explicitly broken by the complex phase of the Cabibbo-Kobayashi-Maskawa (CKM)
quark-mixing matrix and by the θ-term of QCD. Up to date, experimentally CPV has only been observed in K- and
B-meson mixing and hadronic decays [1], which are perfectly compatible with the CKM phase. On the other hand,
the CPV of SM origin is by far insufficient for the explanation of the BAU. The missing amount of CPV is believed
to arise from non-SM sources.
Apart from the above-mentioned CPV observables, there are others with distinct sensitivity to different sources of

CPV. Among them, the electric dipole moments (EDMs) of the neutron, leptons and atoms have attracted special
attention [2–5]. In particular, the neutron EDM is weakly sensitive to the CKM phase, but strongly sensitive to the
θ-term, constraining the latter to be unnaturally small. This smallness is elegantly explained by the famous Peccei
and Quinn mechanism [6, 7].
Various beyond-the-SM contributions to the EDM have been studied in the literature, for example, the R-parity

violating supersymmetry [8, 9] and meson-cloud effects in the nucleon [10, 11]. For a review on EDMs as probes of
new physics see, e.g., Ref. [12].
There is also an extensive experimental program, both for the measurements of the EDMs, and looking for rare

CPV decays with increasing sensitivity. In particular, searches for rare η and η′ decays have been performed by the
LHCb Collaboration at CERN [13], and are planned by the GlueX experiment at JLab (Hall D) [14]. In the present

paper we focus on η(η
′

) → ππ. As will be shown, the CPV η(η′)ππ-couplings underlying these decays also contribute
to the neutron EDM. Thus, the current experimental limits on the neutron EDM [1]

|dn| ≤ 2.9× 10−26e cm, 90% C.L., (1)

will allow us to derive new indirect upper bounds on the branching ratios of these CPV decays. The current direct
experimental 90% C.L. upper limits [1, 13] are

Γ(η → ππ)

Γtot
η

<

{

1.3× 10−5 for π+π−

3.5× 10−4 for π0π0 ,

Γ(η′ → ππ)

Γtot
η′

<

{

1.8× 10−5 for π+π−

4.0× 10−4 for π0π0 . (2)
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Here Γtot
η = (1.31± 0.05) keV and Γtot

η′ = (0.198± 0.009)MeV are the total decay widths.

In Ref. [2], the size of the neutron electric dipole moment (EDM) was estimated on the basis of a CPV chiral
Lagrangian that couples the light pseudoscalars to the neutron, modulo the CPV phase. At leading order, only
the contributions of the charged mesons survive, for which there is no experimental input on the size of their CPV
couplings. In order to relate the neutron EDM to the couplings with the η(η′), next-to-leading order chiral Lagrangians
must be taken into account.
This is one of the aims of the present work. We carry out the analysis of the EDM within fully covariant Chiral

Perturbation Theory (ChPT), and with the explicit inclusion of intermediate spin-3/2 states, namely the ∆(1232)
resonance. The latter couples strongly to the nucleon, and is therefore expected to give important contributions to
processes that lie in energies close to the resonance mass. We use the Extended On-Mass Shell (EOMS) scheme [15, 16]
for renormalization. It is relativistic, satisfies analyticity, and usually converges faster than non-relativistic approaches.
The paper is organized as follows. In Sec. II, we construct the Lagrangian for the CP -violating coupling of the η(η′)

to the pions, in order to connect it with the branching ratio of the reaction. In Sec. III, we use this input to construct
the CP -violating coupling of the η(η′) to the nucleon. The CP -conserving coupling is discussed in Sec. IV, with the
usual chiral Lagrangian considerations. In Sec. V, we give a brief overview on the couplings with vector mesons. The
calculation of an estimate for the neutron EDM with these tools is shown in Sec. VI. By comparing the result with
the experimental constraint on the EDM, we extract an estimate for the η(η′) → ππ branching ratio upper limits.
Finally, in Sec. VII, we summarize the work and give our conclusions.

II. THE CP VIOLATING η(η′) → ππ DECAY

The effective Lagrangian describing the CP -violating η(η′)ππ coupling is given by [4]:

LCP
Hππ = fHππMH H ~π 2 , (3)

with H = η, η′, MH the mass of the η(η′) meson and fHππ the coupling constant of η(η′) to the pions. Thus, the
decay width is given by

Γ =
nΓ |~pπ|
8πm2

H

|MHππ|2 = nΓ

√

M2
H − 4M2

π

4π
|fHππ|2 , (4)

where nΓ is an additional final-state factor, which equals 1/2 for the π0π0 and 1 for the π+π− channel. Using the
limits from Eq. 2, we obtain upper limits for the coupling constants.
Here we choose to calculate the charged and neutral channels separately, and to keep only the lower result as the

global upper limit:

|fηππ| < 2.1× 10−5,

|fη′ππ| < 2.2× 10−4 . (5)

III. THE CP -VIOLATING COUPLINGS OF THE η AND η′ TO THE NUCLEON

With the previous considerations, one can obtain an estimate for the CP -violating coupling of the η(η′) to the
nucleon

LCP
HNN = gCP

HNN H N̄N , (6)

with the ansatz that the coupling is made via pion loops as shown in Fig. 1.
The chiral Lagrangians to describe the couplings appearing in those loops are

L(1)
N =Ψ̄

(

i/D−m+
g0
2
/uγ5

)

Ψ,

L(1)
∆πN =

ihA
2F0M∆

Ψ̄T aγµνλ(∂µ∆ν)(∂λπ
a) + h.c., (7)

where Ψ is the nucleon doublet (p, n)
T

with mass m, and ∆ the isospin-3/2 quadruplet
(

∆++,∆+,∆0,∆−
)T

with
mass M∆. The covariant derivative is given by

Dµ = (∂µ + Γµ) , Γµ =
1

2

[

u†(∂µ − irµ)u + u(∂µ − ilµ)u
†
]

. (8)
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(a) (b) (c)

FIG. 1: Loops that can contribute to the CP -violating coupling of the η(η′) to the nucleon. The single solid lines stand for
nucleons, the double lines for the ∆, the dashes for pions and the dotted lines for the η(η′). The black box at the Hππ vertex
indicates the CP -violating coupling.

The meson fields appear through

u2 =U = exp

(

iΠ

F0

)

, Π =

(

π0
√
2π+

√
2π− −π0

)

, uµ = i
[

u†(∂µ − irµ)u− u(∂µ − ilµ)u
†
]

, (9)

with rµ and lµ being right- and left-handed external fields, and F0 is the meson-decay constant. At leading chiral order,
the low-energy constant (LEC) g0 corresponds to the physical axial-vector coupling constant gA = 1.27. Furthermore,
we use the notation

γµνλ =
1

2

{

γµν , γλ
}

, γµν =
1

2
[γµ, γν] . (10)

The coupling hA can be obtained from the ∆ width, leading to the value hA = 2.85 [17]. The conventions and
definitions for the isospin operators T i follow Ref. [18]:

T 1 =
1√
6

(

−
√
3 0 1 0

0 −1 0
√
3

)

,

T 2 =
−i√
6

( √
3 0 1 0

0 1 0
√
3

)

,

T 3 =

√

2

3

(

0 1 0 0
0 0 1 0

)

. (11)

From isospin considerations, it should be clear that there is no contribution from Fig. 1(c), due to the cancellation
of the π+ and the π− loop. The loops in Figs. 1(a) and 1(b) do contribute, though. With the Lagrangians introduced
in Eq. 7 and the vertex from Eq. 3, the loop in Fig. 1(a) reads

gCP
HNN = −iI2Nπ

g2AfHππMH

F 2
π

∫

ddz

(2π)d
(/z + /k)γ5(/p− /z +m)/zγ5

[(k + z)2 −M2
π ][z

2 −M2
π][(p− z)2 −m2]

, (12)

where k is the momentum of the η(η′), and INπ is the isospin factor. It is 1/2 for the π0n loop and
√
2/2 for π−p. The

incoming nucleon momentum is given by p, Mπ is the pion mass, and m the nucleon mass. To estimate the coupling,
we use the approximation where the external nucleon legs are on-shell. When simplifying this integral with the help
of Feynman parameters and dimensional regularization, we obtain the result:

gCP
HNN =

g2AI
2
Nπ

F 2
π

fHππMH

∫ 1

0

dfa

∫ 1−fa

0

dfb

[

− 3m(fb + 1)λ2(∆ηNN )

+m
2 + fb

2
ρ2(∆ηNN ) +

(

fa(fb + 2)(fa + fb − 1)k2m+ f3
bm

3

)

λ3(∆ηNN )

]

. (13)
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In the last expression, fa and fb are Feynman parameters, and

λ2(∆) =
1

16π2

[

2

ǫ
− log

(

∆

µ2

)

+ log(4π)− γE

]

,

ρ2(∆) =
2

16π2
,

λ3(∆) =
1

16π2∆
, (14)

with ǫ = 4 − D. Here, D is the Minkowski-space dimension, and the renormalization scale µ is set to the nucleon
mass. For this diagram, we have

∆HNN =M2
π(1− fb)− fak

2(1− fa − fb) +m2f2
b . (15)

For the purpose of comparison, we extract the heavy-baryon limit from Eq. 13 by taking the leading order of the
Taylor expansion around the small parameter m−1. When choosing a vanishing k2 = 0 for the η, the CP -violating
coupling has the compact form

gCP,HB
HNN =

3fηππg
2
AmMH(γE − 2− log(4π)− 2

ǫ )

32π2F 2
π

. (16)

This result is in agreement with the previous calculations of Ref. [4] after some typos are corrected.
The divergences are absorbed with the MS scheme: terms proportional to 2

ǫ +log(4π)−γE are subtracted. Setting

k2 = 0, we obtain a compact result for Eq. 13:

gCP
HNN = −3fHππg

2
AMH

16π2F 2
πm

{

M2
π log

(

m

Mπ

)

+m2 +
Mπ

(

M2
π − 3m2

)

√

4m2 −M2
π

×
[

arctan

(

Mπ
√

4m2 −M2
π

)

+ arctan

(

2m2 −M2
π

√

4m2M2
π −M4

π

)]}

. (17)

As for Fig. 1(b), with a ∆ intermediate state, the coupling reads

gCP
HNN,∆ =iI2N∆π

h2AfHππMH

F 2
πM

2
∆

∫

ddz

(2π)d

× (pα − zα)zδγαβδS
ββ′

∆ (p− z)(pα
′ − zα

′

)(zδ
′

+ kδ
′

)γα′β′δ′

[(k + z)2 −M2
π ][z

2 −M2
π ][(p− z)2 −M2

∆]
, (18)

where the isospin factor IN∆π is 1/6 for the π0∆0 loop and 1/3 for the combination of π−∆+ and π+∆−. The ∆
propagator is

Sαβ
∆ (p) =

/p+M∆

p2 −M2
∆ + iε

[

− gαβ +
1

D − 1
γαγβ

+
1

(D − 1)M∆
(γαpβ − γβpα) +

D − 2

(D − 1)M2
∆

pαpβ
]

. (19)
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When putting the external nucleons on shell, and choosing k2 = 0, we obtain:

gCP
HNN,∆ =

fHππh
2
Am

2MH

1152π2F 2
πM

2
∆

{

− 6
(

m2 +M2
π −M2

∆

)

m
+ 6(2m+ 3M∆) log

(

M2
∆

m2

)

+ 4m

−
6
(

2m4 + 3m3M∆ +m2
(

2M2
∆ − 6M2

π

)

+m
(

3M3
∆ − 3M2

πM∆

)

+ 2
(

M2
π −M2

∆

)2
)

m3

+
1

m5

√

−m4 + 2m2 (M2
π +M2

∆)− (M2
π −M2

∆)
2

×
[

6
(

2m4 − 5m3M∆ +m2
(

6M2
∆ − 4M2

π

)

+ 5mM∆

(

M2
π −M2

∆

)

+ 2
(

M2
π −M2

∆

)2
)

×
(

m2 + 2mM∆ −M2
π +M2

∆

)2

]

×
[

arctan





−m2 −M2
π +M2

∆
√

−m4 + 2m2 (M2
π +M2

∆)− (M2
π −M2

∆)
2





− arctan





m2 −M2
π +M2

∆
√

−m4 + 2m2 (M2
π +M2

∆)− (M2
π −M2

∆)
2





]

+
3 log

(

M2

π

M2

∆

)

m5

[

2m6 + 3m5M∆ + 6m4M2
π + 6m3M2

πM∆ + 6m2M2
π

(

M2
∆ −M2

π

)

− 3mM∆

(

M2
π −M2

∆

)2
+ 2

(

M2
π −M2

∆

)3

]}

. (20)

Using the pion-decay ratio Fπ = 92.4 MeV, and the upper bounds on the CP -violating couplings fHππ as introduced
in Eq. 5, one obtains the following upper limits:

|gCP
ηNN | = 2.8 · 10−5, |gCP

η′NN | = 5.1 · 10−4,

|gCP,HB
ηNN | = 3.9 · 10−5, |gCP,HB

η′NN | = 7.1 · 10−4,

|gCP
ηNN,∆| = 7.9 · 10−6, |gCP

η′NN,∆| = 1.4 · 10−4 . (21)

One can see from the numerical result that it is important to take the ∆ loop into account, as its contribution is
larger than 20% of the nucleon’s. Furthermore, although the magnitude of the heavy-baryon calculation is similar in
size to the fully covariant one, one can see that there is a sizeable change of around 30% in the numerical value due
to this non-relativistic approximation.1

1 These couplings, without the ∆ contribution, had been calculated previously in the heavy-baryon ChPT (HBChPT) approach, in Ref. [4].
A direct comparison of the numerical results has little meaning because of some errors in the formulas. Also, now we have experimentally
better constrained values for the branching ratios of Eq. 2 [1, 13].
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IV. THE CP -CONSERVING COUPLING OF THE η AND η′ TO THE NUCLEON

The CP -conserving coupling of the η(η′) to the nucleon is given by

LHNN = −i
gHNN

2Fη
H N̄/kγ5N , (22)

with k the η momentum, and N̄ and N the outgoing and incoming nucleon states, respectively. In this calculation,
we set the decay constant Fη to the physical SU(3) average of 108 MeV [19].
The physical η and η′ are a mixing of the singlet and the octet states. Thus, the coupling π0nn is given by

−gA = −(F + D), while the ηnn and η′nn vertices have the couplings gηnn = (D + F ) cosψ +
√
2(F − D) sinψ

and gη′nn =
√
2(D − F ) cosψ + (F +D) sinψ, respectively. The mixing angle ψ between the η and the η′ has been

estimated in many works [20–26] to be in a range between 38o [25] from η → e+e−γ decay data and 45o [21] in a
ChPT analysis. The more recent results tend to have values close to 40o, which we use in the following. We also take
the physical-average values for F = 0.47 and D = 0.8 [19].

V. COUPLINGS OF VECTOR MESONS

In the present work, we also study the effects of loops containing vector mesons coupling to the η(η′) and to the
nucleon. The relevant pieces of the Lagrangians describing this type of couplings are [27, 28]

LγHV =− eλV
4MH

ǫµναβ F
µν V αβη, (23)

LV NN =N̄

(

gvγ
µ + gt

σµν

2m
∂ν

)

Vµ τV N, (24)

where the values taken for the coupling constants [4, 28] are summarized in Table I. The electromagnetic field couples
via the usual definition Fµν = ∂µAν − ∂νAµ, and V µν = ∂µV ν − ∂νV µ. The propagator of a vector-meson field with
momentum k and mass mV is taken as

1

k2 −m2
V

(

−gαβ +
kαkβ

m2
V

)

. (25)

V gVv gVt /gVv λV λ′

V τV

ρ0 2.4 6.1 0.9 1.18 τ3

ω 16 0 0.25 0.43 1

TABLE I: Parameters for the vector-meson coupling Lagrangians. τ3 assumes the values 1 and −1 for the proton and the
neutron, respectively.

Here we want to remark that the values for the couplings are poorly known, for which reason they are an important
source of uncertainty for the results. Furthermore, in higher orders they have a dependency on the virtuality of the
vector meson, which we ignore in the leading-order calculations that follow.

VI. CALCULATION OF THE NUCLEON EDM

The EDM is extracted from the amplitude coupling the photon to the nucleon. In our case, as the amplitude always
involves a CP -violating vertex, only one form factor containing the EDM appears. Therefore, the CP -violating part
of the vector current Jµ between baryon states reads:

〈B(p′)| Jµ
CPV |B(p)〉 = ū(p′)

iσµνγ5qν
4m

FEDM(q2)u(p) , (26)

where qν is the photon momentum, ǫµ its polarization, and σµν = i γµν . At the point where q2 = 0, the form factor

reduces to the electric dipole moment FEDM(0) = d̃N . In our model, the CPV comes from the loops of Fig. 2.



7

(a)

(b)

FIG. 2: Loops that can contribute to the neutron EDM. The solid line represents the neutron, the dotted line the η(η′), the
dashed lines are vector-meson contributions, and the wavy line corresponds to the photon. Again, the black box stands for a
CP -violating vertex.

In Fig. 2(a), the photon couples to the nucleon that propagates inside the loop. In the particular case of the neutron,
the leading-order coupling to the photon vanishes, for which reason only next-to-leading order terms contribute. The
second-order nucleon Lagrangian is needed to describe such a vertex at lowest non-vanishing order for the neutron,
which reduces to

L(2)
γnn = σµνFµν

eκn
4m

, (27)

where κn = −1.913 is the neutron magnetic moment in units of e
2m .

A direct coupling of the photon to an η(η′) propagating inside a loop is not possible, due to this meson’s vanishing
charge. Nevertheless, as is depicted in Fig. 2(b), it is possible to achieve a coupling via a vector-meson exchange,
which here we also perform for the sake of comparison with Ref. [4], and for an estimate of the importance of its
effect.
The amplitude of Fig. 2(a) reads

e κn gHNN ḡHNN

8mFη

∫

ddz

(2π)d
1

[z2 −M2
H ][(p− z)2 −m2][(p+ q − z)2 −m2]

×
[

(/p+ /q − /z +m)(/q/ǫ − /ǫ/q)(/p− /z +m)/zγ5

−/zγ5(/p+ /q − /z +m)(/q/ǫ − /ǫ/q)(/p− /z +m)
]

, (28)

which for the dipole moment d̃n in units of e
2m at q2 = 0 leads to

d̃n,a =
mκn ḡHNN gHNN

FH

∫ 1

0

dfb

∫ 1−fb

0

dfa

{

(6fa − 5)λ2(∆EDM,a) + (2− fa)ρ2(∆EDM,a)

− 2m2
[

fa(f
2
a − 2) + 2(1 + (fa − 1)fa)fb + (fa − 2)f2

b

]

λ3(∆EDM,a)

}

. (29)

Together with the definitions in Eq. 14, we choose the notation

∆EDM,a = m2
η(1− fa − fb) +m2(fa + f2

b ). (30)
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After integration, the analytical expression is also quite compact:

d̃n,a =
κn ḡHNN gHNN

32π2Fηm3

{

m4 − 3m2m2
η +

(

3M4
H − 6m2M2

H

)

log

(

Mη

m

)

− 3m3
H

√

4m2 −M2
H

(

M2
H − 4m2

)

×
[

arctan

(

MH
√

4m2 −M2
H

)

+ arctan

(

2m2 −M2
H

MH

√

4m2 −M2
H

)]}

. (31)

As for the amplitude in F. 2(b), it is given by

e λV τV ḡHNN

mH

∫

ddz

(2π)d

[

(/z +m)

[(p− z)2 −M2
V ][z

2 −m2][(p′ − z)2 −M2
H ]

×qµǫν(p− z)αiǫ
µναβ

(

−gββ′ +
(p− z)β(p− z)β′

M2
V

)(

gVv γ
β′ − gVt

4m
(p− z)α

′

[γβ
′

, γα
′

]

)

−

(

gVv γ
β′

+
gV
t

4m (p′ − z)α
′

[γβ
′

, γα
′

]
)(

−gβ′β +
(p′−z)β′(p′−z)β

M2

V

)

[(p− z)2 −M2
H ][z2 −m2][(p′ − z)2 −M2

V ]

×qµǫν(p′ − z)αiǫ
µναβ(/z +m)

]

. (32)

For this loop diagram, the analytical result has the very simple form

d̃n,b =2
λV τV m ḡηNN

MH

∫ 1

0

dfb

∫ 1−fb

0

dfa

{

(gVv − gVt )[2λ2(∆EDM,b) + 3ρ2(∆EDM,b)]

}

,

where

∆EDM,b = m2(1− fa − fb)
2 +M2

Hfb +m2
V fa.

Note that, for each of the two diagrams in F. 2(b) separately, there are also pieces of the type λ3(∆EDM,b), but they
cancel each other. Integrating over the Feynman parameters yields

d̃n,b =
ḡHNN (gVt − gVv )λV τV
24π2m3MH(M2

H −m2
V )

{

m2(m4
η −m4

V )

+M3
H(4m2 −M2

H)3/2

[

arctan

(

MH
√

4m2 −M2
H

)

− arctan

(

M2
H − 2m2

MH

√

4m2 −M2
H

)]

−M3
V (4m

2 −M2
V )

3/2

[

arctan

(

MV
√

4m2 −M2
V

)

− arctan

(

M2
V − 2m2

MV

√

4m2 −M2
V

)]

+M4
H(6m2 −M2

H) log

(

MH

m

)

−M4
V (6m

2 −M2
V ) log

(

MV

m

)

}

. (33)

The numerical results are summarized in Table II. The vector-meson contributions of Fig. 2(b) turn out to be of
the same order of magnitude as the loops in Fig. 2(a). This is to be expected, even though the vector mesons are
higher-mass states. For Fig. 2(a), the Lagrangian of first chiral order does not allow a coupling of the photon to the
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neutron. Therefore, this contribution is suppressed, and the vector-meson contributions become equally important.
The sum of all the contributions yields a total value for the dipole moment of dtotn = 4.3 · 10−18e cm. Note that this
value takes into account the new result for the η′ two-pion decay [13]. Therefore it is smaller by approximately a factor√
3, when compared to values obtained from the η′ two-pion decays in Ref. [1]. Considering the current experimental

upper limit of 2.9 · 10−26e cm for the neutron dipole moment, the ratio between expectation and measurement is
of the order of 108. This means that the present upper limit for the decay ratio of the η(′) into two pions gives a
large overestimation of the CP -violating coupling constant. In fact, in order for the results to be compatible with the
experimental constraint on the neutron dipole moment, the branching ratio would have to be at least eight orders of
magnitude smaller.

η η′

Fig. 2(a) 3.1 · 10−20 1.5 · 10−18

Fig. 2(b) 2.1 · 10−19 2.6 · 10−18

TABLE II: Contributions to the upper limit of the neutron EDM, from the current experimental upper limits of the η and η′

branching ratios into two pions [1, 13]. The units are e cm.

It is interesting to confront these results with those in Ref. [2]. There, as mentioned, the size of the neutron EDM
was estimated within a similar framework as presented here, but by considering a CP -violating vertex in the coupling
of the charged mesons to the baryons, and calculating their induced contributions to the EDM at leading chiral order.
There, up to a factor including the unknown CP -violating phase θ, the EDM was estimated to be of the order of
10−16e cm. The fact that we get an estimate approximately two orders of magnitude smaller is in good agreement
with that calculation, knowing that for the neutral mesons considered here the diagrams that contribute are of the
next chiral order.
It is important to keep in mind that the values shown in Table II are not to be seen as predictions for the neutron

EDM, but as estimates for the order of magnitude of the η(η′) branching ratios into two pions. Other processes,
which are beyond the scope of this paper, give additional contributions to the neutron EDM. These are, e.g., pieces
obtained from the CP -violating decay of the η′ into four pions, or processes that do not conserve flavour via the
quark-mixing matrix. Furthermore, as mentioned in Sec. V, some of the coupling constants used here are poorly
known, and the results depend on the renormalization scheme used. Nevertheless, due to the very large discrepancy
between the experimental constraint on the EDM and the one calculated from the current upper limits for the CP -
violating branching ratios, the results are still rigorous enough to be instructive. The conclusions made here remain,
even if other processes are to be additionally considered, or if the coupling constants are to have different sizes.

VII. SUMMARY

In the present paper, we calculated the nucleon EDM originated by a CP -violating coupling to the η(η′) meson.
In particular, we focused on the result for the neutron, as its experimental upper limit is very small, 2.9 · 10−26e cm.
This limit sets a very strong constraint on observables related to it. More specifically, if a neutron EDM is to exist,
then CP violation has to occur. Therefore, here the goal was to give an estimate of the size of this violation.
This was achieved by constructing a CP -violating coupling of the η to the nucleon via loops that include an η(η′)ππ

vertex. While there are experimental results for the upper limit of the η(η′) → ππ decay ratio, here we wanted to test
if this constraint is indeed compatible with the limit on the neutron EDM. The ∆-isobar contributions were taken
into account as well, leading to a correction to the CP -violating η(η′)NN vertex larger than 20%.
We considered two possible sources for the neutron EDM. In one case, the photon coupled to the neutron within

a loop with a CP -violating ηNN vertex. In the other, vector-meson contributions were considered as well. The two
contributions turned out to be of a similar size.
In total, we obtained a constraint on the CP -violating η(η′) → ππ decay ratio roughly eight orders of magnitude

smaller than measured in the experiment so far. This is a very instructive result, since it gives an estimate on
symmetry violations in nature, where experimental results are not yet achievable.
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