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We study the exclusive double-photon annihilation processes, e+e− → γγ∗ → γV 0 and e+e− →
γ∗γ∗ → V 0

a V
0
b , where the V 0

i is a neutral vector meson produced in the forward kinematical region:
s� −t and −t� Λ2

QCD. We show how the differential cross sections dσ
dt

, as predicted by QCD, have
additional falloff in the momentum transfer squared t due to the QCD compositeness of the hadrons,
consistent with the leading-twist fixed-θCM scaling laws, both in terms of conventional Feynman
diagrams and by using the AdS/QCD holographic model to obtain the results more transparently.
However, even though they are exclusive channels and not associated with the conventional electron-
positron annihilation process e+e− → γ∗ → qq̄, these total cross sections σ(e+e− → γV 0) and
σ(e+e− → V 0

a V
0
b ), integrated over the dominant forward- and backward-θCM angular domains, scale

as 1/s, and thus contribute to the leading-twist scaling behavior of the ratio Re+e− . We generalize
these results to exclusive double-electroweak vector-boson annihilation processes accompanied by
the forward production of hadrons, such as e+e− → Z0V 0 and e+e− → W−ρ+. These results
can also be applied to the exclusive production of exotic hadrons such as tetraquarks, where the
cross-section scaling behavior can reveal their multiquark nature.

PACS numbers: 12.38.Aw,12.40.Vv,13.66.Bc,14.40.Be
Keywords: electron-positron annihilation, hadron structure, quantum chromodynamics, vector meson domi-
nance, electroweak bosons, tetraquarks

I. INTRODUCTION

A surprising result, shown by Davier, Peskin, and Snyder (DPS) [1], is that there are exclusive hadronic contributions
to the electron-positron annihilation cross section ratio Re+e− = σ(e+e− → X)/σ(e+e− → µ+µ−) that are scale
invariant, but are not associated with the annihilation process e+e− → γ∗ → qq̄. These exclusive processes are based
on double-photon annihilation subprocesses, such as e+e− → γγ∗ → γV 0 and e+e− → γ∗γ∗ → V 0

a V
0
b , where the V 0

i

are vector bosons such as the ρ meson. Since the amplitude involves spin- 12 electron exchange in the t and u channels,

it behaves as s
1
2 for s� −t,−u. The total cross section (which includes a phase-space factor of 1/s2), integrated over

the dominant forward and backward regions, thus behaves as 1/s.
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FIG. 1: The double-photon annihilation amplitude in the Born approximation.

In this paper we show how the QCD compositeness of the vector bosons affects the matrix elements and cross
sections for these double-photon processes. The effects of compositeness reflect the fact that the coupling of the
virtual photon proceeds through the vertex γ∗ → qq̄. One may study the scaling behavior solely using conventional
Feynman diagram techniques, as we describe below and in Sec. II. In order to obtain explicit closed-form results that
manifest the correct scaling behavior, we start by employing the light-front quantization of QCD (LF-QCD); in those
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FIG. 2: Exclusive production of a photon and vector boson via double-photon annihilation (the corresponding u-channel
diagram is implied). The differential cross section is peaked in the forward and backward directions. Compositeness of the
vector boson produces a monopole falloff of the differential cross section dσ/dt in |t|.
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FIG. 3: Exclusive production of two vector bosons via double-virtual photon annihilation (the corresponding u-channel diagram
is implied). Compositeness of the vector bosons produces a dipole falloff of the differential cross section dσ/dt in |t|.

terms, the virtual qq̄ then couples to the valence hadronic light-front wave function ψV 0(x,~k⊥). The integration over
the light-front momentum fractions x = k+/P+ and 1−x, and relative transverse momentum k⊥, of the pair leads to
an extra factor of the QCD mass scale ΛQCD in the numerator of the amplitude. In order to track both the small- and
large-momentum behavior of these processes, we utilize the AdS/QCD (AdS = anti-de Sitter) holographic light-front
model [2, 3] which is successful in explaining the main features of meson and baryon spectroscopy, as well as the
dynamical properties of hadrons. This nonpertubative approach to hadron physics gives a good overall description
of meson and baryon form factors, including consistency with the perturbative QCD (pQCD) power-law scaling of
hadronic form factors at large momentum transfer. The AdS/QCD hadronic scale κ can be related to the slope of the

Regge trajectories, as well as providing mass relations such as κ = Mρ/
√

2 [2, 3]. We also show that the AdS/QCD
prediction for fρ, the leptonic decay constant of the ρ meson, is in excellent agreement with measurement.

The double-photon e+e− → γγ amplitude illustrated in the first inset of Fig. 1 behaves for large energy as

M(s, t) ∝ αem

( s

−t
)αR

= αem

( s

−t
)1/2

, (1)

for s � −t, corresponding to spin- 12 exchange in the t channel, where the differential cross section is dσ/dt ∝
|M(s, t)|2/s2. The fermion-exchange amplitudes have both t- and u-channel contributions; however, the interference
is suppressed in the dominant forward- and backward-peaked domains. As we shall show, and consistent with di-
mensional analysis, the differential cross section for the production of a single vector meson dσ

dt (e+e− → γV 0) via

double-photon annihilation (see Fig. 2) must have the extra falloff G2
V (t) ∼ κ2/|t| at large −t� κ2; i.e.,

dσ

dt
(e+e− → γV 0) ∼ α3

em

s|t|
κ2

|t| . (2)

The mass parameter κ is specifically the scale parameter of AdS/QCD approach; however, the power scaling of
AdS/QCD and pQCD for G2

V (t) at large t are the same, consistent with the twist dimension dictated by QCD
compositeness. Physically, the extra falloff in |t| results from the phase-space hadronization of the virtual qq̄ in the
amplitude e+e− → γqq̄ → γV 0, which is represented by the transition form factor GV (q2). In the case where two
vector bosons are produced with opposite transverse momenta (see Fig. 3), the amplitude is suppressed by two form
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factors, so the differential cross section at s� −t� κ2 scales as

dσ

dt
(e+e− → γ∗γ∗ → V 0

a V
0
b ) ∼ α4

em

s|t|
κ4

t2
. (3)

The powers of αem correspond to the couplings of the virtual photons to the currents of the annihilating leptons and
the vector bosons. In effect, the cross sections are the same as that given by the naive vector-meson dominance (VMD)
model [4] but multiplied by the form factors required by QCD compositeness. It is worth noting that such nontrivial
form factors also naturally arise in chiral perturbation theory calculations [5, 6], but carry a different scaling, as
discussed below.

The scaling results for the exclusive cross sections are consistent with the leading-twist quark fixed-angle counting
rules [7–9] : dσ

dt (A + B → C + D) ∝ F (θCM)/sN−2, where N = NA + NB + NC + ND is the total twist or number

of elementary constituents. In our case, N − 2 = 3 for e+e− → γV 0 and N − 2 = 4 for e+e− → V 0
a V

0
b , which

would give the scaling for non-forward angles (where s, −t, −u are all of comparable size). In the present case,
the integration over the forward peaks in t and u does not modify the 1/s scaling of the total cross section; e.g.,
σe+e−→γV 0(s) ∝ α3

em/s, up to logarithms in t (or u), which are cut off by the mass scales in the process: m2
e from the

propagator between the photons and κ2 from the dominant part of the hadronization integral.
Although compositeness does not affect the leading 1/s scaling of the total cross sections of these reactions, it

does strongly modify the t and u dependence of the amplitudes in terms of new types of transition form factors. An
analysis such as that given in Ref. [10], based on an effective field theory in which the vector mesons are treated as
elementary fields, cannot yield the form factors and counting rules predicted by QCD due to meson compositeness.

In addition, QCD also predicts the 1
M2

V 0
i

falloff of the amplitudes as the mass of each vector boson is increased; this

falloff corresponds to the timelike q2 of the virtual photon. One thus finds new tests of color confinement and the
nonperturbative hadronic wave functions of hadrons. We also show that these results can be extended to electroweak
exclusive processes involving electron or neutrino exchange, such as e+e− → Z0V 0, which are accessible at the
proposed International Lepton Collider (ILC), and to exotic multi-quark hadrons.

II. COUPLING OF VIRTUAL PHOTONS TO VECTOR BOSONS

In this section we demonstrate how the correct momentum dependence (consistent with QCD compositeness) of
the γ∗ → V 0 transition amplitude can be evaluated in the AdS/QCD approach. The full q2 dependence of the
corresponding transition form factor is model dependent, but at large values of q2, its scaling must be consistent with
pQCD.

First, we point out that the full off-shell γ∗(q) → V 0∗(q) transition is given by the amplitude GV (q2)(gµνq2 −
qµqν)/q2, where the tensor guarantees gauge invariance, the 1/q2 comes from the virtual photon propagator, and the

form factor GV (q2) has the falloff 1/
√
q2 at large q2. Therefore, the γ∗(q)→ V 0∗(q) transition scales as O(1/

√
q2) at

large q2. This scaling is interesting—it says that the couplings of heavier vector mesons q2 = m2
V become increasingly

suppressed—but it is not the primary scaling of interest in this paper. In an effective theory that treats the ρ meson
as an elementary field, the form factor GV (q2) is a constant. In addition, the contributions of the relevant diagrams
are different in VMD and pQCD. For example, in the case of the pion electromagnetic form factor, in VMD the
contact diagram gives 1 (a constant contribution at large q2), whereas the vector-meson exchange diagram gives a
(−1 + M2

V /q
2) contribution. Summing these two diagrams, we arrive at a M2

V /t scaling. In contrast, using pQCD
counting rules, the contact diagram turns out to be at leading order (1/q2), whereas the vector-meson exchange
diagram is subleading [(1/q2)3/2] at large q2.

The calculation of the transition form factor GV (q2) can be performed in soft-wall AdS/QCD [11]. We begin by
proposing an effective action describing the coupling of the stress tensors of two vector fields FMN and VMN , which
are holographically equivalent to the electromagnetic and neutral vector meson fields, respectively:

S = −1

2

∫
d4x dz g

(κ)
V (z)e−κ

2z2FMN (x, z)VMN (x, z) , (4)

where g
(κ)
V (z) ≡ 2κ√

π
gV z

0 is the 5-dimensional coupling constant (which, in this special case, is independent of z) and

κ is the dilaton parameter. As seen below, gV arises as the value of GV (q2) at q2 = 0.
The matrix element of the γ∗(q)→ V 0∗(q) transition is given by

Mµν
inv(q) = −ieGV (q2)(q2gµν − qµqν) , (5)
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where GV (q2) is the transition form factor, which in the Euclidean region is given by

GV (Q2) =

∞∫
0

dz e−κ
2z2g

(κ)
V (z)V 2(Q, z) , (6)

where, in terms of the Kummer (confluent hypergeometric) function U ,

V (Q, z) = κ2z2
1∫

0

dx

(1− x)2
xQ

2/(4κ2)e−κ
2z2x/(1−x) = Γ(1 + a)U(a, 0, κ2z2) (7)

is the bulk-to-boundary propagator for both the FMN and VMN fields [2, 3], and a = Q2/(4κ2). V (Q, z) obeys the
following normalization conditions:

V (0, z) = 1 , V (Q, 0) = 1 , V (Q,∞) = 0 . (8)

From the first of these conditions and Eq. (6), one easily sees that GV (0) = gV . As Q2 → ∞, the vector-field
bulk-to-boundary propagator behaves as

V (Q, z) → Q2z2

4

∞∫
0

dt

t2
eκ

2z2−t−Q2z2/(4t)

= eκ
2z2QzK1(Qz) , (9)

where K1(x) is the modified Bessel function of the second kind, which for arbitrary n is given by the integral
representation

Kn(x) =
xn

2n+1

∞∫
0

dt

tn+1
e−t−x

2/(4t) . (10)

One can see that in the limit κ→ 0, the bulk-to-boundary propagator V (Q, z) in the soft-wall model coincides with

the one in the hard-wall model [12]. This expression for V (Q, z) gives the scaling of GV (Q2) ∼ 1/
√
Q2 for large Q2,

consistent with quark-counting rules [7–9]:

GV (Q2) =
2gV√
π

κ√
Q2

∞∫
0

dxx2
[
K1(x)

]2
+ O(1/Q2)

= 1.044 gV
κ√
Q2

+ O(1/Q2) , (11)

since

∞∫
0

dxx2
[
K1(x)

]2
=

3π2

32
' 0.925 . (12)

Had the coupling gκV (z) below Eq. (4) been chosen to scale as zn, a similar calculation would produce the form-factor

scaling 1/(Q2)(n+1)/2. Our choice n = 0 is the unique one providing a bulk-independent transition between the photon
and V mesons, which one expects in AdS/QCD since it mixes with the z-independent kinetic terms FMNF

MN and
VMNV

MN .
Note the difference of our approach and the VMD model using an effective elementary field for the vector mesons

is that we take into account the Q2 dependence GV (Q2), which leads to an additional suppression due to ρ-meson
compositeness; in contrast, in the VMD model, this coupling is just a constant. To model this result, the large-Q2

dependence of the GV (Q2) transition form factor calculated in a soft-wall AdS/QCD model can be approximated by
the form

GV (Q2)

GV (0)
=

1

1 +
√
Q2/ΛV

, (13)
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where ΛV = 1.044κ ' κ is the scale parameter. In the numerical evaluation, we use κ ' 0.5 GeV and get ΛV =
0.522 GeV. This value follows from the slopes of the hadron Regge trajectories and from the matching of the soft-wall
potential with the lattice-QCD heavy-quark potential, leading to κ2 ' σ, where σ is the string tension [13, 14].

For the case of the ρ meson, the value Gρ(0) = gρ = 0.048 is fixed from the condition that Gρ(Q
2) determined from

Eqs. (6) and (7) at the vector-meson mass shell Q2 = −t = −M2
ρ , so that Fρ ≡ Gρ(−M2

ρ ) = 0.202. Fρ, in turn, is

the so-called leptonic decay constant fixed from the central value of the data on the ρ0 → e+e− decay width, and is
given by the formula [15]:

Γ(ρ0 → e+e−) =
4π

3
α2
emF

2
ρMρ . (14)

The form factor GV (Q2) very rapidly reaches its asymptotic value. For example, for κ = 0.5 GeV, the idealized form

of Eq. (13) reaches about 80% of its asymptotic value 1.044 gV κ/
√
Q2 already by Q2 = 4 GeV2. The approach to the

asymptote for the exact result is even faster. In Fig. 4 we plot the result for the exact form factor
√
Q2GV (Q2)/GV (0)

obtained from Eqs. (6) and (7) and compare it with asymptotic line 1.044κ deduced from Eq. (11).

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Q2HGeV
2L

Q
2

G
V
HQ

2
L�

G
V
H0
L
HG

e
V
L

FIG. 4: The form factor
√
Q2GV (Q2)/GV (0). The horizontal line 1.044κ corresponds to its asymptotic value at large Q2.

On the other hand, the value of the coupling Fρ can be calculated in LF-QCD, using [3]

Fρ = 2

√
Nc
Mρ

1∫
0

dx

∫
d2k⊥
16π3

ψL(x, k⊥) , (15)

where ψL(x, k⊥) is the longitudinal light-front wave function (LFWF) of the ρ meson, and Nc = 3. It is known from
the matching of LF-QCD to soft-wall AdS/QCD that [16]

ψL(x, k⊥) =
4π

κ

√
log(1/x)

1− x exp

[
− k

2
⊥

2κ2
log(1/x)

(1− x)2

]
. (16)

Straightforward calculation gives

Fρ =
κ

Mρ

√
Nc
π

(
1− 1√

2

)
. (17)

Using the value Mρ = 755.26 MeV, one obtains from this process that Fρ ' 0.185, which compares well with the
experimental value Fρ = 0.202 given above. Note that using the prediction of the AdS/QCD for the ρ meson mass

Mρ = κ
√

2 [2, 3] gives startling agreement of the calculated value of Fρ with data:

Fρ =

√
Nc
2π

(
1− 1√

2

)
' 0.202 . (18)

Note that the γ∗(q)→ V 0∗(q) transition itself [without the form factor GV ] has no additional falloff in q2, because
the q2 from the Lorentz structure of Eq. (5) is compensated by the 1/q2 from the virtual photon. This result is
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e−(p1)

e+(p2)

γ(q1)

γ∗

q(q2)

q̄(q3)

FIG. 5: Diagram contributing to the e+e− → γγ∗ → γqq̄ annihilation (the corresponding u-channel diagram is implied).

consistent with the VMD model, which is based on the constant behavior of the γ∗(q) → V (q) transition. The
main difference from VMD model is that QCD compositeness gives a nontrivial t dependence, as discussed below.
In particular, let us evaluate the matrix element for the process e+e− → γγ∗ → γV 0; it is effectively given by the
product of the matrix elements of the perturbative process e+e− → γγ∗ → γqq̄ and the nonperturbative process
q̄q → V 0:

M(e+e− → γV 0) =M(e+e− → γqq̄)M(q̄q → V 0) , (19)

where the perturbative matrix element includes the sum of t and u channels (see Fig. 5):

M(e+e− → γqq̄) = e3v̄(p2)

[
γν

1

6kγ
µ + γµ

1

6 k̃
γν
]
u(p1)

1

s2
eq ū(q2)γνv(q3) ε∗µ(q1) , (20)

with eq being the quark charge, s + t + u = s2, s2 = q2 = (q2 + q3)2, k = p1 − q1, k̃ = q1 − p2. Next, using Eq. (5)
and the transversity condition q · ε∗(q) = 0 for vector particles V 0, we replace the product of the final-state bilinear
and M(q̄q → V 0) by

eq ū(q2)γνv(q3)×M(q̄q → Ṽ 0)→ G̃V (s2;−t) s2 ε∗ν(q) , (21)

where the coupling function G̃V (s2;−t) describes the γ∗ → qq̄ → Ṽ 0 transition. At this stage, G̃V is an inclusive

coupling to a neutral vector source Ṽ 0 at momentum transfer s2 and does not yet refer to a single vector particle V 0

of a particular mass
√
s2. If s2 is not otherwise constrained, one expects it generically to be of order −t, as indicated

by the second argument of G̃V . The key point to notice is that the proper amplitude to use for a particular process
depends not only upon the momentum transfer s2 entering from the virtual photon, but it is further constrained
by which distinct exclusive final state it becomes; in particular, if we consider it to be the exclusive transition form
factor GV (s2) referring to a single vector meson V 0. Generically, the qq̄ pair in Fig. 5 emerges with a large transverse
momentum and creates a number of hadrons through fragmentation; even if s2 is taken to be as small as M2

ρ , one can
still produce up to 5 pions from the γ∗. For example, in order to produce a single vector meson exclusively, whose
constituent quarks are nearly collinear, typically requires the exchange of a hard gluon between the qq̄ pair, such that
the gluon momentum transfer is of the order of −t. Taking into account this physical constraint, which arises due to
QCD compositeness of the hadron, is essential for obtaining correct scaling of the form factor GV for large −t; we
recognize this fact by henceforth restricting G̃V (s2;−t) → GV (M2

V ;−t) ≡ GV (−t), the transition form factor for a
single vector meson V 0 of mass MV .

Were one to insert a hard gluon line between q2 and q3 in Fig. 5 to form a loop, each end of the (initially) hard
quarks q2 and q3 would provide a spinor normalization factor ∼ |t|1/4 and each hard quark (gluon) propagator would
contribute a factor ∼ 1/|t|1/2 (∼ 1/|t|). The loop integral naively would bring in four powers of momentum, but the
leading-order piece gives rise to the divergence of the vertex correction, which is subtracted, and the cubic piece gives
an odd function, which vanishes under integration. Thus the loop integral gives a contribution ∼ |t|, so that one
expects GV (−t) for large |t| to scale as 1/|t|1/2.

Finally, we obtain

M(e+e− → γV 0) = e3GV (−t) v̄(p2)

[
γν

1

6kγ
µ + γµ

1

6 k̃
γν
]
u(p1) ε∗ν(q) ε∗µ(q1) . (22)

In comparing with Eq. (20) one sees that, as in the VMD model, the denominator of the virtual photon propagator
(s2) is compensated by the factor s2 coming from the Lorentz structure of the q̄q → V 0 transition. On the other
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hand, one sees the important difference from the VMD model: Our coupling GV (−t) has explicit dependence on t
and falls off as 1/|t|1/2 at large |t|.

Our kinematical limit is as follows: We consider the small forward-angle (θ) scattering region to be such that
−t ∼ s · θ2, while s2 = M2

V � −t satisfies s + t + u = s2. The differential cross section dσ/dt for the process
e+e− → γV 0, where V 0 is any neutral vector-meson state, is calculated according to the formula

dσ

dt
=

1

64π2s2

∑
pol

|M(e+e− → γV 0)|2 . (23)

After a straightforward calculation, we obtain

dσ

dt
=

8πα3
em

s|t| G2
V (−t)

[
1 +

t

s
+O(1/s2)

]
. (24)

At large −t, the differential cross section scales as

dσ

dt
∼ α3

em

κ2

st2
. (25)

For the process e+e− → V 0
a V

0
b , we use the following kinematics:

s+ t+ u = s2a + s2b , (26)

where s2a = q2a = M2
Va

and s2a = q2b = M2
Vb

, and s� −t� s2a, s2b. The differential cross section is given by

dσ

dt
=

1

64π2s2

∑
pol

|M(e+e− → V 0
a V

0
b )|2 , (27)

where

M(e+e− → V 0
a V

0
b ) = e4G2

V (−t) v̄(p2)

[
γν

1

6kγ
µ + γµ

1

6 k̃
γν
]
u(p1) ε∗ν(qb) ε

∗
µ(qa) . (28)

From this amplitude, one can compute:

dσ

dt
=

32π2α4
em

s|t| G4
V (−t)

[
1 +

t

s
+O(1/s2)

]
. (29)

The falloff of dσ
dt for double-vector meson production at large t is thus

dσ

dt
∼ α4

em

κ4

s|t|3 . (30)

Our finding is relevant for the process of dilepton production in e+e− annihilation, when the neutral vector meson
produces the lepton pair. In this case, each vector meson gives a 1/t2 falloff in the cross section, due to the falloff of
the vector-meson form factor GV (−t) ∼ 1/|t|1/2 at large −t.

III. ANNIHILATION e+e− → Z+
c π

− AND e+e− → Z+
c Z

−
c

Using soft-wall AdS/QCD, we can derive the universal formula for the ratio

R =
σ(e+ + e− → Hn1

+Hn2
)

σ(e+ + e− → µ+ + µ−)
, (31)

where n1 and n2 are the numbers of partons in each hadron.
According to Ref. [17], the ratio R is given by the square of the γ → Hn1

+Hn2
transition form factor:

R = |FHn1
Hn2

(s)|2 . (32)
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Note that these functions F are the more conventional electromagnetic form factors (coupling two states to a photon),
in distinction to the transition form factors GV (coupling a photon to a single state) discussed in the previous section.
In the soft-wall AdS/QCD model, FHn1Hn2

(Q2) is given by

FHn1
Hn2

(Q2) =

∞∫
0

dz V (Q, z)φn1
(z)φn2

(z) , (33)

where

φn(z) =

√
2

Γ(n− 1)
κn−1 zn−3/2 e−κ

2z2/2 (34)

is the bulk profile of the AdS field dual to a hadron with n constituents [2, 18]. Straightforward calculation gives

FHn1Hn2
(Q2) =

Γ(n1+n2

2 ) Γ(n1+n2

2 − 1)√
Γ(n1 − 1)Γ(n2 − 1)

Γ(a+ 1)

Γ(a+ 1 + n1+n2

2 − 1)

∼ 1

a(n1+n2)/2−1
, (35)

where a = Q2/(4κ2). As before, the power of z in the bulk profile uniquely fixes the Q2 scaling.
The latter formula reproduces the correct scaling of form factors with the corresponding number of partons (here,

n is the number of qq̄ pairs):

FHn
∼
(

1

Q2

)n−1
, (36)

and gives a prediction for the production of single and double tetraquarks. In particular, the scaling of the form factor
corresponding to γ∗ → Z+

c + π− is

FZ+
c π− ∼

1

Q4
∼ 1

s2
, (37)

in case of tetraquark structure of Zc state, and

FZ+
c π− ∼

1

Q2
∼ 1

s
, (38)

in the case when Z+
c is a system of two tightly bound diquarks.

For γ∗ → Z+
c + Z−c ,

FZ+
c Z

−
c
∼ 1

Q6
∼ 1

s3
, (39)

in case of a Zc state with tetraquark structure, and

FZ+
c Z

−
c
∼ 1

Q2
∼ 1

s
, (40)

in case when Z+
c is a system of two tightly bound diquarks. These results are consistent with the scaling laws

discussed in Ref. [17] [see Eqs. (5) and (6) in that reference]. Our results also agree with the counting rule for
exclusive tetraquark-plus-meson production discussed in Ref. [19].

IV. APPLICATIONS TO STANDARD MODEL PROCESSES

We can also extend our analysis of exclusive processes to standard-model electroweak reactions such as e+e− →
W+W− → ρ+W− and e+e− → W+W− → ρ+ρ−. An example involving νe exchange is illustrated in Fig. 6. The
virtual W+ couples to the charged vector meson via coupling to its ūd valence quarks.
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The cross section for W -pair production in e+e− annihilation with one-loop corrections, along with earlier references,
is given in Ref. [20]. Neutrino exchange gives the dominant contribution for s� −t�M2

W :

dσ

dt
(e+e− →W+W−) ' α2

em

4 sin4 θW

|t|
4sM4

W

. (41)

In the case s�M2
W � −t, we obtain:

dσ

dt
(e+e− →W+W−) ' α2

em

4 sin4 θW

1

s|t| . (42)

The energy dependence for s�M2
W � −t at fixed t is consistent with expectations for spin- 12 exchange.

As is the case for e+e− → γγ∗ → γV 0 reactions, the effect of hadron compositeness is to modify the analytic
dependence in t of the exclusive cross section by a monopole form factor at s� −t�M2

W :

dσ

dt
(e+e− →W−W ∗+ →W−V +) ' πα3

em|Vud|2
4 sin6 θW

G2
V (−t)M2

ρ |t|
4sM6

W

∼ α3
em|Vud|2

κ2M2
ρ

sM6
W

. (43)

In the case s�M2
W � −t, we find:

dσ

dt
(e+e− →W−W ∗+ →W−V +) ' πα3

em|Vud|2
4 sin6 θW

G2
V (−t)M2

ρ

2sM4
W

∼ α3
em|Vud|2

κ2M2
ρ

s|t|M4
W

. (44)

e−

e+

W−

W ∗+

ρ+u

d

νe

FIG. 6: Diagram contributing to the exclusive standard model hadronic amplitude e+e− → W ∗+W− → ρ+W− via t-channel
neutrino exchange.

Remarkably, the differential cross section is independent of t when s� −t�M2
W , and the integrated cross sections

for these exclusive hadronic reactions satisfy the leading-twist asymptotic scaling of the form sRe+e−(s) ∼ const,
despite the compositeness of the vector mesons.

Similar results also hold for neutral vector meson reactions such as e+e− → Z∗0Z0 → V 0Z0 and e+e− → Z∗0Z∗0 →
V 0V 0. These processes can all be studied at the proposed high-energy International Linear Collider [21].

V. CONCLUSIONS

We have seen that constituent counting rules can be used to develop interesting predictions for a variety of production
processes in the forward and backward directions for exclusive C = + annihilation processes involving fermion
exchange, such as e+e− → γV 0 and e+e− → V 0V 0. In such cases, keeping separate track of powers of 1/s and
1/|t| leads to interesting predictions, depending upon the states produced. The power-law falloff in the Mandelstam
variables due to hadron compositeness can be determined both through the use explicit AdS/QCD soft-wall models
and through consideration of the underlying quark amplitudes.

Processes in which a meson is created by a single photon introduce a transition form factor that must scale as
1/|t|1/2 for −t � Λ2

QCD, so that, for example, the differential cross section for e+e− → γγ in the forward direction

scales as 1/(s|t|) when s� −t� ΛQCD, but the exclusive cross section for e+e− → γρ0 in the forward direction scales
as 1/(st2) in the same kinematical limit. Similarly interesting results hold for high-energy electroweak processes such
as forward-angle production e+e− → ρ+W−, which must await the construction of the International Linear Collider.
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The consequences of the constituent counting rules have also been verified here using AdS/QCD soft-wall models
for the form factors of multiquark exotic hadrons. A core message of this paper is precisely the same as that which
informs much of the work using constituent counting rules: In order to force a number of elementary constituents
created at high energies and at large relative angles into hadrons in which they have small relative momenta, a number
of hard constituents must be exchanged between them in order to produce bound hadronic states. This effect will
only become more pronounced as experiments reach ever higher energies.

Acknowledgments

We thank Feng-Kun Guo for an exchange that inspired us to undertake this work. We also thank Michael Peskin
for helpful conversations. This research was supported by the U.S. Department of Energy, contract DE–AC02–
76SF00515 (SJB), by the U.S. National Science Foundation under Grant No. PHY-1403891 (RFL), by the German
Bundesministerium für Bildung und Forschung (BMBF) under Project 05P2015 - ALICE at High Rate (BMBF-FSP
202): “Jet and fragmentation processes at ALICE and the parton structure of nuclei and structure of heavy hadrons”,
by Tomsk State University Competitiveness Improvement Program, and the Russian Federation program “Nauka”
(Contract No. 0.1526.2015, 3854) (VEL). SLAC-PUB-16809.

.

[1] M. Davier, M.E. Peskin, and A. Snyder, hep-ph/0606155.
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