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EVERY CUBIC BOOLEAN FUNCTION IN 8 VARIABLES IS THE SUM
OF NOT MORE THAN 4 BENT FUNCTIONS1

N.N. Tokareva

It is shown that any cubic Boolean function in 8 variables is the sum of not more than
4 bent functions in 8 variables.
Keywords: bent function, cubic Boolean function, affine classification.

Boolean functions with extremal nonlinear properties are called bent functions. They
are exactly those functions that have the maximal possible Hamming distance to the class
of all affine Boolean functions in n variables. Note that degree of a bent function is not
more than n/2. One of the most important problem in bent functions is to find the number
of them. In [1] we introduced a new approach to this problem and formulated the following
hypothesis: any Boolean function in n variables of degree not more than n/2 can be repre-
sented as the sum of two bent functions in n variables (n is even, n > 2). In general, it is
interesting to obtain decompositions in constant number of bent functions.

In this paper we study bent decompositions for Boolean functions in 8 variables. Recall
that Boolean functions f and g in n variables are affine equivalent, if there exist nonsingular
binary n × n matrix A, vectors u, v of length n and constant λ ∈ Z2, such that g(x) =
= f(Ax+u)+〈v, x〉+λ, where 〈v, x〉 = x1v1+. . .+xnvn is the inner product. We study bent
decompositions only for affine nonequivalent Boolean functions due to the following facts:
• A Boolean function affine equivalent to a bent function is bent too.
• Let a Boolean function f in n variables be represented as the sum of k bent functions.

Then every Boolean function affine equivalent to f also can be represented as the sum of k
bent functions.

In [2] it is proven that every quadratic Boolean function in n variables (n is even) is the
sum of two bent functions in n variables. The proof of this fact was based on the known
affine classification of all quadratic Boolean functions in n variables (due to the Dickson’s
theorem). Thus, let us consider Boolean functions of degree 3.

Theorem 1. Every cubic Boolean function in 8 variables is the sum of not more than
4 bent functions.

Recall that if all items of algebraic normal form of a Boolean function contain exactly
k variables then such a function is called homogeneous of degree k. In the table bellow
we list all affine nonequivalent homogeneous Boolean functions of degree 3 according to
classification from [3]. To be short we write monomial x1x2x3 as 123 and so on. Let
f(x) = f3(x) + f2(x) be an arbitrary cubic Boolean function in 8 variables, where f3(x) is
a homogeneous part of degree 3 and f2(x) has degree 6 2. W.l.o.g. assume that f3 is from
the table bellow (otherwise consider a function affine equivalent to f).

It is not hard to get decompositions of the Boolean function f up to the quadratic part.
It is enough to use only following nonequivalent bent functions:

a = 123 + 14 + 25 + 36 + 78;
b = 123 + 145 + 34 + 16 + 27 + 58;
c = 123 + 145 + 346 + 35 + 16 + 15 + 27 + 48;
d = 123 + 347 + 356 + 14 + 76 + 25 + 45 + 38;
e = 123 + 145 + 247 + 346 + 35 + 17 + 25 + 26 + 48.
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We give the required decomposition in the form f(x) = g(π(x)) + h(σ(x)) + q(x), where g
and h are bent functions from the set {a, b, c, d, e}, substitutions π, σ are nonsingular affine
transformations of variables (permutations in most cases), function q is a certain Boolean
function of degree 6 2 (we do not concretize it). According to [2] any quadratic function q
is the sum of two bent functions. Thus, f can be represented as the sum of not more than
4 bent functions in 8 variables.

For example, function f(x) = x1x2x3 +x2x4x6 +x3x5x7 +x1x2x8 +x1x3x8 (number 15 in
the table) is the sum b(x2 +x3, x1, x8, x4, x6, x3, x5, x7)+d(x1 +x2, x2, x3, x4, x5, x7, x6, x8)+
+ q(x), where q is a quadratic function.

No
Affine nonequivalent homogeneous
Boolean functions of degree 3

g h π σ

1 123 a b [1, 4, 5, 2, 3, 6, 7, 8] id
2 123 + 145 a a id [1, 4, 5, 2, 3, 6, 7, 8]
3 123 + 456 a a id [4, 5, 6, 1, 2, 3, 7, 8]
4 123 + 135 + 236 a b id [3, 1, 5, 2, 6, 4, 7, 8]
5 123 + 124 + 135 + 236 + 456 c c [1 + 6, 2, 3, 4, 5, 6, 7, 8] [3 + 4, 5, 1, 4, 6, 2, 7, 8]
6 123 + 145 + 167 a b id [1,4,5,6,7,2,3,8]
7 123 + 246 + 357 b d [4, 2, 6, 3, 8, 1, 7, 5] [1, 2, 3, 4, 5, 7, 8, 6]
8 123 + 145 + 167 + 246 a c id [1, 5, 4, 6, 7, 2, 3, 8]
9 123 + 145 + 246 + 357 d d [1, 2, 3, 4, 5, 7, 8, 6] [1, 5, 4, 2, 3, 8, 6, 7]
10 123 + 124 + 135 + 236 + 456 + 167 b d [1 + 6, 2, 3, 4, 5, 6, 7, 8] [2 + 5, 4, 1, 3, 6, 7, 5, 8]
11 123 + 145 + 167 + 246 + 357 b c [6, 1, 7, 2, 4, 3, 5, 8] [1, 2, 3, 5, 4, 7, 6, 8]
12 123 + 478 + 568 a b id [8, 4, 7, 5, 6, 1, 2, 3]
13 123 + 145 + 167 + 568 a c id [1, 4, 5, 6, 7, 8, 2, 3]
14 123 + 246 + 357 + 568 c d [4,2,6,8,3,5,1,7] [1,2,3,4,5,7,8,6]
15 123 + 246 + 357 + 128 + 138 b d [2 + 3, 1, 8, 4, 6, 3, 5, 7] [1 + 2, 2, 3, 4, 5, 7, 6, 8]
16 123 + 145 + 167 + 357 + 568 a e id [1, 6, 7, 5, 4, 3, 8, 2]
17 123 + 145 + 478 + 568 a c id [4, 1, 5, 8, 7, 6, 2, 3]
18 123 + 124 + 135 + 236 + 456 + 167 + 258 e e [1, 2 + 5, 3, 5, 4, 6, 8, 7] [1, 2 + 5, 4, 6, 7, 5, 3, 8]
19 123 + 124 + 135 + 236 + 456 + 178 b d [1 + 6, 2, 3, 4, 5, 6, 7, 8] [2 + 5, 4, 1, 3, 7, 8, 5, 6]
20 123 + 145 + 246 + 357 + 568 d e [1, 2, 3, 4, 5, 7, 8, 6] [5, 6, 8, 4, 1, 3, 2, 7]
21 123 + 145 + 246 + 467 + 578 c e [4, 3, 8, 7, 6, 5, 1, 2] [1, 2, 3, 4, 5, 8, 6, 7]
22 123 + 145 + 357 + 478 + 568 a e id [4, 7, 8, 5, 1, 6, 3, 2]
23 123 + 246 + 357 + 478 + 568 c e [1, 2, 3, 5, 4, 7, 6, 8] [5, 6, 8, 4, 1, 7, 2, 3]
24 123 + 246 + 357 + 148 + 178 + 258 c c [1, 2, 3, 7, 8, 5, 4, 6] [2, 5, 8, 4, 6, 1, 3, 7]
25 123 + 145 + 167 + 246 + 357 + 568 c d [1, 2, 3, 5, 4, 7, 6, 8] [1, 7, 6, 2, 5, 8, 4, 3]
26 123 + 145 + 167 + 246 + 238 + 258 + 348 c e [1, 7 + 8, 6, 4, 5, 2, 3, 8] [2, 1 + 8, 3, 8, 5, 4, 6, 7]
27 123 + 145 + 167 + 258 + 268 + 378 + 468 c e [1, 3 + 8, 2, 5, 4, 8, 6, 7] [6, 1 + 6, 7, 8, 4, 3, 2, 5]
28 123 + 145 + 246 + 357 + 238 + 678 c c [1, 2, 3, 5, 4, 7, 6, 8] [2, 3, 8, 6, 4, 7, 1, 5]
29 123 + 145 + 246 + 357 + 478 + 568 c c [1, 2, 3, 5, 4, 7, 6, 8] [4, 2, 6, 8, 7, 5, 1, 3]
30 123 + 124 + 135 + 236 + 456 + 167 + 258 + 378 c e [1, 2, 3 + 4, 6, 7, 5, 4, 8] [5, 8, 2 + 5, 3, 1, 6, 7, 4]
31 123 + 156 + 246 + 256 + 147 + 157+ c e [5, 2 + 4, 8, 3, 7, 4, 1, 6] [2, 4 + 5, 6, 1, 3, 5, 7, 8]

+357 + 348 + 258 + 458
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