N\
N“\ (CTP)

SISSA Master in High Performance Computing

MASTER IN HIGH PERFORMANCE
COMPUTING

Core Building Blocks for
Massively Parellel
Multi-Physics
Applications

Supervisor:
Luca HELTAI

Candidate:
Giovanni ALZETTA

3" EDITION
20162017

Contents

(1 Multiphysics Coupling|
1.1 Generalized Coupling|.
1.2 Existing Solutions|

2 Serial Casel

3__Parallel Casel

10

13
15

20
21
22
30

33

1 Multiphysics Coupling

Many scientists have already adventured into making far better introduction
than I possibly could. I shall only quote three articles ([11], [4], and [16]
respectively):

e David E Keyes, Lois C Mclnnes, Carol Woodward, William
Gropp, Eric Myra, Michael Pernice, John Bell, Jed Brown,
Alain Clo, Jeffrey Connors, et al. Multiphysics simulations:
Challenges and opportunities. The International Journal
of High Performance Computing Applications, 27(1):4-83,
2013

A multiphysics system consists of more than one component gov-
erned by its own principle(s) for evolution or equilibrium, typ-
ically conservation or constitutive laws. A major classification
in such systems is whether the coupling occurs in the bulk (e.g.,
through source terms or constitutive relations that are active
in the overlapping domains of the individual components) or
whether it occurs over an idealized interface that is lower di-
mensional or a narrow buffer zone (e.g., through boundary con-
ditions that transmit fluxes, pressures, or displace- ments). Typ-
ical examples of bulk-coupled multiphysics systems with their
own extensively developed literature include radiation with hy-
drodynamics in astrophysics (radiation-hydrodynamics, or “rad-
hydro”), electricity and magnetism with hydrodynamics in plasma
physics (magnetohydrodynamics), and chemical reaction with
trans- port in combustion or subsurface flows (reactive trans-
port). Typical examples of interface-coupled multiphysics sys-
tems are ocean-atmosphere dynamics in geophysics, fluid-structure
dynamics in aeroelasticity, and core-edge coupling in tokamaks.
Beyond these classic multiphysics systems are many others that
share important structural features.

e Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and
Martin Kronbichler. Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM
Trans. Math. Softw., 38(2):14:1-14:28, January 2012

Computer clusters with tens of thousands and more processor
cores are becoming more and more common and are going to
form the backbone of most scientific computing for the currently
foreseeable future. When using thousands of processors in par-
allel, two basic tenets need to be followed in algorithm and data
structure design: (i) no sizable amount of data can be replicated
across all processors, and (ii) all-to-all communications between

processors have to be avoided in favor of point-to-point commu-
nication where at all possible. These two points will inform to a
large part what can and cannot work as we scale finite element
computations to larger and larger processor counts. For example,
even if it would make many operations simpler, no processor will
be able to hold all of the possibly billions of cells contained in
the global mesh in its local memory, or even be able to compute
a threshold for which cells exceed a certain error indicator and
should therefore be refined.

e S Slattery, P Wilson, and RP Pawlowski. The data transfer
kit: a geometric rendezvous-based tool for multiphysics data
transfer

For massively parallel simulations, it is typical that geometric
domains not only do not conform spatially, but also that their
parallel decompositions do not correlate and are independent of
one another due to physics-based partitioning and discretization
requirements.

Data distribution makes it possible to fit the simulation in the system,
but it inherently complicates the process of coupling in both bulk-coupled
and interface-coupled problems, making it necessary to resort to complex
communication patterns and strategies. After formalizing a general coupling
problem and showing other interesting study-cases for mesh-coupling, we re-
port on the strategies found in literature. We propose solutions for a serial
approach to the problem, and show how they fall short in a distributed set-
ting, making it necessary to develop new strategies. A distributed algorithm
is proposed and analyzed, and possible future developments are discussed.

1.1 Generalized Coupling

The algorithms reported in this work are quite generic, and can be applied to
a number of problems in finite elements, finite volumes or finite differences,
whenever a form of coupling is required.

Multi-physics problems require the exchange of information between two
(or more) problems, defined on possibly different domains, either overlap-
ping, both partially or totally, or neighbouring.

To settle the ideas, consider two physical problems defined on (possibly
different) domains A, B C R™. A generic definition of coupling between fields
defined on A and fields defined on B can be regarded as a bi-linear operator
between pairs of elements in the respective spaces, i.e., assuming that V(A)
and V(B) are some functional spaces on A and B respectively, the coupling

C: V(A) x W(B) v R, (1)

is a bi-linear operator.

Among all possible couplings, we restrict our study to a specific class of
couplings, depending on a coupling kernel K, i.e., we assume that C'(v,w)
takes the form

C(v,w) ::A/]E;v(x)K(x,y)w(y)dAdey, (2)

and that V(A) and W(B) are some standard functional spaces where the
above integral makes sense.

As an example, lets consider the case where B C A, and fix V(A) to be
the space of continuous functions on A, i.e., V(4) := C%(A4), and W(B) the
space of distributions on B, i.e., W(B) := D(B), and let K(z,y) := é(x —y)
where ¢§ is the n-dimensional Dirac delta distribution defined by its action
on continuous functions as

v(@) = [d(x—y(ydy, YveC'R"), (3)
Rn
In this very particular case, if we pick a subset of points y; contained in
the domain B C A, and associate a Dirac delta to each of these points as an
element of W (B), say

wi(y) = 0(y — vi), (4)
the coupling defined above between an arbitrary function v € V(A) and w;
reduces simply to its point evaluation on y;, i.e.:

C(v,w;) :== /A/Bv(x)K(:c,y)wi(y)dAx dBy, = /jgv(y)wi(y)dBy = v(yi),
(5)
where the Kernel K removes the first integral in dA, by the definition in ,
and the definition of the distributions w; remove the second integral in dB,
using the same principle.

When the spaces and the Kernel are chosen as above, the coupling is
simply called interpolation on the points y; of the function v. The typical
application of this interpolation operator is when the field V(A) represents
some physical quantity, for example a continuous temperature field, and y;
are the vertices of an embedded triangulation, not aligned with A, where we
would like to evaluate the temperature.

Different definitions of the spaces V(A) and W (B), and of the coupling
kernel K lead to different coupling operators. In this work we will restrict
our examples to the interpolation coupling above, since most of the other
couplings can be reinterpreted in terms of the above one.

In general, the domains A and B are discretised using (possibly indepen-
dent) triangulations, and are split on non-intersecting cells.

When physical fields are defined on one of these triangulations, say for
example on A, they use the seperation on M cells to restrict the possible

choice of functions to a finite dimensional space of dimension N, constructed
using a linear combination of some basis functions, defined through the tri-
angulation itself.

In general this construction is done in four steps:

e triangulate the domain A into a collection of M cells Ay, := Uf\il(Ki =
F;(K)), images under M (possibly non linear) iso-morphism of a ref-
erential cell K;

e define a set of nloc basis functions on the referential element K , {ﬁz}?i"f,

e define some global basis functions on Ay, as the push forward of ¥;

under F; on K = F;(K), i.e., v/(F;(2))|x = 0j(£), where [is an appro-
priate global numbering depending on j and

e cnumerate the global basis functions so that we have V},(A) C V(A)
and V},(A) := span{v;} ¥ .

The construction above guarantees that any function v, € V,(Ay) can
be expressed as

N .
on(z) =Y viui(x), (6)
=1

where the functions v;(z) are different from zero only on a limited number
of cells K of Aj, namely supp(v;) := {K € A s.t. vi|x # 0}. Notice that,
on any K, only nloc global basis functions are different from zero.

For the space V}(Ay,), the interpolation coupling on a collection of points
Ya € B can be expressed by the interpolation matrix C:

Coi := C(vi,wa) = vi(Ya), (7)

such that, when it is multiplied with the vector of coefficients v’ of a generic
function vy, we obtain the interpolation of the function vy on the points y,:

N
Z Coaivi = C(Uh)wa) = Zvivi(ya) = Uh(ya)- (8)
=1

=1

Numerically only 9;, F; and Fi—1 can be computed directly; thus the
numerical solution to equation [8 becomes:

0i(Ya) = i (Fz‘il(ya)) . (9)
This translates in the following algorithm, which is illustrated in figure
i. Use the triangulation of B to identify y, in the real space.

ii. Find in which cell K; of A y, lies.

N

K

Figure 1: Interpolation Problem

iii. Use the triangulation of A to obtain F; ' and compute F; *(yq).

iv. Evaluate the result on the basis functions v;.

DAG Structure The structure of modern general purpose numerical li-
braries is organized to offer an abstraction to the user while optimizing the
object structure and performance. This nowadays can achieved organizing
the library following a dataflow graph; the central idea being the use of a
Directed Acyclic Graph (DAG) as structure of the underlying software [6].

A DAG is a directed graph with topological ordering: each node struc-
turally represents an object and one or more directed edges represent how
it can be used to generate new objects or data. This structure is efficient
and has many benefits for a parallel code, but creates “asymmetries” in the
operations which can be done with the code, favouring one direction while
making the inverse operation slower.

This means, for instance, it is fast in deal.Il find the vertices of a cell
while it is inefficient, given a vertex, to find its neighbouring cells. This can
have huge impact on the code’s performance and the only possible solution is
to build, with a new function, an edge with the inverse direction in the DAG
and store it with a caching mechanism. If the library used is well structured
it should be seldom necessary to pay this overhead, but for the particular
case of the vertex point relation it proved important for our code.

1.2 Existing Solutions

Coupling is difficult, but often necessary; a number of related coupling prob-
lems is already studied and known in literature; here we shall briefly sketch
the various solutions used.

To fix the terminology: in a distributed mesh each process E| “owns” a
number of cells, of which it knowns all the variables and on which it runs
computations. We shall call these cells locally owned. Often each process
maintains also the information of one or more layers of cells that belong to
another process, often termed ghost cells. Each process knowns all variables
relative to ghost cells but can’t modify their value. We assume that the
rest of the triangulation is unknown and any cell laying on the area we do
not know is called an artificial cell, in the sense that its existence is purely
instrumental to the chosen data structure, but has no participation in the
solution of the actual physical problem

1.2.1 Particle-in-Cell Methods

The particle-in-cell (PIC) method are used to solve a certain class of partial
differential equations(PDEs); the technique consist in tracking individual
particles, which have a position and a number of individual properties, in
a Lagrangian frame; at the same time moments of a distribution such as
densities are computed on a stationary mesh. PIC methods have a long
history, which sparked with applications in plasma physics [13].

Only recently PIC have been implemented in a fully distributed setting;
Rene Gassmoeller et al. published a paper [9] describing how to implement
PIC methods in a state-of-the art fluid dynamic solver and implemented it
for the ASPECT library [10] [2].

The problem here described has similar aspects to the ones studied by
Gassmoeller and, in fact, we benefited greatly from their work; but there are
some important differences.

In a PIC method each process owns a number of cells and, following some
algorithm (for example randomly, or following particular patterns) generates
particles inside it. After generating the particles each process owns both cells
and the particles inside it; when working with meshes this is no longer the
case (see next section, |1.2.2)).

The method described by Gassmoeller particle’s speed is, because of
the simulation parameters, small enough that if a particle exists the locally
owned part of the mesh, it will most likely end up on a ghost cell i.e. the
owner shall be likely known if the particle exists the locally owned part of
the mesh. At the same time, if a particle ends up on an artificial cell, it can

!Since this work is algorithmic, we use “process” as a generic term not making distinc-
tions between processors, processor cores or MPI processes

be deleted. This is possible because, as reported in [9] the cases in which a
particle is removed are small with numerical effects.

While the strategy of communicating points lying on ghost cells clearly
adapts to our cases, in a general coupling problem eliminating a point eval-
uation is not an option. In general coupling problems we often have little
control on the topological distribution of the part of the domain B over A,
and we may have significant portions of B that we own, laying on part of A
that we do not own.

Developing a strategy to communicate points in all possible settings is
thus fundamental; this would add the possibility to to change the meshes’ dis-
tribution arbitrarily during simulation, allowing to re-initialize the mesh dis-
tribution even at running time, with a different number of processes and/or
a different distribution scheme.

1.2.2 Data Transfer Kit

Many modern physical simulations make use of a partitioned approach: dif-
ferent kernels handling different parts of the problem e.g. in a FSI simula-
tion, one handling fluid equations and one simulating the structure. In this
scenario accuracy and speed at data transfer is fundamental.

Another issue when working with multiple meshes is the initial distribu-
tion: because of different computational and physical needs it is complicated
to create a balanced configuration where meshes’ parts which needs to be
coupled are locally owned by the same processes. To tackle this sort of
problems multi-constraint partitioning techniques [15] are one possibility.
Another consists in rendezvous algorithms, developed by Plimpton et. al.
[12], which allows to generate balanced meshes, at the cost of communica-
tion. These have been implemented in the Data Transfer Library (DTK)
[17].

This is how the algorithm is briefly described in [16]:

for mesh-based data transfer generates the rendezvous decom-
position which behaves as a hierarchical parallel and geometric
search tree. Using this algorithm, a secondary decomposition of
a subset of the source mesh that will participate in data transfer
is generated, forming the rendezvous decomposition as described
in the example above. The rendezvous decomposition is encap-
sulated as a separate entity from the original geometric descrip-
tion of the domain. It can be viewed as a temporary copy of the
source mesh subset that intersects the target geometry. With the
rendezvous decomposition, we effectively have a search structure
that spans both parallel and physical space.

This “search structure that spans both parallel and physical space” is the
missing step in the solution of our interpolation problem which has is not

present in the PIC solution (section . The structure is implemented in
DTK using trees of bounding boxes which are needed for the initial partition.
In this work we shall create a similar structure at any time deemed necessary
and without constraints on the methods used for mesh partitioning.

1.2.3 deal.Il Utilities

The coding part of this project was made using and developing the deal.Il
library [1] [3], which is a modern example of state of the art numerical library;
as stated in the deal.Il website (http://www.dealii.org/):

deal.IT is a C++ program library targeted at the computational
solution of partial differential equations using adaptive finite ele-
ments. It uses state-of-the-art programming techniques to offer a
modern interface to the complex data structures and algorithms
required.

The main aim of deal.Il is to enable rapid development of modern
finite element codes, using among other aspects adaptive meshes
and a wide array of tools classes often used in finite element pro-
gram. Writing such programs is a non-trivial task, and successful
programs tend to become very large and complex. We believe
that this is best done using a program library that takes care of
the details of grid handling and refinement, handling of degrees
of freedom, input of meshes and output of results in graphics
formats, and the like. Likewise, support for several space dimen-
sions at once is included in a way such that programs can be
written independent of the space dimension without unreason-
able penalties on run-time and memory consumption.

In particular deal.Il contains a class, FEFieldFunction, which has in-
teresting interpolating capabilities and can solve the coupling problem pro-
posed in section though it currently suffers from limitations on parallel
distributed triangulation i.e. if a point isn’t found inside a locally owned or
ghost cell an exception is thrown: while with deal.Il the coupling problem
[6] can be easily solved in a serial setting, in a distributed one it simply isn’t
currently possible without the code we implemented.

2 Serial Case

Before attempting a distributed solution of equation[d] the serial case must be
solved; in figure [2] we can see a generic coupling example in two dimensions:
two meshes intersect and the point y; € B needs to be known by A.

10

SRR
S
R

Figure 2: Coupling of two meshes

2.0.1 Compute Point Locations

Recall, from [iv] that the main problem in solving [9] are the following steps:

e Find in which cell K; of A y, lies.

(Ya)-

F

1 and compute

F-

e Use the triangulation of A to obtain

In a fully serial environment all the variables needed are present and,
in the deal.Il library, these are solved by a function called compute point

11

locations which is implemented in the following manner:
Input: A triangulation, a list of points

Output: cells containing points and their transformed

Initialization:
p = first point of the list;
Find the cell K surrounding p and compute ¢ = Fgl(p);
set p as found;
while there are points not found do
for p in points left do
compute ¢ = Fgl(p);
if ¢ inside unit cell then
add p and g to the cell’s list;
set p as found;
end
end
if there are points not found then
p = first point not found;
Find the cell K surrounding p and compute g = ngl(p);
set p as found;

end

end
Algorithm 1: Compute Point Locations in deal.Il 8.5.1

The following should be noted on algorithm

e If points are pre-ordered by cell the computation is fasterﬂ this assump-
tion is often satisfied when working with meshes and their vertices.

e Function Fp ! has a high cost, but it’s always used to check if the points
are inside K.

e Finding the cell surrounding p is achieved by another function, find
active cell around point, which has a high computational cost as ex-

plained in

This is how find active cell around point is currently implementedE]

2Notice that, if the cells are ordered by cell, at every step the number of points on
which the loop runs decreases by the amount of points inside the last cell
3in deal.IT 8.5.1.

12

Input: A triangulation, a point p
Output: cell containing the point and it’s transformed

initialize the vector distances;
for v in triangulation’s vector do
compute the distance ||p — v||;
add it to distances;
end
Find the minimum in distances;
Save the corresponding vector v;
Initialize the cell’s vector neighbours;
for K in triangulation’s cell do
if v is a vertex of K then
‘ Add K to neighbours;
end
end
for K in neighbours do
compute ¢ = Fr' (p);
if q inside unit cell then
‘ return g and K;
end

end
Algorithm 2: Find active cell around point in deal.IT 8.5.1

Two main problems affect algorithm

e Because of deal.Il’s DAG structure relation from vertex to neighbour
cells has a high cost.

° Fgl (p) has a high cost and no attempt is made to use a simpler method
to guess which cell is most likely to be the one containing p.

As shown in section this results in poor performance.

3 Parallel Case

In addition to what stated in section we shall make the following general
assumptions on distributed meshes (as reported in [4]):

e Common coarse mesh: all cells are derived by refinement from a com-
mon coarse mesh which needs to capture the topology of the compu-
tational domain. Each cell is hierarchically refined into four (2d) or 8
(3d) children which may be further refined, forming a forest.

13

A

(a) A partitioned square (b) A partitioned ball

Figure 3: Partitioned meshes

o Distributed storage: Each processor in a parallel program may only
store a part of the entire forest, the locally owned part.

Figure 3| shows an example obtained with deal.Il: each color represents a
different process. On the left there’s an example of mesh A, a unitary square
[0, 1] x [0, 1], on right an example of mesh B: a ball of radius 0.35, centered
in (0.4,0.45). Images are separated for better visualization; figure |4 shows a
similar situation in three dimensions.

These simple images show how coupling becomes extremely difficult in
a distributed environment; looking at the algorithm steps [iv| we notice the
following: to solve part 7 and %7 the process owning y, € B must also own
the cell K of B containing y, € B. In a distributed setting this condition is
most likely not satisﬁecﬂ and ghost cells are not enough to solve the problem.

The problem arises also in the other way round: in order to do the
coupling properly a processor which locally owns a part of mesh A needs to
know about all parts of B occupying the same space, or interfacing with it:
with algorithm [I] this is simply not possible.

The problem which needs to be solve has become an ownership problem:
“which process owns the part of A in which p lies?” or “Is a part of B inside
this portion of space?".

4In fact, in version 8.5.1. of deal.Il, compute point locations throws an assert error if
a point is found lying on artificial cells

14

Il
|
===

Figure 4: Distributed cube and sphere

3.1 Bounding Boxes

While an accurate description of the boundaries of each locally owned domain
would, theoretically, answer to the problem, this is not a feasible solution:
too much information would need to be shared, defeating the purpose of
distributing the mesh. The solution we need is an approximation with which
we can return the process owning a point, possibly among few “guesses”.

A new data structure has to be introduced; ideally this structure should
be efficient and reliable while using as little memory and communication
as possible; the natural solution is using simple containers, such as bound-
ing spheres (BS) or axis-aligned bounding boxes (AABB). Both solutions
are covered by a wide literature because of their applications ranging in the
most diverse areas: from robotics to computer graphics

Our choice was AABB, as done in the DTK library, because of their best
fitting abilities.

5A detailed study of this and other related matters can be found in [8]

15

b2

bl blllo2

b2

b1l b2

bl

Figure 5: Non-mergeable and mergeable bounding boxes

3.1.1 Bounding Boxes Computations

An AABB is described using a pair of points; usually describing, in order,
the bottom-left and top-right corners of the box. After the definition of a
bounding box many operations can be defined; there are standard methods to
quickly check if a point is inside/outside an AABB and, given two bounding
boxes bl and b2, to compute intersection and union (as bounding boxes i.e.
the smallest bounding box containing both b1 and b2 which we shall indicate
with L) of AABBs (see article [§]).

Thinking of bounding boxes as closed sets result in their intersection
coinciding with the set intersection; though in general b1 LI b2 C b1 U b2 (see
figure . In the second example we see a case in which b1 U b2 = b1 U b2;
we shall call such cases “mergeable”. For the algorithm implemented it is of
importance to understand if two bounding boxes are mergeable or not; this
is computed with the following algorithm [3]

|E| Given a refinement level which has enough coarse cells to describe the

space it is possible to create a description of the space occupied by the locally
owned cells. This is a sketch of the algorithm used:

SFor the reader’s sake algorithms are sketched without any technical subtlety.

16

Input: Two bounding boxes bl and b2 in the space of
dimension spacedim

Output: True if the bounding boxes are mergeable

compute b3 = bl N b2;
if b3 is empty or has dimension < spacedim-2 then
‘ return false;
else if b1 and b2 are aligned or b1 C b2 or b2 C bl then
‘ return true;
end
return false;
Algorithm 3: Checking if bounding boxes are mergeable

Input: A triangulation, a refinement level
Output: A list of bounding boxes

initialize the list of bounding boxes b_ list;
for K in triangulation’s cell of refinement level do

if children of K are locally owned then
Create a bounding box bb surrounding all locally owned

cells inside K
Add bb to b_list;
end
end
Merging section:;
for b1 in b_list;
do
merge happened = false;
for b2 in b_ list;
do
if b1! = b2 and bl, b2 are mergeable then
Add b1 LI1b2 to b_ list;
Remove b1 and b2 from b_ list;
merge happened = true;
end
if merge_ happened == false then
return b_ list;
end

end

end
Algorithm 4: Creating a description of the locally owned meshes

17

The algorithm [] is guaranteed to return a collection of bounding boxes
which contains all locally owned cells ﬂ but, because of the quadratic time
required in the merging section of algorithm [4] it is suitable only for meshes
obtained from a relatively low number of coarse cells. Another flaw is the
need to choose a refinement level which works well with the current mesh.
While these problems shall be corrected in the future (see Section, coupling
complexity is so high that algorithm [4] suits our needs without using any
relevant computing time.

Guessing Ownership Once every process has a global description of the
mesh, in terms of bounding boxes, the following algorithm can be used to
effectively guess the “owner” of each point:

Input: A list of points

Output: A list of points for which the owner was found;
A list of points for which there is a number of probable
owners;

initialize the output lists;
for p in points do
for rank in processes do
for box in rank bounding boxes do
if p inside bor then
add rank to owners of p;
go to next rank;
end

end
end
if p has one owner then
‘ Add p to points for which the owner was found;
else
‘ Add p to points with multiple owners;
end

end
Algorithm 5: Guessing Owner Algorithm

"The current implementation in deal.II works only with non-curved geometry because
of technical limitations.

18

3.1.2 Bounding Boxes Exchange

It is important for the output of [4 to contain few bounding boxes per pro-
cess: once the locally owned part of the mesh is described with a list of
bounding boxes, a collective “allgather” is used to distribute the information
about locally owned cells to all processes and storing it into a container,
global bounding bozes; this is the only necessary collective operation used in
our algorithm.

With global bounding bozes it is now possible to identify the owners of an
arbitrary point inside the mesh with a simple search, which we implemented
in the function guess point owner. Once the owner(s) of a point are found
the coupling problem can be solved with point-to-point communication (see

section [3.1.3)).

Object Communication Sending different objects using MPI is often
difficult, complicated and impractical; a key ingredient for our implemen-
tation was implementing two interfaces for an “all gather” and a “some to
some” function which can send arbitrary objects, as long as a serialize func-
tion is implemented for them [7]. Avoiding the manual de-construction and
reconstruction of objects or the use of MPI Types results in simpler and
cleaner code and saves time in both the writing and debugging part of code
implementation.

3.1.3 Distributed Compute Point Locations

The structure built now allows for a distributed solution of steps i) and i)
in the algorithm steps a parallel version of compute point locations was
written.

The function needs to return the same output in case of a serial and, when
called on a distributed mesh from all processes, it needs to return the output
of compute point location as if it was called on the points geometrically inside
the locally owned domain 8]

For clarity look at figure |3} what we aim at is, given the domain of each
process which is defined in the square picture, return compute point location
for the points of the circle lying over it. This must happen independently
from the process owning each part of the circle.

The idea behind a “distributed compute point locations” is thus the fol-
lowing

e Use the bounding boxes to guess where each point lies

8Because some of these points might not be owned initially, the output is the same of
compute point location plus a list of the points for which the output is presented and an
id for each point

19

e Use send and receive for points lying on parts of the domain not locally
owned

e Use compute locations on all the points which lie on the locally owned
part of the domain

To implement this algorithm it needs to be articulated in more parts, a sketch
is presented in algorithm [6]

Input: A triangulation, global bounding box description,
a list of points

Output: cells containing points located inside the locally
owned part of the mesh, their transformed, and unique
point ids

Use global bounding bozes to guess the owners of each point;

Call compute point location on the points which are probably
local;

Send and receive points which have a single owner;

Send the output of compute point location and relative points for
what resulted to be in ghost cells;

Call compute point location on the points which received and
owned;

Send and receive points with multiple possible owners;

Call compute point location on points which might be owned;

Build output from all computed data;

Algorithm 6: A scheme for distributed compute point locations

The practical implementation has many complications:

e The tasks described are either communication intensive or computation
intensive; task spawning was used in an attempt to minimize commu-
nication overhead

e The scheme is articulated in more, shorter, sections and sub-functions.

e The output of compute point location is articulated and merging mul-
tiple outputs has a non trivial computational cost

Final results for this function are presented in section
4 Benchmarks

After a quick analysis of the current deal.Il performance, this final section
presents the code implemented for this thesis project and shows the results
obtained with it both in serial and in parallel.

20

200.0 cells

1000.0 cells
1800.0 cells
2600.0 cells
3400.0 cells
154 —&— 4000.0 cells

¥

|
1

204

t4

seconds (s)

a”

500 1000 1500 2000 2500 3000 3500 4000
points

Figure 6: compute point_locations v1: varying number of points

4.1 Serial Baseline

We shall call the version of compute point locations present in deal.Il ver-
sion 8.5.1 “version 1”7 (from now on: v1). The initial benchmark [f] was run
with random points on a square gridﬂ

Notice how, even if the growth is linear, computational cost is extremely
high; taking more than 20 seconds to find 4000 points inside a 4000 cells. For
a deeper analysis callgrind and kcachegrind were used; results are reported

in[2
This preliminary analysis results can be summarized in the following:

e Function’s performance is mediocre

e [ts biggest computational burden lies in tranform real to wunit cell
ie. Fgl(p), which is called 10176 to classify 200 points: this can
probably be avoided

e The second big cost lies on find_active_ cell around_point

4.1.1 Find active cell around point

As pointed out in [2] the deal.Il implementation of find active cell around
point is quite slow but, because of its relevance to our problem we quickly

9This preliminary result was obtained on a laptop running ArchLinux on an Intel(R)
Core(TM) i7-6700HQ CPU @ 2.60GHz; afterwards the benchmarks were run on SISSA’s
cluster Ulysses, which runs on Intel(R) Xeon(R) CPU E5-2640 0 @Q 2.50GHz.

21

—8— 200 points
—&— 1000 points
—&— 1800 points
—8— 2600 points
—8— 3400 points
154 —&— 4000 points

204

seconds (s)

104

500 1000 1500 2000 2500 3000 3500 4000
cells

Figure 7: compute point_locations v1: varying number of cells

report on the improvements brought by Gassmoeller and Heltai.

The initial improvements are due to Gassmoeller et al. [9], who imple-
mented them in the ASPECT library [10] [2]. Afterwards, together with
Luca Heltai, the following enhancements were brought to the deal.Il library:

e Adding a storing system, GridTools::Cache, which allows to compute
only once non DAG information

e Implementing an algorithm to guess which cell among the neighbours
of v is most likely to be the one containing p.

There are many simple methods to guess which cell might contain a point,
such as checking the distance from the point to the center; but a better
algorithm, based on the angle between the vector p —v and the vectors going
from each cell’s center to v, was developed by Rene Gassmoeller et al. (see
[9).

These improvements radically changed the performance of find active cell
around point with a great benefit for compute point locations.

4.2 Improvements for the Serial Code
As pointed out in section [2.0.1] a number of things can be improved in the

current algorithm.

Calls to tranform_real to wunit cell The first problem is that tran-
form_real to wunit cell is always used to identify whether or not a point
is inside a cell, even if it could be discarded using simpler methods, such as

22

Table 1: Kcachegrind analysis for v1 with 200 cells, 200 random points

CEst | CEst per call | Count Callee

87.68 25372 10176 tranform_real to_unit_cell

11.73 300388 115 find_ active_ cell around_point

0.15 146937 3 dl runtime resolve avx

0.02 560 115 std::allocator<std::vector<Point<2> > >

Table 2: Kcachegrind analysis for v1 with 400 cells, 200 random points

CEst | CEst per call | Count Callee

82.08 25499 13657 tranform_real_to_unit_cell

17.29 513026 143 find_ active_ cell _around_point

0.17 247442 3 dl runtime resolve avx

0.07 2135 143 | std::allocator<std::vector<Point<2> > >

the distance from the cell’s center.

In particular, given a cell K, let px be its center, and dx the cell’s
diameter; then the following “distance check” can be used to avoid many
calls to tranform_real to wunit_cell when checking if the point p is inside
H The tranform_real to wunit cell function is called only if:

1
llp — x|l < idK

This method reduces the number of calls to tranform_real to wunit_cell
cell by more than an order of magnitude, with a great impact on performance.
We shall call the function with this improvement “version 2”.

Looping on all the points The second bottleneck comes from the fact
that the algorithm always loops on all remaining points: this number is po-
tentially huge and, thus, even the method proposed in paragraph which
discards them quickly, is not completely satisfying.

Thanks to section [£.1.1] the now improved speed of find active cell around
point makes it possible to use a completely different approach:

10 For curved elements %dx is sometimes too low, resulting in a cell being repeated in
the output; to solve this possible problem a parameter controlling this cut-off value was
added

23

Data: A triangulation, a list of points
Result: cells containing points and their transformed

Initialize the vector with cells, points,qpoints;
for p in points do
Find the active cell K around p and ¢ = Fgl(p);
if K in cells then
‘ add p and ¢ to the points in K;
else
Add K to cells;
add p and ¢ to the points in K;
end

end
return cells, points, gpoints;
Algorithm 7: Compute Point Locations, version 3

This algorithm is much more elegant than the previous ones and its cost
lies almost entirely on find active cell around point, making it benefit greatly
from the improvements of Moreover its performance is quite consistent
and independent of the number of the point’s configuration.

Searching for K in the cell list has also a high cost but, in many in many
practical problems coming from mesh coupling, points are clustered making
the number of cell’s they occupy low compared to the number of points.

Using different Containers In order to reduce the searching cost differ-
ent containers were used instead of vectors; unordered maps and unordered
multimaps were used, because of their constant O(1) access time[l§], de-
pending on the hashing function; in this case the unique active cell index
was used. The versions compared are:

e version 2
e version 3

e version 3 modified to check if the point is inside the last found cell (to
take advantage of point’s order, see paragraph).

e version 3 which uses an unordered multimap and merges the different
mapped values.

e version 3 which uses and unordered map and then creates an output
vector.

As shown in [10| this results in a speed up of approximately 5%.

24

21k Cells, Varying Random Points

— v3
1.24 — v3 modified
— V2
104 — v3 unordered map
' —— v3 unordered multimap
© 0.8
8
c
Q
® 0.6
[7)
0.4+
0.2
O.C T T T T
0 5000 10000 15000 20000

points

Figure 8: Container Comparison

Mixing Both Approaches The remaining way to improve the function’s
performance is to take point’s order into account which leads to assuming
that p is probably in the last found cell.

This leads to two algorithm changes:

i. Before calling the search function, check if the current cell coincides
with the last one found.

ii. Use the distance test exposed in paragraph [1.2] to evaluate if the last
cell is a good hint cell for find active cell around point.

Passing a wrong hint cell to find active cell around point crushes per-
formance because it results in testing an extra set of wrong neighbour cells,
before looking for a better option E At the same time a simple test such
as the one proposed in paragraph [£.2] represents a small overhead with a
random set of points, while it allows to safely pass hint cells when points are
ordered making it much faster than v3 on such sets.

1)\ ore precisely: the function looks for v, the closest vertex of the hint cell to p and
checks if p is inside one v’s neighbours. If this test fails it uses the standard algorithm:
look for the closest vertex v in the whole mesh.

25

Data: A triangulation, a list of points
Result: cells containing points and their transformed

Initialize the vector with cells, points,qpoints;
Find the active cell K around p and g = Fgl(p);
Compute the K’s center px and diameter dg;
for p in points do
if ||p — px|| < dx then
‘ Find the active cell with hint cell K;
else
‘ Find the active cell;
end
if K== last cell then
‘ add p and ¢ to the points in K;
else
Look for K in cells;
Same as version 3;
end

end
return cells, points, gpoints;
Algorithm 8: Compute Point Locations, version 4

4.2.1 2d Serial Benchmarks

Test in two dimensions were run with the following settings:
e a “Random Benchmark”: random points (see figure
e a “Clusterized Benchmark”: points formin a spiral, see figure

Figures [Ob] represent examples with 50 points and a uniformly refined
grid. If Ny, is the target number of cells and N_p;;q the number of children
obtained from the refinement of a single cell the cells were refined uniformly
floor (log Nonita (Ncells)) timeﬂ, and then further cells were refined reaching
a total number of cells between N, and Neeys + Nepitg — 1.

To time the code the the timing tools offered by deal.IT and deal2lkit [14]
were used.

Here the profiling for clustered simulation on 100000 points and 50000
cells is reported:

20btained from 7, (sin(p), cos(p)) with r, €]0, 1[decreasing towards 0.0, 0 < p < 27
131¢’s the greatest number of possible uniform refinements without exceeding Neeis

26

Random benchmark Clustered benchmark
1.0 0 1.0

o o
0.64 0.6

.
0.44 . M 0.4

3
0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Random Benchmark (b) Clustered Benchmark
Version 2
Timer Name Global time (num calls)
Add new cell 0.04804 (399)
add point to existing cell 0.5034 (9.96e+04)
Bench v2 114.1 (1)
Loop on points of cell 106.9 (2.1e+07)
Transform point 0.7632 (1.259e+05)
find_active_cell 0.08292 (400)
Version 3
Timer Name Global time (num calls)
Bench v3 12.56 (1)
add new cell 0.002193 (400)
add point to existing cell 0.5158 (9.96e+04)
find if cell present 0.609 (1e+05)
find_active_cell 11.31 (1e+05)
Version 4
Timer Name Global time (num calls)
Bench v4 .185 (1)

1

add new cell 0.002221 (399)
add point to existing cell 0.4949 (9.96e+04)
find if cell is present 0.002243 (399)
find_active_cell 0.03758 (4)
find_active_cell hint 0.5732 (1e+05)

As expected the time needed to add new cells and points it’s the same

27

Table 3: Clustered Benchmark 100k points, 50k cells: timings

Points | Cells vl v2 v3 v4
10° | 510% - 114.1 | 12,56 | 1.185
5107 | 210% | 137.9 | 43.35 | 3.169 | 0.584
10 | 210* | 26.96 | 7.668 | 0.6298 | 0.1233
10* | 5103 | 11.81 | 3.999 | 0.2818 | 0.1144

Table 4: Random Benchmark 100k points, 50k cells: timings

Points | Cells vl v2 v3 v4
10° | 510% - 8227 | 13.86 | 14.04
5107 | 210% - 1879 | 3.451 | 3.58
10* | 210% - 171.6 | 0.6645 | 0.6654
10* | 5103 | 231.6 | 86.06 | 0.2979 | 0.297

among all versions{f]; this time clearly can’t be improved much.

Remaining observations endorse what has been written in subsection [4.2}
a comparison between v3 and v4 shows that, using the distance to evaluate if
the old cell is a reasonable hint, makes the finding process much faster while
for v2 the cost of find active cell around point is low, but the time needed to
loop on all points slows down the process.

[

Finally the speed ups are reported in[5} for the clustered case it was of
236, for the random case it was of 780.

411 the parenthesis there is the number of calls to a function; the difference 399 and
400 it’s because the first call to the function was unintentionally not instrumented
15y1 was not tested in all cases because of its slow performance

Table 5: Speed up w.r. of vl in 2d

v2 v3 v4
Random (10%, 510%) | 2.69 | 777 | 780
Clustered (10%, 210%) | 2.95 | 41.9 | 103
Clustered (510%, 210%) | 3.18 | 43.5 | 236

28

Table 6: Benchmark 100k points, 50k cells: timings

Type v2 v3 v4
Clustered | 12.27 | 29.56 | 2.091
Random | 8434 | 30.84 | 30.98

20k Cells, Varying Random Points
- V2
10° 4 v3
—0— v4

2 4
5 10

seconds (;

101 4

100 4 /

164 2 % 10* 3% 10* 4% 10*
Points

Figure 10: 3d Benchmark With Random Points

4.2.2 3d Serial Benchmarks

For 3D simulations the “Clusterized Benchmark” a spiral with parametriza-
tion ¢ +— (0.4 cos(t) + 0.5,0.4sin(t) + 0.5, ht 4 0.1) was used. Table [6] shows
how v4 keeps being the best function even in three dimensions, while v2 now
becomes extremely slow with random points.

In both clustered tand random tests scaling results to be linear but, as
shown in figure v3 is slow in comparison to the others. The speed ups
reported in table[7]show number reduced in comparison with the 2d case: this
is because in three dimensions the algorithm used in find active cell around

point is much slower, having to work with an average of 8 neighbouring cells
instead of 4.

Table 7: Speed up w.r. of vl in 3D

Type (points, cells) v2 v3 v4
Random (10%, 510%) - | 177 | 5.27
Clustered (10%, 510%) | 1.98 | 395 | 385

29

Table 8: v5 with unordered map comparison

(Points,Cells) v5 v5 with unordered map | Speed Up

(3431, 4096) 0.1797 0.1427 1.26
(27967, 32768) 4.082 3.927 1.04
(226415, 32768) | 33.53 32.27 1.04

Final 3d Benchmarks In paragraph a benchmark with different con-
tainers shown a speed improvement of about 5%. For this reason a new
implementation of version 4 was added which uses unordered map as con-
tainer. The tests were done in a 3D setting: the grid being a cube and the
points being arranged in a shape form (see figure 4}, which is the distributed
case).

Table [§]shows how, consistently with what found before, using unordered
maps as containers gives a boost of about 5%.

4.3 Parallel Results

In our initial test we used a cube and a sphere, see figure [partitioned
among a varying number of processes. In table the profiling with 6 pro-
cesses is shown.

Notice how Compute and merge other points takes most of the time: this
is the section of the code were compute point locations is run on points
received from other processes and then added to the current output. This
is process is slow because after running compute point locations for each

process, we also need to search on cells in order to merge them; as reported
in this has a high cost.

30

TimeMonitor results over 12 processors

Timer Name MeanOverProcs
1
.001423 (1)
.0001599 (1)

Compute and merge other points 0

Compute mesh predicate box 0
Constructing points to be sent 0

Dcploc, cube 4 sphere: 3 0.2365 (1)
Merge ghost 0.07784 (1)
Using BBoxes to guess owner 0.001361 (1)
all gather for bboxes 0.001553 (1)
some_to_some ghost part 0.01146 (1)
some_to_some other points 0.005509 (1)
some_to_some owned points 0.01564 (1)

Making a scaling test for this problems is complicated: using a distributed
mesh the number of points which has to be computed, computed and com-
municated or simply communicated varies. A preliminary scaling result is
shown in in this case compute point locations was run on a total of 10k
points. With a limited number of processes, up to 16, the scaling is reason-
able. Afterwards the function Compute and merge other points dominates
the computational time. A first attempt to solve this was done by merging
the point vector received from other processes and calling compute point
locations only once, but this didn’t improve performance.

Using unordered maps After the results of paragraph we tried to
improve scaling by the use of another container, an unordered map, and of
version 6 of compute point locations.

The test was run using a cube and and a sphere inside it, as shown in
figure [table shows the profiling: where the algorithm is now well-
balanced. Figure shows the preliminary scaling results: clearly, for this
particular use-case, unordered multimaps outperform vectors.

31

Scaling with 10k points per process

5.01 —e— Current
Ideal scaling
4.5 1
4.0 1
3.5 4
=
Q - <
g 3.0
=
2.5 1
2.0 1
1.5 1
1.0 4
T T T T T T T T T
4 6 8 10 12 14 16 18 20

Processes

Figure 11: Strong Scaling test

TimeMonitor results over 20 processors

Timer Name MinOverProcs MeanOverProcs
Compute and merge other points 0.03702 (1) 0.03702 (1)
Compute mesh predicate box 0.00342 (1) 0.003455 (1)
Constructing points to be sent 0.0001049 (1) 0.0001074 (1)
Dcploc, cube 5 sphere: 4 0.07959 (1) 0.07962 (1)
Merge ghost 0.000176 (1) 0.003586 (1)
Using BBoxes to guess owner 0.00106 (1) 0.001089 (1)
all gather for bboxes 0.002365 (1) 0.002371 (1)
some_to_some ghost part 0.000526 (1) 0.009646 (1)
some_to_some other points 0.001664 (1) 0.001669 (1)
some_to_some owned points 0.0008979 (1) 0.0009018 (1)

Notice the distribution of the sphere, and the point’s distribution, changes
with every new number of processes uses: this affects the performance of
compute point locations and it’s behind the apparent super-linear scaling.

While a more reliable test should be devised, the plot clearly shows that
the algorithm is scaling well at least with up to a few dozens of cores.

32

Strong Scaling on 32768 total cells

354 —@— 2500 points
—®— 10000 points
304 — Ideal scaling

0 5 10 15 20 25 30 35
Processes

Figure 12: Strong Scaling test

5 Conclusions

Results obtained in serial are extremely good: we obtained a reliable func-
tion which performs greatly with any sort of points and in both two and
three dimensions. The next step is probably the use of kd-trees to speed up
the search for the closest vertex in the find active cell around point function.

Considering the intrinsic difficulty in this parallelization problem, the
results obtained in the distributed version of compute point locations are
extremely promising. Better tests with different settings and more cores
should be done.

When the number of processes, and thus of bounding boxes, becomes
extremely high the search on bounding boxes shall probably become a bot-
tleneck; a possible solution is a better research algorithm: research trees.
This sort of solution is known in literature [5] and implemented also in the
DTK library.

Finally a better algorithm to compute the bounding boxes describing the
locally owned part of the mesh shall be implemented: possibly one which
doesn’t need calibration.

33

References

[1]

2]

13]

4]

15]

[6]

7]

18]

9]

[10]

[11]

D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kro-
nbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The
deal.II library, version 8.5. Journal of Numerical Mathematics, 2017.

W. Bangerth, J. Dannberg, R. Gassmoller, T. Heister, et al. ASPECT:
Advanced Solver for Problems in Earth’s ConvecTion, UserManual. 4
2017. doi:10.6084/m9.figshare.4865333.

W. Bangerth, R. Hartmann, and G. Kanschat. deal.Il — a general pur-
pose object oriented finite element library. ACM Trans. Math. Softw.,
33(4):24/1-24/27, 2007.

Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kro-
nbichler. Algorithms and data structures for massively parallel generic
adaptive finite element codes. ACM Trans. Math. Softw., 38(2):14:1—
14:28, January 2012.

Gino van den Bergen. Efficient collision detection of complex deformable
models using aabb trees. Journal of Graphics Tools, 2(4):1-13, 1997.

Martin Berzins, Qingyu Meng, John Schmidt, and James C Sutherland.
Dag-based software frameworks for pdes. In Furopean Conference on
Parallel Processing, pages 324-333. Springer, 2011.

Boost. Boost C++ Libraries. http://www.boost.org/, 2015. Last
accessed 2015-06-30.

Christer Ericson. Real-Time Collision Detection. The Morgan Kauf-
mann Series in Interactive 3d Technology. CRC Press, 2004.

Rene Gassmdller, Eric Heien, Elbridge Gerry Puckett, and Wolfgang
Bangerth. Flexible and scalable particle-in-cell methods for massively
parallel computations. arXiv preprint arXiv:1612.03369, 2016.

Timo Heister, Juliane Dannberg, Rene Gassmoller, and Wolfgang
Bangerth. High accuracy mantle convection simulation through mod-
ern numerical methods. II: Realistic models and problems. Geophysical
Journal International, 210(2):833-851, 2017.

David E Keyes, Lois C Mclnnes, Carol Woodward, William Gropp,
Eric Myra, Michael Pernice, John Bell, Jed Brown, Alain Clo, Jeffrey
Connors, et al. Multiphysics simulations: Challenges and opportuni-

ties. The International Journal of High Performance Computing Appli-
cations, 27(1):4-83, 2013.

34

http://www.boost.org/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Steven J Plimpton, Bruce Hendrickson, and James R Stewart. A parallel
rendezvous algorithm for interpolation between multiple grids. Journal
of Parallel and Distributed Computing, 64(2):266-276, 2004.

J.W Eastwood R.W Hockney. Computer Simulation Using Particles.
CRC Press, 1988.

Alberto Sartori, Nicola Giuliani, Mauro Bardelloni, and Luca Heltai.
deal2lkit: a toolkit library for deal.ii. Technical Report 57/2015/MATE,
SISSA, 2015.

Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel static and
dynamic multi-constraint graph partitioning. Concurrency and Compu-
tation: Practice and Experience, 14(3):219-240, 2002.

S Slattery, P Wilson, and RP Pawlowski. The data transfer kit: a
geometric rendezvous-based tool for multiphysics data transfer.

Stuart R. Slattery. Mesh-free data transfer algorithms for partitioned
multiphysics problems: Conservation, accuracy, and parallelism. Jour-
nal of Computational Physics, 307(Supplement C):164 — 188, 2016.

Bjarne Stroustrup. The C++ Programming Language, 4th edition.
Addison-Wesley, 2013.

35

	Multiphysics Coupling
	Generalized Coupling
	Existing Solutions

	Serial Case
	Parallel Case
	Bounding Boxes

	Benchmarks
	Serial Baseline
	Improvements for the Serial Code
	Parallel Results

	Conclusions

