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Non-equilibrium Markov State Modeling (MSM) has recently been proposed by Pellegrini et al.
[Phys. Rev. E 94, 053001 (2016)] as a possible route to construct a physical theory of sliding friction
from a long steady state atomistic simulation: the approach builds a small set of collective variables,
which obey a transition-matrix-based equation of motion, faithfully describing the slow motions of
the system. A crucial question is whether this approach can be extended from the original 1D small
size demo to larger and more realistic size systems, without an inordinate increase of the number
and complexity of the collective variables. Here we present a direct application of the MSM scheme
to the sliding of an island made of over 1000 harmonically bound particles over a 2D periodic
potential. Based on a totally unprejudiced phase space metric and without requiring any special
doctoring, we find that here too the scheme allows extracting a very small number of slow variables,
necessary and sufficient to describe the dynamics of island sliding. Published by AIP Publishing.

https://doi.org/10.1063/1.4986458

l. INTRODUCTION

Sliding friction between solid bodies, among the most
basic and pervasive phenomena in physics and in our
everyday experience, can be measured and simulated but—
disappointingly—not yet formulated theoretically. From that
we mean that even in the purely classical sliding of a body
on another, there is no unprejudiced way of identifying and
determining a handful of variables (as opposed to the ~10%3
atomic coordinates and velocities) that obey a well defined
equation of motion describing the essence of the frictional
process. The burgeoning area of nanofriction,! where realistic
simulations are often possible, has made if anything this theo-
retical vacuum even more blatant. In a recent publication, we
proposed? that Markov state modeling (MSM)—a probabilis-
tic approach commonly applied to characterize the kinetics of
systems characterized by an equilibrium measure’~’—can be
extended and used for the strongly non-equilibrium, non-linear
problem of sliding friction. The approach was demonstrated in
a simple 1D toy model, a 10-atom Frenkel Kontorova model®
where, despite the difficulty represented by a time—growing
phase space, non-equilibrium MSM was shown to describe
adequately the forced dynamics of steady-state sliding fric-
tion. The probabilistic analysis of a long steady-state frictional
simulation and the choice of a metric led to the recognition of
Markovian evolution in phase space, to the identification of
a few slow collective variables (“excitations”) describing the
events occurring in the course of sliding, and to the construc-
tion of a transfer-matrix-dictated model of the time evolution
of probabilities. This approach represents in our view a first
step towards a theory of friction and a methodological advance
of very significant importance.

Here we showcase the first application of the MSM
approach to a more realistic frictional system. We choose for
this purpose the sliding of a two-dimensional (2D) island of
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more than 1000 particles, harmonically interacting at a spacing
that is incommensurate with respect to a periodic 2D substrate
potential. We consider different sliding regimes, including the
“superlubric” and, at the opposite limit, the pinned regime.
The results are rewarding: first, and most importantly, MSM
again identifies an extremely small set of significant variables,
despite the totally generic choice of metric and the much larger
dimensionality of the phase space in which the original model
is defined. This handful of variables in turn describe without
any built-in prejudice the main slow time-dependent frictional
events, including superlubric soliton flow and atomic stick—
slip frictional sliding of the island, in the two extreme and
opposite regimes of weak and strong potentials.

Il. MARKOV STATE MODELING

The Markov state modeling procedure starts from a classi-
cal molecular dynamics simulation of the sliding system, long
enough to explore all relevant configurations in phase space a
sufficiently large number of times. Structurally similar config-
urations are then grouped in a finite number of microstates,
which will serve as a basis, through a clustering (such as
k-means’) or geometric technique. This partitioning requires
a metric in phase space to quantify the similarity between con-
figurations: the quality of the partition will generally depend
on this choice, to be made with utmost physical care. While in
real world applications, it is considered mandatory to define
the metric in a relevant subset of the coordinates (for example,
the coordinates of the solute), we will show that, in the specific
system considered in this work, one can carry on the procedure
even using a “blind” metric, defined taking into account all the
coordinates of the system.

In equilibrium settings, the transition probability matrix
between pairs of microstates (in a time 7) would be

Published by AIP Publishing.
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equivalent to a Hermitian matrix (on account of detailed bal-
ance) and have a unique eigenvalue equal to one, whose eigen-
vector represent the equilibrium distribution, and all other real
eigenvalues smaller than one. The eigenvectors of eigenvalues
closest to one are associated with slow modes of the sys-
tem evolution, while the smaller eigenvalues correspond to
fast motions, expected to be increasingly irrelevant. A clear
gap between high and low eigenvalues leads to a natural
dimensional reduction.'®!!

To study non-equilibrium problems such as friction, this
procedure has been modified in several key points: the fric-
tional dynamics does not reach equilibrium but instead reaches
a steady state where the configuration space grows (approx-
imately) linearly with the simulation time, making sampling
and clustering problematic. The solution we proposed is divid-
ing the evolution in intervals, still long enough to be deemed
equivalent between them, so that results from each interval
can be cumulated on top of one another. Stability of the results
against extension of the time interval indicates the validity
of the procedure. Care should be taken in dealing with the
transition probability matrix from this steady-state evolution
under forcing, which is non-Hermitian.2 Moreover, since the
phase space metric contains a large number of microscopic
variables, we do not build microstates by the tessellation tech-
niques used in standard MSM'? but use instead a recently
proposed clustering algorithm,'? which associates a microstate
to each meaningful peak of the probability distribution in the
coordinate space associated with the metric.

The main goal of this contribution is to demonstrate that
this procedure works for a much more realistic model than
the one considered in Ref. 2: the sliding of a 2D Frenkel-
Kontorova island including approximately 1000 atoms on a
periodic incommensurate potential.

lll. THE 2D FRENKEL-KONTOROVA MODEL

Our present study focuses on a two-dimensional
Frenkel-Kontorova (FK) model,'* Fig. 1(a). We consider a
hexagonal island of N = 1027 classical particles, internally
arranged as a triangular lattice, dragged by a force applied on

(a)
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the center of mass, which causes it to slide over a triangular

potential V(x,y) = Uy [2 cos (%) cos (\26%) + cos (%Lay)]
s s

Nearest neighbor harmonic springs of stiffness K link the par-
ticles of mass m and positions r; = (x;, y;) whose equilibrium
spacing ay is incommensurate with the periodic potential:
as/ag ~ 1.07. Each particle is dragged by a spring of constant
x moving with constant velocity vey. Particle motion obeys an
overdamped Langevin dynamics (large damping y), in a bath
of inverse temperature 8 = 1/kgT,

1 K 1
tdt _ Lt ¢ _ t
r % =r+ _y VVv(r) + _ym Uextl? N ]E X;

2dt ¢

1
Ymp ey

K
-— Z(r?—rj’.) dt +
Y RN

where f’ is an uncorrelated Gaussian distribution and dr is the
elementary time step (here dr =0.1,m=1,y =1, § = 100,
k = 0.01, and vex; = 0.0001).

In a temperature and parameter regime where the island
does not rotate, its sliding mechanics retains some similarity
to 1D sliding.'"* In the weak potential limit, the bulk of the
island, characterized by weak solitons (small deviations of the
interparticle distance from the equilibrium value) which form
a moiré pattern over the incommensurate potential, is struc-
turally lubric (superlubric). Upon sliding in this regime, the
solitons flow unhindered, and the only source of pinning and
static friction is actually provided by the island edge.' In the
opposite strong potential limit, the solitons, no longer weak,
are strongly entrenched, and the whole island is pinned, with
a bulk static friction independent of edges. Under the external
spring-transmitted force, the island sliding in this regime will
alternate long “sticking” periods during which particles are
close to their respective potential minima, to fast slips during
which one or more lattice spacings are gained. This kind of
atomic stick—slip motion is well established for, e.g., the slid-
ing of an atomic force microscope tip on a crystal surface' —of
course involving in that case three-dimensional displacements
of larger complexity. A slip event always involves the flow of

FIG. 1. (a) Schematic of the Frenkel-Kontorova island
sliding on a generic 2D incommensurate triangular poten-
tial. (b) Average friction force in the steady state regime
for simulations with varying ratio K/Ug, highlighting
the transition from free sliding to stick—slip. The arrows
indicate the sample parameters chosen to compare the

results of our method, with a color code which we will
keep throughout for all figures. (c) Slowest time scales
after transition matrix diagonalization for the different
regimes. The full line represents half of the time required

for the external force to move the particles to successive
potential minima. (d) Sample evolution for the differ-
ent regimes: we show the deviations of the center of
mass positions from the free sliding corresponding to an
infinitely stiff island. The vertical dashed lines are spaced
like the time lag 7 = 1100 chosen to build the MSM to

(c)
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60000 | KUg=2 —e—
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& 40000 | | K/Up=02 —e—
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represent sampled configurations.
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either pre-existing solitons or of newly created ones that enable
the system to slide faster.

Our input for the MSM procedure is a long steady-
state trajectory of the island motion, obtained by integrat-
ing these equations for ~10% time steps for a slow external
velocity, but far from the linear response regime. Values of
K/Uy were chosen so as to straddle between and beyond
the weak (K/Up > 2) and strong (K/Up < 0.2) potential
regimes.

The average friction force Fean =k <vextt - % > le>
obtained from the simulation as a function of the ratio K/U
can be seen in Fig. 1(b), where the crossover from a super-
lubric to a pinned regime is clearly reflected. We focus our
study on three different values of the parameters representa-
tive of these different regimes, as can be hinted by looking at
the evolution of the position of the center of mass shown in
Fig. 1(d).

IV. IMPLEMENTING THE FRICTIONAL MSM

The protocol begins by defining a metric, measuring dis-
tances between configurations in phase space. Since we want
to remain as unprejudiced as possible, we adopt the simplest,
most generic and bias-free metric, and define the distance
between two configurations s and ¢ as

N 2
dy = [(I‘éM - I‘tCM)mod 2]2 + [Z(r; - r;)mod 2} . Q)

=1

The microstates were built using the density peak algo-
rithm.!3 This approach requires only defining a distance
between the configurations, here estimated using Eq. (2).
Based on this definition, the approach automatically finds the
peaks in the probability distribution in the space of the coor-
dinates in which the distance is defined. Here, following our
previous work,” we identify the microstates used for building
the MSM with the density peaks.

We used samples of Neopr ~ 10* configurations (sepa-
rated by the lagtime 7) and clustered them using the metric
(2). The order of magnitude of the lagtime 7 has been chosen
in order to describe the stick (and slip) events of the sys-
tem. The optimal lagtime 7 = 1100 was determined after some
convergence checks resembling those carried out in the pre-
vious work:% In particular, we verified that the relevant time
scales stay within the statistical error in Fig. 1 when doubling
or halving the lagtime. We also verified that by using the core
set MSM approach'® the influence of the time lag on the time
scales is further reduced. This indicates that we are indeed far
from the non-Markovian regime.

Given these {cy, @ = 1, ..., n.} microstates, we can con-
struct a discretized, coarse-grained Transfer Operator (TO):®
if IT"(X — X’) is the probability to go from a configuration X
at time 7 to X’ at time ¢ + 7, a finite n. X n. Transfer Matrix
(TM) can be built by estimating the probability to go from ¢,
to cg intime 7: 175 = fye,, fxreq, AXAX'POOITT(X — X7).
This TM contains less detail than 17, but it can be sampled in
finite time. In principle, H(’;ﬁ depends on the choice of 7, but
an optimal value for this parameter can be chosen. We call {4;}
as the eigenvalues of the TM and { y;} as its left eigenvectors.

J. Chem. Phys. 147, 152721 (2017)

Since detailed balance does not hold, the TM is not symmet-
ric and the eigenvalues can be complex; however |4;| < 1 is
still guaranteed; the eigenvalue of the largest modulus is still
1 and unique if the evolution is ergodic. The eigenvector ¥
represents the steady state distribution, while the eigenvectors
i with |2;] =~ 1 form the so-called Perron cluster.'” They
characterize the long-lived perturbations to the steady state,
decaying with characteristic times 7; = —7/In |4;| > 7, while
oscillating with period 7/ arctan(Im4;/ReA;).

To better characterize the eigenmodes y;, it is useful to
consider a system prepared in the mixed state PY (probability
vector to be in ¢, ) at = 0 and the evolution of the probability
distribution P (O, t) of an observable O as a function of time.
We have

P(0,0)=P*(0)+ ) figi(0)e™!, 3)

i>0

wheref; = >, /\(;’Pg /P% accounts for the initial condition and
2 (0)= ) xIP(Ola), @)

where P(O|a) is the probability distribution of O in microstate
a, P¥(0) = go(0) is the steady state distribution of O, and
P} is the steady state probability to visit microstate . g;(0)
for i > 1 represent “perturbations” of P*(0), each decaying
within the lifetime 7;. While the expansion (3) is meaningful
only for a given starting configuration, the analysis of the shape
of these functions (regardless of their amplitude) provides a
direct insight into the nature of the slow eigenmodes. One
can therefore turn back to observables deemed relevant in the
original system and estimate their influence in the relevant
dynamical modes of the system in order to gain insight on
their characteristics.

V. OBSERVABLES

We apply the described procedure to three evolutions of
our model characterized by different parameters K/U as indi-
cated in Fig. 1(b). The time corresponding to the first largest
eigenvalue (computed from the real part of the eigenvalues,
besides the eigenvalue 0 associated with the steady-state, while
the imaginary part is much smaller and has been ignored) can
be seen in Fig. 1(c): for all cases, we find that the first implied
time scale is approximately equal to 6 x 10*, corresponding to
roughly half the time ag/vex required on average to move by
one lattice spacing. This is consistent with the interpretation of
the slowest mode as being related to the movement from one
local minimum of the substrate to the next. We notice that in the
more extreme case K/U = 10 the first relaxation time is faster;
since the island is stiff, the substrate does not play a role. The
successive time scales are almost an order of magnitude faster,
and further insight is required for their interpretation. We will
presently analyze the g functions of some relevant physical
observables of this frictional system, in order to characterize
these rapidly decaying states.

A. Nearest neighbour distance

As a first observable, we consider the nearest neigh-
bor distance between all particle pairs. The steady-state
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Nearest neighbor distance

FIG. 2. (a) Steady state probability distribution of the nearest neighbor dis-
tances for the three regimes. Vertical dotted lines represent the rest interparticle
(“harmonic”™) distance, while the dashed ones represent the substrate lattice
spacing. (b) The perturbations g; [see Eq. (4)] estimated for the first three
excited states. The observable O in Eq. (4) is here the nearest neighbor distance.
To compute P(O|a), 100 intervals have been chosen.

distributions [see Fig. 2(a)] show the expected trend: while the
K/Ug =2 case has a peak centered on the harmonic equilibrium
distance reflecting the hard island’s nature during structurally
lubric sliding,' the opposite case K/Ug = 0.2 is centered on a
distance commensurate with the substrate, reflecting the soft
island’s strong adhesion to the external potential. For K/Uy
= (.5, the situation is intermediate. The excited states com-
plete this description [see Fig. 2(b)]: the first excited states
show little correction to the steady-state distribution, as the
change of a whole lattice spacing has only a minor influ-
ence on the nearest neighbor distribution, while the second
and third excited states display a significant change. Indeed,
the latter correspond to internal relaxations of the island not
associated with the collective sliding. In the specific case,
these corrections are related to the formation/destruction of
incommensurate solitons induced on the island by the external
potential."

This observable lacks the ability to clearly distinguish
between the excited states. We therefore considered a more
extensive observable, able to highlight more differences.

B. Harmonic energy

We now consider the distribution of the total harmonic
energy of the island §<Z<,~J>€NN(1'; - rj’.)z). Figure 3(a) shows
the steady-state distributions, clearly highlighting the richer
information encoded by this observable. In the stiff K/Uy = 2
case, the distribution of this observable shows a single peak,
while in the softer cases, it acquires a more complex structure,
related to the presence of a different number of solitons in the
system. The corrections in Fig. 3(b) highlight how the different
modes (besides the first one, as previously noted) are related to
different relative weights in these soliton distributions, repre-
sentative of the different dynamics of each regime: while in the
stiff case, the few defects merely slide through the island dur-
ing the motion, leaving their population unchanged; for the
softer islands, the stick—slip motion is achieved through the

(a) K/Uy=2 K/Uy=0.5 K/Uy=0.2
A i
A |
’/’ \\ 1o
g |\ |
n- “‘ \ | |
!’ \ | |
‘/" “\\ i
(b) T, ~ 67000 T, ~ 53000 : T, ~ 57000
0 A /\ I I
veail H
| W
T, ~ 15000 T, ~ 10000 i $T ~ 14000
0 2 2 : : 2 A
N |
T3~ 6000 fs ~ 8000 ? ?1:3 ~'6000
0 A e
'V
| ™M
50 60 70 106 122 137 157 172 189

Harmonic energy

FIG. 3. (a) Steady state probability distribution of the harmonic energy for
the three regimes. The vertical dashed lines represent the harmonic energy for
an island completely relaxed to the substrate lattice spacing. In this case, we
applied a running average to the data, both for the steady-state distribution
and the corrections. The switch from a single peak of the hard island to a
multiplicity of peaks for the medium to soft island is the direct evidence of
the more elaborate sliding dynamics of the latter. (b) The perturbations g; [see
Eq. (4)] estimated for the first three excited states. The observable O in Eq. (4)
is here the harmonic energy. To compute P(O|), 100 intervals have been
chosen.

creation of new solitons at the edges and their relatively fast
propagation, leading to a complex time dependence of their
population.

C. Single particle positions

To gain additional insight in the nature of the slow dynam-
ical modes we now consider the probability distribution of the
position of a single particle (not on the border) as a function
of its position x and y, folded back inside the one-dimensional
unit cell defined by the periodic potential.

The steady state positional distribution of [Fig. 4(a)]
again shows how the increase of Uy leads from a smooth dis-
tribution over the continuous transition path from a minimum
to the next, to an increasingly peaked distribution in the poten-
tial minima. Therefore if for K/U = 2 the particle performs a
rather smooth zig-zag path between successive potential min-
ima, in the intermediate case (K/Ug = 0.5), these positions are
much more probable, eventually becoming dominant for K/U
= 0.2 where the distribution reduces essentially to sharp peaks.
The excited state effect on the particle position distribution is
shownin Fig. 4(b). While the first excitation is clearly related to
the single period shift, as mentioned earlier, the second excited
state shows that the particle jumps among successive minima
in the zig-zag path.

This shorter periodicity was not visible in the previous
observables as it is not shared by all particles. The third
excited state, finally, reflects the particle position probability
perturbation caused by the “slip” events, which are charac-
teristic and strong for the softer island, as in the previous
analysis.
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D. Work distribution

As a final observable, relevant to the description of a
frictional model, we consider the instantaneous work done
on the system by the external force in a single time step 7:
Wi = k Xi(Uextt — x))(x[*" — x]), shown in Fig. 5(a). (Notice
that this quantity depends on the successive position at time
steps ¢ and ¢ + 7). The steady-state work distribution Ps(W)
is centered on (W), a value evolving from near zero to larger
values as one goes from K/Uy = 2 to K/Ugp = 0.2. At the
same time, Pg(W) develops an increasing asymmetry with a
broader and broader tail around positive values of work. Both

(a) K/Ug=2 K/Uy=0.5 K/Ugp=0.2
n_(l)
(b) T~ 5300@ T~ 57000
0
T~ 1000@ T~ 2000
0 | ‘
‘ T3 * 8000 ‘ T3 ~ 6000 : ‘
0 ‘
-1 0 1 -1 0 1.1 -2 0 2

Work [x 10%]

FIG. 5. (a) Steady state probability distribution of work for the three regimes.
In this case, we applied a running average to the data, both for the steady-state
distribution and the corrections. (b) The perturbations g; [see Eq. (4)] estimated
for the first three excited states. The observable O in Eq. (4) is here the work.
To compute P(O|a), 100 intervals have been chosen.

features are related to the increase of dissipation as the sub-
strate corrugation increases. As for the previous observables,
this steady-state level information is straight from the simula-
tion and does not need the MSM analysis. Now however we
can examine what the excitations do.

As seen in Fig. 5(b) for K/Uq = 2, the excitations show
just noise, which tells us that the slider moves as a whole, as
the characteristic of the superlubric sliding in this regime. The
notable exception is however the second excitation, showing a
forward jump. This marginal stick—slip behaviour is actually
due to the weak but nonzero pinning caused by the island edge
that hinder the entrance and exit of solitons,'> a subtle but
real feature which in this case is efficiently and unbiasedly
uncovered through this excitation.

As we move towards smaller and smaller K/Ug and the
island softens, all excitations gradually come into play. In the
final stick—slip regime, modifications in the soliton structure
are strongly related to an increase in the positive tail of the work
distribution, highlighting the mechanism behind the increased
friction coefficient.

VI. CONCLUSIONS

The Markov state model method, so far developed for the
equilibrium evolution of large-scale molecular systems, can
be naturally extended to non-equilibrium dynamics under the
action of external forces. Among non-equilibrium phenomena,
the physics of sliding friction is in bad need of a descrip-
tion, with coarse-grained variables and their time evolution
constructed in the least prejudiced manner. We have shown
here that the application of this technique to a realistic model
involving a mesoscopically large sliding system is possible
and fruitful.

Three important conclusions that were not a priori granted
deserve being underlined. The first conclusion is that no
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particularly clever or savvy choice of the metric is necessary:
the very naive choice of considering the distance between all
the particles of the sliding island works very well. Since the
metric is so simple, the kinetic model that is obtained is likely
to be accurate. The second and equally remarkable result is
that despite many thousands of atomistic degrees of freedom,
the procedure allows selecting just very few slow variables,
automatically eliminating all other fast irrelevant variables.
The third conclusion is that the slow variables, once examined
at the end, are found to make a lot of sense when confronted
with the actual frictional physics of the system, be it superlu-
bric or stick—slip. These gratifying bottom lines provide strong
encouragement towards the future use of the MSM for the
theoretical description of sliding friction.
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