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Abstract

In previous papers, we introduced a normative scheme for scene construction and epistemic
(visual) searches based upon active inference. This scheme provides a principled account
of how people decide where to look, when categorising a visual scene based on its contents.
In this paper, we use active inference to explain the visual searches of normal human sub-
jects; enabling us to answer some key questions about visual foraging and salience attribu-
tion. First, we asked whether there is any evidence for ‘epistemic foraging’; i.e. exploration
that resolves uncertainty about a scene. In brief, we used Bayesian model comparison to
compare Markov decision process (MDP) models of scan-paths that did—and did not—con-
tain the epistemic, uncertainty-resolving imperatives for action selection. In the course of
this model comparison, we discovered that it was necessary to include non-epistemic (heu-
ristic) policies to explain observed behaviour (e.g., a reading-like strategy that involved
scanning from left to right). Despite this use of heuristic policies, model comparison showed
that there is substantial evidence for epistemic foraging in the visual exploration of even sim-
ple scenes. Second, we compared MDP models that did—and did not—allow for changes in
prior expectations over successive blocks of the visual search paradigm. We found that
implicit prior beliefs about the speed and accuracy of visual searches changed systemati-
cally with experience. Finally, we characterised intersubject variability in terms of subject-
specific prior beliefs. Specifically, we used canonical correlation analysis to see if there were
any mixtures of prior expectations that could predict between-subject differences in perfor-
mance; thereby establishing a quantitative link between different behavioural phenotypes
and Bayesian belief updating. We demonstrated that better scene categorisation perfor-
mance is consistently associated with lower reliance on heuristics; i.e., a greater use of a
generative model of the scene to direct its exploration.
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Introduction

This paper is about salience attribution in visual searches. In other words, how do we identify
salient targets during saccadic (visual) searches of our visual scenes—and what sorts of policies
and prior beliefs underwrite this attribution and subsequent epistemic foraging. To address
this question, we applied a recently described model of active visual search (i.e., inference) to
explain the eye movements of normal subjects in terms of optimal epistemic sampling. In this
paper, we consider the evidence that normal subjects conform to normative (i.e., Bayesian)
principles and how this can be used to characterise individual differences. Ultimately, we will
translate this paradigm into clinical research, with a special focus on aberrant salience attribu-
tion in people with schizophrenia.

Visual exploration entails seeking relevant information, given a context. But what is infor-
mation? Shannon’s definition of information [1] implies that an outcome that is less predict-
able contains more information. Shannon entropy is the average or expected information.
Shannon entropy is highest when all outcomes are equally likely; i.e., when the outcome is
most unpredictable. However, Itti and Baldi [2] demonstrated that whilst human visual atten-
tion is attracted to areas of high Shannon information, it is attracted most strongly to areas
that cause the greatest shifts in our beliefs about the world. This notion is formalised as ‘Bayes-
ian surprise’ [2]: the KL divergence between prior and posterior beliefs about how our sensory
data are generated. In the active inference framework, stimuli that are expected to produce
greater Bayesian surprise have more epistemic value and are therefore more likely to be sam-
pled through active vision.

The active inference framework explains both exploratory and subsequent goal-fulfilling
behaviour in terms of avoiding surprise and reducing uncertainty. Mathematically this is
described by minimizing expected free energy; where variational free energy is a proxy for the
negative log evidence or surprise. This variational principle generates behaviour that avoids
surprising outcomes (i.e. that do not conform to prior beliefs). In brief, agents seek out states
that resolve the greatest uncertainty about the environment (i.e., maximising Bayesian sur-
prise), while avoiding states that do not conform to its prior beliefs (i.e., avoiding surprise per
se). This involves equipping the agent with the beliefs that she will minimize the expected free
energy of future outcomes; i.e. the free energy of beliefs about the future. To evaluate expected
free energy, beliefs about the state of the world are projected into the future to predict the most
likely outcomes. This enables the agent to select free energy minimising, epistemic, goal-
directed policies (i.e. sequences of actions) that resolve the most uncertainty about its environ-
ment and fulfil its goals.

The expected free energy comprises two terms; namely, epistemic (i.e., intrinsic) and prag-
matic (i.e., extrinsic value). Epistemic value speaks to the resolution of uncertainty about the
hidden states of the world, and can be interpreted as the value of knowing one’s environment
[3]. This component of expected free energy is essentially the Bayesian surprise expected
under a particular action [2]. In other words, in the active inference framework, salience is
defined in terms of the epistemic value or affordance of sampling the world in a particular
way. In contrast, pragmatic value is the expected utility of future outcomes, where utility is
simply the logarithm of prior preferences that specify preferred outcomes or goals. The mini-
mization of variational free energy maximizes both epistemic and pragmatic value, and thus
resolves the exploration and exploitation dilemma within a single imperative. On this view,
active inference first involves resolving uncertainty about the world by selecting actions or
policies that are epistemically valuable. After uncertainty has been resolved there is no further
epistemic value or affordance-and exploitative behaviour emerges that is driven by prior pref-
erences or pragmatic value.
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In our previous work [4]; we introduced an active inference scheme for visual searches
using a scene construction task. We showed how a scene can be explored optimally, when a
synthetic subject engages in epistemic foraging. In this work, we ask whether human subjects
perform the same task in an epistemic fashion; i.e., resolving uncertainty about the hidden
states of the world. To answer this question we fitted active inference models to the behaviour
of subjects, using models that did—and did not-contain epistemic value. This enabled us to
evaluate the evidence for epistemic foraging using Bayesian model comparison. We then asked
whether we can disambiguate behavioural phenotypes in terms of their prior preferences or
beliefs, using canonical correlation analysis.

This paper comprises four sections. The Materials and Methods section comprises three
subsections. In the first, we describe the active inference scheme used in this paper. We briefly
rehearse the generic form of the Markov decision process (MDP) for active inference and reit-
erate the scene construction task. In the second, we describe the analyses of the saccadic scan-
paths of subjects performing the scene construction task. In the third we describe the empirical
methods for the gaze-contingent protocol we used in the eye-tracking study and the subjects
that performed the task. The Results section contains the behavioural and model based analy-
ses of the subjects’ scan paths. In the model based analyses we use our Bayesian model of visual
searches to estimate the subjects’ prior beliefs. We then report the canonical correlations
between subjects’ prior beliefs and their behavioural measures to understand overt behaviour
in terms of characteristic subject ‘types’. In the Discussion section, we discuss our results in
terms of active inference and their implications for computational phenotyping of individual
subjects.

Materials and methods
Active inference and visual search

In this section, we briefly rehearse the Markov decision processes model used to simulate
active inference. Here, this model is used to simulate visual searches; however, the underlying
formalism is the same as used in previous work to model a wide range of behavioural and
physiological responses [3,5,6].

In the current task, the subject’s goal is to categorize a two by two grid scene as Flee, Feed or
Wait. The relative locations of the objects in the scene define the category; e.g., in Feed scenes a
seed is next to a bird. The objects in the scene are masked initially and are subsequently
revealed by looking at the quadrants. These objects are sampled, one at a time, in a sequential
manner to gather evidence for allowable scene categories. The locations of the objects are
determined by states that are ‘hidden’ from the subject-and have to be inferred on the basis of
sensory evidence. The first hidden state (what) determines the category of the scene by defin-
ing the relative locations of the objects. The second hidden state is where; namely, the sampling
quadrant. The last two hidden states are spatial transformations that define the absolute loca-
tions of the objects. These hidden states swap or flip the locations of the objects horizontally
and vertically with respect to the base scenes. The base scenes are shown in Fig 1B, using the
what dimension of hidden states. Under a vertical transformation or flip of the flee scene, the
bird and cat would exchange locations. Once the agent accumulates sufficient evidence for one
of the categories, it samples one of the choice locations to receive feedback about its decision;
where the feedback can be either right or wrong. The agent is given prior preferences that it a
priori expects to be right and not wrong.

Given a generative model of how outcomes are generated by hidden states of the world,
active inference models behaviour in terms of planning as inference [4,7,8]. In brief, policies
or sequences of actions are inferred by treating each policy as a potential model of the future
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Fig 1. Graphical model corresponding to the generative model. (a) The left panel shows that the
structure of an environment is defined through the transition (B) and likelihood (A) matrices. The transition
matrices encode the transition probabilities between hidden states, whereas the likelihood matrix encodes
how likely outcomes are given the hidden states. The C matrix encodes the agent’s prior preferences about
the outcomes. 3 determines the confidence or precision placed in policy selection—based upon expected free
energy in the future. The smaller this term, the more precise policy selection becomes. G is the expected free
energy and comprises extrinsic (pragmatic) and epistemic (uncertainty resolving) components. Beliefs about
policies 1 are a function of B, G and E where E prescribes the prior probabilities over the policies (including
fixed-form or heuristic policies). Hidden states s depend on action and the hidden states in the previous time
step. Finally outcomes o depend on the hidden states. (b) The right panels show different hidden state and
outcome modalities in the scene construction task. There are four hidden states, namely, the scene context,
sampling location, horizontal and vertical spatial transformations (what, where, and transformations
respectively). The two outcome modalities report what object is seen where in the scene. Reprinted from [4]
under a CC BY license, with permission from Mirza, Adams, Mathys and Friston, original copyright 2016. This
figure is not identical to the original figure.

https://doi.org/10.1371/journal.pone.0190429.9001

and using Bayesian model selection to select the most likely policy. The most likely policy is
the policy that one expects to provide the greatest model evidence or least expected free energy.
The expected free energy can be decomposed into epistemic and pragmatic parts that resolve
uncertainty about hidden states of the world and realise prior preferences respectively. This
policy selection involves inferring the hidden states of the world under each allowable policy
using variational message passing. Variational Bayes assumes statistical independence among
marginal distributions over different sets of hidden states. This allows the posterior distribu-
tion over one set to be inferred (from observed outcomes), while the posterior distributions
over the others are held constant. This is repeated for all sets of hidden states, until conver-
gence. This sort of approximate Bayesian inference uses a mean field approximation, which
assumes a factorisation and conditional independence among the posterior distributions over
different dimensions or factors of hidden states (here, what, where and spatial transforma-
tions). We consider two sorts of outcomes; namely, the exteroceptive visual outcome or what is
observed and the proprioceptive outcomes; i.e., where the agent is currently looking.

Fig 1A shows the generic form of the MDP model and the conditional dependencies in the
generative model. This panel shows how the outcomes are generated from the hidden states in
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terms of probabilistic transitions that depend on policies. There is only one difference in the
directed acyclic graph in this paper and in our previous work [4]; namely, prior (fixed-form)
beliefs over policies (denoted by E). To accommodate the fact that subjects may have preferred
heuristic strategies for visual search, our model of their policies included a fixed-form (i.e.,
heuristic) policy that was estimated on a subject by subject basis. This fixed-form policy corre-
sponds, technically, to a state-action policy. In other words, it is a policy that prescribes (in a
deterministic way) the next target location given the current location. This can be encoded as a
single policy in terms of a probability transition matrix among different saccade locations. The
heuristic policy was estimated using the empirical transition frequencies for every sequence of
saccadic eye movements analysed-and the most frequently used heuristic policy was included
in the repertoire of policies for each subject. Although this policy is subject-specific, it plays
exactly the same role in every instance; namely, a state-action policy that has no uncertainty
reducing or epistemic aspects. This can be seen easily because the most probable next action or
saccade does not depend upon posterior beliefs—that would otherwise contextualise an episte-
mic saccade. The remaining eight (epistemic) policies correspond to single saccades that take
the agent to one of the eight locations in the scene. Generally, policies comprise a sequence of
actions or moves; however, in this paper we only consider simple (one step ahead) policies that
correspond to the next action. An epistemic policy is defined as a policy (based on current
beliefs about hidden states) that resolves the greatest amount of uncertainty about hidden
states (i.e., maximises information gain, Bayesian surprise or salience). In contrast to heuristic
policies, action is not predetermined by the hidden state one finds oneself in, but by the
action’s epistemic affordance. This means epistemic policies can therefore accumulate infor-
mation more efficiently, because they depend upon current beliefs.

Operationally, we parameterised the propensity to engage in a fixed-form (heuristic) policy
with a single log probability (an E;, coefficient, where h stands for heuristic). This value was
specified relative to a value of zero for the remaining eight policies that could be deployed in
an epistemic fashion, i.e. E = [0,. . .,0,E]. Including the heuristic policy allowed us to evaluate
how likely different subjects were to engage in epistemic versus non-epistemic searches—and
whether this propensity changed with exposure to the task.

Interestingly, we found that the fixed-form policies in several subjects resembled a reading-
like strategy, while in others there was a tendency to proceed clockwise around the quadrants.
See the rightmost side of the middle panel of Fig 2 for an exemplar empirical probability tran-
sition matrix encoding subject-specific policies (in this case the reading-like strategy). In our
MDP scheme heuristic policies are sufficient for scene exploration; however, they do not sup-
port a categorisation response. In other words, once the category of the scene is disclosed
through exploration, the heuristic strategies are redundant. To include the propensity of a sub-
ject to engage in a fixed-form (heuristic) policy in the MDP scheme, the priors are added to
the variational free energy scoring the evidence for each policy based upon past outcomes (F)
and expected free energy in the future (G) weighted by their inverse precision (B). This leads to
a posterior belief over policies:

n=0o(E-F—-G/B) (1)

where E = In E and E corresponds to the prior preferences over the policies. See our previous
work [6] for the details. All the remaining update equations remained the same as in our previ-
ous work [4].

Fig 1B shows the hidden state and the outcome space. There are two outcome modalities.
Under the what modality there are six outcome cues, namely, null, bird, seed, cat, right and
wrong feedback. Under the where modality, there are eight outcomes; namely, central fixation,
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Fig 2. ABCDE of generative model. The upper panel shows the likelihood matrices for the top left quadrant
(location 2), under the vertical (but not horizontal) spatial transformation. The likelihood matrices encoded the
probability of outcomes given (the four dimensions of) hidden states. The middle panel shows the action-
dependent state transition matrices. In this scene construction task, only the sampling location (where) hidden
state is action-dependent. The other transition matrices associated with the context and spatial transformations
are identity matrices. The action-dependent transition matrix maps to the sampling locations associated with
each action (for the first eight policies). However, this mapping changes in the case of a fixed-form policy,
which corresponds to a repeating the ninth action in the MDP model. The mapping between sampling locations
for the reading-like policy is shown on the rightmost side of the middle panel. The lower panel shows two priors.
Firstly, the prior preferences over the what and where outcome modalities in the first six saccades are shown.
Here, the columns of the matrices show the preferences (or utilities) over successive time steps; whereas the
rows designate the outcomes (six cues under the what modality and eight locations under the where modality).
The utilities in the first time step are zero (shown with the white colour), under both modalities; since the
sampled location in the first time step is the central fixation. Different shades of grey indicate the absolute value
(intensity) of the utilities, where the darker shades are associated with higher utilities. The prior preference
matrix under the what modality equips the agent with beliefs that it expects to categorize correctly. The
increasing utility over the columns in the prior preference for the where modality means that the tardy sampling
(i.e., being undecided) becomes costly. Plus and minus signs indicate the valence of the utilities. These utilities
specify the imperatives or instructional set of the empirical game (described below); in terms of incentives or
prior preferences. For example, considering the prior preference matrix under the what modality, a correct
categorisation is implicitly rewarded with two points and an incorrect categorisation would be penalised with
four points. The prior preferences over policies are shown at the bottom. One can define a propensity for a
policy in the vector E, which encodes the prior preferences over the policies. An example E is shown at the
bottom. The utility of the ninth policy (heuristic strategy, Ey,) is defined as log(2), relative to a value of zero for
the remaining (eight) policies. The first eight policies correspond to the policies that take the agent to the
locations associated with the central fixation, four quadrants and three choice locations. This renders the ninth
policy ~ 3 times more likely.

https://doi.org/10.1371/journal.pone.0190429.9002

four peripheral locations and three choice locations. The hidden states have four dimensions;
namely, what (Flee, Feed and Wait), sampling locations (one of eight locations in the scene),
and two spatial transformations (vertical and horizontal). The scene always contains a bird.
Whether the scene contains a cat or a bird depends on what scene is currently generating sen-
sory samples. In Flee scenes, the cat is next to the bird; in the Feed scenes, the seed is next to the
bird and finally in the Wait scenes the seed is on the same diagonal as the bird.

In this visual search paradigm, the exteroceptive and proprioceptive outcomes are gener-
ated in the following way. The context hidden states determine the relative locations (e.g., seed
next to bird) of the objects, whereas the spatial transformation hidden states determine the
final locations of the objects by flipping them vertically, horizontally, neither or both. The sam-
pled location and the visual object in that location are conveyed to the subject once an action is
sampled from the actions that constitute a policy.

The generative model used to generate stimuli in our experimental paradigm (see next sec-
tion) is illustrated in Fig 2. The likelihood matrices mapping from hidden states to outcomes
are shown in the upper panel. For illustrative purposes, the likelihood matrices are provided
for the sampling of the second location (the top left quadrant) under a vertical transformation
of the scene. The middle panel shows the action-dependent transition matrices that generate
transitions among hidden states following each action. Crucially, the first eight action-depen-
dent transition matrices—that encode the transition probabilities between sampled locations—
map deterministically onto the same location as the action; whereas the transition matrix for
the ninth action corresponds to a fixed-form (heuristic) state-action policy. This prescribes the
next location given the current location in a deterministic way. The transition matrices for the
other hidden state dimensions; namely, the what or scene context and spatial transformations
are identity matrices (because these do not change within each trial). The rules of the game, in
terms of scoring points, have been modelled in terms of the prior preferences over outcomes
in the C matrices. These rules are explained in detail in the next section. As noted above, prior
preferences over the policies correspond to E. Finally, the generative model assumes uniform
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beliefs about the hidden states of the world, apart from the initial sampling location; namely,
central fixation.

Characterising empirical behaviour in terms of active inference

In terms of data analysis, we adopted the following strategy. First, the hundred trials within
each of five blocks were summarised in terms of scan-paths or sequences of saccadic locations.
Using the stimuli or cues that were disclosed during each epoch of every trial, we were then
able to optimise the parameters of an MDP scheme that best explained each subject’s behav-
iour. The (free) parameters of the MDP scheme included a hyperprior on the (inverse) preci-
sion of beliefs about policies (Beta), prior preferences for outcomes (Cost) and a prior
expectation (Expectations) or bias towards non-epistemic (heuristic) policies. Note that these
(B, C, E) parameters encode prior beliefs (about behaviour, preferences and prior policies
respectively). This enabled us to optimise the model of each subject’s responses, while accom-
modating subject-specific preferences.

As a prelude to analysis of empirical data, we first ensured that fitting the MDP model to
observed behaviour has face validity. To do this, we estimated the model parameters using the
saccadic choices of the first subject (on the third testing block) and used them to simulate a
block of 100 trials. Using the simulated data, we then estimated the MDP parameters to ensure
that we could recover the same values used to generate the data. The results of an exemplar
analysis are shown in Fig 3A. Here, one can see that the scheme was able to recover the param-
eters used to generate the data, with a reasonable degree of confidence (the grey bars corre-
spond to the posterior expectations in log-space and the pink bars correspond to 90% Bayesian
credible intervals).

This was the inversion scheme that was applied to the empirical data to address the hypoth-
eses about whether subjects evidence epistemic behaviour-and whether this behaviour
increases (or decreases) with exposure to our paradigm. Our subsequent analysis of the empiri-
cal behavioural data comprised three components.

« First, we assessed the evidence that subjects engaged in epistemic searches-as described by
minimising expected surprise (i.e. free energy), under ideal Bayesian assumptions. We there-
fore compared models of each subject’s responses (during the last blocks of each session),
under models that did-and did not-contain a salience or uncertainty-reducing term (i.e.,
epistemic or intrinsic value). Removing this epistemic value from expected free energy
reduces it to an expected utility, scored in terms of prior preferences or cost [3]. The evi-
dence for epistemic imperatives in visual searches was assessed for each subject individually
in terms of the difference in log evidence for the two models-and then pooled (i.e. summed)
to provide inference based on all the subjects’ data.

o Second, we asked which parameter combinations account for the exploratory behaviour the
best by evaluating the model evidence obtained under each model by using Bayesian model
reduction and averaging [9], where each parameter combination corresponds to a model.
This was assessed for each subject individually and then the model evidence under all models
was pooled together over all subjects to produce an overall Bayes factor to find which model
best accounts for subjects’ behaviour overall.

Finally, to characterise intersubject variability, we used canonical correlation analysis (CVA)
to see whether there were significant relationships between the behaviour of our subjects
and their prior beliefs, as estimated in terms of the parameters of the MDP model. This
involved creating a matrix of independent or explanatory variables corresponding to the free
parameters for each subject and trying to explain the corresponding dependent or response
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https://doi.org/10.1371/journal.pone.0190429.9003

variables based upon subjects’ performance. In this instance, we summarised behaviour in
terms of their accumulated score over all trials and performance improvement from the first
to the last block. These behavioural measures were supplemented with (partially redundant)
performance measures; reflecting the percentage correct categorisations and the number of
saccades emitted on average over trials. This analysis returned significant pairs of canonical
vectors and variates describing how prior parameters or beliefs are manifest behaviourally.
Note that these performance scores are distinct from the scan-path data used to estimate the
prior beliefs of each subject.

The number of significant canonical correlations defines the dimensionality of a phenotypic
space in which different subjects are located. In other words, it provides a way of characterising
the ‘type’ of each subject along different dimensions. For example, one type of subject may
have very precise (hyperprior) beliefs about policy selection and therefore be relatively confi-
dent in how they prosecute the visual search. Furthermore, these subjects may adopt a fixed-
form (heuristic) search strategy and consequently take a longer time to resolve uncertainty-
but will, on average, be more accurate in their decisions. Another type of subject may be more
epistemic in nature; reducing their uncertainty about the scene category more efficiently;
thereby using shorter scan-path. By simulating responses for characteristic parameter values
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within the canonical correlation space, one can illustrate the impact of different prior beliefs
on behaviour and underlying confidence in decisions and uncertainty about the scene cate-
gory. In this paper, we focus on normal intersubject variability noting that (in future work) we
hope to apply this paradigm to clinical cohorts. Our hope is to show that there are systematic
differences in prior beliefs and salience attribution (i.e., the ability to identify salient or episte-
mically valuable saccadic targets).

Empirical methods

The experimental design allowed participants to explore the scene by disclosing objects placed
at each quadrant of the visual field using eye movements. Upon arriving at a decision, the par-
ticipants reported their categorisation of the scene using a button box that was placed either to
the right or to the left of the head-mount, depending on whether the individuals were right or
left-handed.

Each subject underwent a pre-training phase comprising twenty trials; ensuring that they
were accustomed with the experimental setup, head-mount, controller etc. They then per-
formed five blocks of the task: two training blocks and then three test blocks. Between each
block the subjects rested for a few minutes. Each block consisted of a hundred trials. A fixation
cross was displayed on the screen prior to the beginning of a trial. Looking at the fixation cross
triggered the trial. After the beginning of the trial, the visual stimuli were displayed in a two-
by-two grid; in which each square consisted of a grey dot within a black circle (see Fig 4). The
visual display was gaze-contingent; in other words, the grey dots turned into objects (null, bird,

Experimental Flowchart

Correct+2
2locationsvisited  Score: 101.25

You lose: -0.75 points

Score: 100 —|—

Fig 4. Experiment flowchart. This flowchart shows how a single trial evolves. Firstly, the total score is displayed. Then a
fixation cross appears in the centre of the screen. Upon looking at the fixation cross the trial begins. In this particular trial,
the participant looks at the top left quadrant and observes a seed, and then looks at the top right quadrant and observes a
bird. At this point it is obvious that the category of the scene is Feed. On the fifth action, the participant chooses the Feed
category by pressing the green button on the controller. This is followed by an auditory feedback, associated with the
correct decision. Consequently a feedback screen shows whether the chosen category was correct, the number of
quadrants one looked at and the points lost by looking at those quadrants. Finally, the total score is displayed.

https://doi.org/10.1371/journal.pone.0190429.g004
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seed and cat) when looked at. This allowed the subjects to accumulate evidence as they
explored the scene within a given trial. At the beginning of a block, the subjects were given 100
points. Subjects were rewarded two points for making a correct categorization and penalized
four points for an incorrect one. Both correct and incorrect categorizations were followed by
auditory and visual feedback.

We incentivised the participants to sample locations that were more informative using a
sampling cost. The penalty of attending to the n-th square was given by —0.25 x n. The cost of
exploration stacked cumulatively as the exploration proceeded; i.e., looking at two squares
would cost —0.25 + (—0.5) = —0.75. These task instructions instantiate a particular task set or
prior belief that was included in the model or prior preferences (i.e., the probability of not
making a decision became less likely with the number of saccades). This introduces a distinc-
tion between Ceorrect (0F Ceor) and Cggici (0or Cq) that encode preferences about being right or
wrong and preferences about being undecided as time progresses. See Fig 2.

There was a fixed time limit for each subject of between two and four seconds on each trial.
Exceeding this time limit (without choosing) cost the subjects four points. Time limits for each
subject were obtained using a staircase procedure during both the training and testing blocks.
This staircase procedure was a function of the minimum number of saccades necessary for an effi-
cient categorisation. For instance, if the first object was bird, then the most efficient way to explore
the scene is to look at the square next to the bird. One only needs to make two saccades to catego-
rize the scene in this case. The number of saccades was summed over 10 trials. Making 10% more
saccades than was necessary increased the time limit by 200 ms: it decreased by 200 ms otherwise.

The training and testing blocks differed in two ways. In the training phase, the colours of
the buttons on the controller were displayed as dots in the lower half of the screen (below the
two-by-two grid scene) with the same colours (and in the same order) as the button press box,
to ensure subjects learned to press the correct buttons as quickly as possible. In the testing
phase, the coloured dots were removed from the screen and the grid scene was centred on the
screen. The sequence of frames in Fig 4 shows the steps of this gaze-contingent paradigm. Sti-
muli were delivered using Cogent 2000 (developed by the Cogent 2000 team at the FIL and the
ICN and Cogent Graphics developed by John Romaya at the LON at the Wellcome Depart-
ment of Imaging Neuroscience) and Psychtoolbox [10,11,12].

Subjects. In total 22 subjects were recruited (9 males, 13 females) through the Institute of
Cognitive Neuroscience subject database. All subjects gave informed written consent, and the
study received ethical approval from the UCL ethics committee (4356/002). The majority of
the subjects were students of University College London. The age of the participants ranged
between 19 and 57, with mean 25.7 years and standard deviation 9.3 years.

Recording method. Subjects were seated 70 cm from the screen on which visual stimuli
were displayed-and they rested their chins on a head-mount. Using the Eyelink 1000 eye-
tracker their gaze coordinates were recorded as they performed the task. The grid scene was
displayed on a 408mm x 306mm screen with a resolution of 1600x1200. The angle of sight was
/2 32.5° visual angles horizontally and ~ 24.4" vertically. The angle of sight of the two-by-two
grid scene was ~ 20.3° during the training phase and ~ 24.4° during the testing phase, both
horizontally and vertically. The size of each object in each square was ~ 5° and the centre of
each object was ~ 8.5° from the centre in terms of visual angles.

Results
Behavioural results

We first characterised performance across training and testing blocks in terms of their mean
score per trial, percentage correct categorizations, mean time interval between saccades and
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mean number of saccades per trial. These performance measures were averaged over all sub-
jects and are shown across the five blocks in Fig 5. The panels in this figure show that the score
per trial increases over blocks and the percentage correct on the fifth block is greater compared
to the first block. The middle panels show that both mean saccades per trial and mean time
between saccades follow a decreasing trend across blocks. Separate two sample t-tests for these
behavioural measures (between the fifth and the first blocks) show that the performance mea-
sures in the first and fifth blocks are significantly different. Finally the histogram in the lower
panel shows the probability distribution over the saccades.

Given that there are four quadrants in the task and given the subjects do not revisit these
quadrants, there can be 4! = 24 different ways of exploring the scene. To account for different
types of heuristic strategies, we considered each of these 24 ways of exploring the scene as
fixed-form policies. A fixed form (heuristic) policy is specified by taking a fixed action from
any given state (e.g., when reading English, one always moves from the current location to the
next location on the right). Crucially, this means the probability of state transitions under a
fixed form (i.e., heuristic or state action) policy do not change with time. Diverse patterns of
exploratory behaviour were observed. Some patterns can be described as heuristics, in that
they were used repeatedly within subjects, independently of the context. Other subjects

04

p 093
k%
03 092
02
— . 091
2 o1 8
= £ 09
g 0 g
o
o 01 g 0%
302 S oss
i 5
§'03 %087
= B ogs
05
06 085
084
1 2 3 4 5 1 2 3 4 5
Blocks Blocks
31 e @ KKK
@ 046
k! 5
s 3 B 044
5 S
=3 3
© 29 2 042
o [
® o
3 3z 04
528 £
» o
< © 038
S 27 £
= = 036
[
(7]
26 =034
1 2 3 4 5 1 2 3 4 5
Blocks Blocks

015

Probability of saccades

Saccade numbers

Fig 5. Performance measures. The performance measures in the panels of this figure are averaged over all
blocks and subjects. The means and standard error of the means (error bars) are plotted per measure. The
top left and right panels show the mean score per trial and the percentage correct categorization over five
blocks, respectively (f(df) = 4388, *p < 0.001; {(df) = 4393, **p < 0.001). The middle left panel shows the
mean saccades per trial (before categorizing the scene) and the middle right panel shows the mean time
between saccades in seconds across five blocks (f(df) = 4392, ***p < 0.001, {(df) = 7774 ****p < 0.001). The
histogram on the bottom panel reports the probability distribution over the number of saccades the
participants made before arriving at a decision about the category of the scene.

https://doi.org/10.1371/journal.pone.0190429.g005

PLOS ONE | https://doi.org/10.1371/journal.pone.0190429 January 5, 2018 12/20


https://doi.org/10.1371/journal.pone.0190429.g005
https://doi.org/10.1371/journal.pone.0190429

@° PLOS | ONE

Salience attribution and active inference

4 3
T
/
/

09 /

/

/
/

s x
T T

\

i

r s .

/ | -
08 / i
07 / i
06 / -

05

04

03

0.2

Probability of favourite heuristic

01

10
Subjects

Fig 6. Probability of subjects’ favourite heuristics. The bar plot shows the probability of each participant’s
favourite heuristic in terms of the frequency with which the scan-path on a given trial accords with the scan-
path of a heuristic strategy. This was repeated over all trials and blocks in each subject. The participants used
six distinct heuristic strategies and the scan-paths of these strategies are plotted in the upper panel and linked
with (exemplar) subjects that used these strategies.

https://doi.org/10.1371/journal.pone.0190429.9006

attended to different locations in a seemingly random fashion and some explored in a way to
reduce uncertainty about the scene efficiently. Prominent among the heuristics were reading-
like and clockwise strategies.

There are commonalities in the heuristic strategies: e.g. the first two quadrants under the
reading and clockwise policies (see the two rightmost scan-paths in Fig 6) are the same. Fig 6
shows the proportion of all trials in which the individual subject’s most commonly used heu-
ristic strategy was employed. There were six distinct heuristic strategies used by 22 subjects. By
far the commonest policies are reading-like and clockwise strategies (used 47% and 42% of the
time respectively), whereas the next most commonly used heuristic was at 12% (shorter scan-
paths can be explained by multiple heuristic policies; hence these percentages do not add up to
100).

Scan path results

Bayesian model comparison, reduction and averaging between block (experience depen-
dent) effects. We first tested whether subjects’ scan paths evidenced the use of epistemic poli-
cies. The upper panel of Fig 7A shows the difference between the log evidences obtained with
the models that did-and did not-contain epistemic value. The model that incorporates episte-
mic value had substantially more evidence for every subject. Pooling the log evidence over all
subjects the epistemic model scored ~ 888 more log evidence than the model that contained
extrinsic value (i.e., prior preferences) only. This result suggests that the subjects indeed
engaged in epistemic visual foraging-and that the epistemic affordance or salience of visual
targets was necessary to explain their eye movements.

We then tested whether subjects showed evidence for changes in their prior beliefs from
block to block. Fig 7 shows the results of Bayesian model comparison of these between-block
or experience-dependent effects. This analysis used parametric empirical Bayes [13] to test for
systematic (exponential) changes over blocks prior beliefs; namely, prior inverse precision,
heuristic bias and prior preferences-, Ey, Ccor and Cgq. This model of exposure-dependent
changes assumes that the greatest change in prior beliefs occurs at the start (in the first blocks)
and then plateau in the last blocks. p (shown in red in Fig 1A) determines the confidence
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across blocks is denoted by B*, whereas the mean (constant) across blocks is denoted by B). This means that there
are 4 x 2 = 8 between-block effects. The lower left panel shows the log evidences for all combinations of between-
block effects (2° = 256). Here, the model that excludes the change in B and Ej, (244" model) scores the greatest log
evidence. The lower right panel shows the most likely model when a softmax function is applied to the log evidences
on the top left panel. (b) The upper panel shows the Bayesian model averages for each parameter (in log-space) over
subjects after Bayesian model reduction was applied to all 256 models (i.e., redundant parameters, E; and g * for
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scaling coefficients (in log-space) that control the precision of the prior preference matrices about being correct (left)
and quick (right).

https://doi.org/10.1371/journal.pone.0190429.9007

subjects place in their prior beliefs about policies. Ccor and Cq (shown in red in the lower panel
of Fig 2) are scaling coefficients on the log prior preferences about outcomes (in what and
where modalities respectively) that tune the precision of preferences. The higher these parame-
ters, more precise the preferences become. E;, (shown in red in the lower panel of Fig 2) is the
final element in the vector of prior preferences over the policies. This encodes the prior pro-
pensity for a fixed-form policy (e.g. reading like strategy) specified relative to a value of zero
for the remaining (eight) policies.

The changes in these prior beliefs were modelled by specifying a simple general linear
model at the between block level that comprised a constant term and a exponential decay with
a time constant of one block. The between-block parameters of this hierarchical model com-
prised a constant and decay parameter for each of the four (prior) parameters at the within-
block level. Bayesian model reduction was then used to compare all combinations of the ensu-
ing 4 x 2 = 8 between-block effects, for each subject. There are in total 2% = 256 models.

The results of this analysis are shown in terms of log evidence (pooled or summed over sub-
jects) over the (most likely) 256 models in the lower row, left panel of Fig 7A. These results
show that full models (to the right of the bar plot) have much greater evidence than reduced
models, with fewer parameters. To assess the most likely model over subjects, we applied a
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softmax function to the pooled log evidence. The resulting marginal likelihood or model evi-
dence over models and subjects is shown in the lower row, right panel of Fig 7A. This model
likelihood suggests that we can be almost certain a nearly complete model is necessary to
account for the data. The winning model identified the changes in prior precision (f) and heu-
ristic bias (E}) over blocks as redundant. This was a little surprising because it suggests that sys-
tematic changes in subjects’ preferences—with increasing experience of the paradigm-are
expressed largely in terms of their prior preferences (C) for being correct or for responding
quickly.

The upper panel of Fig 7B shows the Bayesian model averages of the (four) parameters (in
log-space) for each subject after Bayesian model reduction was applied to all models. These
parameter averages account for uncertainty about the model of between-block effects. The
bar plot groups the Bayesian model averages for each parameter over subjects. The first four
parameters correspond to the mean or constant effect, while the last four correspond to experi-
ence-dependent changes (indicated by asterisks). One can see that there is a remarkably
consistent profile of deviations from the prior mean over subjects (first four parameters).
However, the experience-dependent effects are less consistent. As would be expected from the
Bayesian model comparison, the changes in prior precision and heuristic bias are small; with
the Bayesian model averages of heuristic bias (E},) over subjects shrinking to almost zero. The
interesting results here are the more consistent and negative parameters controlling the expo-
nential decay of prior preferences (C). As the subjects become more familiar or experienced
with the paradigm they increase the precision of their prior preferences; especially the prior
belief that they will respond more quickly.

These effects are shown in terms of the expected changes in prior preferences over blocks
based on subject specific estimates (dotted lines) and the group mean (solid red lines) for prior
preferences about being correct (lower left panel) and being quick (lower right panel) in the
lower row of Fig 7B. These results suggest that as blocks progress, subjects increase their prior
beliefs that they will avoid sampling further (unnecessary) information later in the trials,
which can be seen by the increase in C, over blocks. A key aspect of these subject specific
effects is that there is a large intersubject variability that we characterised using canonical cor-
relation analysis.

Canonical correlation (variates) analysis of between subject effects

Fig 8 illustrates between-subject effects; specifically, the canonical correlations between mix-
tures of behavioural scores and mixtures of subject specific prior beliefs and experience-depen-
dent changes in those beliefs. This analysis summarised behaviour using four behavioural
scores for each subject (normalised to a mean of zero and a sum of squares of one). These
scores were as follows:

o Trial performance (mean score per trial).
« Percentage correct (how accurate they were at categorising scenes)
« Mean saccades per trial (number of made saccades before categorizing a scene)

o Mean time between saccades (time period between sampling two consecutive locations in
seconds)

These behavioural measures were correlated with the six (normalised) subject-specific
Bayesian model averages of the prior beliefs, shown in the lower row right panel of Fig 7A.
These estimates correspond to a computational phenotype of each subject.
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Fig 8. Canonical correlation analysis. The correlations between the Bayesian model average of
parameters (among 256 models) and the behavioural measures were analysed using CVA. These
parameters are means of the prior inverse precision B, heuristic bias Ey, scaling coefficients Ccor and Cq,
and the decay terms C;,, and C. The behavioural measures are: mean score per trial, percentage correct,

mean number of saccades per trial and the mean time interval between saccades. The top left panel shows
the results of a chi-squared analysis of the canonical correlations. The first three of four canonical
correlations are statistically significant; whereas the fourth canonical correlation is not. The top right panel
shows the predicted and observed behavioural canonical variates. The bottom left and bottom right panels
show the corresponding canonical vectors. The three canonical variates are each composed of a pair of
canonical vectors whose scores on behavioural measure and parameter are illustrated on the left and right
bar charts respectively.

https://doi.org/10.1371/journal.pone.0190429.9008

Canonical correlation analysis (equivalently, canonical variates analysis) established that
there were three very significant canonical correlations. In other words, there were three pairs
of orthogonal mixtures that could not be accounted for by chance. The significance of these
canonical correlations is shown in the upper left panel of Fig 8, in terms of the log probabilities
of the four canonical correlations. There are four, because this is the minimum dimensionality
of the multivariate variables (i.e., the behavioural measures). It can be seen that the first three
canonical correlations are extremely significant. This is reflected in the tight correlations
between the predicted and observed behavioural factors (shown on the upper right). The
amount of behavioural variance that could be accounted for-in terms of the computational
modelling-was incredibly high: 96% for the first canonical pairs of vectors, 92% for the second
and 70% for the third. (There is minimal contribution of the score per trial to any of the canon-
ical correlations because this score is explained entirely by two other factors-being correct or
not and the number of saccades used.)

The canonical vectors themselves are shown in the lower panels. These correspond to the
weights of linear mixtures of the behavioural and computational scores that show the greatest
correlation. We have limited these to the three significant correlations (black, grey and white
bars). The canonical vectors for the behavioural scores define three behavioural phenotypes
(noting that the signs of the canonical vectors are arbitrary):
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o The first canonical correlation is driven largely by a correlation between the second beha-
vioural score (percentage correct) and a prior bias towards the heuristic policy. If we flipped
the signs of the first (black) canonical vectors, these results suggest that more accurate and
quick subjects are those subjects who, computationally, have a lower prior bias towards heu-
ristic use (Ep). In other words, subjects who rely more on epistemic policies tend to catego-
rise scenes more accurately and use fewer saccades.

The second canonical correlation is dominated by the prior bias towards the heuristic policy
that is expressed largely in the percentage correct and, to a certain extent, the mean saccades
per trial and time between saccades. This behavioural phenotype is of a careful subject who is
accurate and takes her time between eye movements. This sort of subject has a large negative
heuristic bias (Ey); in other words, a careful subject will not appeal to the heuristic search
strategies and will prioritise being correct (Cc,,) over using fewer saccades (Cg).

The third canonical correlation involves the most pronounced experience-dependent
changes in beliefs during exposure to the paradigm. This appears to be expressed behaviou-
rally in the percentage correct and time between saccades. This behavioural phenotype is
dominated by a negative loading on mean time between saccades and can be regarded as a
hasty subject, who trades-off between prior beliefs about being correct and being quick in
the opposite direction to the careful subject. Crucially, these hasty subjects are the only sort
of subjects that change their prior preferences from block to block.

In summary, there is clear evidence that both subjects’ beliefs and their ability to change
those prior beliefs with experience have predictive validity in relation to behavioural perfor-
mance; enabling us to predict most of the behavioural variance between subjects, given their
computational phenotyping under the active inference (MDP) scheme.

Discussion

By fitting models, that did and did not contain epistemic, uncertainty-resolving imperatives
for policy selection to saccadic behaviour, we have shown that healthy subjects’ visual explora-
tion-of even simple scenes—provides substantial evidence for the use of epistemic affordance
or salience in visual exploration (upper panel of Fig 7A).

Strikingly, a bias towards using heuristic policies to explore visual scenes was associated
with lower accuracy (i.e. percentage of correctly categorised trials) in all three canonical vari-
ates relating model parameters to behaviour: see the canonical variates in the lower panels of
Fig 8. Note that while one might expect heuristic policies would reduce the time between sac-
cades (as in the 2™ canonical variates) at the expense of increasing the mean number
of saccades (as in the 1*' canonical variate), there is no a priori reason accuracy should be
affected by heuristic use. The association between diminished heuristic use and improved
accuracy indicates that having a model of the task structure to direct one’s behaviour not only
permits epistemic foraging but also improves overall performance.

We have further shown that one can use canonical correlation analysis to quantify beha-
vioural phenotypes and their underlying computational bases—in this case, the tendency to use
efficient epistemic search, the tendency to be careful (using epistemic search but also extra sac-
cades), and the tendency to be hasty but also refine one’s behaviour over blocks.

Finally, we have demonstrated the use of parametric empirical Bayes to infer changes in
parameters within subjects over the course of the experiment. Interestingly, subjects did not
change their prior beliefs about the inverse precision parameter  and the heuristic bias Ej,
consistently. The change in the subjects’ prior preferences about being ‘correct’ and ‘quick’
best accounts for performance improvements from the first to the last block (lower panel of

and 3"
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Fig 7B). In other words, a simple change in the way that people expected themselves to behave
was sufficient to explain changes in behaviour. This does not mean to say that the subjects
were more confident about their policy selection; rather, they were more confident about the
consequences or outcomes of their selected policy.

In recent decades several models have been introduced to explain what may drive visual
attention. Some of these models map the features of objects (or image patches) such as colour,
intensity, orientation [14,15] motion [16], local contrast and two point intensity correlation
[17] onto a saliency map. There are crucial differences between these formulations of salience
and ours: First, our model is not designed to process the visual features of the objects—it deter-
ministically knows where it looks (where) and what it sees (what). Second, unlike early formu-
lations, our model is endowed with a natural curiosity about the hidden causes of the world
that drives its visual search and the prior preferences that encourage it to make accurate and
timely choices. In short, salience in active inference is an attribute of a policy that has out-
comes-not an attribute of stimuli. This is not to say that stimuli do not have an epistemic affor-
dance but it is the sampling of that affordance that is underwritten by salience.

Another perspective on visual attention suggests that cognitive control processes drive
visual search behaviour. Under this hypothesis the context in which the visual search tasks are
performed drives exploratory behaviour [18-21]. In our paradigm, however, the context is
revealed as a result of gathering information; in other words, it has to be inferred. Thus a deter-
ministic knowledge of potential contexts, but not the actual context, guides our agent’s search
behaviour.

It has also been shown that in a set of expected stimuli, the abrupt appearance and disap-
pearance of an object [22,23] or the presence of improbable stimuli given a context [24] can
drive visual attention. These results suggest that novelty or information in Shannon’s terms
attract visual attention. However, Itti & Baldi [2] showed that areas of high Bayesian surprise
(i.e. that cause greater shifts in beliefs) are more potent attractors of human visual attention;
i.e., more salient than informative areas in Shannon’s terms. One difference between the vari-
ous approaches above is that in Itti and Baldi’s work, Bayesian surprise is computed over low
level visual features, rather than hidden states of the world as in active inference. Nevertheless,
the principle of Bayesian surprise underwriting visual salience is likely to hold throughout the
cortical hierarchy.

This work has some limitations. The small size of the grid scene in our simple visual task
limits the potential benefit of using an epistemic strategy-as it is possible to explore all the
quadrants in the time allotted. In a larger grid, the contribution of epistemic strategies to
exploration may be even more pronounced. For the reasons of simplicity we did not use the
explicit distractors (that are uninformative about the scene category)-we simply used a null or
grey background. Under the aberrant salience hypothesis of schizophrenia [25], one might
predict that subjects with schizophrenia may sample stimuli of no epistemic value: we shall
explore this in future work. A more complex visual task may incorporate sub-goals; i.e., utili-
ties attached to objects and not only to right and wrong feedback. Such tasks may allow more
thorough investigation of the exploration/exploitation trade-off. Finally, our visual search
model does not explicitly model the processing of visual features of the objects. More ecologi-
cal paradigms might also incorporate Bayesian surprise about lower level visual features; e.g.,
uncertainty in the identification of objects themselves.

One may expect that the more a participant engages in heuristic strategies, there would be
less behavioural evidence for models that included epistemic value. However, comparing Fig 6
with the upper panel of Fig 7A one does not see such a pattern. There are several reasons why
this could be the case. For example, in certain instances, the sequences of fixations are the
same under epistemic and heuristic policies. In these situations, it is difficult to disambiguate
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between epistemic and heuristic policies. More specifically, the simpler explanation for behav-
iour-afforded by models that included an epistemic component-has greater evidence because
it does not require a heuristic bias to explain the observed behaviour. Precluding the heuristic
bias affords a more parsimonious explanation (i.e., induces a smaller complexity penalty). Had
we used a larger grid, one might have expected greater differences in model evidence among
subjects who pursued epistemic policies and those who largely employed heuristic strategies.

In summary, previous work [4], has shown how (synthetic) subjects can evaluate (expected)
Bayesian surprise-i.e. epistemic value-and use it to drive Bayes optimal search behaviour or
‘epistemic foraging’. In the current work, we have demonstrated that even in a very simple
task, model comparison indicates strong evidence for epistemic foraging (alongside the use of
fixed-form or heuristic policies) in healthy subjects. Furthermore, this epistemic foraging is
associated not just with more efficient exploration but also with more accurate scene categori-
sation. In addition, we have shown how canonical correlation analysis can distinguish different
behavioural phenotypes and their underlying computational parameters. In the future we
hope to use this paradigm in clinical research to investigate aberrant salience attribution in
people with a diagnosis of schizophrenia.

This work was part of Innovative Training Network Perception and Action in Complex
Environment, supported by the European Union’s Horizon 2020 research and innovation pro-
gram Marie Sklodowska-Curie Grant Agreement 642961. This paper reflects only the authors’
view and the Research Executive Agency of the European Commission is not responsible for
any use that may be made of the information it contains.
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