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1 Introduction

The Standard Model (SM) of particle physics is our best model describing the innermost

layer of matter. It has been verified in uncountable experiments spanning a wide range of

energies. The Higgs discovery [1, 2] was the icing of the cake of more than forty decades

of experiments confirming every testable prediction of the SM. Now, the most important

goal of the LHC is the quest for new physics, either in the form of deviations from the SM

predictions or as new degrees of freedom in direct searches.

ATLAS and CMS have performed many dedicated searches of beyond the Standard

Model (BSM) theories [3]. All such investigations have led to null results. Before the

run of these experiments it was widely acknowledged that the confirmation of the SM and

nothing more is a logical possibility. At the same time though there are many theoretically

appealing BSM extensions that seem to make sense. Thus, why nature is not making use of

them? is a very pressing question that should have an answer. In order to make progress

towards answering this question we can envision two possible strategies: more clever model

building — which may require a paradigm change with respect to conventional views; or to
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understand in detail the real pressure that the LHC is imposing on the BSMs. This work

deals with a particular example in the second direction.

The experimental results suggest that there is at least a moderate mass gap between the

electroweak scale mW and the new physics scale Λ. Given this situation it is very convenient

to parametrize possible deviations from the SM in an EFT approach. This consists in

viewing the SM as the leading interactions of an effective Lagrangian and incorporate

BSM deviations in a perturbative expansion in powers of SM fields or derivatives Dµ over

the proper power of Λ,

Leff = LSM + L6 + · · · , (1.1)

where ellipses denote terms of order 1/Λ3 and higher. Given the uncertainty of the cur-

rent situation we will take a skeptical point of view on the particular UV physics leading

to (1.1) and thus only assume the SM gauge symmetries. Then, up to the dimension five

Weinberg operator ∼ ΨLΨLHH, the leading deviation from the SM consists in operators

of dimension six,

L6 =
∑
i

ciOi
Λ2

. (1.2)

The dimensionless coefficients ci are the Wilson coefficients, which we assume to be pertur-

bative but otherwise arbitrary. The operators appearing in (1.2) were exhaustively listed

in [4], see also [5]. The advent of the LHC, especially after the Higgs discovery, has trig-

gered an abundant number of works on interpreting the LHC searches as limits on effective

field theory deformations of the SM. It is very interesting to find better ways to measure

the SM EFT. This is in fact the purpose of this work, which focuses on diboson production

WZ/WW at the LHC and how it can be used to constrain the deformations from the SM

due to the triple gauge couplings (TGCs) in L6.

In the SM the TGC are fixed by the gauge symmetry and given by

igW+µνW−µ W
3
ν + igW 3µνW+

µ W
−
ν , (1.3)

where W 3
ν = cθ Zν + sθ Aν is a linear combination of the Z and photon vector boson, and

θ is the Weinberg angle. The interaction in (1.3) is written in the unitary gauge, so that

the vector boson fields describe both longitudinal and transverse polarizations. There are

only two types of CP-even anomalous triple gauge couplings (aTGCs) deviating from (1.3).

The first one consists in deforming (1.3) away from the SM point

L1st
aTGC = ig cθ δg1,Z ZνW

+µνW−µ + h.c. + ig (cθ δκZ Z
µν + sθ δκγ A

µν)W+
µ W

−
ν . (1.4)

Modifications of the coupling W+µνW−µ Aµ is forbidden by gauge invariance and the relation

δκZ = δg1,Z−tan2 θδκγ is satisfied if only dimension six operators are considered. The other

type of deformations are obtained by adding extra derivatives on (1.3). This translates into

higher powers of momentum in the amplitudes. In an expansion in powers of momentum,

the leading such deformation is

L2nd
aTGC = λZ

ig

m2
W

W+µ2
µ1

W−µ3
µ2

W 3µ1
µ3

. (1.5)
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The study of the triplet of deformations {δg1,Z , δκZ , λZ} is a classic test of the SM with a

long history starting with the works [6, 7] and continued by [8–11].1 Famously, the interac-

tions (1.4), (1.5) were bounded with percent level accuracy at the LEP-2 experiment [21]:

λZ ∈ [−0.059, 0.017] , δg1,Z ∈ [−0.054, 0.021] , δκZ ∈ [−0.074, 0.051] , (1.6)

at 95% confidence level.

At the LHC, we would like to exploit the energy growth of (1.4), (1.5) to put stronger

bounds on TGCs. However it is well known that some of the TGC contributions have an

additional suppression factor at high energy. In particular the leading energy contribution

coming from the λZ TGC does not interfere with SM for any 2→ 2 process, which makes its

measurements difficult at LHC. This is consequence of helicity selection rules [12, 22, 23],

and the result is valid at leading order (LO). The main point of our paper is to find ways

to overcome this suppression. We propose two measurements that enhance the interference

of the λZ-BSM amplitude with the SM contribution. Our ideas will lead to a better

measurement of aTGC at LHC.

The paper is organized as follows: in section 2 we review the basic physics associated

to the TGC. Then, in section 3 we propose two new variables to improve the accuracy.

In section 4 we discuss the challenges of the EFT measurements at the LHC. Then in

sections 5 and 6 we discuss our methodology and the results. We conclude and comment

on future directions in section 7.

2 Features of TGC mediated amplitudes

In this section we review simple facts of the diboson production at the LHC. This will

allow us to spot measurements that have not been exploited yet and will lead to better

sensitivity on the TGCs.

Di-boson production at the LHC is dominated by the 2 → 2 process qq̄ → WW/WZ.

To neatly expose the leading energy growth of this probability amplitudes we use the

Goldstone equivalence theorem. Namely, we work with the parametrization where the

transverse gauge-bosons are massless and the would-be Goldstone bosons in the Higgs

doublet describe the longitudinal components of the W±/Z gauge bosons. For definiteness

of the notation,

LSM = (DµH)†DµH + Lgauge + Lψ + V (H) , (2.1)

where the DµH = (∂µ − ig′Y Bµ − igT aW a
µ )H, with T the SU(2)L generators, Y = 1/2

and HT = (
√

2G+, v + h + iG0)/
√

2. As usual, the pure gauge sector is given by the

field strengths Lgauge = −1
4W

a
µνW

aµν − 1
4BµνB

µν − 1
4GAµνG

Aµν , the piece Lψ involves the

Kinetic terms for the fermions and the Yukawa interactions, and V (H) = −m2|H|2+λ|H|4.

1See for example [12–20] for recent TGC and EFT analyses.
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We recall that Goldstone’s equivalence theorem,

W+
L

=

G+

×

(

1 +O(m2
W/E2)

)

states that to get the leading large energy behavior of the amplitudes with massive gauge

bosons in the final state, we can identify in (2.1) the transverse and longitudinal components

of the physical gauge bosons as

{W+
L , W

+
T } = {G+, (W 1 − iW 2)/

√
2} , (2.2)

{ZL, ZT } = {G0/
√

2, cos θwW3 − sin θw B} , (2.3)

where cos θ = g/
√
g′2 + g2 is the cosine of the Weinberg angle. With this basic result in

mind, we proceed to discuss the energy growth of diboson production.

2.1 Energy growth

With the parametrization in (2.1) and the identifications in (2.2), (2.3), the SM triple

gauge couplings arise from

trWµνW
µν ⊃ ∂VTVTVT , (2.4)

(DµH)†DµH ⊃ ∂VLVTVL + vVTVTVL , (2.5)

where we have neglected SM coupling constants as well as O(1) numerical factors. In (2.4),

(2.5) we have also suppressed the Lorentz index contractions and denoted by V either the

W or Z vector boson. A one line calculation shows that the above TGC lead to s-channel

amplitudes with the leading energy growth

M
(
qq̄→VTW

+
T

)
∼E0 , M

(
qq̄→VLW

+
L

)
∼E0 , M

(
qq̄→VTW

+
L /VLW

+
T

)
∼ v

E
, (2.6)

where E is the center of mass energy of the diboson system. The same asymptotic behavior

is found for W−Z final states. In (2.6) we are working in the limit of massless light quarks,

so that these only couple to the transverse gauge bosons, and we neglected subleading

log(E) terms from loop corrections. The process qq̄ → VTWT is also mediated by t,u-

channel diagrams that have the same energy growth as the s-channel in (2.6).

Next we discuss the energy growth of tree-level amplitudes involving one insertion

of the anomalous TGCs {δg1,Z , δκZ , λZ}, defined in (1.4), (1.5). For this purpose, it is

convenient to parametrize them in terms of the following dimension six operators,

OHB = ig′(DµH)†DνHBµν ,

OHW = ig(DµH)†σaDνHW a
µν ,

O3W =
g

3!
εabcW

a ν
µ W b ρ

ν W c µ
ρ ,

(2.7)
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which map onto the triplet {δg1,Z , δκZ , λZ} as follows

λZ =
m2
W

Λ2
c3W , δg1,Z =

m2
Z

Λ2
cHW , δκZ =

m2
W

Λ2

(
cHW − tan2 θcHB

)
. (2.8)

In principle one could use other sets of operators to parametrize deviations in the physics

of qq̄ → WW/WZ production. However, it is important to realize that after taking into

account the constraints from LEP-1, the main possible deviations in diboson production

are due to modifications on the SM triple gauge vertices [24, 25].2 See also [13] where this

result is studied using different bases of dimension six operators.

The operators in (2.7) include the following TGCs

OHB ⊃ ∂WL∂ZT∂WL + vWT∂ZT∂WL + v2WT∂ZTWT + . . . , (2.9)

OHW ⊃ ∂VL∂VT∂VL + vVT∂VT∂VL + v2VT∂VTVT + . . . , (2.10)

O3W ⊃ ∂VT∂VT∂VT + . . . , (2.11)

where ellipses denote interactions that either involve a photon or are not of the triple

gauge type. Note that in (2.9)–(2.11) we have neglected SM couplings as well as numerical

O(1) factors. At large energies the leading processes mediated by the interactions

in (2.9)–(2.11) are

M
(
qq̄ →W−LW

+
L

)
∼ E2/Λ2 cHB + E2/Λ2 cHW ∼ E2/m2

W δg1,Z + E2/m2
W δκZ , (2.12)

M
(
qq̄ → ZLW

+
L

)
∼ E2/Λ2 cHW = E2/m2

Z δg1,Z , (2.13)

M
(
qq̄ → VTW

+
T

)
∼ E2/Λ2 c3W = E2/m2

W λZ , (2.14)

where we used (2.8) and omitted constant factors in front of the TGCs. The same leading

energy growth is found by replacing W− ↔ W+ in the final state of (2.13). Interestingly,

δκZ/cHB contributes at the order of E2 only to the process (2.12). The leading contribution

of δκZ to qq̄ →WZ appears for the polarizationsM
(
qq̄ → ZTW

+
L

)
and scales as ∼ vE/Λ2.

This follows from the fact that at leading order in energy only the transverse polarization

of the Z boson enters in OHB.

Next we discuss the generic properties of the production cross sections in the presence

of these BSM amplitudes.

2.2 Accuracy obstruction

In general, the 2→ 2 scattering cross section in the presence of irrelevant operators scales as

σ(qq̄ → V V ) ∼
g4

SM

E2

[
1 +

BSM6× SM︷ ︸︸ ︷
ci
E2

Λ2
+

BSM6
2︷ ︸︸ ︷

c2
i

E4

Λ4
+ . . .

]
,

(2.15)

2Note that the commonly used SILH basis, apart from the operators of (2.7), also includes a further

operator contributing to the aTGC: OW = DµW ν
µ HDνH + h.c.. For our purposes though, it is enough

to use (2.7) in order to capture the high energy behavior. Our results will be presented in terms of

{δg1,Z , δκZ , λZ}, which can be mapped into any other basis.

– 5 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
7

where the first factor g4
SM/E

2 accounts for the energy flux of the initial quarks, and we

have omitted numerical factors. In (2.15) we explicitly indicated dimension six squared

and SM-dimension six interference terms, and ellipses stand for higher order corrections

from operators of dimensions > 8.3 However, the operator O3W (i.e. the λZ deformation) is

special because the interference between the amplitudeM
(
qq̄ → VTW

+
T

)
∼ E0 in (2.6) and

M
(
qq̄ → VTW

+
T

)
∼ c3WE

2 in (2.14) is suppressed and the scaling of the BSM6×SM piece

is softer. This is a consequence of the helicity selection rules [23] as we will now review.4

The non-interference of the diboson production amplitude through O3W and the SM

can be understood by first taking the limit where the masses of the electroweak gauge

bosons are zero, namely we focus on transverse polarizations only. In this limit the tree-

level SM process qq̄ → V V is only non-zero if the transverse helicities of the vector boson

are opposite (±,∓).5 At the same time though, the operator O3W in (2.7) leads to a triple

gauge vertex where all three gauge bosons have the same helicity. A quick way to check

this is to write the field strength in terms of spinor indices Wµνσ
µ
αα̇σ

ν
ββ̇

= wαβ ε̄α̇β̇+ w̄α̇β̇εαβ ,

where as usual the tensors ε and ε̄ are used to raise α and α̇ indices, respectively. O3W

in (2.7) can be written terms of the w/w̄ fields is given as

O3W ∝ w β
α w

γ
β w

α
γ + w̄ β̇

α̇ w̄
γ̇

β̇
w̄ α̇
γ̇ . (2.16)

Each antisymmetric tensor field w/w̄ can create a massless particle of spin +1/ − 1, re-

spectively, and therefore diboson production through (2.16) leads to vector bosons with

helicity (±,±). Thus, at tree level we have that

qq̄ −→ VT±VT∓ (in the SM) , (2.17)

qq̄ −→ VT±VT± (with O3W insertion) . (2.18)

Since the final diboson states in (2.17), (2.18) are different, there is no interference between

both amplitudes. This statement is exactly true in the massless limit. However, two mass

insertions mW∂µG
+W−µ, mZ∂µG

0Zµ can be used to flip the helicity of the final states,

leading to a non-zero interference between (2.17), (2.18). Flipping the helicity costs a factor

m2
W /E

2. Then, the leading cross section for diboson production in the limit E � mW is

given by,

σ(qq̄ → VTVT ) ∼
g4

SM

E2

[
1 + c3W

m2
V

Λ2
+ c2

3W

E4

Λ4

]
. (2.19)

The important point to notice is that the second term of (2.19) has a suppressed energy

scaling with respect to the general expectation in (2.15).

This behavior makes EFT consistent measurements of the c3W difficult. Indeed, at the

level of the dimension six operators the signal from the O3W will be subdominant compared

to the contributions of the other TGCs, which will require further disentanglement of the

3Note that operators of dimension 7 necessarily violate either baryon or lepton number. We assume the

scale of such symmetry violation to be very large and therefore irrelevant for diboson physics at the LHC.
4See [22] for a pioneering discussion of this effect in the context of QCD.
5More generally, this follows from the Maximally Helicity Violation (MHV) helicity selection rules, see

for instance [26].
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transverse and longitudinal final state polarizations. But even more, assuming an ideal

separation of the longitudinal polarizations we need to remain in the EFT validity range,

namely in the parameter space where the contributions from the dimension eight operators

can be safely ignored. For the process qq̄ → VTVT the dimension eight contribution to the

cross section can be schematically written as

∆σdim=8(qq̄ → VTVT ) ∼
g4

SM

E2

[ BSM8× SM︷ ︸︸ ︷
c8
E4

Λ4
+

BSM8
2︷ ︸︸ ︷

c2
8

E8

Λ8
+ . . .

]
.

(2.20)

Note that the BSM8 × SM piece scales as the BSM2
6 contribution, E4/Λ4. Where we have

assumed that there is a interference between the SM and the new physics contributions at

the level of the dimension eight operators. For the process qq̄ → VTVT this is indeed the

case, consider for instance

gDνW στWντD
µWµσ ∼ Dα̇αωαβω̄α̇γ̇D

γ̇σωβσ −Dα
γ̇ ω̄

β̇γ̇ωαγD
σ
β̇
ωγσ +Dα

γ̇ω
βγωαγD

σ̇
β ω̄

γ̇
σ̇ + . . . ,

(2.21)

where ellipses denote terms with helicity configurations other than ∼ ωωω̄; or the operator

g2 (q̄γρq)WρνD
µW ν

µ ∼ qαq̄β̇w
β
α D

α̇
β w̄

β̇
α̇ + . . . , (2.22)

written in terms of spinor indices. The latter operator is a contact interaction contributing

to qq̄ → V Z while (2.21) is a modification of the TGC — of the second type according

to the discussion around (1.4)–(1.5). Note that both of them lead to final state bosons of

helicities (±,∓), like in the SM.

Then the truncation at the dimension six level (2.19) is valid if only6

max

(
c3W

m2
V

Λ2
, c2

3W

E4

Λ4

)
> max

(
c8
E4

Λ4
, c2

8

E8

Λ8

)
. (2.23)

Suppose we will be able get rid of the interference suppression, then this condition is

replaced by

max

(
c3W

E2

Λ2
, c2

3W

E4

Λ4

)
> max

(
c8
E4

Λ4
, c2

8

E8

Λ8

)
, (2.24)

which is less restrictive if c3WE
2/Λ2 < 1 (given that at LHC E > mV ).

Another advantage of having a large interference term is that it leads to the better

measurement of the sign of the Wilson coefficient, otherwise very weakly constrained.

The importance of the improvement in (2.24) depends on the actual values of the Wilson

coefficients or in other words on the UV completions of the given EFT. To make this

discussion more concrete we present a few examples in the next subsection.

2.3 Power-counting examples

The strength of the Wilson couplings can be estimated by a given set of power-counting

rules characterizing a possible UV completion. Power-counting schemes are useful to incor-

porate particular biases towards the kind of BSM physics we would like to prove. This is a

6We are assuming that contributions of operators of dimension higher than eight are even smaller.
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perfectly legitimate strategy and very much the point of using an Effective Field Theory ap-

proach, allowing to parametrize altogether broad classes of models. Particular examples are

weakly coupled renormalizable UV completions, Minimal Flavor Violation (MHV) [27], the

Strongly Interacting Light Higgs (SILH) [28], flavor universal BSM physics (see e.g. [29]),

etc. The power-counting schemes commonly used are imposed through arguments based on

the symmetries or dynamics of the Action, such that possible radiative corrections violating

the assumed power-counting scheme are kept small or understood.

For example, we may assume that the UV completion is a renormalizable and weakly

coupled QFT. Then, the power-counting consist in classifying those operators that are loop

generated v.s. those that are generated at tree-level [24, 30]. The latter are expected to

be bigger because the former are suppressed by 1/(16π2) factors. Then, for example if we

have heavy vector-like fermions, we expect

c3W ∼ O(1)× g2/(4π)2 , c(2.21) ∼ O(1)× g2/(4π)2 , (2.25)

where c(2.21) refers to the Wilson coefficient of the dimension eight operator in (2.21); the

contribution to c(2.22) has a stronger loop suppression. This setup is somewhat pessimistic

since the extra loop suppression makes it hard to prove c3W with the LHC sensitivity. In

any case, improvement from (2.23) to (2.24) is

E2 < ΛmW −→ E < Λ . (2.26)

As an other power-counting instance, one may envision a scheme where for each extra-field

strength that we add to the dimension four SM Lagrangian we pay a factor g∗ . 4π. With

this power-counting we obtain

c3W ∼ g∗/g , c(2.21) ∼ g∗/g , c(2.22) ∼ g∗g/(16π2) , (2.27)

where the 1/g factor is due to the normalization of O3W in (2.7). This power counting,

called pure Remedios, was introduced in [31].7 This power-counting is more optimistic

regarding possible LHC signals since g∗ can be naturally large. However, in this scenario

there is no improvement from (2.23) to (2.24), and in both cases we find

E < Λ . (2.28)

Lastly we will discuss one scale one coupling power-counting [28], which predicts

c3W ∼ c(2.21) .
g∗
g
, c(2.22) .

g2
∗
g2
. (2.29)

In this case the improvement from (2.23) to (2.24) would be

E <

(
gΛ2m2

W

g∗

)1/4

−→ E < Λ

√
g

g∗
. (2.30)

7In a nutshell, the construction is based on the following observation. Consider the SM effective La-

grangian LEFT = LHiggs+Lψ+ Λ4

g2∗
L(F̂µν/Λ

2, ∂µ/Λ), where the gauge-field strengths F̂µν are not canonically

normalized and we view L as a functional that we expand in inverse powers of Λ. Then, it is technically

natural to set g∗ � g in LEFT because as g → 0 the SU(2)L gauge symmetry acting on LEFT is deformed

into SU(2)global
L o U(1)3

gauge — we refer to [31] for details.
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Figure 1. Results from a MadGraph5 simulation of the pp→ VW process mediated by anomalous

TGCs, see the main text. The error bars of both plots due to statistical errors is within the width of

the plotted lines. We multiplied the line σint/σSM of δκZ from WW by ×(−5) for illustrative reasons.

To conclude this subsection we would like to remind the reader that EFT validity

discussion needs some assumptions on power-counting (see for a recent discussion [32]).

In the rest of the paper though, we do not commit to any of the aforementioned power-

counting rules. We only assume perturbative, but otherwise arbitrary, Wilson coefficients.

2.4 Numerical cross-check

In figure 1 we show the results of a MadGraph5 [33] simulation, using the EWdim6 [34]

model,8 for the process pp→ VW . The parametric dependence of the cross section on the

TGCs is given by

σqq̄→VW = σSM + δ σint + δ2 σBSM2 , with δ = {δg1,Z , δκZ , λZ} . (2.31)

In figure 1 we plot σint/σSM (left) and σBSM2/σSM (right) for different anomalous TGCs

as a function of the invariant mass mVW of the VW final state system. Note that in this

ratios the g4
SM/E

4 factor in (2.15) cancels and we can read the scaling as a function of the

energy from (2.6) and (2.12)–(2.14).

The left plot of figure 1 shows the energy scaling of σint/σSM. The red and purple

lines confirm the quadratic growth expected from the δg1,Z and δκZ contribution in (2.12).

The dashed green line shows no growth as a function of the energy, this confirms the

discussion of (2.6), (2.13). Namely, that for the final state ZW , the leading energy growth

is only mediated by δg1,Z (blue line) but not by δκZ . Lastly, on the same plot we show that

σint/σSM mediated by λZ has no energy growth, confirming (2.19). This later measurement

comes from WW production, but a similar result for λZ is obtained for WZ production.

In figure 1 right, we show the energy dependence of σBSM2/σSM, confirming the the-

oretical expectations. Namely, we find that for VW production the factor σBSM2/σSM

mediated by λZ and δg1,Z scale with the same power E4. Then, regarding δκZ the ampli-

tude grows as E2 for WZ production while it scales as E4 for W+W− production — this

is the expectation from the squared amplitude |M
(
qq̄ → ZTW

+
L /ZLW

+
T

)
|2 ∼ v2E2δκ2

Z ,

see text after (2.14).

8Note that our definition in (2.7) differs from the one of [34].
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3 Solutions to the non-interference obstruction

In the previous section we showed that for the 2 → 2 processes the interference between

O3W and the SM is suppressed. In this section we will present two ways to overcome this

suppression. For simplicity reasons in the rest of the paper we will consider the case when

only λZ deformation is present and the other anomalous TGCs are set to zero.

3.1 Angular distributions

The first way of enhancing the interference term is by noting that in reality we are not

looking at the 2 → 2 process but at 2 → 4, i.e. vector bosons decay into fermions qq̄ →
VW → 4ψ. Let us consider the differential cross section for the production of the polarized

particles WT+l− l̄+,9

dσ(qq̄ →WT+ l− l̄+)

dLIPS
=

1

2s

∣∣∣∑i(MSM
qq̄→WT+

Zi
+MBSM

qq̄→WT+
Zi

)MZi→l− l̄+

∣∣∣2
(k2
Z −m2

Z)2 +m2
ZΓ2

Z

, (3.1)

where sum runs over intermediate Z polarizations and dLIPS ≡ (2π)4δ4(
∑
pi −

pf )
∏
i d

3pi/
(
2Ei(2π)3

)
is the Lorentz Invariant differential Phase Space. We have fac-

tored out a Z-boson propagator, inputing the fact that all Z polarizations have the same

mass and width. It is well known that at LHC SM process is dominated by the transverse

polarizations [11], so for simplicity let us ignore the contributions from the intermediate

longitudinal ZL bosons. Then in the narrow width approximation the leading contribution

to the interference, i.e. the cross term SM × BSM in (3.1) is given by:

π

2s

δ(s−m2
Z)

ΓZmZ
MSM

qq̄→WT+
ZT−

(
MBSM

qq̄→WT+
ZT+

)∗
MZT−→l− l̄+

M∗ZT+
→l− l̄+ + h.c. . (3.2)

The interference cross section in (3.2) scales with the function MZT−→l− l̄+
M∗

ZT+
→l− l̄+

.

This in turn is modulated by the azimuthal angle φZ between the plane defined by the Z

decay leptons and the scattering plane (formed by collision axis and Z(W ) bosons), see

figure 2. It is straightforward to compute (3.2), leading to

dσint(qq̄ →W+l− l̄+)

dφZ
∝ cos(2φZ) . (3.3)

The derivation of (3.3) is analogous if we consider the decay of the W gauge boson.

Therefore, the differential interference term for the process qq̄ → VW → 4ψ is unsuppressed

and modulated as

dσint(qq̄ →WZ → 4ψ)

dφZ dφW
∝ cos(2φZ) + cos(2φW ), (3.4)

where φW,Z are the corresponding azimuthal angles. Eqs. (3.3), (3.4) are one of our main

results. Namely, we would like to take advantage of the modulation of the interference term

to prove the anomalous triple gauge coupling λZ . Due to the two 2φi arguments in (3.4)

the asymmetry is not washed out by the ambiguity in the direction of quark-antiquark

initial state.
9Similar ideas were proposed recently for the Wγ final state [35].
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Figure 2. Angles for 2→ 4 scattering.
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Figure 3. Left: differential interference cross section over SM one as a function the azimuthal

angles φW,Z for the events with W −Z invariant mass mWZ ∈ [700, 800]GeV . Right: same quantity

as a function of the mWZ binned according in the four bins defined in the left plot.

Similarly there is an effect of interference between the intermediate longitudinal and

the transverse vector bosons. The form of the modulation is different from (3.4) and is

proportional ∝ cos (φW + φZ). However note that this later effect modulation cancels out

upon integration on φW and the direction of quark-antiquark initial states.

Note that, naively, if the vector bosons are produced on-shell one would expect that

vector bosons with different helicity contributions should not interfere (or be suppressed

by their width) even if we look at the decay products. Namely, one may expect that the

interference is further suppressed than if the same 2 → 4 amplitude was mediated by a

2 → 2 sub-process qq̄ → VW that does lead to a cross section containing an interference

term. However, this is not true, due to the basic fact that the both helicities have the

poles of the propagators at exactly the same energies. Note that in the hypothetical case

where the 2 → 2 process MBSM
qq̄→W+Z−

∼ E2/Λ2 was not suppressed, we would had gotten

an analogous ΓZ/mZ → 0 limit in (3.2) where the amplitude would be instead controlled

by the azimuthal angle of the functionMZT−→l− l̄+
M∗

ZT−→l− l̄+
(no modulation in φi in this

case), but otherwise the energy growth would be the same.

We have performed a MadGraph5 numerical simulation to test our theoretical expecta-

tions. The results shown in figure 3. In the left plot we show the interference differential
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cross section over the SM cross section as a function of φZ and φW .10 The shape of the

function is as predicted by (3.4). This suggests that we should bin the events into four

categories depending on whether φi ∈ [π/4, 3π/4]. The results are shown on the right

plot of figure 3. The upper red line and the lower blue line correspond to the categories

with φW,Z ∈ [0, π/4] ∪ [3π/4, π] and φW,Z ∈ [π/4, 3π/4]. We can see that there is a strong

cancellation between these two contributions, however individually both of them grow

with energy. So binning in azimuthal angles will increase dramatically the sensitivity to

the interference.

3.2 Going beyond LO

The non-interference of SM×BSM in diboson production through λZ in the 2→ 2 process

applies at tree-level only. Higher order corrections, either in the form of loops or radiation,

overcome the interference suppression and lead to a SM × BSM cross section piece that

does grow with energy. This was first noticed in the context of QCD for the gluon operator

∼ G ν
µ G

ρ
ν G

µ
ρ [22]. Here we apply this idea to the electroweak sector. The corrections

from the virtual gluon will introduce the BSM-SM interference, however this effect will be

suppressed by ∼ αs
4π compared to the angular modulation discussed in the previous section.

Another possibility is to consider 2→ 3 processes, namely the production of the pair of the

electroweak bosons with a hard QCD jet V V +j.Then using eq. (2.16) the BSM amplitudes

have following helicity configuration,

g±,∓

VT±

VT±

VT±

VT±

g∓
BSM

where the gluon g can take any polarization. In the SM the same process has necessarily

the helicity configuration

g±,∓

VT±

VT±

VT±

VT±

g∓
BSM

i.e. it can not be of the Maximally Helicity Violating type. Thus, the extra gluon radiation

helps in sucking helicity allowing the same final state process as in V V + j mediated by

O3W . We find this simple observation interesting, since the requirement of extra radia-

tion qualitatively changes the cross section behavior and provides a better handle on the

interference terms. Note also that the solution we are advocating in this section is com-

plementary to the analysis presented in the section 3.1, in addition to the binning in the

azimuthal angle we just require an extra hard jet.

10Note that the SM contribution also has a modulation due to the interference between the amplitudes

with different intermediate gauge bosons polarizations. However, this effect is suppressed compared to the

constant term.
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Figure 4. σint/σSM as a function of mWZ for the process pp → WZ (blue) and the process

pp→ VW + j, with pTj > mWZ/5 (pink), pTj > mWZ/10 (red), and pTj > 100 GeV (purple).

Remember that the interference effect becomes small both in the soft and collinear jet

limits [22]. This is expected since interfering SM amplitudes A(qq̄ → VT±VT±g∓) cannot

be generated from ASM(qq̄ → V V ) by splitting quark(anti-quark) line into q(q̄) → q(q̄)g.

So there will be no usual soft and collinear singularities corresponding to the poles of the

splitting functions, which we have checked by explicit calculation. Then the interference

term in these limits, even if growing with energy, will be completely buried inside the

SM contribution.

We cross-check the theoretical expectations with a MadGraph5 simulation. In figure 4

we plot the ratio σint/σSM for diboson production as a function of the invariant mass mWZ ,

making various requirements on the extra gluon. In blue we ask for no extra radiation which

corresponds to the non-interference effect discussed in figure 1. In red and pink we require

a hard gluon which takes a significant fraction of the diboson phase-space, mWZ/10 and

mWZ/5 respectively. Importantly, the simulation shows the expected energy growth of the

interference term. On the other hand, the purple curve does not show a steady growth of

the energy. This is also expected since that curve is obtained by imposing a fixed lower cut

on the jet pT . As the energy of the diboson is increased the extra jet becomes relatively

soft and the energy growth is lost. We find by numerical simulations (see figure 4) that we

need to require something like pTj & mWZ
5 to have a quadratic growth with energy. Error

bars are due to the statistical treatment of the Monte Carlo (MC) simulation — we regard

them as small enough to convey our point.

4 EFT validity

So far we were presenting the observables particularly sensitive to the SM×BSM interfer-

ence term. However this is not enough to ensure the validity of the EFT interpretation

of diboson production at the LHC. The convergence of the EFT expansion is controlled
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Figure 5. We show, for the process qq̄ → WZ with λZ turned on, the leakage as a function of

mT
WZ , see main text for the definition.

by the ratio of the invariant mass of the diboson system over the new physics scale and

thus mVW /Λ � 1 should be satisfied. However at the LHC it is hard to keep mVW /Λ

fixed. First, the precise collision energy is unknown and not fixed, leading to an impre-

cise knowledge of mVW from event to event. Secondly and more importantly, in many

instances experimentalists only reconstruct the visible decay products. Namely, the W −Z
transverse mass

mT
WZ =

√(
EWT + EZT

)2 − (pWx + pZx )2 −
(
pWy + pZy

)2
, (4.1)

in the WZ production or the (visible) dilepton invariant mass

mll =
√

(pl− + pl+)2 , (4.2)

of the WW decay products. The invariant mass mVW of the diboson system is always

greater or equal the visible invariant masses mVW > mll, m
T
WZ . This implies that binning

and cutting the distributions in terms of mll/m
T
WZ variables does not allow to ensure

mVW /Λ � 1. As an illustration of this point, in figure 5 we show the leakage. This

is defined as the percentage of the number of events in a given mT
WZ (or mll) bin with

invariant mass mVW larger than a certain scale Q. In equations,

Leakage =
Ni(mVW > Q)

Ni
× 100 , (4.3)

where Ni is the total number of events in the given mT
WZ (or mll) bin. For instance, the

red line in the bin mT
WZ ∈ [1500, 2000] GeV is interpreted as follows. Of all the events in

that bin, 50% of them have an invariant mass mWZ & 1800 GeV. These numbers were

calculated using only the σBSM2 term of the cross section, see (2.31), which is the term

giving the largest leakage.

Naively, we can use the information in figure 5 to set consistent bounds on the EFT.

For example, if we require Λ = 2 TeV and the precision of the measurement . O(1)× 5%

we should keep the transverse mass bins only up to 1.5 TeV. This would work under the
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assumption that the leakage calculated using the dimension six operator squared provides

a conservative estimate compared to the full UV complete model, namely that we do not

have a very large number of events for some value of invariant mass M∗ > 2 TeV. This

assumption is for example spoiled in the presence of the narrow Bright-Wigner resonances

and the calculation with dimension six operators underestimates the cross section and

leakage by the factor of
σfull

σd=6
∼ πΛ2

Γ2
, (4.4)

which becomes very large for narrow resonances (Λ, Γ are the mass and the width of the

resonance) At the same time in the more strongly coupled theories (4.4) is only of order

one O(1). Thus, under the assumption σfull/σd=6 . O(1), we can use the figure 5 to find

the correspondence between the transverse and invariant mass cut-offs once the precision

of the measurement is specified.

The leakage can be made arbitrarily small by simply assuming a large enough value of

Λ in the EFT interpretation. Then there is obviously no danger of narrow Breit-Wigner

peaks, since the new particles would be too heavy to be produced at LHC. However,

this is somewhat dissatisfying because then LHC sensitivities only allow to prove Wilson

coefficients that are on the verge of non-perturbativity, in order to compensate the large

value of Λ. For instance in [36] bounds on the TGCs Wilson coefficients are of order

ci . [−2.5, 2.5],11 with the cut-off Λ = 1TeV. This is done by analyzing the whole range

of mT
VW ≈ [50, 650] GeV, and thus we expect large number of the events to have invariant

masses mVW & 1 TeV. Then for the proper EFT interpretation we should set Λ & 2 TeV,

thus implying that the bound gets loosened roughly as ci . [−2.5, 2.5] −→ ci . 4 ×
[−2.5, 2.5], which pushes the EFT even further on the verge of non-perturbativity.

Next we will discuss another possible approach to perform a consistent EFT analysis.

It allows to lower the cut-off Λ and hence be sensitive to somewhat less exotic theories, at

least when the statistics is enlarged in the upcoming future.

4.1 Dealing with the leakage of high invariant mass events

The idea consists in comparing the observed cross section with the new physics expecta-

tion only in the constrained phase space satisfying the EFT validity requirements. This

approach was originally suggested for the Dark Matter searches at LHC [37] and later ap-

plied for the anomalous TGCs measurements [12]. Next we discuss our implementation of

these ideas.

In the standard analysis, for every bin say in mT
WZ ∈ [mT

1 ,m
T
2 ], one would compare

the observed number of events nobs with the theory prediction Mth, which in our case reads

Mth = nSM + n1c3W + nBSM2c2
3W , (4.5)

where nSM is the SM prediction, and n1, nBSM2 come from the σint and σBSM2 pieces

in (2.31). In practice this comparison can be done by evaluating the likelihood on a given

bin by a Poisson distribution p(nobs|Mth) = 1
nobs!

e−MthMnobs
th . Note however that if we took

11We have rescaled the bounds of [36] to our normalization in (2.7).
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this procedure we would be comparing Mth with nobs for events were the formula Mth is

not valid unless the new physics scale Λ is very large — see the discussion of figure 5.

Instead, what we will do is to compare the observed number of events with the quantity

Nth, which we define as follows:

Nth =

{
Ñth if Ñth > a0

nSM otherwise
, (4.6)

where we define Ñth = ñSM + ñ1c3W + ñBSM2c2
3W with ñi is defined as ni|minv<ΛMC

, i.e.

we restrict the expected number of events in the EFT to have invariant mass mWZ (or

mWW ) below certain fixed cut-off scale ΛMC.12 Thus, in practice the likelihood is modeled

by p(nobs|Nth) = 1
nobs!

e−NthNnobs
th .

The key question is whether the bounds obtained using (4.6) lead to more conservative

estimates than the ones which could come from the knowledge of full theory. The number

of events in the full theory is

Nfull theory = Ñth + [Nfull theory]minv>ΛMC
, (4.7)

where we approximated the theory below ΛMC by the EFT expansion. Note that both

terms in (4.7) are positive. Then, the bounds from (4.6) are conservative only if

|nSM −Nth| 6 |nSM −Nfull theory| , (4.8)

condition that is always fulfilled with our definition of Nth in (4.6).

Finally, let us note that in [12] the choice of the theory is Nth = nSM + ñ1c3W +

ñBSM2c2
3W , instead of (4.6). This amounts to modifying the BSM amplitudes by the

“form factor”

MBSM →MBSM × θ(ΛMC −minv) , (4.9)

where the θ(x) is the Heaviside step function or any close function like (1 +

eα[ΛMC−minv]/minv)−1 with α � 1.13 Then, equation (4.8) is fulfilled only if one as-

sumes that the deviations from the SM below and above ΛMC are of the same sign,

sign(∆σBSM)|minv>ΛMC
= sign(∆σBSM)|minv<ΛMC

. Or in terms of the variables in (4.6)

sign(Nfull theory − nSM − ñ1c3W − ñBSM2c2
3W ) = sign(ñ1c3W + ñBSM2c2

3W ) . (4.10)

Note that this condition is trivially satisfied when BSM2 dominates the cross section,

however it is not true once interference term is of the same size [12].

At last we would like to comment about the procedure in the experimental study [38].

There, a different form-factor for the new physics contribution is used

MBSM →MBSM ×
1(

1 +
m2

inv

Λ2
MC

)2 . (4.11)

12We are distinguishing the assumed cut-off scale ΛMC set in the MC simulation from the true value of

Λ in the SM EFT, which is of course an unknown constant of nature. Also note that ΛMC is analog to the

scale Q introduced in (4.3).
13Note though that such function is not analytic in Λ−1

MC.
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The different form factors would lead to identical results for ΛMC � minv, but there will

be order one differences for the events with invariant mass close to the cut-off ΛMC. Also,

note that while the UV assumptions are very clear when using (4.9) they are somewhat

more obscure in (4.11). The reason being that the fall-off of the form factor in (4.11) is

not steep enough and its validity requires some discussion or assumptions on the leakage

along the lines we did at around (4.4).

5 Details of the collider simulation and statistical procedure

In this section we explain our procedure for estimating the improvements of the LHC

sensitivity due to the differential distributions proposed in the section 3. We have decided

to look at the cleanest decay channel in the pair production of the vector bosons, namely

the process pp → W±Z → lllν. In our analysis we have followed the signal selection

procedure presented in the experimental work [38]. For the signal simulation we have used

MadGraph5 [33] with the model EWdim6 [34] at LO.14 The results are reported for the 14 TeV

LHC collision energy and two benchmark luminosities, 300 and 3000 fb−1.

We have checked that our partonic level simulation reproduces the acceptance at the

particle level AWZ = 0.39, for the experimental analysis at 8 TeV [38]; it is defined as the

ratio of the fiducial to the total cross section

σtot
W±Z =

σfid
W±Z→l′νll

BWBZAWZ
. (5.1)

The fiducial cross section is defined as

σfid
W±Z→l′νll =

Ndata −Nbkg

LCWZ
×
(

1− Nτ

Nall

)
, (5.2)

where the factor CWZ simulates the detector efficiency CWZ = Nparticle
events /Ndetector

events ≈ 0.6 [38],

and we approximate it to be flavor universal. In (5.1) Bi denote the corresponding branch-

ing fractions; while the factor Nτ/Ntotal in (5.2) is the contribution of the leptons from τ

decays which [38] estimated to be of ∼ 4% and thus we will ignore it. L is the integrated

Luminosity, below we report results for L = 300 fb−1 and 3 ab−1.

We bin all the events according to their transverse mass mT
WZ , and transverse momen-

tum of the jet pTj . In particular pTj is binned as

pTj = [0, 100], [100, 300], [300, 500], [500,∞] GeV . (5.3)

For the events with pTj < 100 GeV we also bin the azimuthal angle φZ into two categories

φZ ∈ [π/4, 3/4π] and φZ ∈ [0, π/4] ∪ [3π/4, π] . (5.4)

14One can perform the complete NLO study of the anomalous TGC using the model EWdim6NLO by C.

Degrande. In our study however we have decided to ignore the effects of the virtual gluon, which we believe

to be phenomenologically less important (see discussion in section 3.2). For other QCD advances in SM

and BSM calculations of the weak boson pair production see [39–44].
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The azimuthal angle φZ is defined here as an angle between the plane spanned by Z boson

decay leptons and the plane formed by the collission axis and the Z boson. For the higher

pTj bins we have checked that the binning in azimuthal angle results in little improvement of

the bounds. The reason being that the modulation effect becomes sub-dominant compared

to energy growth due to additional hard jet.

For each bin defined above we calculate the cross section in the presence of the c3W

deformation according to the formulas (4.5)–(4.6). The coefficients nSM, nBSM2 are calcu-

lated by switching off BSM and SM contributions respectively. For the interference term

n1 this is not possible, since as it is shown in our analysis there are phase space regions

where this contribution has the opposite signs. So in order to avoid any issues with the

negative values of cross-section we have fitted it while keeping both SM and BSM contri-

butions. This procedure generically can lead to large errors on the determination of the

n1 coefficient. These errors were kept under control by performing a large enough num-

ber of simulations and iteratively choosing for the fit the values of c3W maximizing the

interference term.

We have performed the analysis for three values of the invariant mass cut-off

ΛMC = 1, 1.5, 2 TeV . (5.5)

These are reasonable choices in view of the current direct exclusion bounds.

In order to reduce the fitting time we have used partonic level simulation to determine

the coefficients in the (4.5)–(4.6). For the bin pTj ∈ [0, 100] GeV we sum partonic level

simulations with 0 jet and 1 jet with pTj ∈ [20, 100] GeV. We have checked that for the SM

input this approximation agrees well with the results obtained with Madgraph/Pythia [45]

interface with showering and jet matching. One may worry whether emission of a QCD jet

can spoil the azimuthal angle modulation, however we have checked that even for relatively

hard jets pTj . 100 GeV angular modulation remains an important effect. This makes our

partonic simulation results robust.

For the backgrounds we have followed closely the results in [38], where it was shown

that the dominant background for the anomalous TGCs is the SM W,Z boson production.

The second most important background comes from the misidentified leptons ∼ 12% and

ZZ final state ∼ 7% and the contribution of the tt̄ is at percent level. Since most of these

backgrounds come from the qq̄ initial state (except for tt̄ which is small) at 14 TeV we

expect a very similar situation. In our study we have decided to consider only the SM

weak boson production as a background, the other contributions will provide an additional

increase of the background by ∼ 20% and the relaxations of the bounds by ∼ 10%, which

we ignore in our study. For systematic uncertainties we use the results in [38], where it

was reported that the dominant errors come from the muon and electron identification

efficiencies and it was estimated to be at the level of 2.4%. The statistical analysis is done

using the Bayesian approach, where systematic errors are estimated using one nuisance

parameter ξ, normally distributed

p(Nth|nobs) ∝
∫
dξe−ξNth (ξNth)nobs exp

[
−(ξ − 1)2

2σ2
syst

]
. (5.6)

– 18 –



J
H
E
P
1
0
(
2
0
1
7
)
0
2
7

Lumi. 300 fb−1 Lumi. 3000 fb−1

Q [TeV]
95% CL 68% CL 95% CL 68% CL

Excl. [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

1
Excl., linear [-1.50,1.49] [-0.76,0.76] [-0.48,0.48] [-0.24,0.24]

Incl. [-1.29,1.27] [-0.77,0.76] [-0.69,0.67] [-0.40,0.39]

Incl., linear [-4.27,4.27] [-2.17,2.17] [-1.37,1.37] [-0.70,0.70]

Excl. [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

1.5
Excl., linear [-1.22,1.19] [-0.61,0.61] [-0.39,0.39] [-0.20,0.20]

Incl. [-0.79,0.85] [-0.46,0.52] [-0.41,0.47] [-0.24,0.29]

Incl., linear [-3.97,3.92] [-2.01,2.00] [-1.27,1.26] [-0.64,0.64]

Excl. [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

2
Excl., linear [-1.03,0.99] [-0.52,0.51] [-0.33,0.32] [-0.17,0.17]

Incl. [-0.52,0.57] [-0.30,0.34] [-0.27,0.31] [-0.15,0.19]

Incl., linear [-3.55,3.41] [-1.79,1.75] [-1.12,1.11] [-0.57,0.57]

Table 1. Exclusive (Excl.) bounds on c3W /Λ2×TeV2 are obtain according to the method described

in section 5, binning in φZ and pTj . Inclusive (Incl.): no binning and jet veto at pTj 6 100 GeV.

The bounds of the rows Excl./Incl., linear are obtained by including only the linear terms in c3W
BSM cross section. The total leakage in the various bins of mT

WZ is . 5% for each value of Q.

6 Results

We present our bounds on c3W /Λ
2 in table 1. We report LHC prospects for 300 fb−1

as well as for 3 ab−1 luminosity (Lumi.) values. Exclusive (Excl.) bounds are obtained

according to the method described in section 5, binning in φZ and pTj , while inclusive (Incl.)

corresponds to no binning in φZ and pTj 6 100 GeV. The total leakage in the various bins

of mT
WZ is . 5% for each value of Q; such bins are selected using figure 5.15

The bounds of the rows Excl./Incl., linear are obtained by including only the linear

terms in c3W in BSM piece of cross section. In the linear analysis, values of the Wilson

coefficient |c3W | & 3 lead to negative number of events. Nevertheless, such values lie outside

the credibility intervals of the fit. In order to avoid this issue for arbitray values of c3W

during the scan we have used the following modification of (4.5)

Mth = (nSM + c3Wn1)× θ(nSM + c3Wn1), (6.1)

where the θ is the usual step function. Generically, this later procedure is of course incon-

sistent. However, comparing linear v.s. non-linear gives a sense of how much sensitive are

the bounds to the quadratic piece term BSM2
6 in the cross section (2.15). In this respect,

note that the exclusive analysis sensitivity to the linear terms has drastically increased

compared to the inclusive one. For instance, the gain from the second to the first row is

very mild, implying that the bound is mostly proving the interference term. Instead, the

bounds from the third to the fourth row drastically decrease implying that the consistent

15The scale Q is roughly equal to the Monte-Carlo cut-off ΛMC, but see the discussion of figure 5 and

table 2.
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Figure 6. Posterior probability for the inclusive and exclusive analysis after 3 ab−1 at LHC, see

details in the main text.

bound of the third row is giving a lot of power to the quadratic pieces in c2
3W . This com-

parison illustrates the improvement from the differential distributions versus the inclusive

analyses. Of course such a gain is always expected. However, in this case the improvement

is dramatic because, as explained in section 3, the interference terms of the differential

cross section have a qualitatively different behavior, namely they grow with the center of

mass diboson energy.

This radical increase towards the sensitivity of the interference term is illustrated in

figure 6. There, we have injected a signal corresponding to the c3W /Λ
2 = 0.3 TeV−2. The

red and black curves are posterior probabilities with ΛMC = 2 TeV and corresponding to

inclusive and exclusive analysis respectively (by inclusive we mean only binning in mT
WZ

and ignoring high pTj bins). The curves are obtained by requiring the leakage to be . 5% as

done in table 1, (shaded grey area indicates the 95% credibility intervals for the exclusive

analysis). We can clearly see that our variables will be able to access the sign of the c3W

Wilson coefficient otherwise hidden from the inclusive searches. Inspired by the figure 3

we can see that the following asymmetry variable turns out to be very sensitive to the new

physics contribution:

RφZ =
NφZ∈[π/4,3π/4] −NφZ∈[0,π/4]∪[3π/4,π]

NφZ∈[π/4,3π/4] +NφZ∈[0,π/4]∪[3π/4,π]
. (6.2)

Indeed, we have checked that the SM contribution partially cancels, making RφZ particu-

larly sensitive to new physics contributions.

We would like to comment for what kind of theories our bounds are relevant. We

can see that at most we are getting towards the constraint c3W /Λ
2 . 0.2/TeV2. Weakly

coupled renormalizable theories lead to the Wilson coefficients which are at least order

of magnitude smaller (2.25), unless we are dealing with abnormally large multiplicities

of new electroweak states just above the LHC reach. At the same time more strongly

coupled theories can lead to the larger values of Wilson coefficients in the ball park of the

LHC precision.
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Lumi. 300 fb−1 Lumi. 3000 fb−1

Q [TeV]
95% CL 68% CL 95% CL 68% CL

Same as table 1 [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

1Use of (4.6) [-1.59,1.55] [-1.05,1.01] [-1.17,1.06] [-0.72,0.66]

Method of [12] [-0.88,0.88] [-0.50,0.50] [-0.41,0.40] [-0.22,0.22]

Same as table 1 [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

1.5Use of (4.6) [-0.74,0.79] [-0.48,0.50] [-0.51,0.52] [-0.34,0.30]

Method of [12] [-0.55,0.60] [-0.32,0.35] [-0.26,0.29] [-0.15,0.16]

Same as table 1 [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

2Use of (4.6) [-0.49,0.53] [-0.30,0.34] [-0.30,0.33] [-0.20,0.20]

Method of [12] [-0.43,0.47] [-0.24,0.27] [-0.20,0.23] [-0.12,0.13]

Table 2. Comparison of different methods.

Table 1 and figure 6 are our main final results. We find that LHC at 3ab−1(300fb−1)

will be able to constrain the λZ aTGC coupling to be

λZ ∈ [−0.0014, 0.0016] ([−0.0029, 0.0034]) (6.3)

for the 95% posterior probability interval for ΛMC = 2 TeV. Results for the other values of

ΛMC can be trivially deduced from the table 1).

For the sake of completeness we also compare in table 2 the bounds on the Wilson

coefficient obtained using the methods discussed in the section 4. We can see that all

methods lead to results in the same ball park. Even though, the method of (4.6) does not

make any assumption on the nature of UV completion, the sensitivity to the interference

term is a bit worse than in the other two methods.

7 Conclusions and outlook

We have discussed the prospects of the measurements of the c3W Wilson coefficient (λZ
TGC) at LHC. This parameter was considered to be particularly difficult to test at hadron

colliders due to the suppressed interference effects. In our study we have shown that this

suppression is not the case once the differential distributions are considered. In particular

we have shown that this suppression can be overcome by studying the angular modulation

in azimuthal angles in (3.4). Independently of this modulation we have shown that requiring

an additional hard QCD jet leads to the energy growth of the interference between the SM

and BSM contributions.

Looking at the cleanest pp → WZ → lllν channel we have estimated the impor-

tance of these observables for the LHC by calculating the prospects on the bounds at

300 fb−1(3 ab−1), at 14 TeV LHC. Our simplified analysis by no means can be consid-

ered a complete experimental study, however the most important and robust results are

the relative improvements of the measurements due to the angular modulations and the

hard QCD jet distributions. We have also discussed the challenges of the consistent EFT

analysis for the TGC measurements at LHC.
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The improvements in determination of λZ due to the differential distributions turn out

to be of the order of 15−25% depending on the assumptions on EFT cut-off. Even though

this gain in precision does not seem to be very big, the sensitivity to the interference term

is significantly increased (factor of ∼ 3 − 4), which makes the EFT expansion less model

dependent as well as provides a handle on the sign of the Wilson coefficient. Of course it is

not a novelty that the differential distributions improve the accuracy of the measurements.

However in this case the improvement is particularly significant due to the energy growth

of the differential interference term.

In the future it would be interesting to use the differential distributions proposed to

perform a global EFT analysis in order to find the best variables to distinguish between not

only BSM and SM but also between different BSM contributions. Very similar azimuthal

angle modulation will appear every time there are amplitudes with different polarizations

of the intermediate gauge bosons. These ideas will be explored in the future for the

measurements of the other aTGCs.

It will be also interesting to study the azimuthal angle modulation for other 2 → 2

processes that are otherwise suppressed by the helicity selection rules, like for example

VTVT → VL,TVL,T . On the collider side, studies of the other decay channels as well as full

inclusion of the NLO effects will be very important.
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A Further details on the bounds

In this appendix we compare the relative importance of the various differential observables

on the constraints on c3W /Λ
2. The results for 300(3000) fb−1 are presented in the table 3.

The labels Excl./Incl. linear have exactly the same meaning as in the table 1. No φZ
binning stands for binning only pTj and No pTj binning stands for using only the information

in pTj ∈ [0, 100]GeV category and the angular binning. We can see that both binning pTj
and φZ lead to the increase of sensitivity of the interference term with the later being

stronger. Table 3 is generated using the leakage . 5% for various Q values. The procedure

of [12] leads roughly to the same results and the method of (4.6) shows lower sensitivity on

the interference term. Bin by bin information about the SM and BSM contributions can

be available by request.
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Lumi. 300 fb−1 Lumi. 3000 fb−1

Q [TeV]
95% CL 68% CL 95% CL 68% CL

Excl. [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

1

Excl., linear [-1.50,1.49] [-0.76,0.76] [-0.48,0.48] [-0.24,0.24]

No φZ binning [-1.19,1.20] [-0.69,0.70] [-0.57,0.57] [-0.32,0.31]

No φZ binning, linear [-2.28,2.22] [-1.15,1.14] [-0.74,0.73] [-0.38,0.38]

No pTj binning [-1.14,1.17] [-0.64,0.67] [-0.50,0.51] [-0.27,0.27]

No pTj binning, linear [-1.80,1.81] [-0.91,0.92] [-0.57,0.57] [-0.29,0.29]

Incl. [-1.29,1.27] [-0.77,0.76] [-0.69,0.67] [-0.40,0.39]

Incl., linear [-4.27,4.27] [-2.17,2.17] [-1.37,1.37] [-0.70,0.70]

Excl. [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

1.5

Excl., linear [-1.22,1.19] [-0.61,0.61] [-0.39,0.39] [-0.20,0.20]

No φZ binning [-0.75,0.82] [-0.43,0.49] [-0.37,0.43] [-0.21,0.25]

No φZ binning, linear [-2.02,1.95] [-1.02,1.00] [-0.65,0.64] [-0.33,0.33]

No pTj binning [-0.73,0.80] [-0.41,0.49] [-0.34,0.38] [-0.19,0.20]

No φZ binning., linear [-1.43,1.40] [-0.72,0.71] [-0.45,0.45] [-0.23,0.23]

Incl. [-0.79,0.85] [-0.46,0.52] [-0.41,0.47] [-0.24,0.29]

Incl., linear [-3.97,3.92] [-2.01,2.00] [-1.27,1.26] [-0.64,0.64]

Excl. [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

2

Excl., linear [-1.03,0.99] [-0.52,0.51] [-0.33,0.32] [-0.17,0.17]

No φZ binning [-0.50,0.56] [-0.28,0.34] [-0.25,0.30] [-0.14,0.18]

No φZ binning, linear [-1.84,1.73] [-0.92,0.89] [-0.59,0.58] [-0.30,0.30]

No pTj binning [-0.49,0.55] [-0.28,0.32] [-0.23,0.27] [-0.13,0.15]

No pTj binning, linear [-1.18,1.12] [-0.60,0.58] [-0.37,0.37] [-0.19,0.19]

Incl. [-0.52,0.57] [-0.30,0.34] [-0.27,0.31] [-0.15,0.19]

Incl., linear [-3.55,3.41] [-1.79,1.75] [-1.12,1.11] [-0.57,0.57]

Table 3. Bounds on c3W /Λ2 × TeV2. The total leakage in the various bins of mT
WZ is . 5%.
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[45] T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput.

Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

– 26 –

https://doi.org/10.1016/j.nuclphysb.2013.12.001
https://arxiv.org/abs/1309.7293
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7293
https://doi.org/10.1007/JHEP08(2015)070
https://arxiv.org/abs/1504.05588
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05588
https://doi.org/10.1016/j.physletb.2012.10.013
https://doi.org/10.1016/j.physletb.2012.10.013
https://arxiv.org/abs/1209.4595
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4595
https://doi.org/10.1007/JHEP08(2016)140
https://arxiv.org/abs/1605.02716
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.02716
https://doi.org/10.1016/j.physletb.2016.08.017
https://arxiv.org/abs/1604.08576
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.08576
https://doi.org/10.1103/PhysRevD.88.054028
https://doi.org/10.1103/PhysRevD.88.054028
https://arxiv.org/abs/1307.3249
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.3249
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://arxiv.org/abs/0710.3820
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.3820

	Introduction
	Features of TGC mediated amplitudes
	Energy growth
	Accuracy obstruction
	Power-counting examples
	Numerical cross-check

	Solutions to the non-interference obstruction
	Angular distributions
	Going beyond LO

	EFT validity
	Dealing with the leakage of high invariant mass events

	Details of the collider simulation and statistical procedure
	Results
	Conclusions and outlook
	Further details on the bounds

