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The flagellar swimming of euglenids, which are propelled by a
single anterior flagellum, is characterized by a generalized heli-
cal motion. The 3D nature of this swimming motion, which lacks
some of the symmetries enjoyed by more common model systems,
and the complex flagellar beating shapes that power it make its
quantitative description challenging. In this work, we provide a
quantitative, 3D, highly resolved reconstruction of the swimming
trajectories and flagellar shapes of specimens of Euglena gracilis.
We achieved this task by using high-speed 2D image recordings
taken with a conventional inverted microscope combined with
a precise characterization of the helical motion of the cell body
to lift the 2D data to 3D trajectories. The propulsion mechanism
is discussed. Our results constitute a basis for future biophysical
research on a relatively unexplored type of eukaryotic flagellar
movement.

Euglena gracilis | microswimmers | microscopy imaging | 3D flagellum
shapes | helical trajectories

Euglenids have long been used as model organisms for a broad
range of biological studies, possibly because of their unique

taxonomic position, which shows both animal-like and plant-like
characteristics (1). Among the first microorganisms to be studied
under a microscope (by van Leeuwenhoek, in the late 1600s),
they still occupy center stage in contemporary research (2, 3),
with new monographs soon to appear (4).

Studies on euglenid motility have recently focused on
metaboly (5, 6), while flagellar swimming remains poorly inves-
tigated and understood, at least from the quantitative point of
view. Qualitative observations have been made about the wig-
gling motion of the euglenid flagellum. Its characteristic move-
ment has been dubbed “spinning lasso” or “figure eight.” A
quantitative description of this peculiar movement, whose pri-
mary source of activation is the “9 + 2” axoneme common to
most eukaryotes (7), is still lacking. Reconstruction of the flag-
ellar motion and actuation of euglenids faces a major chal-
lenge: capturing the complex 3D configurations of the flagellum,
which evades the inquiry of current microscopy techniques. Pla-
nar beats of flagella, easier to capture from image data, are oth-
erwise widely studied (8–11).

A typical specimen of Euglena gracilis (Fig. 1A) is around
50µm in length. The flagellum they use for locomotion, which
is slightly shorter than its body, beats by spinning at ∼40 Hz in
close proximity to the cell body (Movie S1). As for most flag-
ellates, the swimming motion of E. gracilis is rototraslatory and
inherently 3D. Whereas 3D tracking of swimming microorgan-
isms is a long-standing experimental research field (12), and still
developing, none of the current techniques is capable of captur-
ing the flagellar swimming of euglenids in full detail. For exam-
ple, stereomatching has been used to track euglenids and other
protists (13, 14), but it lacks the spatial resolution to resolve
the motion of both body and flagellum (the whole swimmer is
a point). Confocal microscopy, a powerful tool for 3D imaging,
does not have sufficient time resolution (15) to resolve flagellar
beating. Digital holographic microscopy is capable of high reso-
lution in both time and space (16), and it gives the possibility of

multiple simultaneous tracking for high-throughput statistics (17,
18). However, to date it has been successful only up to the 3D
reconstruction of trajectories and pitch of particle-like objects
with a prolate shape (19) and of the helical beating of an iso-
lated flagellar structure (20). The close proximity of Euglena’s
flagellum to the cell body makes the simultaneous reconstruc-
tion of cell body and flagellar shape a challenge, even for this
technique.

We are able to recover the flagellar kinematics of E. gracilis
through a reconstruction strategy based on simple assumptions
and on the physics governing the motion of the system. Our anal-
ysis is based on standard microscopy image sequences, recorded
at high frame rate. This guarantees the appropriate spatiotempo-
ral resolution (even though from a 2D perspective). We restrict
our analysis to the case in which the Euglena flagellar beating
is, to a good approximation, periodic in time (hence, no lateral
steering).

In this case, the physics governing the system (low Reynolds
number hydrodynamics) imposes restrictions on which trajecto-
ries and rotations of the cell are actually possible.

Swimming at Low Reynolds Number with Periodic Beats
Helical swimming trajectories are ubiquitous among microor-
ganisms (21). Simple physical arguments can explain the preva-
lence of helical trajectories, as suggested in the seminal papers
(22, 23). The homogeneity and isotropy of fluid–body hydro-
dynamic interactions, which hold true for a body isolated from
boundaries or other objects, play a crucial role. In this case, the
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Fig. 1. (A) Micrograph of a specimen of E. gracilis. The anterior flagellum is
visible, together with the eyespot, a pigmented organelle that is part of the
photosensory apparatus of the cell. (B) Schematic of the experimental setup:
Euglenids swim between two microscope slides separated by ∼50 µm.
(C) Example of image segmentation results from high-speed videos: Posi-
tion of the geometric body center (blue), position of the eyespot (red), and
body orientation (green) are measured. (D) Projected body orientation θ as
a function of time: A large amplitude oscillation is modulated by a smaller
oscillation at flagellar beating time scale.

periodic beating of a swimmer results in periodic body frame
components of its translational and angular velocities. See Sup-
porting Information, section 1 for details. The time evolution
of the center c and of the rotation R of the swimmer body
frame are obtained, via time integration, from these periodic
velocities (Eq. S7). The general solution of the swimming prob-
lem driven by periodic beats, with period Tb , is as follows.
The position of the body center c(t) evolves in time accord-
ing to

c(t) = ch(t) + Rn(ωt)c̃b(t) [1]

while the rotation of the body is described by

R(t) = Rn(ωt)R̃b(t) . [2]

In the previous two formulas, the closed curve c̃b and the rotation
R̃b are periodic functions, with period Tb , Rn(ωt) is a rotation
with axis n and angleωt , and ch describes a circular helix with axis
n that closes a turn every T = 2π/|ω| seconds. The details of the
derivation of Eqs. 1 and 2 are given in the Supporting Information,
section 1.

Two time scales emerge in defining the kinematics: the flagel-
lar beating period Tb and the time T needed to close one turn
of the smooth circular helix ch . In the swimming of Euglena,
as for most microorganism, T is much larger then Tb : It takes
many beats to close a turn. The general trajectory can be seen
as a smooth—and “slow”—helix perturbed by Tb-periodic “fast”
swirls. Similarly, the orientation of the body can be seen as a slow
rotation with constant angular velocity around n, perturbed by
fast Tb-periodic jerks.

Translational and rotational motions are coupled. For the sake
of argument, suppose that T =NTb is a multiple of Tb . Then, fix
a phase τ within one beat and consider times tk = τ + kTb . The
center moves according to c(tk ), and these points lie on a circular
helix of axis n (a perturbed version of ch : a helix with the same

pitch, but possibly different radius). Meanwhile, the body of the
swimmer keeps rotating around the axis n, each time by an angle
ωT/N . It follows that after N beats, exactly when one turn of
the helix is closed, the swimmer ends up in the same orientation
(Movie S2).

Results from recent studies on 3D helical trajectories of
microswimmers can be cast within the predictions of this model.
Observed “chiral ribbon” trajectories in human sperm motility
(18) fall precisely in the general expression given by Eq. 1. In
the chiral ribbon case, the periodic c̃b traces a line segment,
a special and degenerate case of our more general c̃b , which
describes a closed orbit. Rather than lying on a ribbon, the
resulting Euglena’s trajectories are drawn on a “helically shaped
tube” (a tubular neighborhood of the “backbone” helix ch). We
emphasize that Eqs. 1 and 2 provide the general characteriza-
tion for any motion driven by the periodic beating of a propul-
sive appendage. Special cases, where the backbone curve ch of
the trajectory in Eq. 1 is either a planar curve, or a straight
line, follow when the rotation axis n is either orthogonal to the
translation in one beat (as in the planar trajectories of sperm
cells, when propelled by planar beating of their tails) or paral-
lel to it (as in the case of bacteria propelled by rotating helical
flagella).

Experimental Observations
We observed specimens of E. gracilis swimming in a water solu-
tion while confined between two microscope slides (Fig. 1B).
The spacing between the slides was measured by focusing con-
trol beads attached to the respective walls (24) and was found
to range between 40 and 60 µm. The control beads were also
used to check that the fluid was at rest during the experi-
ments. We acquired high-speed micrographs of several cells at
1,000 frames per second (fps), selecting only specimens swim-
ming with a regular, periodic beat (Fig. 1C). More details
about the experimental setup can be found in Materials and
Methods.

In these conditions, for time scales larger than the flagel-
lar beat, the swimming trajectories follow a characteristic sinu-
soidal path, while the cell body undergoes an apparent “swing-
ing” movement with the same period. At smaller time scales,
finer features of the trajectories can be observed, together with a
higher-frequency “swinging” motion of the cell body (Movie S1).
The latter becomes evident by plotting the projected body ori-
entation as a function of time (Fig. 1D): A fast oscillation with
amplitude ∼1◦ and period ∼25 ms is superimposed on a slower
oscillation with amplitude ∼5◦ and period ∼0.5 s. This is the
typical footprint of a helical swimming motion projected on a
2D plane.

Cell Body Motion Reconstruction
Eqs. 1 and 2 can be applied to recover 3D kinematics from 2D
image sequences. This can be achieved by fitting 2D projections
of the 3D kinematics imposed by theory to experimental data. A
similar idea has been pursued in refs. 25–27. In the following, we
outline the main steps of our procedure.

We model Euglena’s body as an ellipsoid (in our experiments,
the surface of the cell does not visibly deform during swim-
ming). We consider the swimmer reference frame located at the
geometric center of the body, with axes aligned with the sym-
metry axes of the ellipsoid. With optical aberrations and out-
of-focus effects being negligible, microscopy images of the cell
body can be assimilated to projections of the ellipsoid on the
focal plane. Using image segmentation, we extract three rele-
vant kinematic quantities from these projections (Fig. 1C): the
projection Πc of the body center (Fig. 2E), the projection Πe of
the eyespot position e (Fig. 2F), and the angle θ, formed by the
projection of the major axis of the ellipsoid with the horizontal
(Fig. 2G).
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YFig. 2. (A) Three-dimensional representation of Euglena’s body, with trajectories of the body center (blue) and of the eyespot (red) reconstructed from the
fitting procedure. The reference axes l, m, and n are chosen such that n is the axis of the helical trajectory. (B) Projection of the centroid trajectory Πc and
(C) of the eyespot trajectory Πe on the focal plane. (D) Projection of the major axis of the cell body Πk = (cos θ, sin θ) on the focal plane. (E–G) Comparison
between experimental measurements and model best-fitting curves for the quantities Πc, Πe, and θ. Note that the experimental data for Πe are available
only when the eyespot is visible.

We then consider the restrictions imposed by the theoretical
model and obtain formulas for the observable quantities Πc, Πe,
and θ. They depend on a list of parameters ξ, which include,
among others, the beating period Tb , the Fourier coefficients
of the Tb-periodic functions in Eqs. 1 and 2, and the geometric
parameters of the circular helix ch . For the full list ξ of parame-
ters, and their detailed expressions, we refer the reader to Sup-
porting Information, section 2.

We recover the values of the parameters ξ by finding the least-
squares fit between theoretical observables and measured exper-
imental data. That is, we find ξ that minimizes∑

j

‖Πc(ξ, tcj )−Πc∗(tcj )‖2 ,∑
j

‖Πe(ξ, tej )−Πe∗(tej ) ‖2 , and
∑
j

∣∣∣θ(ξ, tθj )− θ∗(tθj )
∣∣∣2,

where the ξ-dependent functions are the expression given by the
theory for Πc, Πe, and θ, while experimental data are denoted
with an asterisk. Sums are taken over the time instants where
tracking data are available.

The set of parameters ξ so obtained is sufficient to determine
the 3D expression for c and R as given by Eqs. 1 and 2, thus
allowing us to recover the full 3D time evolution of the reference
frame of the swimmer (Fig. 2A).

The fact that Πc, Πe, and θ contain all of the information
needed to recover the 3D kinematics becomes evident when
going through the details of the theory, for which we refer to
Supporting Information, section 2. We mention here the key
ideas behind this. The time evolution of Πc alone is sufficient
to recover the 3D trajectory of c (Fig. 2B). The “lift” Πc → c

is possible thanks to the rotational symmetry imposed by Eq.
1. Similarly, the angle θ is sufficient to lift Πk → k the projec-
tion Πk = (cos θ, sin θ) of the unit vector k that determines the
major symmetry axis of the cell body in 3D (Fig. 2D). The extra
datum Πe contains the information about the cell body rota-
tion around k. Together with θ, the eyespot projection allows
us then to recover the whole swimmer moving frame, that is,
(θ, Πe)→ R.

Flagellar Shapes
We reconstruct the shapes of the flagellum, that is, the time his-
tory of a 3D deformable curve, from the knowledge of its (par-
tial) projections given by microscopy images. The reconstruction
consists of finding a curve minimizing a “projection error,” which
quantifies the distance between experimental points and projec-
tions of the curve. We describe the method in more detail in the
following.

Fix a phase τ between 0 and Tb (determined earlier) and con-
sider images at times tk = τ + kTb . At these instants, assuming
beat periodicity, the flagellum lies in the same configuration with
respect to the body frame. As the Euglena rotates, for different tk
a different view of this configuration appears on the focal plane.
The results of the previous section allow us to locate at every
instant the focal plane with respect to the body frame. Image seg-
mentation gives us a set of points where the flagellum projection
on each plane must lie (Fig. 3A).

We are able to locate Npl planes (11 to 19, depending on the
experiment) together with a set of projection points P∗j for each
plane j = 1, 2, . . . , Npl . The flagellum is recovered by finding
the 3D curve whose projections are the closest possible to these
sets of experimental points on the respective planes (Fig. 3B
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Fig. 3. Stereographic reconstruction of the flagellum. (A) Fixed a phase τ between 0 and the beating period Tb, images taken at times tk = τ + kTb, show
the flagellum in the same configuration with respect to the cell body, but from different viewpoints (Top). At each instant the Euglena’s position and
orientation with respect to the focal plane are known from 3D cell body motion reconstruction results (Bottom). (B) The flagellum is recovered by finding
the 3D curve whose projections (on the respective planes) are the closest possible to the experimental projections.

and Movie S3). The “closeness” of a curve r to the experimen-
tal points is determined by the projection error

Err(r) =

Npl∑
j=1

∑
p∗∈P∗j

dist(p∗,Πj r)
2
, [3]

where we denoted by Πj the projection on the j th plane. In the
previous equation, the distance dist (p∗,Πj r) between a point p∗

and the projection Πj r is defined as the minimum with respect to
the curve parameter s of ‖ p∗ − Πj r(s) ‖. We use interpolating
cubic spline curves

r =Sp(x1, . . . , xNsp ) [4]

to parametrize the flagellum. The interpolated points x1, . . . , xNsp

are chosen as to minimize the projection error. Substituting Eq.
4 in Eq. 3 leads to the expression to be minimized. More details
on the algorithmic implementation of the problem are given in
Supporting Information, section 3.

Results
Motion Characteristics. We applied our technique to multiple sets
of experimental data, obtaining excellent agreement between
experiments and theory (Fig. 2 E and F). We report here on the
reconstruction of trajectories and flagellar shapes for one rep-
resentative cell. Results for other cells are reported in Support-
ing Information, section 4, with comments on the variability of
the results between different cells, and on the quantitative eval-
uation of the uncertainties of our reconstruction procedures. In
particular (Fig. 4 and Movie S4), the history of flagellar shapes of
our representative cell matches well with those of different speci-
mens, suggesting the existence of a distinctive Euglena beat style,
as described below.

A side view of the reconstructed swimming kinematics is
shown in Fig. 5A. For visualization purposes, the Euglena’s body
is not to scale with the displacements. The trajectory of the
body center evolves along a helix with right-handed orientation.
The helix is actually quite narrow, with an average radius of
≈0.75 µm, a small fraction of the Euglena’s width of ∼9.2 µm.

The pitch is ≈35.8 µm, ∼0.7 times the length of the cell
∼50.8 µm. The calculated beating period is Tb ≈ 24.3 ms. The
Euglena closes a turn of the helix in T ≈ 0.5 s, so approximately
after N = 21 beats. In Fig. 5B a top view of the trajectory is
shown. A color map on the trajectory displays the absolute veloc-
ity of the body center: The center moves by continuously accel-
erating and decelerating, with velocities ranging between 50 and
140 µm/s. The cell body (full or transparent) is depicted at the
beginning of each beat (τ = 0). It can be noticed that the eyespot
points in the outward direction.

To have a closer picture of the periodic motion within one beat
we consider the evolution of the system as seen by an observer

Fig. 4. Grid of experimental images from four different swimming cells
(columns) taken at different times (rows). The reconstructed time history of
flagellar shapes from cell 1 (green, first column), conveniently scaled in both
space and time, is attached to the other cells’ bodies (blue). A good over-
lap between the projections of the attached flagella and the experimental
images emerges (see Movie S4 and Supporting Information, section 4 for
more details). This shows that the flagellar beat of cell 1, presented here in
the main text, is a valid representative of a common beating style.
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Fig. 5. (A–D) Representation of Euglena’s kinematics. The dimensions of the cell body are not to scale with displacements for visualization purposes.
(A) Side view. The Euglena follows a right-handed helical path. Full or transparent bodies are shown at the beginning of each beat. (B) Top view. The body
center trajectory c(t) is rendered using a color map to highlight the absolute instantaneous velocity. (C) Body motion as seen from a reference frame of axes
l′, m′, and n′ moving on the circular helix ch(t) while rotating by Rn(ωt) (top view). Full or transparent bodies are shown at instants equally spaced within
one beat. (D) Quasi-conical surface spanned by the major symmetry axis of the cell during one beat. (E) Sequence of flagellar shapes for 10 consecutive
instants (phases) within one beat. Each phase is labeled with a different color. Body reference axes i, j, and k are represented in red, green, and blue,
respectively. (F) Translational velocity v and (G) angular velocity ω of the cell, represented in body reference frame coordinates. Velocities are shown for
each flagellar phase and color-coded accordingly. (H) Polar angle and (I) azimuth angle of the unit tangent vector to the flagellum, as functions of the arc
length and time.

moving with the backbone helix ch(t) while rotating by Rn(ωt)
(Eq. 1). In this view (Fig. 5C), the cell moves on a quasi-circular
orbit in clockwise direction (opposite to the one of the back-
bone trajectory). As for the body orientation, it is interesting to
note that the surface spanned by the major symmetry axis of the
cell is roughly a cone (Fig. 5D): The projection of this motion
in 2D translates into the “small amplitude swings” observed at
the microscope. The rotation around its long axis (so to say its
“rolling” motion) is negligible and the eyespot points always to
the same direction.

Remarks on the Propulsion Mechanism. A sequence of flagellar
shapes for 10 consecutive instants (phases) within one beat is
shown in Fig. 5E. In Fig. 5 F and G the resulting instantaneous
translational and angular velocities are represented in body ref-
erence frame coordinates. Each phase is labeled with a differ-
ent color. Bending waves emerge from the base of the flagellum
and run through its whole length, fading at its tip. The flagellum
bends while swinging around the cell body, with velocities that
oscillate significantly both in magnitude and direction.

The propulsion mechanism of Euglena cannot be adequately
summarized as a “backward beating of a flagellum to push the
cell forward.” The flagellum beats laterally, spanning a com-

plex sequence of nonplanar shapes: No obvious symmetries can
be exploited to guess the way the body moves as a result of
the flagellar beating. In fact, this motion entails spiraling tra-
jectories coupled to body rotations. To confirm that the recon-
structed flagellar shapes are consistent with the observed swim-
ming motion, we calculated the kinematics that the reconstructed
flagellar beat generates by imposing the hydrodynamic force bal-
ance on the swimmer. Using the local drag approximation (28)
of resistive force theory (RFT), we obtained a good qualitative
agreement by fitting the resistive coefficients for the flagellum to
best match the experimental data, as done in ref. 9 (Supporting
Information, section 5 and Fig. S6). Reproducing the experimen-
tal data in full quantitative detail will require a more detailed
analysis.

RFT shows that the observed kinematics is consistent with the
typical thrust mechanism of smooth flagella. Indeed, peaks in the
translational velocity of the cell body are correlated with the flag-
ellar wave propagating parallel to the major axis, in the direc-
tion opposite to the one of motion, while peaks in the rotational
velocity occur during the flagellar swing around the body (see
Movie S5 and Supporting Information, section 5 for more details).
This seems to confirm the claim (29) that, for the euglenoid flag-
ellum, the presence of soft (nontubular) mastigonemes does not
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affect the flagellar thrust mechanism in a major way, as it instead
happens in other organisms (30).

Conclusions
We have presented a 3D kinematics reconstruction of euglenid
flagellar motion. To accomplish this, we have introduced a tech-
nique to recover 3D kinematics from 2D microscopy images
(Movie S6). This gives unprecedented detail, and it is applicable
to other organisms.

As with other methods to reconstruct 3D information from 2D
data (25–27), our approach is based on a model and on specific
assumptions. In particular, we are limited to periodic beating
and to motions confined to the narrow field of view of high-
resolution microscopy. Even when these limitations will be over-
come by new techniques capable of direct 3D imaging of flagel-
lar and body kinematics (at comparable levels of spatiotemporal
detail), the characterization of trajectories as generalized helices,
on which our method is based, will stand. The biological signif-
icance of patterns emerging from the trajectories of flagellated
unicellular swimmers has often been emphasized in the past (18).
Here we show that, in fact, the geometric structure of the trajec-
tories is exactly the signature of the periodic flagellar beating that
generates them.

Our work paves the way for future studies of the flows induced
in the surrounding fluid by flagellar beating and for the investi-
gation of the mechanisms governing the internal actuation of the
flagellum. E. gracilis can be seen as a first example for a large
class of model organisms whose swimming strokes are less sym-

metric than those explored so far and for which quantitative data
are not yet available.

Materials and Methods
Cell Culture. Strain SAG 1224-5-27 of E. gracilis obtained from the SAG Cul-
ture Collection of Algae at the University of Göttingen was maintained
axenic in liquid culture medium Eg (see the medium recipe from SAG) in
sterile 16-mL polystyrene test tubes. Cultures were transferred weekly. They
were kept in an incubator (IPP 110plus; Memmert) at 15 °C and at a light:
dark cycle of 12:12 h under cold white LED illumination with an irradiance
of about 50 µmol/(m2s).

Experimental Setting. For each experimental trial a dilute solution was pre-
pared of E. gracilis and of 0.5 µm in diameter polystyrene, fluorescent beads
[(F8813; Life Technologies), volume fraction of ∼0.05%] in culture medium
Eg. Swimming cells were imaged in phase contrast illumination by using an
Olympus IX81 inverted microscope equipped with a LCAch 40×Ph2 objective
(N.A. 0.55). The estimated depth of field for such arrangement is ∼2.3 µm.
Cells were confined between two microscope slides separated with a
∼50-µm-thick double-sided adhesive spacer. Micrographs were recorded at
a frame rate of 1,000 fps by using a high-speed complementary metal–oxide–
semiconductor digital camera (FASTCAM Mini UX100; Photron).

Image Processing and Data Fitting. Image processing and numerical fitting
have been performed with programs developed in-house implemented in
the MATLAB environment (MathWorks).
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1. Low Reynolds Number Swimming with Periodic Beats: Derivation of the Evolution Equations
We show here how to derive Eqs. 1 and 2 of the main text, starting from basic laws of low Reynolds number physics. The motion of a
swimmer is determined by a map Φt defined on a set B, the reference body, with values in Bt , the body of the swimmer at time t . We
can write

Φt = c(t) + R(t)Φ̄t , [S1]

where c(t) is the center of a reference frame moving with the body and R(t) determines the rotation of the moving frame. The map
Φ̄t defines the shape of the swimmer at every t , assumed to be periodic with period Tb .

Given a periodic Φ̄t , the time evolution of c(t) and R(t) are determined by the swimmer–fluid hydrodynamic interaction. The total
force f and the total moment g (with respect to c) exerted by the fluid on the swimmer are

f =

∫
∂Bt

Sν dA and g =

∫
∂Bt

(x− c)× Sν dA, [S2]

where S is the stress tensor in the fluid and ν denotes the outer unit normal to the boundary ∂Bt of the swimmer’s body Bt . By
neglecting the swimmer’s inertia, the equations of motion for the swimmer are given by

f = 0 and g = 0. [S3]

The stress tensor S is determined by the (Eulerian) velocity field of the fluid u(x, t) at ∂Bt , and the associated pressure. We write S [u]
to denote the stress tensor associated with the field u. From the no-slip boundary condition u = dΦt/dt ◦Φ−1

t and Eq. S1 we have

u(x, t) = v + ω × (x− c) + R
dΦ̄t

dt
◦ Φ̄−1

t

(
RT (x− c)

)
[S4]

for every point x in ∂Bt , where v and ω are the translational and angular velocity of the moving reference frame, respectively. For low
Reynolds number flows, the stress tensor is linear with respect to the boundary velocity argument u. We suppose that the resulting
stress tensor has the following property (homogeneity and isotropy):

S [u] ◦ R = RS
[
RT u ◦ R

]
RT , [S5]

where we have denoted by R the rigid transformation Rx = c + Rx. Property S5 is satisfied, for example, in the case of a single
swimmer moving in a homogeneous and isotropic fluid occupying the whole 3D ambient space, and at rest at infinity. By making the
hypothesis that Eq. S5 holds also in our concrete experimental setup, we are assuming that the effects of walls and physical boundaries,
of the presence of other swimmers, and so on, are, in fact, negligible.

Plugging the expression in Eq. S4 into S [u] and then in Eq. S2, using the property in Eq. S5 together with the linearity of the stress
tensor, we can rewrite (after some calculations) Eq. S3 in the following way:(

v̄
ω̄

)
= −

(
Ā B̄

B̄T C̄

)−1(
f̄
ḡ

)
, [S6]

where we have defined the translational v̄ = RT v and angular ω̄ = RTω velocities as seen from the reference frame moving with the
body. The t-dependent matrix in Eq. S6 is (the inverse of) the “grand resistance matrix” (31) of the swimmer: It quantifies the viscous
resistance to rigid motion of the swimmer at its current shape Φ̄t . The vectors f̄ and ḡ are the force and moment that would act on the
swimmer if it was held fixed at one point (and orientation), as a consequence of its shape change. All of the quantities in the right-hand
side of Eq. S6 depend only on Φ̄t and its time derivative. Hence, they are all Tb-periodic, which implies the periodicity of v̄ and ω̄.
From the definitions of v̄ and ω̄ we have that

dc
dt

(t) = R(t)v̄(t) and
dR
dt

(t) = R(t)[ω̄(t)]×, [S7]

where [ω̄]× is the axial tensor of ω̄ (defined as the skew-symmetric tensor such that [ω̄]×a = ω̄ × a for every vector a). Then, the
evolution of the reference frame of a periodically beating swimmer must be the general solution of Eq. S7, where v̄ and ω̄ are taken to
be generic Tb-periodic vectors. In the remainder of this section we show that the integration of Eq. S7 leads to Eqs. 1 and 2.

From the second equation in Eq. S7, since [ω̄]× is Tb-periodic and skew-symmetric, we have that

d

dt

(
R(t + Tb)R(t)T

)
= 0.

Thus, R(t + Tb)R(t)T is a t-independent rotation. We denote by n the unit vector determining the rotation axis of R(t + Tb)R(t)T ,
and by ∆ψ the rotation angle. Using the same notations we have adopted in the main text we write

Rn(∆ψ) = R(t + Tb)R(t)T , for every t ≥ 0. [S8]

Clearly, if R(t + Tb)R(t)T is the identity matrix we do not have a unique choice for n. This is not the case for the rotatory motion of
the Euglena studied here, so in the following we will assume that n is defined unambiguously and ∆ψ 6= 0.

From Eq. S8 it follows that R(t + kTb) = Rn(k∆ψ)R(t) for every integer k ≥ 0. Therefore, if we consider

R̃b(t) := Rn(∆ψ t/Tb)T R(t), [S9]
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we have (after a simple check) that t 7→ R̃b(t) describes a Tb-periodic rotation. Eq. 2 follows then from Eq. S9 by taking ω = ∆ψ/Tb .
From the first equation in Eq. S7 and the periodicity of v̄, and from Eq. S8, we have that

d

dt

(
c(t + Tb)− Rn(∆ψ)c(t)

)
= 0.

Then, there exists a t-independent vector d such that

d = c(t + Tb)− Rn(∆ψ)c(t). [S10]

From Eq. S10, in particular, it follows that

c(t + kTb) =


c(t) for k = 0,
d + Rn(∆ψ)c(t) for k = 1,∑k−1

j=0 Rn(j∆ψ)d + Rn(k∆ψ)c(t) for every integer k > 1.
[S11]

If we define dY Y := (d · n)n and d⊥ := d− dY Y , after some algebra we can rewrite Eq. S11 in closed form as

c(t + kTb) = Rn(k∆ψ)r⊥ + dY Y k − r⊥︸ ︷︷ ︸
Hk

+ Rn(k∆ψ)c(t) [S12]

for every integer k ≥ 0, with r⊥ := −(d⊥ + cot(∆ψ/2)n × d⊥)/2 (notice that r⊥ is orthogonal to n). Consider the expression Hk

underlined by the curly brace in the right-hand side of Eq. S12. For every integer k , it gives a point that lies on a helix of axis parallel
to n passing through the origin o. We can parametrize such a helix with the t-dependent curve

c0h(t) := Rn (∆ψ t/Tb) r⊥ + dY Y t/Tb − r⊥.

A simple check shows that the curve c̃0b defined as

c̃0b(t) := Rn(∆ψ t/Tb)T
(

c(t)− c0h(t)
)

is Tb-periodic. Thus, the general solution for c(t) of Eq. S7 can be written as the sum of a helix c0h(t) and a term Rn (∆ψ t/Tb) c̃0b(t)
where c̃0b is a Tb-periodic “swirl,” as we called it in the main text. Eq. 1 then follows. We remark that there is not a unique choice for
the helix and the swirl. Indeed, fix any constant vector r and take ch(t) := c0h(t) + Rn (∆ψ t/Tb) r and c̃b(t) := c̃0b(t) − r. Clearly ch

is still a circular helix (same pitch, different radius) while c̃b(t) is a Tb-periodic curve, and we have again Eq. 1. However, when one
helix is fixed, then the swirl is uniquely determined, and vice versa.

2. Cell Body Motion Reconstruction: Parametrization of the Moving Reference Frame and Data Fitting
In this section we give the detailed parametrization of the Euglena’s moving reference frame. We also provide more details on the
data-fitting procedure (discussed in broad terms in the main text) used to reconstruct the 3D cell body kinematics from 2D microscopy
images.

First, some definitions. We fix the laboratory frame as in Fig. S1: The y and z axes, as well as the origin o = (0, 0, 0) of the laboratory
frame, lie on the focal plane, while the x axis is directed toward the observer. The reference frame of the Euglena is determined by the
time-dependent unit vectors i(t), j(t), and k(t). The vector k(t) is aligned with the major axis of the ellipsoidal body of the Euglena,
and it is directed toward the flagellum. The vector i(t) is defined so that the eyespot point e(t) lies on the plane generated by i(t) and
k(t). That is, there are two (positive) constants ei and ek such that

e(t) = i(t)ei + k(t)ek + c(t). [S13]

The center c of the reference frame, as stated in the main text, is located at the geometric center of the ellipsoidal body of the cell.
To parameterize the helical trajectory of the center c we introduce a “helix reference frame” with origin oh and orientation deter-

mined by three orthogonal unit vectors l, m, and n (Fig. S1). The vector n defines the helix axis. We suppose that oh , n, and m lie on
the focal plane (a hypothesis which is a posteriori justified by the good agreement between our model and the experimental data), thus
oh = (0, oy , oz ). The vector l is aligned with the x axis. The angle θn , formed by n and the horizontal, determines the orientation of
the frame completely.

We can write the general solution for c in terms of cylindrical coordinates with respect to the helix reference frame as follows:

c(t) = oh + ρ(t) ( l cosψ(t) + m sinψ(t) ) + nζ(t) with

ρ(t) = ρ̃b(t), ψ(t) = ∆ψ t/Tb + ψ̃b(t), and ζ(t) = ∆ζ t/Tb + ζ̃b(t), [S14]

where ∆ψ and ∆ζ are constants, while ρ̃b , ψ̃b , and ζ̃b are Tb-periodic functions. The center c of the body lies in the plane spanned by
l and m at time t = 0, so that

ζ(0) = 0. [S15]

We parametrize the general solution for the rotation R(t) = (i(t)|j(t)|k(t)) of the body frame as

R(t) = Rn(α(t))Rm(β(t))Rn(γ(t))U(θn) with

α(t) = ∆ψt/Tb + α̃b(t), β(t) = β̃b(t), and γ(t) = γ̃b(t), [S16]

where U(θn) = Rl(θn − π/2), while α̃b , β̃b , and γ̃b are Tb-periodic functions.
In the remainder of this section we show how to determine the following list of parameters

ξ = {Tb , oh , θn , ∆ψ, ∆ζ, F} ∪ {ei , ek} [S17]
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which describes completely the cell-body kinematics. The coefficients ei and ek , defined in Eq. S13, are auxiliary parameters needed to
determine the other ones which, in turn, determine the time evolution of c and R. In Eq. S17 we have denoted by F the set of Fourier
coefficients of the Tb-periodic functions defined in Eqs. S14 and S16. We consider only Fourier coefficients up to order one, thus

ρ̃b(t) = aρ + bρ cos (2πt/Tb − φρ) , ψ̃b(t) = aψ + bψ cos (2πt/Tb − φψ)

ζ̃b(t) = aζ + bζ cos (2πt/Tb − φζ) , α̃b(t) = aα + bα cos (2πt/Tb − φα) [S18]

β̃b(t) = aβ + bβ cos (2πt/Tb − φβ) , γ̃b(t) = aγ + bγ cos (2πt/Tb − φγ) .

Every Fourier coefficient is taken as an independent parameter except those of ζ̃b , since the condition in Eq. S15 imposes aζ = −
bζ cos(φζ).

To obtain values for the parameters in Eq. S17, we fit our model to experimental data. We track the centroid and the orientation
of the cell body’s segmented image. Given the ellipsoidal symmetry of the cell, we interpret these data respectively as Πc and θ, where
Πk = (cos θ, sin θ). Image segmentation of the eyespot give us the tracking data for Πe. As in the main text, we denote by Π the
projection on the focal plane. From Eqs. S13, S14, and S16 we have that

θ(t) = θn − arctan
(

sinα(t) tanβ(t)
)
,

Πc(t) =

(
oy

oz

)
+

(
sin θn

− cos θn

)
ρ(t) sinψ(t) +

(
cos θn

sin θn

)
ζ(t), [S19]

Πe(t) = Πi(t)ei + Πk(t)ek + Πc(t)

where

Πi =

(
sin θn

− cos θn

)
(sinα cosβ cos γ + cosα sin γ)−

(
cos θn

sin θn

)
sinβ cos γ

and Πk =

(
sin θn

− cos θn

)
sinα sinβ +

(
cos θn

sin θn

)
cosβ.

From all of the definitions above, we obtain the expressions θ(ξ, t), Πc(ξ, t), and Πe(ξ, t) of our measured quantities in terms of the
kinematic parameters ξ. We then obtain an estimate of the parameters ξ in three steps.

The quantities θ, Πc, and Πe depend on subsets of ξ, which we denote by ξθ , ξc , and ξe , respectively. We first calculate the subset of
nine parameters ξI := ξθ . Written in full,

ξI = {Tb , θn , ∆ψ, aα, bα, φα, aβ , bβ , φβ}.

We obtain an estimate ξ∗I of such parameters by solving numerically the following minimization problem:

ξ∗I = argmin
ξI

∑
j

∣∣∣ θ(ξI , t
θ
j )− θ∗(tθj )

∣∣∣2. [S20]

In the right-hand side of Eq. S20 we have denoted with an asterisk the tracking data, and by
{
tθj
}

the time instants where tracking
data are available (analogous notation is used systematically in the following). The second subset of parameters we calculate is the
difference between sets ξII := ξc \ ξI , which consists of 11 elements:

ξII = {oh , ∆ζ, aρ, bρ, φρ, aψ, bψ, φψ, bζ , φζ}.

We obtain an estimate ξ∗II of these parameters by solving

ξ∗II = argmin
ξII

∑
j

‖Πc(ξII , ξ
∗
I , t

c
j )−Πc∗(tc

j )‖2. [S21]

Finally, the last subset of five parameters,
ξIII = {ei , ek , aγ , bγ , φγ},

where ξIII := ξe \ (ξI ∪ ξII ), is calculated by solving

ξ∗III = argmin
ξIII

∑
j

‖Πe(ξIII , ξ
∗
II , ξ

∗
I , t

e
j )−Πe∗(te

j )‖2. [S22]

Collecting the results from Eqs. S20–S22 we obtain all the parameters ξ∗ = ξ∗I ∪ ξ∗II ∪ ξ∗III needed to fully reconstruct the time
evolution of c and R. The three-step fitting procedure is devised to minimize the number of parameters to be calculated at every step.
The eyespot tracking data are only needed to recover 5 parameters (out of 25). The data for Πe are fewer than the ones for Πc and θ
(41 to 48 data points, depending on the experiment), but they always outnumber the free parameters to be calculated.

We end this section with a few comments. First, notice that θ depends only on the Euler angles α and β (Eq. S19). Solving Eq. S22
is then crucial to find the third angle γ, which enables us to recover the rotation R (see the discussion in the main text). Second, from
Eq. S19 we have that Πc and θ are invariant under the transformations ψ 7→ π− ψ and α 7→ π− α, respectively. This ultimately leads
to an ambiguity on the sign of ∆ψ, which in turn determines the sign of the angle γ. The two cases correspond to one motion of the
moving frame and to its reflection with respect to the focal plane. In our experiments, the choice of the sign of ∆ψ was based on a
visual check on the motion of the eyespot during rotation (exploiting the opacity of the cell). Rotation direction is further confirmed
by its consistency with the out-of-plane motion of tracer particles near cells’ bodies, which we estimated through their image changes
induced by defocusing and optical aberrations (32).
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3. Reconstruction of the Flagellar Shapes: Implementation Details
As stated in the main text we have, for every phase τ ∈ [0,Tb ], a set of Npl planes, each of which contains a set of points where we can
locate the flagellum projection. For every plane j = 1, . . . ,Npl , we denote by P∗j the set of experimental points and by Nj the number
of points in the set. We denote by p∗ij the points in P∗j , with i = 1, . . . ,Nj . With the definitions given in the main text, the expression
for the projection error in Eq. 3 becomes

Err(r) =

Npl∑
j=1

Nj∑
i=1

dist
(
p∗ij ,Πj r

)2
= min
{sij}

Npl∑
j=1

Nj∑
i=1

‖p∗ij −Πj r(s i
j )‖2,

where r is a 3D curve. A curve r describes the flagellum (at phase τ) if it minimizes the projection error. To find the flagellum we take
r(s) = Sp(s; x1, . . . , xNsp ) as in Eq. 4, where Sp is a cubic spline defined for s ∈ [0, 1] and interpolating Nsp points x1, . . . , xNsp . The
nodes relative to the interpolation points are equispaced on [0, 1]. The starting point x1, determining the flagellum attachment with
the ellipsoidal body, is the same for every flagellar phase, and it is fixed a priori. We solve numerically

argmin
{sij}, x1,...,xNpt

Npl∑
j=1

Nj∑
i=1

‖p∗ij −ΠjSp(sij ; x1, . . . , xNpt )‖
2 [S23]

to find the remaining interpolation points x2, . . . , xNsp , together with the auxiliary variables sij . We allow for the number Nsp of
interpolating points to vary from phase to phase. Similarly, we allow for the boundary conditions to vary from phase to phase, in order
for the minimization algorithm to converge. We do not impose constraints on the length of the curve r, which is an outcome of the
algorithm. As a result, lengths tend to vary slightly for different phases.

4. Uncertainties of the Reconstruction Procedure and Variability of Results
We report here the results of our body kinematics reconstruction for six different experimental datasets. Three of them, denoted
Cell1a*, Cell1b, and Cell1c, correspond to the same specimen (Cell1) observed at different times (a, b, and c). The dataset Cell1a* is
the one we relied on for the results presented in the main text. The other three datasets, denoted Cell2, Cell3, and Cell4, correspond
to three different cells (so, four different specimens in total are analyzed).

The resulting best fits of our kinematic model for each set are shown in Fig. S2, superimposed on experimental data. Tables S1–S3
present the results of the three-step fitting procedure described in Supporting Information, section 2. Values of the fitted parameters
are reported together with their relative (95%) confidence bounds. All fits are obtained on time intervals in which the cell completes
one turn of its helical trajectory (while our observations cover typically approximately three turns).

Comparing different observations a, b, and c of the same specimen (Cell1), the motion characteristics are quite reproducible
(although some variability emerges). Some kinematic quantities are also common to different specimens. All of the helical trajec-
tories observed are quite narrow (see the average radius aρ). The beating period Tb oscillates around 25 ms. Also, the displacement
∆z after one beat along the helix axis shows small variability. This is not quite the case for the body rotation angle after one beat ∆ψ.
As a consequence, the total number N = 2π/∆ψ of beats needed to close a full body rotation (or, equivalently, a turn of the helical
trajectory) varies from N ≈ 21 for Cell1a* to N ≈ 35 for Cell4. Interestingly, however, we always recover positive values for ∆ψ. That
is, cells always appear to rotate clockwise.

We also report the results of one additional flagellar beat reconstruction. Fig. S3 shows a comparison between the reconstructed
flagellar shapes of Cell1a* and those of Cell2. This allows us to appreciate in 3D an example of the (slight) variability of the flagellar
beat between cells, but also the consistency of the flagellar beating style. The uncertainties of our reconstruction procedure (for both
Cell1a* and Cell2) are quantified by confidence intervals. Tables S4 and S5 present the confidence intervals for the interpolation
points’ coordinates of the splines that describe the flagellum (we also report the different estimated lengths of the flagellum at each
phase; cf. Supporting Information, section 2). While most of the confidence intervals are quite narrow, some of them reveal large
uncertainties. This is due to the occasional scarcity of experimental data, leading to divergent values of the confidence bounds, which
are, however, confined to some small portion of the flagellum, at one particular phase.

The reconstructed flagellum of Cell1a* is compared with the experimental data in Fig. S4. For both flagellar reconstructions we
consider data from a time range of ∼ 21 beats. In the case of Cell1a* this corresponds to one complete turn of the helical trajectory,
while for Cell2 it corresponds to ca. three-quarters of a turn.

We give an estimate of the variability of the flagellar beat among different observations also in a more quantitative way. We use
the reconstructed 3D flagellar shapes of Cell1a* and the image data from the other five datasets. The reconstructed time history of
flagellar shapes from Cell1a*, conveniently scaled in both space and time, is attached to the other cells’ bodies (we use here our results
from the body kinematics reconstruction). Then, the projections on the focal plane of these flagellar shapes are superimposed on the
experimental images (Fig. S5 and Movie S4). A good overlap clearly emerges, showing that Cell1a* is a valid representative of a com-
mon beating style. To make the comparison quantitative we calculate the “standard projective error” σ between the reconstructions
and the experimental data. The error σ is defined as follows. We consider time intervals spanning & 20 flagellar beats. For each time
frame in the interval, we obtain from the segmentation of microscopy images a set of points where the projection of the cell flagellum
is visible. We then calculate the distances {di} of each point to the projection of the reconstructed flagellum. The standard projection
error is then defined as

σ =

√∑
i d

2
i

Npts
,

where Npts is the total number of points considered. The standard projection errors obtained for each dataset (given in terms of
percentage of the flagellar length) are reported in Fig. S5 and range between 2.1% and 8.9%.
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5. Physical Consistency Test for the Reconstructed Kinematics
In the present section we show that our kinematics reconstruction is consistent with the underlying physics of the system, namely, low
Reynolds number hydrodynamics. We use the reconstructed flagellar shapes from Cell1a* (conveniently regularized) to calculate the
body motion that results if we impose the force and torque balance (Eq. S3). We then compare the calculated motion with the one
recorded in the experiments.

We rely on some simplifying assumptions. The hydrodynamic forces acting on the flagellum are calculated using RFT (9). With this
hypothesis, the viscous force acting on the flagellum depends on two “resistive” coefficients, C⊥ and CY Y . More precisely, the linear
density force f(s, t) acting on the point of the flagellum r(s, t) at time t and arc length s is given by

f(s, t) = −C⊥v⊥(s, t)− CY Y vY Y (s, t),

where vY Y (s, t) = ∂r
∂s

(s, t) · ∂r
∂t

(s, t) and v⊥(s, t) = ∂r
∂t

(s, t)− vY Y (s, t) are the local velocity components parallel and perpendicular to
the flagellum. The total viscous force fflag and torque gflag acting on the flagellum are then given by

fflag =

∫ L

0

f(s, t) ds and gflag =

∫ L

0

(r(s, t)− c(t))× f(s, t) ds.

Resistive coefficients are known to depend heavily on the geometry of the flagellum and on its hydrodynamic interaction with external
structures. No theoretical choice is available for something that resembles our case, where the flagellum beats in close proximity to the
Euglena’s body. To get a reasonable choice for the resistive coefficients, following ref. 9, we calculate them as those which best fit the
experimental data. We explain this in more detail below.

We consider the total viscous force f and torque g acting on the swimmer as given by

f = fbody + fflag and g = gbody + gflag ,

where fbody and gbody are the total force and torque acting on an ellipsoid of the same size of Cell1 (moving in an unbounded fluid).
The expressions for fbody and gbody can be commonly found in the literature (see e.g., ref. 31). Imposing the force and torque balance
Eq. S3, we then obtain an expression of the type S6, where the right-hand side depends only on our flagellar beat reconstruction.
This allows us to calculate the velocities v̄(C⊥,CY Y , t) and ω̄(C⊥,CY Y , t) (definitions and notations taken from Supporting Information,
section 1). Denoting by v̄∗(t) and ω̄∗(t) the velocities that we obtain from our experiments, we define the optimal coefficients as

(C ∗⊥,C
∗

Y Y ) = argmin
C⊥,CY Y

∫ Tb

0

ν1‖v̄(C⊥,CY Y , t)− v̄∗(t)‖2 + ν2‖ω̄(C⊥,CY Y , t)− ω̄∗(t)‖2dt

for conveniently chosen normalization constants ν1 and ν2. We take the velocities v̄(C ∗⊥,C
∗

Y Y , t) and ω̄(C ∗⊥,C
∗

Y Y , t) as the ones that best
describe the kinematics generated by the flagellar beat under the hydrodynamic force balance condition. Rotations and translations
of the cell body are then calculated by time integration (S7). The velocities and trajectories that we obtain from the flagellar beat are
compared with the experimental ones in Fig. S6.

We have a qualitative agreement (which confirms that the time sequence of reconstructed flagellar shapes is consistent with the
observed swimming motion) but we are not able to reproduce all observations in full quantitative detail. Moreover, we emphasize
that our estimates for the optimal resistive coefficients lead to quite nonstandard values. Indeed, if we compare them with those
measured for sperm cells’ flagella swimming in free space (9) our value for C ∗⊥ ≈ 3.1 fN s µm−2 is ca. 2.5 times larger and the ratio
C ∗⊥/C

∗
Y Y ≈ 21.7 is slightly more than one order of magnitude larger. This large discrepancy, however, is not too surprising in view

of theoretical studies (33) on resistive coefficients for flagella near boundaries and of the fact that the large cell body can be seen as
a (moving) wall near the beating flagellum. Clearly, our analysis represents a very crude way to encode the nonlocal hydrodynamic
interactions between flagellum and cell body, and a more detailed study will be necessary in the future.

As a final remark, it is worth noticing that the values of the optimal resistive coefficients are compatible with those of a smooth
flagellum. This is not a trivial outcome. The Euglena’s flagellum, like that of most algae, is not smooth but it is rather coated with thin,
hair-like structures called mastigonemes (29). Stiff (tubular) mastigonemes are known to affect flagellar thrust in a major way, to the
point of inverting the direction of resulting body motion. For example, the flagellum of Ochromonas malhamensis propels the cell in the
same direction of the one of flagellar wave propagation (30). This does not seem to happen in the case of euglenid flagellar swimming,
as can be inferred by comparing body velocities and flagellar shape evolution (Movie S5). When the flagellar wave propagates parallel
to the major axis of the body we observe a peak in the translational velocity of the cell in the opposite direction (light-red to black
phases in Fig. 5E). During the swing around the body (red to dark-blue phases), the cell counterrotates, and the angular velocity peaks.
Both angular and translational velocities decrease when a wave is fading at the distal end of the flagellum, and a new one is emerging
from the cell body attachment.

It has been conjectured (29) that the soft (nontubular) mastigonemes of the euglenid flagellum do not invert the flagellar thrust
mechanism. Our results provide further evidence to support this claim.
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Fig. S1. Schematic description of the Euglena’s body kinematics. Laboratory, helix, and body reference frames are shown.
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Fig. S2. Experimental data (blue points) and best fits (red line) for the quantities θ (Top), Πc (Middle), and Πe (Bottom).
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Fig. S3. Comparison between the reconstructed flagellar shapes for Cell1a* (Left) and Cell2 (Right). Sequence of flagella during the 10 phases (Top). Polar
angle (Middle) and azimuth angle (Bottom) of the unit tangent vector to the flagella, as functions of arc length and time.
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Fig. S4. Frames taken at times tk = τ + kTb for a fixed phase τ . The flagellum lies in the same configuration with respect to the body frame but is seen
from different viewpoints. Images show the projection of the reconstructed flagellar shape (in red) superimposed on experimental data (blue circles).

Fig. S5. The reconstructed flagellum from Cell1a* (green), conveniently scaled in both space and time, is superimposed on experimental images from other
trials (blue). The standard projection error σ is also shown.
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Fig. S6. Comparison between experiments (Left) and results obtained using RFT (Right): velocity vectors (Top), angular velocity vectors (Middle), and
trajectory (Bottom).
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Table S1. Parameter values with confidence bounds obtained by
fitting θ

Parameter value (±95% confidence bounds)

Parameter Cell1a* Cell1b Cell1c Cell2 Cell3 Cell4

θn, rad 2.18 1.97 0.60 5.27 2.28 3.95
(1.6e-04) (1.5e-04) (1.9e-04) (1.8e-04) (2.8e-04) (3.3e-04)

∆ψ, rad 0.30 0.33 0.33 0.22 0.25 0.18
(4.8e-04) (4.0e-04) (5.5e-04) (1.9e-04) (5.9e-04) (4.1e-04)

Tb, ms 24.30 25.28 23.84 25.49 24.89 27.99
(6.4e-03) (9.1e-03) (9.2e-03) (4.7e-03) (6.8e-03) (8.2e-03)

aα, rad 3.44 5.21 2.16 2.90 0.75 3.07
(1.2e-02) (2.1e-02) (3.8e-02) (3.0e-03) (2.6e-02) (1.9e-02)

bα, rad 0.22 0.20 0.25 0.18 0.18 0.10
(3.1e-03) (3.2e-03) (4.4e-03) (2.3e-03) (2.7e-03) (2.8e-03)

φα, rad 5.48 4.50 2.22 2.68 0.28 0.21
(4.3e-02) (1.2e-01) (1.7e-01) (2.0e-02) (7.4e-02) (9.0e-02)

aβ , rad 0.08 0.09 0.08 0.16 0.10 0.12
(1.8e-04) (2.1e-04) (2.7e-04) (2.6e-04) (2.2e-04) (2.7e-04)

bβ , rad 0.02 0.02 0.02 0.03 0.02 0.01
(2.5e-04) (3.0e-04) (3.7e-04) (3.7e-04) (2.7e-04) (3.4e-04)

φβ , rad 0.57 5.86 3.82 4.52 1.86 1.29
(3.8e-02) (1.1e-01) (1.7e-01) (2.3e-02) (7.5e-02) (9.2e-02)

Table S2. Parameter values with confidence bounds obtained by
fitting Πc

Parameter value (±95% confidence bounds)

Parameter Cell1a* Cell1b Cell1c Cell2 Cell3 Cell4

hy , µm 138.78 150.11 28.92 84.47 147.47 143.76
(1.3e-02) (1.5e-02) (5.8e-02) (5.6e-03) (2.4e-02) (2.0e-02)

hz, µm 36.02 30.49 47.88 106.61 51.43 111.92
(1.7e-02) (3.4e-02) (4.0e-02) (7.8e-03) (2.7e-02) (2.1e-02)

∆z, µm 1.72 1.66 1.79 1.39 1.74 1.66
(8.2e-04) (7.2e-04) (1.0e-03) (4.4e-04) (8.1e-04) (5.6e-04)

aρ, µm 0.75 0.55 0.47 0.47 0.42 1.17
(7.1e-03) (5.5e-03) (7.9e-03) (5.1e-03) (8.5e-03) (8.2e-03)

bρ, µm 0.20 0.20 0.21 0.24 0.19 0.18
(1.0e-02) (7.8e-03) (1.1e-02) (7.3e-03) (1.2e-02) (1.2e-02)

φρ, rad 5.83 5.18 4.44 5.55 2.55 1.08
(4.9e-02) (4.0e-02) (5.4e-02) (3.0e-02) (6.4e-02) (6.6e-02)

aψ , rad 4.76 6.16 1.68 1.55 0.08 3.40
(1.0e-02) (1.1e-02) (1.9e-02) (1.3e-02) (2.3e-02) (7.1e-03)

bψ , rad 0.26 0.27 0.43 0.47 0.46 0.09
(1.3e-02) (1.4e-02) (2.4e-02) (1.5e-02) (2.8e-02) (9.8e-03)

φψ , rad 3.95 3.44 2.67 4.18 0.92 6.12
(5.4e-02) (5.7e-02) (6.2e-02) (3.8e-02) (7.1e-02) (1.1e-01)

bz, µm 0.24 0.25 0.21 0.19 0.26 0.20
(7.1e-03) (5.5e-03) (7.9e-03) (5.1e-03) (8.5e-03) (8.2e-03)

φz, rad 0.01 5.21 2.70 3.47 0.83 1.73
(3.0e-02) (2.2e-02) (3.7e-02) (2.7e-02) (3.3e-02) (4.1e-02)
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Table S3. Parameter values with confidence bounds obtained by
fitting Πe

Parameter value (±95% confidence bounds)

Parameter Cell1a* Cell1b Cell1c Cell2 Cell3 Cell4

ek, µm 16.98 16.72 16.73 14.45 17.74 17.55
(9.1e-03) (1.8e-02) (1.2e-02) (1.5e-02) (1.1e-02) (1.5e-02)

ei, µm 1.71 2.66 3.50 2.19 2.81 2.99
(4.8e-02) (9.3e-02) (5.5e-02) (1.1e-01) (8.5e-02) (1.1e-01)

aγ , rad 0.56 0.84 1.43 1.23 1.00 0.31
(2.6e-02) (2.1e-02) (1.6e-02) (3.7e-02) (4.2e-03) (5.2e-03)

bγ, rad 0.23 0.21 0.28 0.20 0.19 0.10
(1.1e-02) (1.2e-02) (6.8e-03) (1.1e-02) (5.4e-03) (4.2e-03)

φγ, rad 2.21 1.14 5.32 5.72 3.21 3.41
(4.5e-02) (5.3e-02) (2.6e-02) (6.0e-02) (2.7e-02) (4.1e-02)

Table S4. Uncertainties of the flagellar shapes reconstruction procedure for Cell1a*

Beat phase

nsp 0.0Tb 0.1Tb 0.2Tb 0.3Tb 0.4Tb 0.5Tb 0.6Tb 0.7Tb 0.8Tb 0.9Tb

±95% confidence bounds for i-components, µm
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.35 0.32 0.18 0.12 0.10 0.27 0.26 0.31 0.13 0.22
3 0.19 0.16 0.06 0.03 0.05 0.10 0.11 0.19 0.25 0.33
4 0.28 0.32 0.07 0.08 0.18 0.24 0.37 0.38 0.67 0.54
5 1.18 0.37 0.14 0.42 0.14 0.31 0.24 0.46 0.17 0.17
6 0.77 0.09 0.27 1.07 0.33 0.63 0.13 0.18 0.24 0.25
7 0.09 0.19 2.84 1.53 0.13 0.13
8 322.35 0.14
9 2,071.27

±95% confidence bounds for j-components, µm
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.29 0.21 0.18 0.07 0.08 0.28 0.16 0.46 0.17 0.18
3 0.25 0.17 0.08 0.12 0.10 0.13 0.29 0.16 0.19 0.21
4 0.27 0.22 0.10 0.12 0.14 0.10 0.28 0.27 0.17 0.34
5 1.40 0.36 0.06 0.66 0.10 0.13 0.17 0.19 0.26 0.43
6 0.47 0.23 0.37 0.20 0.29 1.00 0.13 0.17 0.29 0.36
7 0.29 0.22 9.69 1.35 0.21 0.13
8 174.70 0.13
9 1,051.48

±95% confidence bounds for k-components, µm
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.42 0.31 0.11 0.07 0.08 0.09 0.04 0.07 0.05 0.12
3 0.19 0.22 0.19 0.21 0.12 0.11 0.12 0.18 0.05 0.13
4 0.34 0.27 0.10 0.55 0.24 0.10 0.41 0.05 0.52 0.33
5 0.25 0.07 0.16 0.10 0.32 0.11 0.09 0.36 0.13 0.33
6 0.40 0.08 0.10 2.80 0.09 0.11 0.09 0.07 0.09 0.15
7 0.08 0.16 0.09 0.23 0.07 0.11
8 161.13 0.06
9 1,080.15

Flagellar length, µm
38.9 39.1 37.9 38.7 36.5 40.1 36.9 35.7 37.7 39.6

Confidence bounds for the interpolation points’ coordinates of the splines that describe the flagellum (at
each phase) and estimated flagellar length.
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Table S5. Uncertainties of the flagellar shapes reconstruction procedure
for Cell2

Beat phase

nsp 0.0Tb 0.1Tb 0.2Tb 0.3Tb 0.4Tb 0.5Tb 0.6Tb 0.7Tb 0.8Tb 0.9Tb

±95% confidence bounds for i-components, µm
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.39 0.14 0.09 0.08 0.06 0.10 0.22 0.09 0.13 0.30
3 0.17 0.19 0.37 0.45 0.09 0.26 0.35 0.07 0.11 0.18
4 0.51 2.61 0.49 0.25 0.44 0.42 0.43 0.19 0.42 0.24
5 0.53 3.80 0.39 0.59 0.09 0.15 0.26 0.26 1.02 0.75
6 4.57 0.16 1.45 0.14 0.19
7 58.23 0.43 0.14

±95% confidence bounds for j-components, µm
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.30 0.13 0.24 0.13 0.11 0.33 0.78 0.25 0.23 0.27
3 0.38 0.56 0.73 0.25 0.13 0.29 0.75 0.20 0.16 0.32
4 0.24 0.49 0.87 0.14 0.10 0.39 0.85 0.23 0.63 0.34
5 2.35 20.72 0.31 0.89 0.10 0.20 0.93 0.70 1.57 1.00
6 4.16 0.13 1.37 0.11 0.25
7 21.80 0.38 0.34

±95% confidence bounds for k-components, µm
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.71 0.25 0.22 0.13 0.05 0.08 0.16 0.08 0.08 0.18
3 0.26 0.60 1.87 0.29 0.13 0.19 0.23 0.07 0.06 0.33
4 0.77 2.51 0.79 0.47 0.40 0.63 0.41 0.12 0.25 0.11
5 1.80 0.83 0.16 0.25 0.18 0.27 0.89 0.12 0.16 0.21
6 4.37 0.17 0.37 0.15 0.17
7 47.88 0.12 0.12

Flagellar length, µm
35.3 34.5 31.4 29.4 34.1 38.8 37.5 35.4 34.9 36.2

Confidence bounds for the interpolation points’ coordinates of the splines that describe the flagellum (at
each phase) and estimated flagellar length.

Movie S1. Montage of video recordings of swimming E. gracilis observed under a microscope (at increasing magnification and image-acquisition rate). At
time scales larger than the flagellar beating period cells can be observed moving on a helical path while rotating about a fixed axis. At smaller time scales,
finer features of the rototraslatory motion appear.

Movie S1
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Movie S2. Reconstructed swimming kinematics of E. gracilis. The resulting trajectory of the cell can be seen as a smooth circular helix (the “backbone”
trajectory), perturbed by periodic “swirls” at the flagellar beating time scale. The cell completes one turn of the helix while undergoing a full rotation around
the axis of the helix. The Euglena’s body is not to scale with the displacements for visualization purposes.
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Movie S3. Flagellar shape reconstruction. We exploit the slow (incremental) rotational motion of the Euglena around the axis of its helical trajectory. As the
Euglena rotates, at instants one beating period Tb apart, different views of the same flagellar configuration are exposed. This permits an algorithmic stereo
matching reconstruction of the intrabeat flagellar shapes.

Movie S3

Movie S4. Variability of the flagellar beat among different observations. The reconstructed 3D flagellar shape of Cell1a* (green), conveniently scaled in
both space and time, is superimposed (blue) on image data from the other five datasets. The good overlap suggests the existence of a distinctive Euglena
beat style.
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Movie S5. Comparison between flagellar shapes, during one beat, and the resulting translational and angular velocities (represented in the cell body
reference frame coordinates).

Movie S5

Movie S6. Video summary. Reconstruction of the 3D kinematics of euglenoid flagellar swimming, starting from high-resolution 2D image recordings.
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