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Abstract
A unique topographical representation of space is found in the concerted activity of grid cells in

the rodent medial entorhinal cortex. Many among the principal cells in this region exhibit a hexag-

onal firing pattern, in which each cell expresses its own set of place fields (spatial phases) at the

vertices of a triangular grid, the spacing and orientation of which are typically shared with neigh-

boring cells. Grid spacing, in particular, has been found to increase along the dorso-ventral axis of

the entorhinal cortex but in discrete steps, that is, with a modular structure. In this study, we

show that such a modular activity may result from the self-organization of interacting units, which

individually would not show discrete but rather continuously varying grid spacing. Within our

“adaptation” network model, the effect of a continuously varying time constant, which determines

grid spacing in the isolated cell model, is modulated by recurrent collateral connections, which

tend to produce a few subnetworks, akin to magnetic domains, each with its own grid spacing. In

agreement with experimental evidence, the modular structure is tightly defined by grid spacing,

but also involves grid orientation and distortion, due to interactions across modules. Thus, our

study sheds light onto a possible mechanism, other than simply assuming separate networks a pri-

ori, underlying the formation of modular grid representations.
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1 | INTRODUCTION

An accurate representation of their own position in space is thought to

be a fundamental requirement for animals to perform most of their

activities, which entail moving around in the environment. The spatial

cognitive map theory outlines such a flexible representation (Tolman,

1948), in which an animal creates schemas that incorporate spatial

knowledge. For years, the cognitive map has been associated with the

hippocampus (O’Keefe & Nadel, 1978), where, in rodents, principal

cells have been seen to represent specific locations in paradigms that

require the animal to move in a given environment (O’Keefe &

Dostrovsky, 1971). In 2005, the discovery of grid cells, one synapse

upstream to the hippocampus, in the medial entorhinal cortex,

appeared to reveal a much more geometrical, rigid implementation of

the cognitive map concept (Hafting, Fyhn, Molden, Moser, & Moser,

2005; Moser, Kropff, & Moser, 2008). In small flat environments, these

grid cells fire at multiple locations with a regular hexagonal structure;

unlike place cells, they fire in all environments and maintain rigid coac-

tivity relations (Fyhn, Hafting, Treves, Moser, & Moser, 2007). Reminis-

cent of a stack of sheets of millimeter paper stapled together, nearby

cells display the same hexagonal pattern, although phase-shifted, in

one environment and across environments. At the same time, grid

spacing increases gradually from the dorsal to the ventral end of ento-

rhinal cortex, suggesting that the same representation is replicated at

multiple scales (Brun et al., 2008). At a given scale, the observed rigid-

ity, that is, that phase relationships between nearby grid cells are pre-

served during remapping (Fyhn et al., 2007), makes one think of strong

local networks, which have been hypothesized to approximate a metric

system (Moser & Moser, 2008).

Do these parallel representations occur at any possible scale? By

systematic analysis of multiple unit recordings in single animals, grid

cell activity was found to be organized in discrete modules, with only

four to five spatial scales observed in each animal (Stensola et al.,

2012). A simple explanation of such modular organization is that it is
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pre-wired: grid cells may emerge already affiliated with one of four to

five networks, within which units interact strongly, while they interact

weakly, if at all, across networks. A model that offers such an account,

where units learn their affiliation among different pre-defined scales,

has already been presented (Pilly & Grossberg, 2014). We want to

assess the alternative hypothesis that the modular structure is not pre-

wired, and instead self-organizes. Our approach is based on a model,

the self-organization model previously proposed for the formation of

grid cell activity (Kropff & Treves, 2008). Here, we consider the con-

comitant self-organization of the modular structure for an extended

network of grid units.

2 | THE MODEL

In the model, three ingredients are necessary for the development of a

coherent grid pattern. First, a cellular adaptation mechanism suppresses

firing within a certain time window after spells of intense firing; for a

rodent moving in an environment at a certain average speed, and single

units responding primarily to location-specific inputs, this tends to sup-

press firing in a ring around each region where the inputs happen to be

stronger. In other words, adaptation acts indirectly as a spatial band-

pass filtering. Second, the self-organization of multiple fields into the

hexagonal pattern requires the gradual reinforcement of those initially

random fields that happen not to suppress each other. This can be

achieved by Hebbian plasticity on the afferent connections to a single

unit, and slowly produces hexagonal grids at the single unit level, with

random orientations. Third, different grid units endowed with the same

adaptation time constants produce, in a flat environment, distinct but

aligned hexagonal patterns. The addition of collateral interactions,

modulated by the direction selectivity of each unit (Kropff & Treves

2008), has been shown to have the capability to align the grid patterns

into a common orientation for groups of units (“modules”), an alignment

which is preserved during remapping (Si, Kropff & Treves, 2012).

Strictly speaking, this network model accounts for the conjunctive (grid

x head direction) activity found in layer III and deeper layers of mEC

(Sargolini et al., 2006); however, it can be extended to include also, as a

downstream population of units, those expressing pure grid activity, as

observed in layer II, without any head direction modulation (Si & Treves,

2013). In the model, the information about the animal’s position may be

delivered by different sources, including a major feedback projection

from CA1 to deep layers in mEC (Bonnevie et al., 2013; Moser et al.,

2014). As the self-organization character of the model requires Hebbian

learning to refine and reinforce a specific lay-out of the multiple fields

of each unit, it depends on input statistics, whether from CA1 or else-

where, and ultimately on the exploration of the environment itself. This

is what makes the model predict different types of lay-out as the geom-

etry or the dimensionality change, in comparison to a simple planar

Euclidean geometry (Stella, Si, Kropff, & Treves, 2013; Urdapilleta,

Troiani, Stella, & Treves, 2015; Stella & Treves, 2015). As previously dis-

cussed (Si & Treves, 2013), the dependence of the model on learning

conditions may be critical particularly during development. In this sense,

the timescale to develop a population-based grid structure in the grid

or conjunctive layer is in the order of days of active exploration.

Detailed information about the model is given in the Appendix.

2.1 | Prewired modular organization

In a simple scenario, the self-organization of different modules may

reduce to the parallel self-organization of largely separate networks

FIGURE 1 Homogeneous networks with different grid spacing. (a) The parameter b1 in the self-organization model largely controls this
property. Networks with large values of b1 are tightly organized in a common representation with small grid spacing, whereas networks
with a small value of b1 express a less coherent representation with large grid spacing and more variability. (b) Representative examples of
single unit activity from homogeneous ensembles, as indicated in panel (a) (different Ni). Left panel: Spatial map. Right panel: Auto-
correlogram. Axis and labels are indicated in the lower panels [Color figure can be viewed at wileyonlinelibrary.com]
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internally homogeneous in terms of the single-unit properties, including

grid spacing. A common orientation is produced by collateral interac-

tions within the units of the module, without, or with weak projection

to other modules. In Figure 1, we show the simulated emergence of

typical grid representations in homogeneous networks, each assigned

specific adaptation properties (here restricted to the manipulation of

the b1 inverse time constant). The parameter b1, which in the model

sets the timescale of the adaptation process, controls the grid spacing

developed by the units (see Figure 1a). A common orientation for all

units in the ensemble and diverse phase relationships between them

are organized by the collaterals and by individual head direction modu-

lation. When isolated units are simulated with directional modulation,

there is a slow temporal drift of the firing map along the opposite

direction of the associated head-direction selectivity. This is a conse-

quence of the adaptation properties (modeling fatigue), exerting a

larger effect in a given direction for each conjunctive unit. The effect is

essentially the same as the one reported for the experience-dependent

properties of the firing fields in place cells (Mehta, Barnes & McNaugh-

ton, 1997; Mehta, Quirk & Wilson, 2000). When conjunctive units

interact with each other, drift is reduced because neighboring units

“push” each other along all directions, eventually establishing a kind of

strained or frustrated fixation, except when the directional modulation

is very strong. For units developing a larger grid spacing (small b1), indi-

vidual fields are also larger and the drift effect lasts longer. To compen-

sate this (assuming it makes sense for the different modules to reach

stability at about the same time), as the grid spacing increases, the

head-directional modulation should be less tuned. This weaker modula-

tion at large grid spacing has an impact on the variability observed in

the geometrical properties of the pattern, which generally display a

looser overall alignment. This variability, both in grid spacing and in

alignment, is also observed in experimental studies (Stensola et al.,

2012). The (putative) computational requirement of variable head

direction modulation strength exactly matches what was recently

found about the topographical organization of head direction selectiv-

ity along the dorso-ventral axis in the mEC (Giocomo et al., 2014). Rep-

resentative examples of single-unit grid activity displayed by the

parallel development of networks are shown in Figure 1b, as well as

the prototypical auto-correlograms used to characterize grid patterns.

As expected, therefore, the parallel development of noninteracting net-

works successfully explains modular formation, by relying on pre-wired

compartments.

2.2 | Modular self-organization

As an alternative, we consider the hypothesis that the self-organization

of the modules may occur by a spontaneous breaking of a continuous

distribution of time constants in a single heterogeneous network, via

interactions that produce discrete domains of grid spacing. This can be

considered analogous, at the level of firing maps, to the synchro-

nization of interacting oscillators exhibited by the Kuramoto model

(Acebron, Bonilla, Perez Vicente, Ritort, & Spigler, 2005; Kuramoto,

1984). In that case, due to the interactions, elements with different

natural frequencies acquire a common rotation, if the coupling is strong

enough. In our model, instead, we consider a smooth gradient in the

parameter b1, possibly accompanied by other variable cellular proper-

ties along the dorso-ventral axis; and collateral connections that pro-

vide for interactions within a given range along the same axis. As

shown in Figure 1, each specific value of b1 in isolation (or in an ensem-

ble of identical elements) would imply the emergence of a specific

value of grid spacing. Given a population of NmEC units, labeled by i

(i51, . . ., NmEC), to avoid boundary effects, we find it convenient to

take the index i to run along the axis twice from the ventral to the dor-

sal and back to the ventral end (Figure 2). Then units lie effectively on

a ring, and each interacts via collateral connections with Nlat other

neighboring units on each side. To simplify, interactions are dependent

on distance along this unidimensional circular axis, and thus interac-

tions across the two branches joining ventral to dorsal ends are not

considered. We further assume, in our model, that the “natural” grid

spacing k (i.e., the grid spacing developed in isolation or in an ensemble

of identical units) should be linearly related to the distance D from the

dorsal end of mEC (this is a conservative assumption, as will be clear

below). Since one can characterize the relationship between the grid

spacing, k, and the parameter b1 as, roughly,

k b1ð Þ5 a01 a1 exp 2b1=B1½ � (1)

valid for the entire range except possibly very large values of k (see

Figure 1), by setting the value b1 for individual units in the heterogene-

ous population as

b1 ið Þ5B1 ln½c1=ðD2c0Þ� (2)

with appropriate values c0 and c1 and B1 (obtained, e.g., via the evalua-

tion of selected values of b1 at the dorsal/ventral ends to

FIGURE 2 Heterogeneous network of conjunctive grid units.
Upper figure: To avoid boundary effects, the network is arranged
as a ring, with individual unit properties linearly changing from
dorsal to ventral end, along either half-ring. Lower panels: variable
properties are: (a) the parameter b1, determining the grid spacing
of individual firing maps, (b) the inverse tuning width m, quantifying
head-direction modulation, (c) the coupling q, weighting collateral
to feedforward connectivity
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approximately match experimental measures) one recovers the desired

linear relation between D and k. In particular, we set B1 from Figure 1

as 0.080 [t21] (in inverse arbitrary time units). Concomitantly, inspired

by (Giocomo et al., 2014), we impose progressively sharper head-

direction selectivity towards the dorsal end, and also decreasing

collateral-to-feedforward weights. In detail,

Inverseof thewidth of the tuning function :m b1ð Þ5 d01 d1 exp 2b1=B1ð Þ (3)

Strengthof collaterals : q b1ð Þ5 e01 e1exp 2b1=B1ð Þ (4)

Parameters d0 and d1 are defined in order to obtain m (dorsal)51.0

(sharply tuned head direction selectivity) and m (ventral)50.2 (slightly

tuned), and e0 and e1 to obtain q (dorsal)50.2 (weak influence of col-

laterals), and q (ventral)50.4 (stronger influence).

In addition to endowing units with these variable properties along

the model ventro-dorsal axis, other aspects of the model are: (1) To

reduce confounding effects, inputs from all place cells are taken to reach

each conjunctive unit, so any scale variation in place fields and topogra-

phy in CA1-to-mEC connections is disregarded, (2) Collateral interactions

are localized to the neighborhood of each unit (|i2 j|51 . . . ,Nlat), and

are sparse, (3) To avoid boundary effects at dorsal/ventral ends, they are

joined together, but via the ring network mentioned above; in practice,

this creates a mirror image of the dorso-ventral axis, with the properties

defined above selected according to the dorso-ventral position along

either half of the ring, see Figure 2.

“Gradient smoothness” is controlled by the ratio Nlat/NmEC. By

running distinct simulations, all with the same extreme values for the

variable properties, and all with the same Nlat (2Nlat5100), but with an

increasing number of units in the conjunctive grid layer, NmEC, we

tested different gradients. In particular, in an all-to-all (but sparse)

connectivity pattern, we did not observe the emergence of modules,

although a mild effect of aggregation between close units was ob-

served, interleaved with the natural development of the intrinsic grid

spacing, given by the individual values of b1 (not shown). As expected,

this aggregation process was strengthened as NmEC increases. The first

signs of clear modularity were observed for NmEC5600, the results

reported hereafter.

3 | RESULTS

The self-organization of modular activity in a heterogeneous network

of interacting conjunctive units is evident from the clustering of indi-

vidual grid patterns in a few common representations. Grid patterns

were identified through standard procedures, based on spatial autocor-

relograms (Hafting et al., 2005; Sargolini et al., 2006; Stensola et al.,

2012). In brief, units with grid scores above a chosen threshold (see

Figure 3) were selected for subsequent analysis. From the spatial auto-

correlograms, we identified the six fields closest to the origin and

selected three as the “axes” of the grid representation. Following

(Stensola et al., 2012), only units surpassing fixed criteria on the inter-

axis angle and the distortion between individual grid distances (distan-

ces from the origin to the respective fields) were further analyzed.

After this filter, the grid spacing of each grid unit was measured as the

arithmetic mean of grid distances along the three axes. As shown in

Figure 3a (top panel), such spacing follows the overall trend expected

from the setting of the parameter b1, from the ventral to the dorsal

and back to the ventral end. When units are relabeled progressively

according to their dorso-ventral position, the same trend is conserved

but a step-like behavior is revealed, with a small number of steps (left

bottom panel). This is clearly shown by the multi-peaked distribution of

grid distances (right panel), which is different from the gradual distribu-

tion designed before adding interactions. We can also observe that

between the steps (left panel), there are gaps along the horizontal

dimension. These results from units that do not pass the criteria for

further analysis and are therefore not shown, because they do not

express a clear spacing. This effect is reduced by lowering the thresh-

old on grid score. Overall, this means that units relax grid quality

between clearly delimited modules (but, as we demonstrate in Figure

3g, the very same modules are still present even with units with very

poor grid characteristics). Interestingly, Figure 3a shows that the clus-

tering in grid spacing values develops similarly along both branches of

the dorso-ventral gradient, indicating that it is a robust effect.

In agreement to Stensola et al. (2012), as the spacing in each mod-

ule increases, its dispersion increases as well. To visually minimize this

effect, a representation of the distribution of grid spacing in semi-

logarithmic scale is convenient. As shown in Figure 3b, in this simula-

tion four modules are clearly visible (indicated by different colors),

although some peculiarities are worth mentioning. First, the third mod-

ule (light brown in the figure) is associated to two peaks, very close in

magnitude. This is likely a feature of this particular simulation and it

may be associated to finite size and finite time effects. However, as we

point out below, a stronger collateral effect and, perhaps, a softer gra-

dient in individual properties may be necessary to resolve modules,

particularly at larger scales. Second, some units are associated to the

tail of this third module, but more likely they are isolated units (see Fig-

ure 3a, left bottom panel, and Figure 3e). Both observations suggest

that a stronger collateral interaction at this particular topographical

location, given by q in our model, may be necessary to coalesce the

aggregated units. Third, the fourth module is scarcely populated, in

agreement to experiments to date. In fact, whatever the criterion for

the inclusion of units in the grid category, fewer units pass it close to

the ventral end. This may be an indication that grid networks at larger

scales are less stable, and that the experimental evidence for an

approximately geometric scaling of the spacing (Moser et al., 2014)

may in part arise from the difficulty of larger scales to qualify as grids.

The ratios of the grid spacing between two consecutive modules are

not fixed, but vary between 1.27 and 1.4, and are broadly consistent

with experimental data.

The clustering indicated by the distribution of grid spacing around

certain values can also be revealed if we rank units according to their

grid spacing, and then consider the absolute difference of grid spacing

between units. This ordered bi-dimensional map is shown in Figure 3c

and clearly exhibits a community structure, where units belonging to

the same module have a small difference in grid spacing (white color).

Colored corners indicate the limits of each module. Quantitatively, the
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“discreteness” was defined by (Stensola et al., 2012) as the standard

deviation of the statistics given by the collection of unit counts in all

bins of the (binned) distribution of grid spacing, for a particular bin

width. In agreement to that study, we found a consistent large

discreteness value, irrespective of the bin width, clearly separated from

a control uniform-like distribution (not shown).

In addition to grid spacing, the orientation of the hexagonal pattern

is essential to define a common representation and, therefore,

FIGURE 3 Self-organized modular development of grid activity. (a) Left: Spacing displayed by individual units, labeled and colored
according to Figure 2 (top), and relabeled dorsal-to-ventral (bottom). Right: Grid spacing histogram. By construction (see main text), a nonin-
teracting population would produce a flat distribution (cyan dash-dotted line). (b) Grid spacing histogram in semi-logarithmic scale. Modules
are indicated by colored vertical lines, which mark clear relative maxima. The spacing in the third module ranges between the values indi-
cated in light brown. (c) Distance between units ranked according to their grid spacing. Modules are indicated by colored corners. (d) Cen-
ters of the surrounding fields closest to the origin in the autocorrelogram. Points on the negative semi-plane (shadowed) are a p-rotated
version of those on the positive one. (e) Joint histogram of spacing 3 orientation. (f) Distortion map (see text below). (g) Grid spacing histo-
gram in semi-logarithmic scale, for units selected with different thresholds (indicated in the inset). In addition, the control distribution (uni-
form density in linear scale) is superimposed [Color figure can be viewed at wileyonlinelibrary.com]
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modularity itself. A common alignment among units can be revealed

clearly by looking at autocorrelograms, which are independent of the

spatial phase of individual units. The six centers of the hexagonal pat-

tern can be extracted from each autocorrelogram and then plotted

across units, as in Figure 3d. To visualize the association between indi-

vidual representations, the six centers were colored differently accord-

ing to their position in the plane. In fact, due to symmetry properties of

autocorrelograms, only three of those are independent (e.g., those in

the upper hemiplane). As seen in the Figure, the centers of the individ-

ual hexagonal patterns cluster together, especially for the modules with

the smallest grid spacing. This clustering, therefore, should be also

reflected in the orientation at the population level. In Figure 3e we

show the joint histogram of the grid spacing and orientation of the

three independent axes of the grid pattern, where the segregation of

the first three modules is clear. In this plane, the similar distribution

across the three axis separated roughly by 608 reflects the symmetry

of the underlying hexagonal structure, although there are systematic

variations that we will consider below. Considering one particular axis

or all three, we can observe that the orientation of the grids is, unlike

its spacing, strongly correlated across these three modules, though not

identical. Furthermore, although collateral connections have a definite

range, their influence spreads through correlated activity well beyond

this range. This can be inferred from the common orientation devel-

oped by all units in the second and third modules, even when individual

units are in one of two separate branches of the dorso-ventral gradient.

The fourth module (as in general all units with large spacing), is not

only statistically unreliable due to the few units it includes; it also has a

poorer aggregation. Both observations are in agreement with the

experimental data reported in (Stensola et al., 2012).

As suggested by Figure 3d, individual grid patterns are not exactly

hexagonal, and some variability in grid spacing and inter-axis angles is

observed. However, this variability is not random. Axes stretch and

shrink producing an ellipse, instead of a circle where the vertices of the

hexagonal pattern are supposed to lay on. This distortion can be quan-

tified by fitting best ellipses to the six surrounding fields in the individ-

ual autocorrelograms, and comparing the tilt and the eccentricity (or

ellipticity) at the population level. This population-based analysis can

be performed by constructing the histogram of the points whose polar

coordinates are given by the eccentricity (radius) and the doubled tilt

angle (polar angle). As observed in Figure 3f, this “distortion” map

exhibits largely a single cluster, indicating that all units tend to produce

ellipses oriented in the same direction, irrespective of the module they

belong to, with larger distortions (eccentricities) for units exhibiting the

largest grid spacing values (not shown). This is also in agreement with

some of the experimental data reported in (Stensola et al., 2012),

where they have found this coherent distortion but also a bi-modal

structure of the elliptical organization. Because the distortion does not

provide information for the modular architecture in our simulations, we

rely on spacing and orientation to define modules with minimal arbi-

trary manipulation. This is achieved with a k-means clustering selection

procedure, with four modules set ad hoc, k54 (although other values

were also considered). As the procedure does not produce a unique

deterministic outcome, we run the analysis 300 times and evaluated

the performance of each repetition by means of the population-based

mean of the so-called silhouette coefficient Cs, see (Stensola et al.,

2012) for further explanation. Based on the highest mean Cs, the best

clustering outcome was selected and the mean properties of each clus-

ter or module, as well as its cardinality, were obtained. A summary is

given in Table 1. Properties obtained by the k-means procedure con-

firm the modular structure already revealed by the analysis based on

the different histograms at the population level.

Because all previous results may critically depend on the threshold

imposed on the grid score for further consideration of individual units,

we analyzed the effects of varying this threshold, which in turn pro-

duces smaller/larger datasets. Figure 3g shows the smoothed histo-

grams for different threshold values, whereas Table 2 indicates the

number of units and the mean Cs obtained with the (best selected)

k-means procedure. Larger values of mean Cs quantifies domains for

data points that are better resolved by clusters, with increasingly less

TABLE 1 Properties of the k54 modules extracted by the k-means procedure

Module 1 Module 2 Module 3 Module 4

Spacing Axis 1 45.162.2 cm 57.163.5 cm 74.66 8.9 cm 104.6615.7 cm

Spacing Axis 2 46.063.3 cm 59.864.3 cm 77.06 7.3 cm 107.7612.6 cm

Spacing Axis 3 45.363.4 cm 58.762.8 cm 75.16 6.7 cm 103.768.6 cm

Orientation Axis 1 23.96 4.6 deg 0.0611.8 deg 0.36 12.7 deg 6.9614.0 deg

Orientation Axis 2 52.364.1 deg 60.6611.8 deg 61.66 13.5 deg 71.3621.2 deg

Orientation Axis 3 266.76 5.5 deg 262.5611.2 deg 263.3612.9 deg 253.3617.3 deg

Number of units 19 31 36 8

TABLE 2 Number of units and mean Cs of the (best) k-means
clustering procedure, for datasets produced with different thresh-
olds on the grid score

Number of units Mean Cs (k-means)

Threshold50.25 258 0.366 0.22

Threshold50.50 135 0.406 0.17

Threshold50.60 94 0.456 0.20

Threshold50.75 56 0.506 0.16

Total population, 600 U.
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degree of overlap between them. A mean Cs of 0.5 may be considered

a consistent separation. As noted, the modular structure is reliable,

beyond the particular value of the threshold. Naturally, as this value

increases, fewer units remain in the dataset but, on the other hand, the

quality of the definition of the clusters is enhanced.

4 | DISCUSSION

Our simulations point at the possibility that grid modularity may not be

hardwired but may result from a simple self-organization process at the

local network level. Similarly, the adaptation model (Kropff & Treves,

2008) has earlier demonstrated the possibility that grid structure may

emerge from self-organization at the single unit level.

There is a long list of features in the simulated results that could

be compared with the experimentally observed modularity. The degree

of abstraction of the model from the biophysics and connectivity of

real entorhinal networks, and the many simplifications it entails, make a

systematic study not so useful. One aspect, however, deserves atten-

tion. The variation of the adaptation time constant with distance along

the dorso-ventral axis was designed, in the model, to produce a linear

scaling of grid spacing with such distance. Yet this is not what the sim-

ulations produce. The different modules are comprised of different

number of units, with the fourth one having the least number. More-

over, grid spacing takes values that resemble more a geometric pro-

gression (albeit with slightly variable coefficient, from ca. 1.27 to ca.

1.4 between the third and fourth module) than a simple linear one. This

is reminiscent of the progression of values, geometric on average,

observed experimentally, with mean coefficient just above 1.4 (Sten-

sola et al., 2012). Note however that in our model the geometric coeffi-

cient is not imposed to optimize any representational capacity, as in

the argument by (Mathis, Herz, & Stemmler, 2012; Mosheiff, Agmon,

Moriel, & Burak, 2016; Sanzeni, Balasubramanian, Tiana, & Vergassola,

2016;), as it just emerges from the mechanics of self-organization.

As to the logarithmic form of the variation of the time constant, it

is at odds with the early observation of characteristic resonance time-

scales (Giocomo, Zilli, Frans�en, & Hasselmo, 2007), but in a conserva-

tive direction. If we had assumed a linear form, for example, a strong,

perhaps exponential increase in spacing towards the ventral end would

have been expected a priori. Therefore the simulations suggest that

the geometric progression observed may not just reflect the underlying

variation in single cell properties, but also network self-organization

effects. Are single cell properties in our adaptation model consistent

with experimental evidence? Yoshida, Jochems and Hasselmo (2013)

argue that the stronger firing rate adaptation they find in more ventral

portions of medial entorhinal cortex layer II contradicts the assumption

of the adaptation model. The model does not assume, however, stron-

ger adaptation in more dorsal mEC, but rather a faster recovery from

adaptation; and a faster set of characteristic time constants, from AHP

duration to (inverse) subthreshold membrane potential oscillation fre-

quency to input resistance, is precisely what Yoshida et al. (2013) mea-

sure, providing experimental support for the adaptation model. Their

correlation analysis does not have the resolution to clarify the exact

trend with which such single cell properties, tentatively associated to

the time constant required in our model, may vary along the dorso-

ventral axis, but it appears that the relationship is quite noisy anyway.

Note also that in a recent report an inverse progression has been

observed in bats (Heys et al., 2016). In this article, the authors per-

formed whole-cell patch recordings along the dorsal–ventral axis of EC

in bats and, surprisingly, found that the sag response properties and

the resonance properties recorded in layer II neurons of entorhinal cor-

tex in the Egyptian fruit bat demonstrate an inverse relationship along

the dorsal–ventral axis compared with the rat.

Pilly and Grossberg (2014) have produced an account of the emer-

gence of modularity based on “stripe” cells, where essentially by two-

dimensional superposition grid units emerge. For the modules in turn

to emerge, they use populations of stripe cells with different a priori

spacing, so it remains unclear how distinct modules self-organize. In

this sense, our study helps to clarify possible mechanisms by which

modules are produced, highlighting the potential role of collateral inter-

actions during this process.

Finally, one may wonder about the origin of the total number of

modules observed in each animal. In this respect, it seems premature to

attempt to establish firm relationships with observations in rodents, for

at least two reasons. First, both modularity and gridness appear to be

elusive and increasingly ill-defined notions as one approaches the ventral

end of entorhinal cortex, suggesting caution in extending there an ideal-

ized conceptual model that only really applies to the units with shorter

spacing at the other end. Second, observations and considerations arising

particularly in the case of bats (Geva-Sagiv, Las, Yovel, & Ulanovsky,

2015) with their behavioral need for widely divergent length scales, sug-

gest the possibility that grid-like units may reveal much more flexible

regimes, where for example, their spacing is modulated by ongoing

behavior, than so far observed in stereotyped experiments in rodents.

Such flexibility would open an entirely new perspective on the emer-

gence and the role not just of modules but also of grid cells themselves,

further highlighting the urgency of understanding their self-organization.
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APPENDIX

The model has been described in detail by Si et al. (2012). Briefly, each

unit in the conjunctive cell layer has a firing rate given by

Wt
i5Wsat tan

21½gtðat
i2ltÞ�H ðat

i2ltÞ (A1)

where Wsat52/p is the maximum firing rate (in arbitrary units), H(.) is

the Heaviside function, and gt and lt are the gain and the threshold of

the nonlinearity, which are dynamically adjusted during simulations in

order to satisfy conditions on the mean activity, a5Ri Wi/NmEC50.1,

and the sparsity, s5 (Ri Wi)
2/[NmEC Ri (Wi)

2]50.3, where the sum runs

over units in the conjunctive layer. The variable ai represents a filtered

version of an input signal hi,

at
i5at21

i 1b1ðht21
i 2bt21

i 2at21
i Þ (A2)

adapted by the dynamical threshold

bt
i5bt21

i 1b2ðht21
i 2bt21

i Þ (A3)

where bi has a slower dynamics than ai, b25 b1/3, with b1 varying

according to the dorso-ventral position of the specific unit i (see main

text). The overall input, at time t, of a given conjunctive unit is
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hti5fui ð/tÞ
X
j

Wt21
ij rtj1q

X
k

Ŵ ikW
t2s
k

 !
(A4)

where the first term in the brackets determines the feedforward con-

tribution from place units, located one synapse downstream when

looking at the feedback branch in the CA1-mEC connectivity layout,

and the second term the contribution resulting from collateral inter-

actions. The factor fui(/) multiplying both contributions is the head

direction modulation characterizing each conjunctive unit, specified

by its preferred direction ui and the inverse of the tuning width m

according to

fuð/Þ5c1ð12cÞ em½cos ðu2/Þ21� (A5)

with a basal modulation, c50.2. As mentioned in the main text, the

inverse tuning width m varies along the dorso-ventral axis, whereas

each individual ui is assigned by randomly sampling the 2p range

when establishing unit properties before the simulation starts.

The feedforward contribution in Equation A4 is determined by the

activity of “place units” (see Kropff & Treves, 2008, for a discussion of

this simplification), each one approximated by a Gaussian function cen-

tered in a pre-determined preferred firing location xj0, with a width

rp55 cm, according to

rtj5exp
2jxt2xjoj2

2r2
p

 !
: (A6)

This small width of place fields ensures that small grid spacing val-

ues may be attained at the dorsal end. In our model this width is con-

stant, unlike the variable scale found also for place cells along the

dorso-ventral axis in the hippocampus, which may lead to the relatively

small fields developed by grid units at larger grid scales, see Figure 1b.

However, representing the complete environment at different scales at

the level of the inputs is computationally prohibitive and, as we have

indicated, it is not critical for the development of the modular structure,

although it may influence the stability and the number of grid units in

the modules expressing large scales.

The preferred firing locations of place units are arranged in the

2D circular environment with a radial structure, in which units are

displayed on successive rings separated by �3.3 cm with a distance

between units along the ring circumference of also �3.3 cm. As

observed in Equation A4, each place unit contributes to the input of

a given conjunctive unit with a weight Wij, which is not static but

changes dynamically according to a Hebbian learning rule,

Wt
ij5 Wt21

ij 1 2 Wt
i r
t
j2W

t21
i �r t21

j

� �h i1
(A7)

where [.]1 indicates the threshold function ([x]150 if x<0, x oth-

erwise) and E is the learning rate, here evolving in a kind of simu-

lated annealing from a fast to a slow learning process,

Einitial50.005 and Efinal50.001 reached at 3/4 of the total simula-

tion time, and thereafter constant. Over-lined symbols are running

time-dependent averages of corresponding variables. After updat-

ing, all weights are normalized according to Rj (Wij)
251, mimicking

a homeostatic control of synaptic processes. To encourage each

unit to join one module, we set the simulation time at about five

times the timescale needed to produce reliable gridness and

alignment (see Si & Treves, 2013); i.e. here, total simulation

time5106 s.

The contribution of collateral interactions in Equation A4 is deter-

mined by the reverberated activity of all other conjunctive units, Wk,

evaluated after a delay s525 time steps (corresponding to �250 ms),

weighted by Ŵik. These collateral connections are formulated with the

prescription given in (Si et al., 2012), which mimics a long learning pro-

cess matching individual conjunctive properties, here restricted to a

local interaction in the arrangement considered for the heterogeneous

population (see Figure 2). In detail, those connections in the range of

interaction (|i2 j|�Nlat5100) are set as

Ŵ ik5 fuk ð/kiÞfui ð/kiÞ exp 2
d2ki
2r2

f

 !
2j

" #1
(A8)

whereas those outside this range are zero. In this equation, the head

direction selectivity of both pre- and post-synaptic units modulates

weight strength, such that it is maximal when their tuning is aligned.

In addition, to mimic learning in coactive conjunctive units, each unit

is assigned a spatial selectivity (a place field), in a location randomly

selected in the environment (Kropff & Treves, 2008). The “coactivity”

relevant to our synaptic modification rule is the simultaneous activa-

tion of the postsynaptic and the reverberated activity of the presyn-

aptic units. The reverberated activity of the presynaptic unit is

assumed to be the activity of the unit a number of time steps before

(a delayed internal reverberation, here 25 time steps), when the simu-

lated rat is in a different position from the current one. The coactiva-

tion associates therefore two positions a distance apart, the distance

travelled during reverberation (speed x reverberatory time510 cm,

with our parameters), here labeled dki in Equation A8, see (Si et al.,

2012) for further details. The direction joining the place fields of pre-

and post-synaptic units, /ki, defines the argument for the head direc-

tion alignment. A diluted connectivity is imposed via the parameter

j50.05 and the threshold function [.]1. As expressed in Equation

A8, this parameter controls which argument of the threshold function

will become negative and therefore, which weights vanish. Thus, only

units aligned and close in spatial selectivity between reverberated

pre- and post-synaptic activity will interact through collateral connec-

tions. In other words, this procedure produces a sparse connectivity

where a fraction of about 1/10 connections are effectively instanti-

ated. Importantly, these connections are allowed within the neighbor-

hood of any target unit, |i2 k|51, . . ., Nlat (see main text). The

relative contribution of collateral interactions to feedforward process-

ing of “place unit” input is weighted by a factor q, see Equation A4,

which here is taken to vary along the dorso-ventral axis (see main

text and Figure 2).

The model described above is driven by the random exploration

of a virtual agent, constrained in a circular environment of 2 m diam-

eter and moving with a constant speed of 40 cm s21. At each time

step, the running direction / is randomly updated from a Gaussian

distribution with zero mean and standard deviation 0.2 radians, and

URDAPILLETA ET AL. | 9



then used to compute the coordinates of the future position, consid-

ering the speed constant. If this position lies beyond the limits of the

circular environment, the trajectory is reflected. With this procedure,

the arena is covered homogeneously. In a more realistic situation,

where the agent covers the environment with a variable running

speed, it is the mean velocity that determines the grid spacing, as the

slow Hebbian learning process averages out fluctuations (Kropff &

Treves, 2008).

The programming code of the model (written in C) and the popula-

tion results analyzed here are available in a public repository: “ModelDB,

accession code 231392”, http://senselab.med.yale.edu/ModelDB/

showModel.cshtml?model5231392.
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