
1This work is partly supported by the TSU Competitiveness Improvement Program.

978-1-5090-0693-9/16/$31.00 ©2016 IEEE

Pseudo-exhaustive Testing of Sequential Circuits for Multiple Stuck-at Faults1

A. Matrosova, E. Mitrofanov
Tomsk State University, Tomsk, Russia
mau11@yandex.ru, qvaz@yandex.ru

Abstract

A Sequential circuit design is based on using mixed

description of a behavior of a combinational part. The
behavior is represented with a composition of
ROBDDs and monotonous products. The design
method provides fully delay testability of a
combinational part of a sequential circuit. In this
paper it is shown that the method also provides
multiple stuck-at faults testability of a combinational
part. The pseudo-exhaustive test consisting of two
parts is developed. One part is used to test sub-circuits
obtained by covering nodes of the proper ROBDDs by
elementary circuits (Invert-AND-XOR circuits). It
allows detecting multiple stuck-at faults at gate poles
of elementary circuits evenly remote from the
combinational part inputs. The second test part detects
all multiple stuck-at faults at gate poles of the rest
component of the combinational part. It is supposed
that only one of these two components of a
combinational part may be faulty. An estimation of the
length of such test is given.

1. Introduction

For high performance circuits it is not enough to
detect single stuck-at faults (SAF) at gate poles it is
desirable to detect delay faults and also multiple stuck-
at faults. It is important to provide testability for these
faults during circuit design. One of such approaches is
suggested in [1]. The complexity of the obtained
circuits is of the same order that the complexity of the
circuits not fully delay testable and obtained directly
from State Transition Graph (STG) description with
using the shortest code words for encoding states [1].
In this paper we investigate testability properties of
such circuits for multiple stuck-at faults.

A test generation strategy called as pseudo-
exhaustive testing was proposed in [2, 3]. The
advantages of this strategy are as follows: 1) Test
inputs are calculated at test application time. 2) Test

computation time depends only on the set of inputs and
outputs. 3) The strategy allows partitioning of the
circuit so that each partition can be tested exhaustively.
In this paper we apply such strategy.

In Section 2 the method of deriving combinational
part of sequential circuit is given. Testing single and
multiple stuck-at faults for Invert-AND-XOR circuit is
discussed in Section 3. Algorithm of obtaining pseudo-
exhaustive test for a combinational part of a sequential
circuit is suggested in Section 4.

2. Combinational part design

A State transition graph (STG) description of a
sequential circuit behavior is used [1]. Internal states
are encoded with (m,p) code words. Here m is the
number of 1-value components and p - the length of a
code word. After encoding states 0-values of code
words are changed for don’t cares. As a result we get
monotonous products among state variables. A
monotonous product is a factor of the corresponding
non monotonous Sum of Products (SoP) depending on
input variables.

Each SoP depending on input variables is
represented with the Reduced Ordered Binary Decision
Diagram (ROBDD). ROBDDs are derived with using
the same order of variables for each SoP. As a result,
we obtain the graph with s roots and two terminal
nodes called Shared BDD (SBDD). Here s is the
number of different SoPs. A SBDD internal node is
covered with EXOR-AND-OR circuit in Fig.1. Call
the circuit in Fig.1 as the elementary circuit. Note that
the elementary circuit implements formula

0 1i ix x
v i v i vf x f x f= == ⊕ .

Monotonous products are implemented with using
AND gates. It is proved [1], that the derived
combinational part of a sequential circuit is fully delay
testable.

The circuit design is illustrated by the example. The
STG description is represented with Table 1.

IEEE EWDTS 2016, Yerevan, October, 14-17, 2016 533

Encode FSM states with (2, 4) code words:
1 (1100), 2 (0110), 3 (0011), 4 (1001). Change
0-values of code words for don’t cares and obtain
Table 2.

vf

1ix
vf

=
ix0ix

vf
=

Fig. 1. Invert -AND-XOR circuit

Table 1. The STG-description of a sequential

circuit
x1 x2 x3 q q y1 y2 y3 y4 y5

0 - 1 1 1 1 0 0 1 0
1 0 - 1 1 0 0 0 1 0
1 1 1 1 2 1 0 0 1 0
- 1 0 2 2 1 0 1 1 0
0 - 1 2 3 1 0 1 1 0
1 0 1 3 3 1 1 0 0 0
0 - 0 3 4 0 1 0 0 0
- 1 1 3 4 1 1 0 0 0
1 - 0 4 4 0 1 0 0 1
- 1 1 4 1 1 1 0 0 1

Table 2. The system of Boolean functions

x1 x2 x3 z1 z2 z3 z4 z1 z2 z3 z4 y1 y2 y3 y4 y5

0 - 1 1 1 - - 1 1 0 0 1 0 0 1 0
1 0 - 1 1 - - 1 1 0 0 0 0 0 1 0
1 1 1 1 1 - - 0 1 1 0 1 0 0 1 0
- 1 0 - 1 1 - 0 1 1 0 1 0 1 1 0
0 - 1 - 1 1 - 0 0 1 1 1 0 1 1 0
1 0 1 - - 1 1 0 0 1 1 1 1 0 0 0
0 - 0 - - 1 1 1 0 0 1 0 1 0 0 0
- 1 1 - - 1 1 1 0 0 1 1 1 0 0 0
1 - 0 1 - - 1 1 0 0 1 0 1 0 0 1
- 1 1 1 - - 1 1 1 0 0 1 1 0 0 1

Let we extract the system F of completely specified

Boolean functions directly from Table 2. For each
function f of the system we select the cubes that
marked with the 1-value in Table 2 column that
corresponds to function f. Each sub-сube depending on
state variables we implement with sub-circuit that
consists of two input AND gates. In the example, the
sub-circuit contains the only AND gate.

Consider SoP of function f. Divide the products
corresponding to function f into subsets. Include

products with the same literals among state variables in
the same subset. Note that sub-products (depending on
state variables) of all subsets are monotonous. In the
example f=y1, monotonous products are represented as
factors:

1 1 2 1 3 1 2 3 2 3 2 3 1 3

3 4 1 2 3 2 3 1 4 2 3

(()

() (

)

)

z z x x x x x z z x x x x

z z x x x x x z z x

y

x

= ∨ ∨ ∨ ∨
∨ ∨ ∨

 (1)

Represent each SoP as ROBDD. Integrate all these
ROBDDs into Shared BDD (Fig. 2).

10

x2

x3

x2

x1

x2

x3

x1

1
x1

23

4

Fig. 2. Shared BDD (SBDD)

Cover each node of Shared BDD with circuit in
Fig. 1 not paying attention on the edges coming to 0
terminal node. As a result, we get circuit in Fig. 3.

Connect the outputs of the circuit implementing
Shared BDD with the outputs of the corresponding
circuits implementing sub-products depending on state
variables (monotonous sub-products of function f).
For that we use two input AND gates. Then we
connect all obtained sub-circuits applying OR gates
and get circuit implementing function f of system F
(Fig. 4).

1 3 24

x1 x2 x3
Fig. 3. SBDD implementation

534 IEEE EWDTS 2016, Yerevan, October, 14-17, 2016

x1 x2 x3

z1 z2 z3 z4

y1

Fig. 4. Implementation of function y1

3. Testing of single and multiple stuck-at
faults for Invert-AND-XOR circuit

Consider single stuck-at 1, 0 faults at elementary

circuit inputs 0ix
vf

= , 1ix
vf

= and output fv. (Fig.1). Each

of them correlates with single stuck-at fault at the
ROBDD low v, high v and v, correspondingly. Stuck–
at 1(0) fault of variable xi correlates with 01(10) fault
of edges running from node v. This means that any test
pattern for stuck-at fault at the external pole of the
elementary circuit covering node v is the test pattern
for the corresponding fault of ROBDD node v, low v
and high v.

Table 3
=0ix

vf =1ix
vf ix =0ix

vf =1ix
vf ix vf

1 0 1 1 0 1
0 1 0 1 1 1
1 1 0 0 0
1 1 1 0 0

Let Table 3represents test for single stuck-at faults

at the external poles of the elementary circuit (Fig.1).
Its first three columns correspond to input variables of
the circuit. The next three columns correspond to 0, 1
stuck-at faults at the circuit inputs detected by the
Boolean vector represented by the first three columns.
The last column represents stuck-at faults at the circuit
output.

Take into consideration that sometimes only one of

two vectors

0 1

0 1

1 0

i ix x
v vf f= =

 may be delivered to inputs

of the elementary circuit. Table 4 (5) represents test
patterns for single stuck-at faults at external poles of
the circuit when only vector 10 (01) may be delivered.

Table 4
=0ix

vf
=1ix

vf ix
0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

Table 5
=0ix

vf =1ix
vf ix

0 0 1
0 1 0
1 1 0
0 1 1
1 1 1

It is proved that test represented by one of Tables

3-5 for single stuck at faults at external poles of the
elementary circuit detects all multiple stuck-at faults at
gate poles of the circuit.

4. Deriving pseudo-exhaustive test

Testing of sub-circuits implementing SoPs
depending on input variables

We consider that either sub-circuits implementing
SoPs or the rest component of the combinational part
of sequential circuit may be faulty, but not both
together.

Let only one elementary circuit be faulty. This
circuit covers node v of Shared BDD. We need provide
the fault manifestation of the elementary circuit to any
output of the SBDD by any path connecting v with one
of roots of ROBDD comprising SBDD. Denote this

path as ε. Let εk be the product originated by ε. Let

δk be the product that provides delivering the test

pattern on inputs of the faulty elementary circuit.

Having got ε δk k for each input Boolean vector from

the proper Table (among Tables 3-5) of faulty
elementary circuit we find test patterns depending on
input variables x1,…, xn. Call these test patterns as test
fragment of the elementary circuit. Note that algorithm

of deriving ε δk k has a polynomial complexity.

Divide elementary circuits of sub-circuits,
originated by input variables SoPs into levels in
conventional way. The first level consists of
elementary circuits which inputs are combinational
part inputs. An elementary circuit belongs to the i-th
level if its inputs are connected with outputs of
elementary circuits of the (i-1)-th and less levels.

Sub-circuits (each implements input variable SoP)
connected with the same factor (Table 2) comprise the
separate group.

We test each group separately using the proper test
fragments beginning from elementary circuits of the

IEEE EWDTS 2016, Yerevan, October, 14-17, 2016 535

first level. Then we test elementary circuits of the
second level and so on. During testing the group, the
values of state variables turn the factor corresponding
to the group into 1.

Going over the groups, we either find a fault or
conclude that there are no multiple stuck-at faults at
gate poles of elementary circuits of the same level
among all groups. The test length is not more 5γN,
where N is the number of internal nodes of Shared
BDD and γ is the middle number of groups, which
contain the elementary circuit.

Testing of sub-circuit implementing
monotonous system

Correlate the output of each SoP depending on
input variables to variable wi. Form monotonous
system F* (from Table like 2) depending on state
variables and variables wi. For example, expression (1)
is rewritten as follows:

1 1 2 2 2 3 3 3 4 4 1 4w z z w z z w z z w z z∨ ∨ ∨ .

Consider single faults of literals of monotonous SoP
fj* from F*. Changing the certain literal in the certain
product for constant 1(0) call b(a)-fault. If several
literals are fault, call it multiple fault of the SoP. It is
known [4] that all multiple faults of irredundant SoP
consisting of prime implicants are detected with a test
for single faults of literals of this SoP. This test is
union of test patterns for each a,b-faults. Any fj* from
F* is irredundant SoP as it consists of monotonous
products.

Test pattern α of the monotonous SoP for a-fault of
product K is obtained by changing all don’t care
components of a ternary vector corresponding to
product K for 0-values. Test pattern β for b-fault of
product K and its literal xi is obtained by changing the
component corresponding to fault literal xi for inverse
value in vector α (in test pattern for a-fault).

Note that any multiple stuck-at fault at gate poles of
sub-circuit implementing monotonous SoP fj

*
(sub-circuit is designed by any method keeping SoP
[5]) is equivalent to the multiple fault of these SoP
literals. Consequently, test for single b(a) faults of
monotonous SoP fj

*detects any multiple stuck-at fault
at gate poles of the sub-circuit implementing this SoP.
In [6] the method of deriving test T for multiple stuck
at faults at gate poles of circuit implementing
monotonous system F* is suggested. The system is
designed by one of the methods keeping system F*.

We need form SoP f* [6] including all products of
system F*. In [6] it is shown that test T for single
a(b)-faults of SoP f* is the test for the same faults of
system F* and, consequently, the test for multiple

stuck-at faults at gate poles of circuit implementing
monotonous system F*.

The length of test T is not more than a sum of ranks
of SoP f* products and the number of these products.
Note that delivering the test pattern for current product
K from f* we need provide 1-value output of a SoP
from the group correlating with K.

To get pseudo-exhaustive test for circuit like Fig. 4
we need derive pseudo-exhaustive test for sub-circuits
implementing all SoPs depending on input variables
and test T for multiple stuck-at faults at gate poles for
the rest component of the circuit implementing
monotonous system F*. First we have to test all SoPs
depending on input variables.

5. Conclusion

Pseudo-exhaustive test for multiple stuck-at faults
at gate poles of the combinational part of a sequential
circuit designed with using a description of the
behavior as a composition of ROBDDs and
monotonous products is developed. It means that
circuits designed in this way are full delay testable and
pseudo-exhaustive multiple stuck-at fault testable. It is
shown that circuits designed in such a way being full
delay testable are also pseudo-exhaustive multiple
stuck-at fault testable.

References

[1] A.Yu. Matrosova, E.V. Mitrofanov, V. Singh, “Delay
Testable Sequential Circuit Designs”, Proceedings of IEEE
East-West Design & Test Symposium (EWDTS 2013),
Ukraine, 2013, pp. 293-296.

[2] E. J. McCluskey, “Verification Testing-A Pseudo-
exhaustive Test Technique”, IEEE Transactions on
Computers, Vol. C-33, No.6, 1984, pp. 541-546.

[3] E. Macii, T. Wolf, “Multiple Stuck-at Faults Test
Generation Techniques for Combinational Circuits Based on
Network Decomposition”, 36th Midwest Symp. On CAS,
Vol. 1, 1993, pp. 465-467.

[4] I. Kohavi, Z. Kohavi, “Detection of Multiple Faults in
Combinational Logic Networks”, IEEE Transasctions on
Computers VC-20, no. 6, 1975, pp. 556-568.

[5] A. Matrosova, D. Kudin, E. Nikolaeva, “Circuits without
False Paths”, Proceedings of IEEE East-West Design & Test
Symposium (EWDTS 2014), Ukraine, 2014. pp. 160-163.

[6] A. Matrosova, V. Andreeva, V. Tomkov, “Fully delay
and multiple stuck-at fault testable FSM design”,
Proceedings of IEEE East-West Design & Test Symposium
(EWDTS 2015), Georgia, Batumi, 2015, pp. 212-215.

536 IEEE EWDTS 2016, Yerevan, October, 14-17, 2016

