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Abstract 
 
A Sequential circuit design is based on using mixed 

description of a behavior of a combinational part. The 
behavior is represented with a composition of 
ROBDDs and monotonous products. The design 
method provides fully delay testability of a 
combinational part of a sequential circuit. In this 
paper it is shown that the method also provides 
multiple stuck-at faults testability of a combinational 
part. The pseudo-exhaustive test consisting of two 
parts is developed. One part is used to test sub-circuits 
obtained by covering nodes of the proper ROBDDs by 
elementary circuits (Invert-AND-XOR circuits). It 
allows detecting multiple stuck-at faults at gate poles 
of elementary circuits evenly remote from the 
combinational part inputs. The second test part detects 
all multiple stuck-at faults at gate poles of the rest 
component of the combinational part. It is supposed 
that only one of these two components of a 
combinational part may be faulty. An estimation of the 
length of such test is given. 
 
1. Introduction 
 

For high performance circuits it is not enough to 
detect single stuck-at faults (SAF) at gate poles it is 
desirable to detect delay faults and also multiple stuck-
at faults. It is important to provide testability for these 
faults during circuit design. One of such approaches is 
suggested in [1]. The complexity of the obtained 
circuits is of the same order that the complexity of the 
circuits not fully delay testable and obtained directly 
from State Transition Graph (STG) description with 
using the shortest code words for encoding states [1]. 
In this paper we investigate testability properties of 
such circuits for multiple stuck-at faults. 

A test generation strategy called as pseudo-
exhaustive testing was proposed in [2, 3]. The 
advantages of this strategy are as follows: 1) Test 
inputs are calculated at test application time. 2) Test 

computation time depends only on the set of inputs and 
outputs. 3) The strategy allows partitioning of the 
circuit so that each partition can be tested exhaustively. 
In this paper we apply such strategy. 

In Section 2 the method of deriving combinational 
part of sequential circuit is given. Testing single and 
multiple stuck-at faults for Invert-AND-XOR circuit is 
discussed in Section 3. Algorithm of obtaining pseudo-
exhaustive test for a combinational part of a sequential 
circuit is suggested in Section 4. 
 
2. Combinational part design 
 

A State transition graph (STG) description of a 
sequential circuit behavior is used [1]. Internal states 
are encoded with (m,p) code words. Here m is the 
number of 1-value components and p - the length of a 
code word. After encoding states 0-values of code 
words are changed for don’t cares. As a result we get 
monotonous products among state variables. A 
monotonous product is a factor of the corresponding 
non monotonous Sum of Products (SoP) depending on 
input variables.  

Each SoP depending on input variables is 
represented with the Reduced Ordered Binary Decision 
Diagram (ROBDD). ROBDDs are derived with using 
the same order of variables for each SoP. As a result, 
we obtain the graph with s roots and two terminal 
nodes called Shared BDD (SBDD). Here s is the 
number of different SoPs. A SBDD internal node is 
covered with EXOR-AND-OR circuit in Fig.1. Call 
the circuit in Fig.1 as the elementary circuit. Note that 
the elementary circuit implements formula 

0 1i ix x
v i v i vf x f x f= == ⊕ . 

Monotonous products are implemented with using 
AND gates. It is proved [1], that the derived 
combinational part of a sequential circuit is fully delay 
testable.  

The circuit design is illustrated by the example. The 
STG description is represented with Table 1. 
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Encode FSM states with (2, 4) code words: 
1 (1100), 2 (0110), 3 (0011), 4 (1001). Change 
0-values of code words for don’t cares and obtain 
Table 2. 
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Fig. 1. Invert -AND-XOR circuit 

 
Table 1. The STG-description of a sequential  

circuit 
x1 x2 x3 q q y1 y2 y3 y4 y5 

0 - 1 1 1 1 0 0 1 0 
1 0 - 1 1 0 0 0 1 0 
1 1 1 1 2 1 0 0 1 0 
- 1 0 2 2 1 0 1 1 0 
0 - 1 2 3 1 0 1 1 0 
1 0 1 3 3 1 1 0 0 0 
0 - 0 3 4 0 1 0 0 0 
- 1 1 3 4 1 1 0 0 0 
1 - 0 4 4 0 1 0 0 1 
- 1 1 4 1 1 1 0 0 1 

 
Table 2. The system of Boolean functions 

x1 x2 x3 z1 z2 z3 z4 z1 z2 z3 z4 y1 y2 y3 y4 y5

0 - 1 1 1 - - 1 1 0 0 1 0 0 1 0 
1 0 - 1 1 - - 1 1 0 0 0 0 0 1 0 
1 1 1 1 1 - - 0 1 1 0 1 0 0 1 0 
- 1 0 - 1 1 - 0 1 1 0 1 0 1 1 0 
0 - 1 - 1 1 - 0 0 1 1 1 0 1 1 0 
1 0 1 - - 1 1 0 0 1 1 1 1 0 0 0 
0 - 0 - - 1 1 1 0 0 1 0 1 0 0 0 
- 1 1 - - 1 1 1 0 0 1 1 1 0 0 0 
1 - 0 1 - - 1 1 0 0 1 0 1 0 0 1 
- 1 1 1 - - 1 1 1 0 0 1 1 0 0 1 

 
Let we extract the system F of completely specified 

Boolean functions directly from Table 2. For each 
function f of the system we select the cubes that 
marked with the 1-value in Table 2 column that 
corresponds to function f. Each sub-сube depending on 
state variables we implement with sub-circuit that 
consists of two input AND gates. In the example, the 
sub-circuit contains the only AND gate. 

Consider SoP of function f. Divide the products 
corresponding to function f into subsets. Include 

products with the same literals among state variables in 
the same subset. Note that sub-products (depending on 
state variables) of all subsets are monotonous. In the 
example f=y1, monotonous products are represented as 
factors:  

1 1 2 1 3 1 2 3 2 3 2 3 1 3

3 4 1 2 3 2 3 1 4 2 3

( ( )

( ) (

)

)

z z x x x x x z z x x x x

z z x x x x x z z x

y

x

= ∨ ∨ ∨ ∨
∨ ∨ ∨

    (1) 

Represent each SoP as ROBDD. Integrate all these 
ROBDDs into Shared BDD (Fig. 2). 
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Fig. 2. Shared BDD (SBDD) 

 

Cover each node of Shared BDD with circuit in 
Fig. 1 not paying attention on the edges coming to 0 
terminal node. As a result, we get circuit in Fig. 3.  

Connect the outputs of the circuit implementing 
Shared BDD with the outputs of the corresponding 
circuits implementing sub-products depending on state 
variables (monotonous sub-products of function f ). 
For that we use two input AND gates. Then we 
connect all obtained sub-circuits applying OR gates 
and get circuit implementing function f of system F 
(Fig. 4). 

1 3 24

x1 x2 x3  
Fig. 3. SBDD implementation 
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x1 x2 x3

z1 z2 z3 z4

y1

Fig. 4. Implementation of function y1 
 
3. Testing of single and multiple stuck-at 
faults for Invert-AND-XOR circuit 
 

Consider single stuck-at 1, 0 faults at elementary 

circuit inputs 0ix
vf

= , 1ix
vf

= and output fv. (Fig.1). Each 

of them correlates with single stuck-at fault at the 
ROBDD low v, high v and v, correspondingly. Stuck–
at 1(0) fault of variable xi correlates with 01(10) fault 
of edges running from node v. This means that any test 
pattern for stuck-at fault at the external pole of the 
elementary circuit covering node v is the test pattern 
for the corresponding fault of ROBDD node v, low v 
and high v. 

Table 3 
=0ix

vf  =1ix
vf  ix  =0ix

vf  =1ix
vf  ix vf

1 0 1  1 0 1 
0 1 0 1  1 1 
1 1 0 0   0 
1 1 1  0  0 

 
Let Table 3represents test for single stuck-at faults 

at the external poles of the elementary circuit (Fig.1). 
Its first three columns correspond to input variables of 
the circuit. The next three columns correspond to 0, 1 
stuck-at faults at the circuit inputs detected by the 
Boolean vector represented by the first three columns. 
The last column represents stuck-at faults at the circuit 
output.  

Take into consideration that sometimes only one of 

two vectors 

0 1

0 1

1 0

i ix x
v vf f= =

 may be delivered to inputs 

of the elementary circuit. Table 4 (5) represents test 
patterns for single stuck-at faults at external poles of 
the circuit when only vector 10 (01) may be delivered. 
 

Table 4 
=0ix

vf
=1ix

vf ix
0 0 0 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Table 5 
=0ix

vf  =1ix
vf  ix  

0 0 1 
0 1 0 
1 1 0 
0 1 1 
1 1 1 

 

 
It is proved that test represented by one of Tables 

3-5 for single stuck at faults at external poles of the 
elementary circuit detects all multiple stuck-at faults at 
gate poles of the circuit.  
 
4. Deriving pseudo-exhaustive test 
 
Testing of sub-circuits implementing SoPs 
depending on input variables 

We consider that either sub-circuits implementing 
SoPs or the rest component of the combinational part 
of sequential circuit may be faulty, but not both 
together. 

Let only one elementary circuit be faulty. This 
circuit covers node v of Shared BDD. We need provide 
the fault manifestation of the elementary circuit to any 
output of the SBDD by any path connecting v with one 
of roots of ROBDD comprising SBDD. Denote this 

path as ε. Let εk  be the product originated by ε. Let 

δk  be the product that provides delivering the test 

pattern on inputs of the faulty elementary circuit. 

Having got ε δk k  for each input Boolean vector from 

the proper Table (among Tables 3-5) of faulty 
elementary circuit we find test patterns depending on 
input variables x1,…, xn. Call these test patterns as test 
fragment of the elementary circuit. Note that algorithm 

of deriving ε δk k  has a polynomial complexity. 

Divide elementary circuits of sub-circuits, 
originated by input variables SoPs into levels in 
conventional way. The first level consists of 
elementary circuits which inputs are combinational 
part inputs. An elementary circuit belongs to the i-th 
level if its inputs are connected with outputs of 
elementary circuits of the (i-1)-th and less levels. 

Sub-circuits (each implements input variable SoP) 
connected with the same factor (Table 2) comprise the 
separate group. 

We test each group separately using the proper test 
fragments beginning from elementary circuits of the 
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first level. Then we test elementary circuits of the 
second level and so on. During testing the group, the 
values of state variables turn the factor corresponding 
to the group into 1. 

Going over the groups, we either find a fault or 
conclude that there are no multiple stuck-at faults at 
gate poles of elementary circuits of the same level 
among all groups. The test length is not more 5γN, 
where N is the number of internal nodes of Shared 
BDD and γ is the middle number of groups, which 
contain the elementary circuit. 

 
Testing of sub-circuit implementing 
monotonous system 

Correlate the output of each SoP depending on 
input variables to variable wi. Form monotonous 
system F* (from Table like 2) depending on state 
variables and variables wi. For example, expression (1) 
is rewritten as follows: 

1 1 2 2 2 3 3 3 4 4 1 4w z z w z z w z z w z z∨ ∨ ∨ . 

Consider single faults of literals of monotonous SoP 
fj* from F*. Changing the certain literal in the certain 
product for constant 1(0) call b(a)-fault. If several 
literals are fault, call it multiple fault of the SoP. It is 
known [4] that all multiple faults of irredundant SoP 
consisting of prime implicants are detected with a test 
for single faults of literals of this SoP. This test is 
union of test patterns for each a,b-faults. Any fj* from 
F* is irredundant SoP as it consists of monotonous 
products. 

Test pattern α of the monotonous SoP for a-fault of 
product K is obtained by changing all don’t care 
components of a ternary vector corresponding to 
product K for 0-values. Test pattern β for b-fault of 
product K and its literal xi is obtained by changing the 
component corresponding to fault literal xi for inverse 
value in vector α (in test pattern for a-fault).  

Note that any multiple stuck-at fault at gate poles of 
sub-circuit implementing monotonous SoP fj

* 
(sub-circuit is designed by any method keeping SoP 
[5]) is equivalent to the multiple fault of these SoP 
literals. Consequently, test for single b(a) faults of 
monotonous SoP fj

*detects any multiple stuck-at fault 
at gate poles of the sub-circuit implementing this SoP. 
In [6] the method of deriving test T for multiple stuck 
at faults at gate poles of circuit implementing 
monotonous system F* is suggested. The system is 
designed by one of the methods keeping system F*.  

We need form SoP f* [6] including all products of 
system F*. In [6] it is shown that test T for single 
a(b)-faults of SoP f* is the test for the same faults of 
system F* and, consequently, the test for multiple 

stuck-at faults at gate poles of circuit implementing 
monotonous system F*. 

The length of test T is not more than a sum of ranks 
of SoP f* products and the number of these products. 
Note that delivering the test pattern for current product 
K from f* we need provide 1-value output of a SoP 
from the group correlating with K. 

To get pseudo-exhaustive test for circuit like Fig. 4 
we need derive pseudo-exhaustive test for sub-circuits 
implementing all SoPs depending on input variables 
and test T for multiple stuck-at faults at gate poles for 
the rest component of the circuit implementing 
monotonous system F*. First we have to test all SoPs 
depending on input variables. 
 
5. Conclusion 
 

Pseudo-exhaustive test for multiple stuck-at faults 
at gate poles of the combinational part of a sequential 
circuit designed with using a description of the 
behavior as a composition of ROBDDs and 
monotonous products is developed. It means that 
circuits designed in this way are full delay testable and 
pseudo-exhaustive multiple stuck-at fault testable. It is 
shown that circuits designed in such a way being full 
delay testable are also pseudo-exhaustive multiple 
stuck-at fault testable. 
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