STATISTICAL PHYSICS
SISSA — International School for Advanced Studies

The Transverse-Field Ising Spin Glass
Model on the Bethe Lattice

with an Application to Adiabatic Quantum Computing

Gianni Mossi

Thesis submitted for the degree of
Doctor of Philosophy

4 October 2017

ADVISOR: Antonello Scardicchio



ii



Abstract

In this Ph.D. thesis we examine the Adiabatic Quantum Algorithm from the
point of view of statistical and condensed matter physics. We do this by studying
the transverse-field Ising spin glass model defined on the Bethe lattice, which
is of independent interest to both the physics community and the quantum
computation community. Using quantum Monte Carlo methods, we perform an
extensive study of the the ground-state properties of the model, including the
Rényi entanglement entropy, quantum Fisher information, Edwards—Anderson
parameter, correlation functions.

Through the finite-size scaling of these quantities we find multiple indepen-
dent and coinciding estimates for the critical point of the glassy phase transition
at zero temperature, which completes the phase diagram of the model as was
previously known in the literature. We find volumetric bipartite and finite mul-
tipartite entanglement for all values of the transverse field considered, both in
the paramagnetic and in the glassy phase, and at criticality. We discuss their
implication with respect to quantum computing.

By writing a perturbative expansion in the large transverse field regime we
develop a mean-field quasiparticle theory that explains the numerical data. The
emerging picture is that of degenerate bands of localized quasiparticle excita-
tions on top of a vacuum. The perturbative energy corrections to these bands
are given by pair creation/annihilation and hopping processes of the quasipar-
ticles on the Bethe lattice. The transition to the glassy phase is explained as
a crossing of the energy level of the vacuum with one of the bands, so that
creation of quasiparticles becomes energetically favoured.

We also study the localization properties of the model by employing the
forward scattering approximation of the locator expansion, which we compute
using a numerical transfer matrix technique. We obtain a lower bound for the
mobility edge of the system. We find a localized region inside of the glassy phase
and we discuss the consequences of its presence for the Adiabatic Quantum
Algorithm.
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Preamble

Motivations

Adiabatic quantum computing was developed in 2001 as an alternative to the
circuit model of quantum computation. It is a topic where many diverse areas of
physics meet. Quantum phase transitions, the physics of disordered and glassy
systems, out-of-equilibrium dynamics, entanglement and quantum information
theory all have a role to play. Moreover, it is an interdisciplinary field related
to scientific fields such as mathematics and theoretical computer science. From
the perspective of the theoretical physicist, this allows us to test the methods
of quantum physics into uncharted territories for which they were not designed,
often resulting in a new and better understanding of the theory.

However, adiabatic computing is not only of theoretical interest. Quan-
tum computing crossed from academia and into the industry when the D-Wave
company developed the first commercial quantum adiabatic computer in 2011.
Stimulated by the possibilities offered by real-life quantum computational de-
vices, a lot of effort went into trying to understand the physics and the working
of the D-Wave machine, as well as the theoretical reasons why adding quantum
mechanics to analog computational devices could improve their performance.

Finally, from a computer science perspective, adiabatic quantum computing
provides us with a different and original way of looking at quantum algorithms.
After about two decades of research, the number of quantum algorithms we
have is still relatively small. The consensus in the scientific community is that
quantum algorithms are hard to devise. One of the advantages of the Adiabatic
Quantum Algorithm is that it allows people to use physical intuitions in order
to get insights into quantum computation.

It is with these goals in mind that the author of this thesis, whose scientific
background was mostly mathematics and computer science related, decided to
apply to a Ph.D. program in physics in 2013.

Thesis Outline

This thesis is organized in four chapters. The first chapter introduces the the-
oretical background from which the thesis starts. The adiabatic quantum algo-
rithm is presented, as well as the physical mechanisms underpinning its workings
and the physical models that have been proposed to better understand it. We
also review the entanglement measures that will be relevant to us in later chap-
ters.
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The second chapter introduces the classical Ising spin glass on the Bethe
lattice, its solution through the cavity method and its connection with classical
computational complexity.

In the third chapter the Ising spin glass is quantized by the introduction
of a transverse field. The zero-temperature thermodynamic properties of the
moden are studied numerically and the critical value of the glassy transition is
extracted from them. In order to understand the critical point, a quasiparticle
picture is developed from the perturbative expansion in the large transverse
field limit.

The fourth chapter briefly introduces the Anderson model and the connec-
tions between localization and the Adiabatic Quantum Computing. The local-
ization properties of the transverse-field Ising spin glass model are studied using
the forward scattering approximation. Conclusions follow.

An extensive appendix collects the details on the numerical methods that
have been employed throughout the thesis, but were not included in the main
text for a better readability.

The original research of the thesis is in Chapter 3 [I] and Chapter 4 [2].
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Chapter 1

Introduction and
Theoretical Background

In this chapter we present the background material from which this thesis starts.
In Section we introduce the historical perspective on quantum computing
that led to the developement of the quantum adiabatic algorithm and provide
some motivations for the theoretical choices and the line of reasearch we take in
this thesis. In Section [1.2|we describe in detail the quantum adiabatic algorithm
and the combinatorial optimization problems it is designed to solve. In Section
we consider the physical interpretations that have been proposed in order
to understand the physics behind its workings. In Section we review the
connections between entanglement and quantum computation that will be of
interest in later chapters.

1.1 Quantum Computation

The birth of quantum computation is usually traced back to Feynman’s 1982
paper [3] where the concept of a computer that is quantum mechanical in na-
ture was proposed in order to efficiently simulate the real-time dynamics of
quantum mechanical systems. The main intuition behind this idea is that the
Hilbert space of a many-body system has a dimension that grows exponentially
in the number of particles, therefore a state of the system takes an exponen-
tial amount of resources just to be stored in the memory of a classical, digital
computer. Feynman noted that by using a memory register made of qubits
(i.e. two-dimensional quantum systems) instead of bits one could store a many-
body quantum state at linear — rather than exponential — cost. Hamiltonians
would then be engineered so that the state encoded in the register would evolve
according to the dynamics of the system one is interested in simulating.

In the following decades scientists pondered whether this hypothetical quan-
tum computer could be useful for more than just quantum simulations, and the
standard “quantum circuit” architecture for quantum computers was developed
in order to tackle more general computational problems. A quantum circuit
applies a sequence of one or two-qubits unitary gates to a working register of
qubits, in a similar manner to how transistors in electronic circuits apply logical
operations to a register of bits. With this analogy in mind, scientists studied
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whether adding quantum mechanics would allow a computer to perform com-
putational tasks that are beyond the power of a classical computer. While the
strict answer to this question turned out to be “no”, as the set of quantum-
computable functions coincides with the set of Turing-computable functions, a
more interesting results was found within the field of computational complexity,
a sub-branch of theoretical computer science that studies the minimal resources
needed to perform a specific computational task. Currently, a quantum com-
puter stands as the most likely counterexample to the extended Church-Turing
thesis, a hypothesis according to which all “reasonable” computational model
can be efficiently simulated by a standard Turing machine. In addition to the
simulation of quantum physics proposed by Feynman, in 1994 Peter Shor dis-
covered a quantum algorithm capable of efficiently factoring integers, a problem
that is not known to have efficient classical algorithms and whose hardness is
a necessary condition for the security of commonly-used cryptosystems such as
RSA. This result generated a surge of interest in quantum computing and led
to the discovery of a number of quantum algorithms.

In 1998, Kadowaki and Nishimori [4] proposed an approach to quantum
computing different from the circuit model, an approach that is closer to the
spirit of condensed matter physics. Their idea is to use quantum fluctuations
to efficiently explore the energy landscape of a classical physical system, in a
process — now called quantum annealing (QA) — that is similar in spirit to ther-
mal annealing, i.e. the gradual cooling of a system in order to reach its ground
state. Starting with a wavefuction spread over all the states in a classical poten-
tial, strong quantum tunnelling processes would be turned on by fine-tunining a
paramater in the Hamiltonian. When tunnelling rates are very high, the system
is able to efficiently explore all of its Hilbert space. The tunnelling processes are
then gradually attenuated to zero and the system ends up trapped in a classical
low-energy state (ideally its ground state) if this is done slowly enough. In 2000
Farhi et al. [B] independently devised a generalization of quantum annealing
called the adiabatic quantum algorithm (AQA). Despite its name, it is not a
complete algorithm but rather a metaheuristi(ﬂ The AQA works by a method
known as adiabatic state preparation, where the ground state of a target Hamil-
tonian Hp is obtained by the real-time dynamics generated by a quasi-static
time-dependent Hamiltonian H(t) that connects an initial Hamiltonian Hy to
Hp. If H(t) changes slowly enough, then its dynamics will evolve the ground
state of Hy into the ground state of Hp, which in the case of the AQA will
be engineered so as to encode the solution to a given computational task one
wants to perform. The details of this procedure are described in Section
Adiabatic quantum computing was proved to be equivalent (up to a polynomial
overhead) to the more standard circuit model of quantum computation [6]. In-
terestingly, the proof relies on methods similar to the ones used in the proof of
the Cook-Levin Theorem [7], a well-known theorem in classical computational
complexity. This result can be used to map any quantum algorithm written in
the quantum circuit model to a specific implementation of the adiabatic algo-
rithm. This however remains only of academic interest as the time-dependent
Hamiltonian produced by this mapping contains complicated terms whose phys-
ical implementation is well beyond the possibility of current technologies.

Lfrom petd “beyond”, and ebploxewy “to discover”. As the prefix meta is commonly used to
describe a higher level of abstraction than the one used in the object language, we can loosely
define a “metaheuristic” as “a template for the formulation (or discovery) of new algorithms.”
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One of the attractive features of the AQA is its wide applicability to differ-
ent optimization problems. The flip side of this coin is that, being essentially
a computational model and not a complete algorithm devised for the solution
of a specific problem, it is not at all obvious on which problems the AQA per-
forms best. Since its inception, scientists have tried to find a problem at which
the AQA could perform demostrably better that all known classical algorithms.
The original paper by Farhi et al. proposed to use the AQA to solve NP-hard
problems and the early numerical results showed a runtime that scaled polyno-
mially with the instance size [5], [§]. It became quickly evident that this was a
pre-asymptotic behaviour and the study of larger sizes showed an exponential
relation between the running time and the size of the instance [9, [0, [TT]. At the
same time, complexity theory results were proved that made such a possibility
quite remote.

In order to benchmark the average-case computational power of the algo-
rithm, and following the influential tunnelling interpretation of the quantum
annealing process, people started to compare the respective preformances of
quantum annealing and thermal annealing over different optimization problems,
hoping to find some example of a quantum speedup. The usual theoretical argu-
ments for a comparison of the two processes is reviewed in Section [T.:2} Most of
these comparison were conducted by simulation. In particular, in [I2] Martonak
et al. used Quantum Monte Carlo methods to simulate runs of the quantum
annealing protocol, and showed an asymptotic speedup of simulated quantum
annealing over simulated thermal annealing. The problem considered in the pa-
per was a transverse-field spin glass with interaction defined on a square lattice.
This effect was later found to be by no means universal, as subsequent results
[13] showed for example that on k-SAT simulated annealing seems to perform
better than simulated quantum annealing. In [I4], Heim et al. argued that
the observed speedup was a spurious byproduct of the numerical methods used
(specifically, the discretization of the imaginary time). Following this result,
the statistical analysis of the performance of the AQA over random instances
of optimization problems seems to have lost some of its momentum.

Nowadays most of the quantum computing community believes that quan-
tum computers cannot solve NP-hard problems in polynomial time, in the worst
case. Finding a natural, useful problem where the AQA is provably exponen-
tially better than all known classical algorithms is still an open problem in the
field. Rather than try to find a collection of computer-simulation techniques —
e.g. the many Monte Carlo variants — that reproduces the input-output statis-
tics of a real-life quantum annealer like the D-Wave without actually following
its dynamics (which essentially means treating the annealer as a black box),
current efforts are exploring the possible physical mechanisms that might give
quantum annealing an advantage over classical computation. For this goal it
seems that the out-of-equilibrium, real-time evolution of a quantum annealing
process needs to be studied in greater detail.

1.1.1 The D-Wave Machine and our theoretical model

The focus of this thesis is the Ising spin glass model in a transverse field with
nearest-neighbours interactions defined on the Bethe lattice, an infinite regular
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Figure 1.1: The Bethe lattice of branching number K is the unique connected,
(K + 1)-regular tree on an infinite number of nodes, depicted above for K = 2.
Starting from any point in the graph, the r-th “shell” around the point has
(K + 1)K ! elements, which means that in the truncated tree only a fraction
~ 1/K of the spins belongs in the bulk.

tree shown in Fig. [[.1} Its Hamiltonian is the following.
H:—ZJijUfUJZ-—FZUf. (1.1)
(4,5) i

The reasons we chose to study this model are related to the current architec-
ture of real-life quantum annealers. As of 2017, adiabatic quantum computation
has become the preminent model of pratical quantum computation, and this is
almost singlehandedly due to a Canadian company called D-Wave, that in 2011
produced the first quantum annealer using superconducting flux qubits coupled
together. The chip of the D-Wave machine can be envisioned as a flat surface
tiled with square unit cells. Inside of a unit cell are embedded long and thin
superconducting loops, arranged in a crisscrossing array shown in Fig. The
direction of the current inside of each circuit is the binary degree of freedom
that physically represents one qubit, with superpositions of currents represent-
ing the generic qubit state «|0) + §]1). Different loops can be coupled together
only if they intersect at some point. This produces an effective term —J;;070%
with a tunable intensity .J;; controlled by the strength of the coupling between
the loops. The same physical considerations taken at the boundary of each cell
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Figure 1.2: schematic representation of the D-Wave unit cell. (Left) Horizontal
and vertical lines represent long and narrow superconducting loops, which are
associated to effective spins. Only intersecting loops can be coupled together.
(Right) Graph representation of the effective spins in the unit cell: nodes rep-
resent spins and links between nodes represent interactions between the spins.

show e.g. that a horizontal superconducting loops can be coupled only to the
corresponding horizontal loops in the nearest cells to its left and to its right,
and similarly for the vertical loops. This defines the Chimera interaction graph
between spins, shown in Fig. [I.3] A magnetic field in a direction orthogonal
to the plane of the chip provides the transverse-field term —I' ). o7, obtaining
the full Hamiltonian above.

The couplings between the spins can be fine-tuned so as to define a spin
glass Hamiltonian. In a typical run of the machine, a strong transverse field is
turned on while the spin-spin interactions are absent and the system is cooled
down to ~ 80 mK. Then the transverse field is slowly decreased to zero while the
interactions are slowly turned on. While the behaviour of the D-Wave machine is
not completely clear and its status as a quantum computing device is somewhat
controversial (see e.g. [15], [16] 17, [18]), its impressive working register of 2000
qubits allows for the use in practical machine learning problems [19, 20, [21],
after these are translated into instance of the native spin glass problem that the
D-Wave machine is able to solve.

The model we study, however, is not defined on the Chimera graph, for the
following reasons. Even though the Bethe lattice and the Chimera graph are
quite different, we believe the model of Eq. is a good compromise between
a system that is of independent interest to the physics community, has a well-
defined place in the scientific literature and is amenable to various numerical
and analytic techniques on one hand, and a system that faithfully reflects the
features of real-life quantum annealers such as the D-Wave machine, and where
one can derive proof-of-concept results that are ultimately applicable to these
practical devices, on the other.
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Figure 1.3: (Left) physical array of four unit cells (blue lines) sorrounding a given
unit cell (red lines) in a D-Wave chip. In addition to the couplings within the
red cell itself (see Fig. , a red horizontal loop is coupled to the two horizontal
loops directly to its left and right. A red vertical loop is coupled to the two
vertical loops directly above and below. (Right) Graph representation of the
effective spin-spin interactions between between different unit cells. Red links
signify interactions across neighbouring unit cells in the horizontal direction,
while blue links signify interactions across neighbouring unit cells in the vertical
direction.

1.2 Adiabatic Quantum Computing

In this Section we describe in detail the adiabatic quantum algorithm and the
computational problems it was designed to solve.

1.2.1 Combinatorial Optimization

The Adiabatic Algorithm is a metaheuristic for the solution of combinatorial
optimization problems (COPs). These problems are defined by a space of binary
strings By = {0, 1}V of length N and a cost function f : By — R that assign a
“cost” f(x) to each string € By. In order to solve the problem we are asked
to find a string x* that minimizesﬂ f(z) over the variational space By:

fla*) = min{f(x) |z € IB%N}

In most practical cases (and in all the cases we will consider) the function
f(z) is given as a sum of polynomially-many (in the number of bits V) functions

fi that depend only on a constant number k of variables NOFRRI MOk
1 k
m
f(ﬂl‘l, e ,J?N) = z; fi(xﬁi), e ’leii)).
i—

2or maximizes, depending on the specific problem. Since maximizing f(x) is equivalent

with minimizing — f(z) we assume without loss of generality that we are always dealing with
minimization problems.
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The integer k is the “locality” of the function f; and we call the function f
an instance of a “k-local” constraint satisfaction problem. When considering
collections of COPs with different sizes N, we make the additional technical
assumption that the costs f;(x) do not grow with N. Local COPs are ubiquitous
in mathematics, physics, computer science, engineering and many other fields.

Combinatorial optimization problems are related to constraint satisfaction
problems, which are COPS where the the functions f; are called constraints
and take values in {0,1}. A string = such that f;(z) = 0 is said to satisfy the
constraint f;, while f;(x) = 1 means that the constraint is violated. COPs are
also related to decision problems, which are computational problems that admit
a yes/no answer. There is a canonical way to formulate any COP as a decision
problem: given a COP instance f and a real number a € R, one is asked to
decide whether there is a string « € {0,1} such that f(z) < a. As an example,
we mention the decision problem EXACT-COVER as this is a problem we will
encounter later.

The EXACT-COVER problem can be formulated as follows. Given

e a finite set S = {s1,...,sn5}, and
e a collection A = {A;,..., Ay} of subsets of S, where M = poly(NN),

one is asked to decide whether there is a way of choosing subsets Ay, ..., Ay € A
so as to form a partition of S, meaning that each element s; € S belongs to
exactly one subset in the chosen subcollection A" = {A4),..., A}.} € A. This
problem is often described in the inverse represenmtation, where a candidate
solution for the problem (i.e. a subcollection A" = {4;,,...,A;,} C A) is
described by a binary string. This is done by defining, for each set A; € A,
a Boolean variable X;. Then the candidate solution A" = {4;,,...,A4;.} is
represented by the M-length binary string X = (X1,..., Xas) € {0, 1} where
the bits X;,,...,X;, are equal to one, while all the other bits are equal to
zero (i.e. the value of the variable X tells if the set A; belongs to the given
subcollection A’ or not). In this way one defines a bijection between {0, 1}
and A, so that a binary string X € {0,1} can be univocally associated to a
subcollection A% C A and vice versa.

One can then rephrase the statement “A’ is a partition of the set S” as a
formal property of binary strings as follows. Let s; be an element of S, and
let Agi), e ,Az(,i) be the subsets in A4 that contain s;. Note that a necessary
condition for a subcollection A’ to be a partition of S is that A’ must contain
exactly one of these subsets. In the binary string language, this means that
the string X must have exactly one of the bits Xfi), e ,X,(,i) equal to one. We
can enforce this by defining a constraint fi(XY), e 7XI(,Z')) that is satisfied if
and only if exactly one of the variables X 1(i), . ,XI(,i) has a value of one, and is
violated otherwise. This gives us N constraints, one for each element s; € S.
The collection {f;} of these constraints completely captures the property of
being a solution to the EXACT-COVER problem, in the sense that for all binary
strings X € {0,1}™ it holds that (under the X < A’ association defined
above)

Ay is a partition of S <= f;(X)=0forall1<i<N.

The restricted problem 3-EXACT-COVER requires in addition that each ele-
ment s; must be contained in exactly three sets of A, i.e. m = 3 for each clause
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Figure 1.4: example of the factor graph of an 3-EXACT-COVER instance over the
Boolean variables X7, ..., Xg (shown here as blue round vertices) with factors
f1 (Xl, XQ, Xg), fQ(Xg, X4, X5) and f3(X1, )(47 Xﬁ) (ShOWIl as red squares). Fac-
tor functions for 3-EXACT-COVER are of the form f(X,Y,Z) = (X+Y +Z—1)2.

fi-
We can cast 3-EXACT-COVER as an optimization problem by defining the
cost function

fi(X1, X0, X3) = (X1 + Xo + X3 — 1),

for each constraint in the system. The total cost function is then f = ", fi.
Solutions are binary strings = € {0,1}" such that f(x) = 0.

Local COPs are commonly pictured using factor graphs (see Fig. , i.e.
bipartite graphs whose vertices are separated into variable vertices, which are
associated to one of the variables x; of the problem, and factor vertices which
are associated to one of the constraints f;. Each edge in the graph connects
one factor vertex to one variable vertex, according to the rule that a factor
fi(zjy, ..., x;.) is connected to all and only the variables z;,,...,z;, on which
it depends.

1.2.2 The Adiabatic Theorem

Adiabatic quantum computation is based on the adiabatic theorem, a result
that intuitively states that the unitary dynamics generated by a time-dependent
Hamiltonian H(t) approximately preserve the istantaneous eigenspaces of the
Hamiltonian at future times ¢, provided that the time derivative of the Hamil-
tonian is small enough. From this result follows in particular that a system
starting in the ground state of a Hamiltonian H(0) and evolving through a
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slowly-changing Hamiltonian H(t) stays in the (approximate) instantaneous
ground state of H (t) at every instant ¢ of the evolution, provided this evolution
is contained in some not-too-large time interval [0, 7].

Most of the literature points to [22] as the standard reference for the proof of
the adiabatic theorem, even though other proofs are available [23] (the original
proof is in [24]). We follow essentially the proof sketch given in [25]. Our starting
point is the time-dependent Schrédinger Equation

)
ih=-|¥(8)) = H(®)$ (1))

that we use to describe the evolution of a quantum system from time ¢t = 0 to
a final time ¢t = 7. By taking i = 1 and changing the time ¢ to a dimensionless
time parameter s = t/7 we get

i%w)(s)) = 7H(s)|(s))  with s € [0, 1]. (1.2)

Let {|n(s))}n be the (non-degenerate) eigenstates of the Hamiltonian H(s), so
that
H(s)n(s)) = En(s)|n(s)) n=0,1,2,... (1.3)

We formulate the following Ansatz for the solution of Eq. (1.2)

[(5)) = > W (s)e ™S B4 (),

where 1),,(s) are the variational parameters (actually, functions) we need to find.
In foresight, we include the factors exp(—ir [ Ep(s')ds’) so as to cancel the
dynamical phases of the propagation. The first step in proving the theorem is
to derive the dynamical equations for v, (s). By multiplying both sides of Eq.

by (n(s)| we obtain
i{n(s) %W/(s» = 7(n(s)|H(s)[1(s)). (1.4)

We compute both sides of this equation. If we take the 0, derivative of the
Ansatz wavefunction we have

9 O (8) _ir [ B (s ds'
$‘¢(S)> _ Z 7/188(5)6 it [ Em(s') ds |m(s)>

3 () (i B (s))e IS Em ()8 [y (5))

—ir [? s')ds’ 0
Y Unls)e I O pm(s)),

so that
, 2 L 0Un(s) s Ea (s as
(@ L = 2
U (8)TEp(s)e” i Jo Bnls) ds’
0

_|_
b e B () ()
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Moreover,

H($)|d(s)) = D thm(s)e™ 7 J0 PmCOA B (5)m(s))

and therefore
()| H (s)[¢)(s)) = hn(s)e™ 7o B2, (5).

Then from Eq. (1.4) we can write down the evolution equation for the coeffi-
cients v, (s) of the Ansatz

O¢n(s) 9

B = 2 () T PO I )] ()
= ) () — 3 i s)e I B9 )| )y

m#n

For clarity we introduce the notation wy, ;(s) = En(s) — En(s) and Fy, i, (s) =
(n(s)|0H(s)/0s|m(s)). Note that we always have the freedom to redefine the
phase of the energy eigenstates |n(s)) — ¢(5)|n(s)). Where 6,,(s) is a contin-
uous function of s. It is possible to choose 6,,(s) in such a way that by taking
the derivative of the eigenvalue equation one gets that

o 0 ifn=m
Frm(s) = <n(3)|% m(8)) = S (n(s)|E () lm(s))

B(s)=Fm(5) otherwise ’

where we abbreviate H(s) = 0H(s)/ds. Therefore the s-derivative of the coef-
ficients 1, (s) simplifies to

Oy (s)
ds

- Z 1&,”(3)67” J§ wm,n(s") ds,Fn,m(S).

m#n

Integrating both sides from zero to s and imposing the initial condition ,,(0) =
On,0, ONE gets

S 4 1" 1"
Un(s) =00 = 3 [ (e e E (),
m#n 0
which gives the coefficient v, (s) as a sum of oscillating exponentials. Naively,
one would expect that the largest contribution comes from m = 0 term in the

sum, since the system starts its evolution in the ground state, which means that
Po(s) =1 and 9, (s) =0 for n # 0 at s = 0. We write

P (s) = —/ e~ do wno A" B (5o (s7) ds” + other terms.
0

Assuming the other terms can be neglected, we integrate by parts the first term

s ) s rs’ " Fn /
—|—3/ el Jo wnols )dslg< ’0(5)1/10(8/)>-
0 T Jo

0s \wp,o(s)
(1.5)

’l: - s’ 12 12 Sl)
i[5 wno(s)ds "»0( /
¥n(s) 7’6 ’ wn,o(s’) bols)
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Now, in an ideal adiabatic evolution, the system remains in the ground state at
all times s, so ¥, (s) = 0 for all n # 0. It seems reasonable to ask that in an
approximately adiabatic evolution all the components ¥, (s) with n # 0 should
be small. The idea is then to assume that |1, (s)| < 1 for all n # 0, and derive
the conditions this assumption entails. We impose this smallness constraint on
both terms in Eq. . Imposing the smallness of the first term one gets

1 ’Fn,O(S) ‘

1> =
> Tlwn,0(s)

Therefore, the time required to stay close to the adiabatic approximation, which
we call the adiabatic time T, must satisfy

[(n(s)| H (5)[0(s)]
(En(s) — Eo(s))?

which in turn implies (by taking n = 1) the more common adiabatic condition

|(L(5)| H (5)]0(s))]
g(s) ’

where g(s) = wi,0(s) = E1(s) — Ep(s) is the gap separating the ground state and
the first excited state of the Hamiltonian H (s). This particular derivation of Eq.
presents it as a necessary condition for adiabaticity, i.e. for the system to
stay in the ground state at all times of the evolution. Whether this is also a
sufficient condition is a matter of some dispute. In this thesis however we will
follow the common physicists’ habit of considering Eq. a necessary and
sufficient condition for adiabaticity. We mention in passing that more stringent
and more rigorous estimates of the error can be obtained (see e.g. [26, 27]),
even though the formulas are more complicated.

Ta > forall 0 <s <1, (1.6)

Tq > Max (1.7)

1.2.3 Quantum Adiabatic Algorithm

The Adiabatic Quantum Algorithm’s goal is to find the solution to a COP and
its implementation proceeds in the following way. Given an instance of a COP
described by a cost function f defined over N Boolean variables Xi,..., Xy,
one needs to define a Hamiltonian Hp in such a way that the ground state
of Hp encodes the solution to the minimization problem described by f. A
common choice is to take the a system of N quantum spins with Hilbert space
H = C2" and choose the N-fold o*-basis as the “computational basis”. Then
one labels each computational basis vector with a binary string through the
definition |0) = | 1) and |1) = | |). Then the encoding Hamiltonian is given
by Hp =3, c(01y~ f(2)|z)(z|, which is clearly diagonal in the computational

basis:
0 f(xg) 0
Hp = : : : } :
0 0 flwaw)

One then defines an initial Hamiltonian Hy (defined in the same Hilbert space
H over which Hp acts), a total annealing time 7, and a regular (at least C')
parametrized curve H : [0,7] — Herm(#) in the space of self-adjoint operators
over ‘H, with the following properties
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(i) H(0) = Hy and H(T) = Hp, that is the curve connects the Hamiltonian
Hy to the Hamiltonian Hp

(ii) a ground state of Hy is “easy to prepare”. This is a technical requirement
but we will take it to mean that Hy must be a non-interacting Hamiltonian.
In an experimental implementation this ground state is usually generated
by cooling the system down to a very small temperature (ideally T' = 0).

The adiabatic algorithm then proceeds as follows.
1. Prepare the system in the ground state |1g) of the initial Hamiltonian H.

2. Let the system evolve for a time 7 under the dynamics defined by the
time-dependent Hamiltonian H (t).

3. Measure the system in the computational basis.

The adiabatic theorem then guarantees that if 7 > 7, (the adiabatic time defined
in the previous section), then the state of the system at time ¢ = 7 will have a
constant overlap with the ground state of the problem Hamiltonian Hp, so the
measurement will return the optimal solution to the CPS with high probability.

Let us restrict immediately to a concrete example, that is going to apply for
the rest of this thesis. For a given problem Hamiltonian Hp € Herm(H) we
choose the initial Hamiltonian to be the transverse-field term

Hy= 1Y of) (18)
i
where I' > 0 is a parameter that tunes its intensity. The path connecting the
two Hamiltonians is just the straight line segment
y={aHy+(1-a)Hp|0<a <1}
which we follow at constant speed v =1/7:

T—1

t
H(t) = Ho + ;HP-

Now let us see what this entails for the adiabatic condition (1.7). Note that
with this choice we have H(s) = Hp — Hy and then

A0 < (6 Hp0()| + [(16) [ Holo(s))|  (1.9)
< | Hp|"? + || Hol'? (1.10)
L AR PR (1.11)

Where )\Efa)x and /\Egix are the largest eigenvalues of Hp and Hy, respectively.
In the derivation we have used the fact that if |¢),|¢)) are normalized vectors,
then |(p|AlY)|? < ||A|¥)]|? < ||A||? and that the operator norm || A|| induced by
an fo-norm is given by the maximal singular value of A.

If Hp encodes a COP and Hj is a transverse field in Eq. then we
see that Al = TN and A0 is of polynomial order in the size of the system
N, because Hp has a discrete spectrum given by sum of the costs that the
constraints associate to a binary assigment. Since by definition a COP has
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a number of constraints that is polynomial in the number of variables, and
we assumed that the costs are O(1) in N, then AL = O(poly(N)) and the
numerator in the adiabatic condition is of polynomial order in N, and
independent of the dimensionless time parameter s:

(1(s)[£1(5)[0(s))] = O(poly(N).

The adiabatic time 7 is then a function of the square of the inverse gap g(s)?,
as one has to maximize 1/g(s)? for 0 < s < 1. The solution is fixed by the
minimal gap gmin of H(s) in the adiabatic path.

The asymptotic runtime of the adiabatic algorithm is determined by how
Jmin varies as a function of N. In particular, if gmin ~ 1/poly(N) in the limit of
N — oo, then 7(N) = O(poly(N)) and the adiabatic algorithm is efficient. If,
on the other hand, gmin ~ 1/ exp(N) then 7(N) = Q(exp(V)) and the algorithm
is not efficient.

1.3 Physical Interpretations

The adiabatic formula Eq. gives us the conditions under which an anneal-
ing schedule may be considered adiabatic. These conditions however involve
spectral gaps and matrix elements that are usually hard to compute and per-
haps a bit opaque in their physical interpretation. It seems therefore useful to
develop some different physical intuition in order to better understand how the
quantum adiabatic algorithm works. Indeed, there have been a few proposals
and we are going to consider them in this section.

1.3.1 Tunnelling through energy barriers

In the seminal paper where quantum annealing was introduced, the authors
considered an adiabatic path of the form

H(t)=Hp —T(t)Y o7,

where T'(¢) is decreased to zero from a inital value I'(0) > 0 and Hp is the
problem Hamiltonian which is taken to be diagonal in the computational o*-
basis. One can see that in this case the transverse field term induces transitions
between classical energy configurations (i.e. computational basis states): for
t < 1 and to leading order in I':

WU~ [yl 27T e ey = [ EW|(y|e" 27T |y))|
thk)

_ it0 32, 07 1| —
= |{yle"™ =7y = O(—

where y, y’ are labels for states in the computational (i.e. o* diagonal) basis and
k = dist(y, y’) is the Hamming distanceﬂ between y and y’. The idea is then to

3given two strings x1,...,zx and y1,...,yn, the Hamming distance between them is the
number of positions ¢ where x; # y;. By extension, if we have two quantum product states
®), |zi) and @), |y;) then we can define a Hamming distance between them by the number of
sites ¢ where |x;) # |y;).
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start in a state that is a uniform superposition of all classical energy eigenstates
(i.e. the ground state of the transverse field term, a state with large quantum
fluctuations) and successively reduce the strength of the transverse field. Then
the amplitudes of the (classical) excited states will escape their “metastable
state” through quantum tunnelling and will concentrate in the ground state of
the classical problem. If the decrease of T" is slow enough, one can prove [28] that
in the infinite-time limit the system will reach the ground state with probability
one.

Accepting the “tunnelling between classical states” pricture, one would like
to derive some ballpark estimate of the efficiency of such process. The usual
benchmark against which this process is tested is simulated annealing (see Ap-
pendix for the details), on the argument that both algorithms are non-
deterministic algorithms that use physical processes to explore an exponentially-
large configuration space. One way to do that is to use the Wentzen-Kramers-
Brillouin approximation to study the expected tunnelling time of a particle with
mass m through an energy barrier, which is the supposed mechanism used by
the quantum annealing procedure to overcome the energy barriers in the poten-
tial according to this interpretation. In the case of one-dimensional barrier of
height AE and width w, one gets

F = eww/%mAE.

By comparison, the Kramers escape problem describes the expected escape time
from a metastable state with a barrier of height AFE through thermal excita-
tions. This is used to model the dynamics by which thermal annealing (and its
simulated version) can find its way through the energy landscape and reach the
ground state. It solution gives an Arrhenius-like time of

T =eRB/T,

Then the argument is that quantum annealing should outperform classical ther-
mal annealing in problems where the metastable states in the energy landscape
are separated by tall but thin barriers (of width w = O(1)), so that the ther-
mal escape goes like exp(AF) while the tunnelling time goes like exp(VAE).
Note that this (admittedly very crude) estimate entails a quadratic speedup
in an algorithm that runs in exponential time, i.e. a Grover-like speedup [29].
Unfortunately, at the present time no realistic combinatorial problem is known
to have this kind of energy landscape and in fact, these properties of energy
landscapes are very difficult to study.

However appealing on an intuitive level, this picture suffers from a few prob-
lems. An obvious one is that escape times are calculated for one-dimensional
potentials while in real combinatorial problems one has highly multidimensional
Hilbert spaces, so the comparison presented above is at best a cartoon of the
true setup. More importantly, it seems hard to completely trust this particular
tunnelling picture or at least to use it for quantitative analysis. This is because
in order to be able to speak sensibly about tunnelling one requires a semiclas-
sical potential to define classically allowed and forbidden regions. The recipe
of using the classical energy landscape cannot be correct in the large-I" limit,
where the energy of the system is dominated by the transverse-field term. Here
we have a single ground state separated by a gap g ~ 2I" from the rest of the
spectrum. One expects to start finding a corrugated energy landscape with a
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complicated set of metastable states when the system enters the glassy phase.
Nevertheless, quantum chaos in the I' parameter will likely shift metastable
states up and down as I is decreased so that the energy landscape inside of the
glassy phase will look nothing like the classical one until the very end of the
annealing process. At this point the spread of the wavefuction over the classical
states will strongly depend on the previous part of the annealing protocol, which
this picture does not capture.

1.3.2 Landau-Zener processes

The two seminal papers [30, [31] by Lev Landau and Clarenece Zener describe a
quasi-adiabatic process where the time-dependent Hamiltonian H(t) of a two-
level system has two energy levels that start infinitely far apart at ¢ = —oo are
brought close together at ¢ = 0, where the gap between them is 2 > 0, and
are then separated again in the limit of ¢ = oo (see Fig. . Assuming the
system starts in the ground state at time t = —oo, how is the amplitude of the
wavefunction spread between the two levels at time t = co?

The system’s Hamiltonian can be written using Pauli matrices: H(t) =
po® + A(t)o*. In the diabatic (0*-diagonal) basis {|0),|1)} this is the 2 x 2
matrix

H(t)= [)\'Sf) )A\L(t)} ) where A(t) = vt for t € R.

The parameter v = vpz > 0 is the Landau-Zener velocity and describes how
quickly the Hamiltonian is changing with time. The instantaneous energy eigen-
states of the system are

[Eo(t)) = sin(6/2)|0) —cos(6/2)[1)
[E1(t)) = cos(6/2)|0) +sin(6/2)[1),

where 6 = arctan(u/A(t)). Note that in the limit ¢ — +oo these converge to
the eigenvectors |0), |1) of 0%, but in different order

0) = [|Eo(=00)) = [E1(c0))
1) = [Ei(=00)) = [Eo(c0)).

These energy eigenstates |Ey(t)), |E1(t)) are associated to the energy levels

Eo(t) = —/p?+A()?
Ei(t) = i+ A2,

so the gap between the two levels is given by g(t) = 24/u2 + A(¢)? and the
minimal gap is gmin = 2u. If the system starts in the ground state at time
t = —o0, then the probability of being in the excited state |Ei(t)) at time
t = oo is given by

(1 (00)|U (00, ~00) | Eo(~00))| = exp (= 72, (1.12)

‘ 2
v

One can see that the nature of the ground state wavefunction changes
abruptly from |0) to |1) around the avoided crossing, so in order to remain
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Energy
AV
’

Figure 1.5: Pictorial representation of a Landau-Zener transition. The blue line
is the energy of the ground state |Ey(t)) while the red one is the energy of the
first excited state |Ey(¢)). If g > 0 then the two levels never cross but have a
minimal gap of 2u at time ¢t = 0.

in the ground state, the system has to transition quickly from |0) to |1). From
Eq. (1.12) one can see that this transition is hampered by small minimal gap
gmin = 21 and is eased by a small Landau-Zener velocity v.

Note the similarity between the adiabatic condition and the Landau-
Zener excitation probability . The excitation probability decreases expo-
nentially as a function of the minimal gap gmin, so that if we consider a family
of Landau-Zener Hamiltonians {Hn(gl(rﬁ)n)}n where the minimal gap is closing in
the limit 91(:131 25 0, then the probability of staying in the ground state vanishes
as n approaches infinity (i.e. the transition becomes less and less adiabatic).
This effect needs to be countered by decreasing the Landau-Zener velocity v,
which can be taken to be the analogue of having an increasingly large annealing
time 7 in the adiabatic algorithm setup. This has led people into modelling the
physical process of the adiabatic quantum algorithm as a cascade of Landau-
Zener anticrossings happening at different times and in different regions of the
spectrum. Of course care must be taken when doing this, as standard Landau-
Zener process is a two-level process while in a run of the adiabatic algorithm
we need to consider the full spectrum of the Hamiltonian, so everthing must
be taken as an approximation. In particular, this approximation seems most
reasonable when the affected energy levels are well-separated from the rest of
the spectrum by a substantial energy gap. It is most definitely not a good
approximation when the system undergoes a second-order phase transition and
the minimal gap closes with a continuous spectrum on top of the ground state.
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1.3.3 Path-integral Representation

Path integrals are ubiquitous in quantum mechanics. In this section we write
the real-time propagator of the time-dependent Hamiltonian H(¢) in terms of
path integrals:

v(1,0) = 3 ([ 2B W) n()m)L (113)

where D[p| is the measure over the set of paths p : [0,1] — Sp(H(s)) through
the istantaneous energy eigenstates, W (p) is the (generically complex) weight
associated to the path p and |n(s)) are the eigenstates of the Hamiltonian H(s).
We believe the path-integral representation has the advantage of making plain
the fact that the adiabatic theorem is at its core an interference phenomenon
where with decreasing adiabatic velocity different paths that would lead the
system to an excited state interfere destructively.
We follow the presentation in [32]. We start from the time-dependent Scrodinger

Equation in dimensionless time s = t/7 € [0, 1]:

)
i 10()) = TH(s)|¥(s)).

The unitary propagator U (s, 0) generated by this equation is given by the time-
ordered exponential

U(s,0) = Texp ( —iT /OS H(s) ds'),

where T is the time-ordering operator.
We can use the semigroup property of the propagator U(s”,s) = U(s”,s")U(s, s)
to split the evolution interval [0, 1] into N equal subintervals, As = 1/N

O0=sp<s51<...<sy=1,
where s = kAs, so that

U(S) = (]]\],1"-U1U07 (114)
where Uy, = U(sp41, 5x) and we take the approximation U(sp 1, sp) ~ e TH(sk)As,
This approximation is exact in the limit N — oc.

The usual way to define a path integral is to insert resolutions of the identity
between successive terms Uy 1Uy, so that the matrix element of the propagator
(y|U(s)|x) can be written as a sum of products of the matrix elements of the
short-time propagators Uy,

WUG)e) = > GUN-|z™ D) @D [2O) (@ U |)

20z (N—2)

and then take the limit As — 0. The first thing we need to do is to compute the
matrix element of a propagator for the (y|Up|z). We can expand U (sgt1, Sk) as

Uk(8k+1, Sk) =1- iTASH(Sk) + O(ASQ)
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Notice that is we bracket this propagator with an energy eigenvector |m(sg+1))
of H(sg41) on the left, and an energy eigenvector |n(sg)) of H(sy) on the right,
we obtain

(k)| Uk(st1, 58)n(58) = (m(si)l(56)) 7 B (51) As (m(si4) [n(51)) +O 852).

By expanding (m(s)| around s = s; we get

(mlskin)] = (mlsi)| + As(in(si)| + O(As?)
and by plugging this in the previous equation we obtain

(s )| Ui (i1, s%) [n(s8)) = 5mn<ﬂ—iTEn(sk)As)+As<m(sk)\n(sk)>+O(As2>

= Gppe TE A LA (sy)|n(sk)) + O(A52>7

since I + aA = exp(ad) + O(a?). Now we insert resolutions of the identity
I=73",In(s)){n(s)|, where |n(s)) is the eigenbasis of H(s), between the short-
time propagators Uy in Eq. (1.14]). We get

(m(s)|U(s)lmo(0)) =y - Z $)|Un—1lmn-1(sn-1)) - - (ma(s1)|Uo|mo(0))

MN-—1

- Y- ZH5 STEA0AS 4 Asfin(sy)n(si) + O (As?).

MmN -1

This is essentially the path-integral formula of Eq. , one only needs to
rearrange the terms to make its form explicit. We organize the terms of this sum
by the number Nay of As factors it contains. For Nag = 0 the only non-zero
terms are of the form

1T Xk Bn(si)As for fixed n € N,

that in the limit As — 0 become e~ Jo Ex(s7ds" This can be seen pictorially
as a path starting in the state |n(0)) and evolvmg to the state |n(s)) for all
times 0 < s < 1. During this evolution, the state of the system accumulates
only a dynamical phase. For Nas = 1 we have a sum of terms of the form

Z e it K, En(sk)AsAS<m(8k)|n(8k)>e—i'r M Em(sk)As
for fixed n,m € N. In the limit As — 0 these become

1 . ! ’
/ IS B9 i (s) n(sp))e oo P04 gy,
0

Notice that the integrand (for a fixed value of s¢) is the contribution of a path
that starts in the state |n(0)), evolves in the state |0(s)) for all s < sg, then
jumps to |m(sp)) at time s = sg, and then evolves to |m(s)) for all s > sg. This
jump contributes with a factor (rh(sg)|n(so)) to the weight of the path.

More generally, each of the non-zero terms (in the limit As — 0) in the sum
can be associated to a path, i.e. a specific realization of a continuous-time jump
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process that moves between the istantaneous eigenstates of the system. A path
is a function p : [0,1] — N with the intended meaning that the index p(s) € N
labels an eigenstate of the Hamiltonian H(s), e.g. p(s) = k means that the
system at time s is in the eigenstate |k(s)) of H(s). The weight W (p) of the
path p is given by

Wi(p) = ¢ 0" Bra () dete o B 05t (6 mo(51)) - (i) [ (),

where one can make a choice of the phases ¢/*"(%) for the eigenstates of H(s) so
that

(n(s)| H (s)[m(s))

(ms) = p S = Es)

= Fo, m(s).

Note that the weights W (p) are not necessarily phases: in addition to the dy-
namical phases we have the factors (n(s)|m(s)) associated to the jumps. These
can have arbitrary magnitude. This means, for example, that if we assume the
existence of a typical value for the matrix elements (n(s)|H (s)|m(s)) ~ Vigpical,
we see that paths that have either (i) a large number of jumps, or (i7) jumps
between states with large differences in energy, will give a small contribution to
the integral .

If U(1,0) is the propagator of a run of the quantum adiabatic algorithm,
then the final state is U(1,0)]|0). The contribution of all the one-jump paths
that start in the ground state and jump to an excited |m(s)) state at some time
s can be written as

1
=i I3 Bl d’ / &1 I3 w0n ()35 (3 (6)]0(s)) dis
0

where wo ,(s") = Eo(s') — Exn(s’) as in Section If we only consider the
contributions given by the paths with exactly one jump, then on gets the error
term is approximated by [27]

| (1= oy o) v, 00| Z‘/ o o(s)emi i won(s) as ds’.

and integrating by parts the intergral in the L.h.s term, we get

1 ) S , ,
), Gl e ),

One can prove that the norm of this term can be upper bounded so as to get

Fm70(s) e i J5 wo.n(s")ds’
—iTwWo,n(S)

| 32 im) / Fono(s)e ™75 won (4 g | < PR O 2y

= ming g(s)37

which is essentially Eq. (1.7). One then sees that the usual adiabatic con-
dition is equivalent to neglecting the contributions given by the paths having
more than one jump.
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1.4 Entanglement and Adiabatic Computation

Entanglement is one of the principal features that are specifically peculiar to
composite quantum mechanical systems, as was discovered early on in the his-
tory of quantum mechanics. Its presence signifies the existence of non-local
correlations between (possibly remote, spatially separated) degrees of freedom,
to the effect that the state of the composite system cannot be reconstructed
from the local states of its components. In mathematical terms, this means
that the pure state |¢)) of a many-body system with Hilbert space H = &), H;
does not factorize over the tensor product structure of H

) # [1) @ [ih2) @ -+ @ [Yw).

While the factorizable/non factorizable question describes a binary property,
a great effort went into trying to find quantitative measures for the different
ways in which a state can be entangled. This gave rise to a vast number of
entanglement measures, each of them designed to capture a specific consequence
for a state to be non-factorizable.

In this thesis we will be mainly concerned with three entanglement measures
for pure states: the Von Neumann entanglement entropy, the Rényi entangle-
ment entropies and the quantum Fisher information. The first two quantify
bipartite entanglement, meaning that they depend on a specific factorization of
the many-body Hilbert space in two factors H = H 4 ® Hp and measure only
the quantum correlations across this partition. Given this choice and a pure
state |1) one computes the reduced density matrix p4 of system A by tracing
away from the p = |¢)(¢| the degrees of freedom belonging the system B

pa =Trp(p) = Tra(|v)(¥]),

and then computes a function f(p4) of the reduced density matrix that van-
ishes on matrices of rank one (that is, on pure states). The Von Neumann
entanglement entropy S(pa) is defined by taking this function to be f(X) =
— Tr(X log X):

S(pa) = = Tr (palog(pa))-

Equivalently, this means computing the Shannon entropy of the (discrete, since
we are always finite-dimensional) spectrum of pa. If Sp(pa) = {A1,..., AN}
then

S(pa) = — Z Ailog(A;).

Second among the entanglement measures we will consider, the entanglement
Rényi entropies S(® (a-Rényi entropy for short) are a family of entropy mea-
sures indicized by the real parameter o > 0 and defined by the functions
Ja(X) = 1L log Tr(X):

1

—Q

S (pa) = T log Tr(p5)

Equivalently, one needs to compute the (classical) Rényi entropy of the spectrum
of pa:

1 N
S (pa) = T——log Y A%,
i=1
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One can show that the a-Rényi entropy converges to the Von Neumann entropy
in the limit a — 1:
. o B
lim S@(X) = S(X)

Bipartite entanglement has a role to play in adiabatic computing as recent
numerical evidence [33] [34] suggests that bipartite entanglement positively cor-
relates with better performances of a quantum annealer (i.e. better approxima-
tions to the ground state energy). This seems to indicate that at least during
some parts of the adiabatic run, the system must inhabit (relatively) highly en-
tangled states, and that by forcibly limiting the amount of entanglement that is
available to the system, as was done in the cited works, one is effectively throw-
ing the system off-equilibrium and into excited states (which are associated to
less optimal solutions to the combinatorial problem).

The third entanglement measure we are going to consider is the quantum
Fisher information Fg. The quantum Fisher information was first used in quan-
tum metrology to measure the efficacy of a phase-estimation protocol [35], 36 [37],
when an initial state p of a many-body system is evolved as

p s e O et = () (1.15)

where H is a local Hamiltonian H =), h;, with h; acting nontrivially only on
the i-th site, and 6 € R is a fixed phase. We assume for simplicity that | H|| =1
but note that is not a crucial assumption for the results we are going to describe.
One then would like to learn the value of € by performing some measurement
on (independent copies of) p(#). This is accomplished first by measuring p(6)
with respect to a positive operator-valued measure (POVM) {E,}, that gives
the result u, belonging to a set M of possible outcomes, with probability

p(ul0) = Tr(Eup(9)).

After m repetitions of the measurement on independent copies of p(#), one
applies an estimator 6: M™ = R to the results W1, -, U thus obtained, so
that O(u1, .. ., tm) is meant to represent the “guess” for the value of 8. Note that
since the outcomes pu; of the measurements are random, then 6 = 9(u1, ey lm)
is a random variable. Then the Fisher information F

FIp®) 4B} H = 3 o (5ot

is a quantity (dependent on the Hamiltonian H, the initial state p, the phase
¢ and the choice of POVM {E,}) that limits the accuracy of an unbiase(ﬂ
estimator 6 through the Cramer-Rao bound on its standard deviation

1
VmF'

It turns out that in the case described by Eq. (1.15)), the Fisher information does
not depend on the value 6, so we can write it as F[p, { £, }, H]. The optimization

o() > (1.16)

meaning that the expectation value of 0 gives the correct value 6 for the parameter,

<é; = 0.
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of this protocol with respect to the choice of POVM defines the quantum Fisher
information Fg (with respect to the generator H)

FQ[paH] = {Sup F[pa {E/L}vH]7 (117)

“w

which gives rise to the generalized version of Eq. (|1.16))

1 1
> .
vmE — \/mFg

One can prove that the inequalities in the equation can be saturated by an
optimal POVM {E, }, so that the least upper bound in Eq. can be taken
to be a maximum. A consequence of this fact is that a phase-encoding procedure
with a large value of Fiy allows for better phase estimation.

For a pure state p = |[¢)(¢|, the quantum Fisher information takes a simple
form

o(f) >

(1.18)

Folu, H] = 4 Var(H) = 4((p|H2|0) - (W H|)?). (1.19)

If the state i) is entangled, then the quantum Fisher information density fo
satisfies the inequality

Foly, H
faw. 1) = A < (1.20)
where k is the size of the largest “entangled block” in the N-spin state [1)), i.e.

if the state |¢) is written as the tensor product of states |¢;)

) = ¢h1) @ -+ @ [¢hm)

where for every i the ket [¢); is a state of n; spins forming a (not necessarily
contiguous) “block” of spins, then k¥ = max;{n;}. One can then use the quantum
Fisher information as an entanglement witness: if |1)) contains an entangled
block of size greater than k, then the inequality is violated for some
choice of phase shift generator H. By maximizing F[¢), H] over all possible
non-interacting Hamiltonians H = ), h; one can learn the size of the largest
entangled block in [¢)). States whose maximal entangled block is of size k or
less are called k-producible or k-blocked in the literature.

The kind of multipartite entanglement detected by the quantum Fisher in-
formation is also known to play a role in the theory of quantum computational
complexity: volume-law entanglement scaling was observed to be associated
with the exponential speedup that quantum computers are expected to have
over classical computers at performing certain specific computational tasks [3§].
On the contrary, it is known that efficient quantum algorithms that generate an
entanglement that grows slowly with the system size (as measured e.g. by the
Schmidt rank [39] or the size of the maximal entangled block [40]) can achieve
at most a polynomial speedup over their classical counterparts.

1.4.1 Replica Method for the Rényi Entropy

We have seen that in order to compute the entanglement entropies of a generic
spin system one needs either the reduced density matrix p4 of the state, or its
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spectrum. This is in general a very resource-intensive task due to the exponential
growth of the dimension of the Hilbert space as a function of the number of spins
in the system. If p is the thermal state of a system with Hamiltonian H, i.e.
p < e PH and one is interested in computing only the a-Rényi entropies with
integer order «, then there is an easier approach that uses the replica trick.
For better clarity we describe the method in the case o = 2 but this is easily
generalized for any integer greater than one. First one writes p as a rank four
tensor in a product basis {|a)|b)} of H = Ha @ Hp:

a H./ ]- —
Py = al(blpla)[b') = — (al(ble™|a")|V').

Now it is easy to see that the matrix elements of p4 = Trp(p) can be written
as

a,a’ 1 —
(alpala’y =D ppy = Y _al(ble™a)|b)
b b
and Tr(p%) = Tr(papa) is given by

Te(p4) = Y (alpala’ya'loala) = 5 37 {al Gle™ " la)bya’ [{B]e " a) 1)
a,a’ a,a’,b,b’
(1.21)
Note that the sum in the equation above can be interpreted as the partition
function Zf) of a quantum mechanical system made of two replicas of the
original system, where the region A is propagated for an imaginary time of 23
across the replicas, while the region B is propagated for a time 8 independetly
for each replica (see Fig. . The factor Z2 is just the partition function of
two non-interacting replicas. Now it is clear that S (ps) = — log(ZI(42)/Z2) is
proportional to the logarithm of the ratio of two partition functions (essentially
a free energy difference) on the system of two replicas, which differ by the
boundary conditions imposed on the region A in imaginary time.
We note that this replica-method approach for the computation of the Rényi
entropies was first used in [4I] in the context of conformal field theories.
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Figure 1.6: (Left) Pictorial impression of the path-integral representation of
the Z? partition function of two replicas of a fictitious one-dimensional system.
The vertical direction corresponds to the real-space coordinate x while the an-
gular coordinate represents imaginary time 7. The imaginary-time coordinate
is compact with length 8 for each replica. (Right) Pictorial representation of

the system described by Zf). Two copies of the original system are connected
in the imaginary-time direction, but only in the region A (upper part of the sur-
face), where the angular coordinate 7 takes values in 0 < 7 < 283. The regions
B (lower part of the surface) of the replicas are disconnected from each other,
and the imaginary time loops close on themselves after an interval of length 3.
This gives a “pair of pants” Riemann surface representation of the system.



Chapter 2

Classical Ising Spin Glass

In this chapter we consider the classical Ising spin glass model defined on the
Bethe lattice. This represent our theoretical approximation to the native (and
only) problem that the D-Wave machine is able to solve. While this might seem
to be a strong restriction for the computational capabilities of the machine, we
show that this is, in fact, not the case. In Section we review some classical
models of spin glasses on generic interaction graphs. The infinite Bethe lattice,
and the way to study it using finite-size regular random graphs as approxima-
tions, in presented in Section [2.1.1] The cavity-method solution of the model
is discussed in Section [2.1.5] and the relation between Ising spin glasses and
computational complexity is presented in Section [2.1.6)

2.1 The Ising spin glass problem

Consider a system of IV classical spins, interacting according to the Hamiltonian

H==3 JijSS;, (2.1)

(i5)
where S, = £1 are the spin variables and J;; are quenched disordered variables
sampled independently according to some fixed probability distribution P(.J;;).
We assume that these spins interact only between nearest neighbours on a graph

G, so that in Eq. (2.1) the sum index (ij) is taken over the edges of G. If for
the disordered interaction couplings J;; we choose the distribution

1 1
P(Jij) = 50(J = Jig) + 50(J + Jyy)

for some fixed J > 0, then the model is called an Ising spin glass. As the Hamil-
tonian in Eq. depends on the specific realization of disorder J = {J;;},
then one is usually interested in computing some disorder-averaged quantities A.
These are obtained first by computing the value A[J] for specific disorder real-
izations J, and then averaging this value with respect to the distribution of the
disorder A = [ A[J]P(J)dJ. Quantities A[J] whose variance over .J disappears
as one approaches the thermodynamic limit are called self-averaging.

Spin glasses are simplified models of disordered magnetic materials. The
original paper [42] by Edwards and Anderson uses the model of Eq. to

25
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describe dilute magnetic alloys, where few impurities are assumed to be scattered
throughout the crystal lattice structure of a solid. The magnetic dipoles of the
atoms are then coupled by a potential that fluctuates rapidly with the separation
between the atoms. If we model the dipoles as classical spin variables S; =
41 and the interaction between dipoles by random effective coupling constants
Ji; with different signs (to represent the fluctuating potential) we obtain the

Hamiltonian of Eq. (2.1)).

Spin glasses are frustrated systems. A system is said to be frustrated if
none of its states can simultaneously minimize the energy of every term in the
Hamiltonian. By contrast, the ferromagnetic Ising model obtained from Eq.
by taking all couplings J;; = 1 is not frustrated, as the ferromagnetically
ordered configuration S; = 1 for all ¢+ minimizes the energy of all terms in the
sum. In the case where all terms give the same energy contribution, a ground
state of a frustrated system is a spin configuration that minimizes the greatest
possible number of interaction terms, and as such it is not guarateed to be
unique. Moreover, one cannot expect to connect a given state to the ground
state by following a local “steepest descent” approach, i.e. flipping one spin at
a time and moving to the new state if its energy is lower than the energy of
the current state. Indeed, if this method is applied one usually ends up in a
metastable state, a state that is not the ground state but is sorrounded by states
of higher energy (it is a local minimum of the energy).

A consequence of frustration, and one of the distinctive features of glassy
systems, is the fact that they have complicated (or “rough”) energy landscapes,
in the sense that the energy suface defined over their configuration manifold has
many hills and valleys, and therefore lots of local minima. In systems like the
one in Eq. where the configuration space is composed of a discrete set
of points, this is meant to signify there are multiple ground states and many
states with an energy that may be close, but not equal, to the ground state
energy. These states can be separated (e.g. with respect to the Hamming
distance) from the actual ground states by states of higher energy, so that these
metastable states can function as “traps”: if the system reaches one of these
states then it will take a long time for the dynamics to move away from itﬂ

One of the effects of these rough energy landscapes is that at temperatures
lower than some critical temperature T,, the free energy of the system devel-
ops a large number of valleys separated by barriers whose height diverges in the
thermodynamic limit. This means that the phase space (or configuration space)
is split into many regions that the dynamics cannot connect, i.e. the system
becomes non-ergodic. This statement, however, must be taken with care, espe-
cially if one cannot work directly in the thermodynamic limit. This is because at
any finite value of NV, the system is ergodic, in the sense that, for an observable
A, the long time-average

1 [t
lim = [ A(t')dt

t—oo t 0

1Of course, spin glass systems like the one in Eq. do not have dynamics so the usual
solution is to add an effective dynamics that is expected to model the microscopic dynamics
of a system in a thermal environment, at least in the medium to large time regime. For spin
systems, Metropolis or Glauber dynamics are commonly used.
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is thermal, so the limit

1 t
lim lim — [ A(#)dt
N—ooot—oo t 0
is also thermal. The correct way of understanding glassy physics requires taking
the limits in the opposite order, so that the integral is then

t
lim lim 1/ At dt'.
t—00 N—oo t 0

In the previous equation, the N — oo limit is evaluated first, which creates the
clustering of the phase space into dynamically-separated regions. After this is
done, the system is trapped in the same (initial-state dependent) region for all
times ¢, and in the ¢ — oo limit the system mixes (i.e. “thermalizes”) only
within the states that lie inside of this region. The time-averages then converge
to an average with respect to this reduced ensemble (sometimes called a “pure
state”), rather than the usual canonical ensemble.

While the dynamical point of view is the most traditional, glassiness can be
understood from the perspective of equilibrium properties. Again, it is useful
to compare their behaviour with the behaviour of ferromagnatic systems, de-
scribed by the Hamitonian but where all interactions are positive J;; = 1.
If () 5 1s the canonical-ensemble average at inverse temperature (B, then the
magnetization is commonly defined as

1 1
mzﬁzi:ml-:NZ(Si)B

%

The Hamiltonian of is Zy-symmetric with respect to the global spin-flip
operation that maps S; — —S; simultaneously for all sites ¢. This means in
particular that (S;) 5 =10 for all i, so the magnetization is always zero, at all
temperatures. This of course fails to capture the well-established experimental
fact that ferromagnets exhibit spontaneous magnetization at low temperatures.
The usual solution is then to apply a small magnetic field Hiong = —h )", S; to
the system, where i € R, and then bring it to zero. Then for a choice of sign
s = 4 one defines
() = 0 R Sl

where by () 5 ;, is meant the Gibbs distribution at inverse temperature 3 induced
by the Hamiltonian of Eq. with the additional term Hione multiplied
by the chosen sign s. What happens is that at high temperatures, all the
local magnetizations m; are zero. At low temperatures, however, the local
magnetizations will all assume the same finite value m; = £m() whose sign is
selected by the sign of the external field h. This is because as the temperature
is lowered below the Curie critical temperature T, the Gibbs distribution will
concentrate on the low-energy states, which in the case of ferromagnets have
large domains of aligned spins. This means that the spins will all tend to
align in the same direction, e.g. (S;) = 1, and the total magnetization will
assume a finite value. Therefore, in the physics of ferromagnets, the phase
transition between a paramagnetic and an ordered phase is signalled by the
value of total magnetization m = (1/N) >, m;. The emergence of a finite value
for the magnetization signifies the beginning of the ordered phase.
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The same temperature-driven spin alignment effect also happens in the case
of spin glasses. However, the low-energy states of a spin glass usually does
not have the large domains of aligned spins that are typical of ferromagnetic
systems. Instead, the spins are aligned in random directions, so that in the limit
B — oo the average local magnetization (S;) at site ¢ will approach essentially a
random value of +1 or —1, independently for each site 7. This results in a zero
total magnetization even at low temperatures, so it cannot be used as an order
parameter for the transition. Instead, one uses the Edwards-Anderson order

parameter qga
_1 2
qEA = N Ez <5’1> :

Again, this is to be intended as the value of a limiting procedure where the
breaking of ergodicity is introduced in some way. Either in the static way, where
one introduces local external fields to the Hamiltonian, Hj,ng = —h ), h;S; for
a fixed choice of o = (hq,...,hy) € {0,1}" and h € R, and then takes the limit
of vanishing field strength

mi(h) = lim  lim (), 5

so that gga(h) = (1/N) 2, m;(h)?, or in the dynamical approach

A | LY o2
0pa = Jim Jim 537 (5 [ sierar)”

A spin glass phase is defined as a temperature interval where qg 4 is non-zero.

While interesting from a purely physical perspective, our interest in spin
glasses stems also from the relation they have with combinatorial optimization
problems. On the one hand, it is easy to see that can be recast as constraint
satisfaction problem of Section An interaction term —.J;;5;S; becomes a
constraint f;; over the two Boolean variables X; = (1-5;)/2 and X; = (1-5,)/2
such that

—Ji; X, =X
fis (X, X5) = {Ji' otherwise
and the full Hamiltonian is given by f(X1,..., Xn) =3,y fi;(Xi, X;). Then
solving this minimization problem is equivalent to finding the ground state of
the corresponding spin glass Hamiltonian.

On the other hand, and perhaps more surprisingly, a great number of op-
timization problems can be reformulated as instances of a spin glass problem,
to the effect that one needs only to be able to solve the spin glass case to be
able to solve all of these other problems. This is the reason why the D-Wave
machine — which can solve only this energy minimization problem — is more
than a curiosity. This will be better explained in Section [2.1.6]

2.1.1 The Bethe lattice and Regular Random Graphs

Since the spin glass model we study in this thesis is defined on graphs with
non-trivial topologies, let us quickly review some relevant graph-theoretical def-
initions. An undirected graph (from now on, simply “a graph”) G = (V, E) is
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defined by a set of vertices V and a set of edges E, i.e. subsets of V with exactly
two elements. If e = {v,w} is an edge of G, then we say that the vertices v
and w are adiacent (or neighbours), and that the edge e is incident to both v
and w. The degree of a vertex, deg(v) is the number of vertices it is adiacent
to. If all vertices of G have the same degree d, then G is said to be regular
with deg(G) = d. A finite graph G = (V, E)) over the vertices V = {v1,...,vn}
can be represented by an operator Ag over CV called the adjacency matriz and
defined by

1 if {v;,v;} is an edge in E

(vildeles) = {O otherwise ’
where {|v;)}Y | is any fixed basis whose elements are labelled by the vertices v;.

Given a graph G = (V, E) and two vertices v,w € V', a “path” p connecting v
and w is a sequence of vertices p = (vg, v1, ..., v,) such that vg = v, v, = w and
for every 0 <14 < n—1 it holds that v; and v;11 are adiacent in G. Alternatively,
the same path p can be defined by the sequence of edges p = (eq,...,en—1) it
crosses, where e; = v;,v;41. The number n of edges in a path p is defined to be
the length of the path and denoted ¢(p). We write paths(v,w) to indicate the
set of paths connecting v and w. A path starting and ending in the same vertex
v = vg = v, is called a cycle, or loop. A graph without cycles is called a tree.

A graph is connected if every pair of its vertices has a path that connects
them, i.e. paths(v,w) is non-empty for all v, w. Connected graphs have auto-
matically a metric structure induced by the path lengths. Given two vertices
v, w one defines

distg (v, w) = min {E(p) |p e paths(v,w)}.

This can easily seen to satisfy the usual conditions for a distance function. The
open balls for this metric space are defined as usual

B(v,r) ={w € V| distg(v,w) < r},

where v € V is the center and r is the radius.

In this thesis we want to consider the spin glass problem of Eq. (2.1]) where
sum is taken over the edges of a Bethe lattice. The Bethe lattice (see Fig. is
a graph that was introduced in [43] to define models where the Bethe-Peierls
approximation is exact.

Definition 1 (Bethe lattice). The Bethe lattice Ty of degree d is a connected
tree with a countably infinite set of vertices, with the property that each vertex
has ezxactly d neighbours (i.e. is d-reqular). The subgraph obtained from Ty by
removing any single vertex is a collection of d isomorphic finitary trees. The
branching factor of these trees, usually called the connectivity of the Bethe lattice
in the physics literature and indicated by the letter K, is equal to d — 1.

Note that the Bethe lattice is locally homogeneous, in the sense that any
pair of balls B(vy,7), B(ve,r) of the same radius r centered on vertices v1, va,
are isomorphic. While its highly symmetric structure is a boon for analytical
methods, the fact that it is infinite in size makes it difficult to study numerically.
Therefore one would like to study a sequence {Gn }nen of graphs of finite size
N that in some sense converge to the Bethe lattice Ty in the limit N — oo.
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In this way, the value of some physical quantity of interest ) can be computed
for the graphs in the sequence, obtaining the values @1, @2, Qs,.... The limit
Qoo = limpy_ 0 @ is then the value of the quantity @) computed on the inifinite-
size Bethe lattice ']I‘aEl For the case of disordered systems, the usual choice is to
use regular random graphs of finite size N and fixed degree d.

Definition 2 (Random Regular Graph). For fized integers k, N > 0, let Gg v be
the set of all graphs with N wvertices so that each vertex has exactly d neighbours.
Note that for any choice of k, N, the set G n is finite, so we can equip it with
a uniform probability distribution

1

Pin(G) = Ganl

for any G € Gg N,

and the complete sigma-algebra ¥ = P(Gq ) so that (Gan, X, Pan) is a prob-
ability space. A “d-regular random graph of size N7 is any graph G sampled
from this probability space.

2.1.2 Locally tree-like graphs

Unlike the Bethe lattice, regular random graphs can be loopy, which means that
one can find a path (vq,...,v) starting and ending on the same vertex vy = vg.
The presence of loops in an interaction graph has profound consequences for the
physics of disodered systems, as this is a way of introducing frustration. This
is shown in Fig. with the simplest example of frustrated system is given by
a triangle (a loop of length 3) with antiferromagnetic interactions.

Figure 2.1: one of the simplest frustrated system, the triangle with antiferromag-
netic interactions. The three terms in the Hamiltonian H = 5155 + S5.53 + 51553
cannot be minimized simultaneously. This is a general behaviour that happens
frequently in antiferromagnetic and disordered systems, and gives rise to rough
energy landscapes.

One of the properties of large random regular graphs is that, while loopy,
they are locally tree-like: given any fixed radius r and a vertex v in any large

2in the physics literature, the value of this limit is defined to be the value of Q on Bethe
lattice even in the case where the physical system of interest is ill-defined on an actually-infinite
graph.



2.1. THE ISING SPIN GLASS PROBLEM 31

enough RRG, the loops in the graph will, with high probability, concentrate
outside of the ball of radius r centered in v. This means that the presence of a
loop in the graph cannot be detected by looking at any finite-radius neighbour-
hood of a vertex, because (in the N — oo limit) any such local neighbourhood
will be a tree. Loops will only show up if one looks at neighborhoods whose
radius r grows with N. More rigorously, one can prove (see Corollary 2 in [44])
the following theorem.

Theorem 1. Let d,m > 3 and £ > 0, and let Cycles(G,£) be the set of loops of
length £ in a graph G. Then in the N — oo limit, the probability that a random
graph G € Gg N has exactly k cycles of length £ is given by

k=X
_ Age ™M
k'

lim Prg, [|Cycles(G7£)| =k
N —o00 ’

where \p = (d — 1)°/(2¢).

Moreover, the random variables X, = Cycles(-,¢) are statistically indepen-
dent over G4 n with (X,) = Ap. Since the expectation value of the number of
cycles of a fixed length 7 is finite for N — oo, and the number of cycles in G
almost-surely diverges with IV, then the probability that a random cycle in G
has length ¢ tends to zero in the N — oo.

Figure 2.2: Locally, both the Bethe lattice and a regular random graph have a
tree structure. The loops that are present in a regular random graphs appear
only at the global scale.

2.1.3 Benjamini-Schramm convergence

For a given graph G, the two conditions of 1) having a fixed degree, and 2) being
locally tree-like suggest that G should locally look like the Bethe lattice of the
same degree. We have seen that both conditions hold, with high probability,
for large regular random graphs. One gets the intuition that a typical regular
random graph should share the same properties of the Bethe lattice, at least as
long as local properties are considered. This intuitive idea can be formalized
using a limiting procedure for graph sequences called Benjamini-Schramm (BS)
convergence [45], [46].

In order to define BS-convergence one has to use the somewhat technical
notion of a rooted graph. A rooted graph is a pair (G,r) where G = (V, E) is a



32 CHAPTER 2. CLASSICAL ISING SPIN GLASS

graph and r € V is a distinguished vertex called the root. An isomorphism of
rooted graphs ¢ : (G1,71) = (Ga,r2) is a graph isomorphism where ¢(r1) = rs.
We write RG, to indicate the set of all d-regular rooted graphs of arbitrary size.
This set can be given a metric structure (and therefore a topological structure)
by defining a distance function d(G1,G2) based on the distance one needs to
moves away from the respective roots of G; and G5 before the two graphs can
be recognized to be non-isomorphic.

Definition 3. Given two rooted graphs (G1,71) and (Ga,12), consider the set
S(G1,Gs) ={k e N| B(r1,k) = B(ro, k)}

of values k € N such that the balls B(ry,k) centered on the root of G1 and
B(re, k) centered on the root of Ga, are isomorphic. We define the distance
function d(G1,G2) = 1/kmax, where kyax is defined as

Fmax = SupS(Gl’ GQ)
with the understanding that d(G1,G2) =0 if S(G1,G2) has no upper bound.

One can prove that this is a bona fide distance function if one defines it
over RG4 modulo graph isomorphisms. This makes RG, (or rather RGy/ =) a
metric space.

The Benjamini-Schramm convergence is the weak convergence induced by
the probability measures on the space RG4 of rooted graphs: we call general-
ized random graph of degree d a probability measure pu over RGy. Then the
sequence of generalized random graphs {ux}n converges in the BS sense to the
generalized random graph p if, for all continuous functions f : RG — R it holds
that

N—o00

lim f(g)duN(g)::”/) f(g)du(g).
RG RG

Equivalently, one can use finite rooted graphs to check BS-convergence. Given
a generalized random graph p, a finite rooted graph (G, r) and an integer k > 0,
define

HMQEPmpmmgG]

as the probability that a ball of radius k centered at the root r of a rooted
graph g € RGy4 sampled according to pu, is isomorphic to the rooted graph
(G, r). Then one can prove that the sequence {py}n converges in the BS sense
to the generalized random graph p if and only if for all finite rooted graph (G, )
and all k£ > 0 it holds that
lim P(un,G) = P(u,G).
N—oc0

Then by taking pn to be the uniform distribution over d-regular random graphs
of size N, with randomly chosen roots, and u = Ty (i.e. a delta function
centered on the d-regular Bethe lattice with any fixed choice of root), then
one can see that Theorem [l| implies that (randomly rooted) d-regular random
graphs converge to the Bethe lattice T4 with respect to the Benjamini-Schramm
convergence.

In light of the previous results, we will use regular random graphs as finite-
size approximations of the Bethe lattice, and we will claim that the thermodynamic-
limit value of some quantity computed on the finite-size RRG ensembles {G4 n }
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applies to the Bethe lattice as well. However, one must take care when do-
ing this as the Benjamini-Schramm convergence preserves only local properties.
Which exactly are to be considered local properties is an open question in com-
binatorics. From a physical point of view, one can argue that bulk properties of
physical systems described by local Hamiltonians such as that of Eq. are
conserved by taking the Benjamini-Schramm limit.

2.1.4 Expander graphs

Random regular graphs have one more property that will be relevant to us,
namely they are well-connected in a sense that can be formalized using the
graph-theoretic equivalent of the Cheeger isoperimetric constant for Riemann
manifolds. Let M be a closed Riemann manifold with dim(M) = n. For a
given submanifold X C M, let Vol(X) be the volume of X:

Vol(X) = / xxdV
M
and let Area(X) be the (n — 1)-dimensional volume of the boundary X of the
submanifold X induced by the volume form dV. Then one defines
Area(X)
min {Vol(X), Vol(XC)}

hm(X) =

where X is the complementary closed manifold to X in M. Then the Cheeger
constant ha of the manifold M is defined as

where the infimum is taken over all closed submanifolds of M. In the case of
graphs, a similar quantity can be defined.

Definition 4 (Graph-theoretic Cheeger constant). Let G = (V, E) a graph and,
for any A, B CV, define E(A, B) as set of edges of G incident to a vertex in
A and a vertex in B. Given a subset of vertices W C V| define the quantity

|[E(W,We)]|
min { ZUEW deg(v), ZUEWC deg(v)}

where W€ denotes the complement of the set W in V. Then the “Cheeger
constant” of the graph G is defined as

hg = Vr[[/lér‘l/ ha(W)

ha(W) =

This is equivalent to the Riemann manifold definition, with the prescription
that F(X, X°) measures the area of the boundary of a set of vertices X and
that ) .y deg(z) measures the volume of X. Note that disconnected graphs
have hg = 0. Intuitively, graphs with a small positive value of hg have a
“bottleneck”, i.e. a pair of regions connected only by relatively few edges. On
the opposite regime, a large hg means that every two regions of the graph are
connected by relatively many edges. Families of graphs {G,} with a Cheeger
constant that is bounded away from zero are called expander graphs. The main
point then is that large regular random graph are (almost surely) good ex-
panders, as summarized in the following result, adapted from [47]
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Theorem 2. Let d > 3 and let G € Ggn a random regular graph. Then the
modulus largest non-trivial eigenvalue \(G) of the adiacency matriz of G (i.e.

MG) # d) satisfies
AMG)</(d=-1)+1
asymptotically almost surely.

One can then show that this bound on A(G) implies a bound on the Cheeger
constant h(G), as it is well known that spectral expansion is related to edge
expansion (see e.g. [48]).

2.1.5 Ising Spin Glass on the Bethe Lattice

The Ising spin glass on the Bethe lattice T4 enters a glassy phase at low tem-
peratures, when 8 > (., where the critical value of the transition is given by
the formula

tanh(8,) = 1/VK, (2.2)

and K = d — 1 is the connectivity of the lattice. First of all, we recall that
the system can be solved numerically, directly in the thermodynamic limit,
to arbitrary degrees of accuracy with the cavity method. While the solution
requires the breaking of the replica symmetry (see e.g. [49]), the simpler replica-
symmetric approach is enough to show the emergence of the spin glass phase,
which will be enough for us.

In the simplest, replica-symmetric version of the cavity method, one consid-
ers the marginal of the Gibbs distribution on a given site, say i = 0

1 .
P(So)=— Y & Zun T
Sk:k#0

and reparametrizes it with an effective field (also called cavity field) parameter
ho such that

P(So) = eﬁho.
It is possible to find a recursion equation for the cavity fields of the spin 0 once
those of the adiacent spins 1,..., K are known
| K
ho = = »_tanh™" (tanh(8.J;) tanh(Bh;)). (2.3)
B i=1

These fields are random i.i.d. (since the correlations are negligible for large
system sizes) and distributed according to a probability distribution which is
stable under . The distribution which is stable under iterations in the
paramagnetic phase is

P(h) =4(h), (2.4)

and the limit of stability of this solution is observed by expanding Eq. (2.3)) for
small h;

K
]’LO ~ Ztanh(ﬁJOi)hi. (25)

i=1
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By squaring and taking the average both over J and over P(h) we can see how
the size of the distribution (as measured by (h?), given that (h) = 0) evolves
under the iterations. We get

(h?) = K tanh?(8.J) (h?) (2.6)

which means that until T > T, given by T, = 1/8. in Eq. (2.2), the stable
distribution has a decreasing (h?) until (h?) — 0, from which we obtain ((2.4))
[50]. Proceeding with this reasoning one can also find that for T' < T,:

1
qpa =5 ) (8 o |Te = T. (2.7)

%

Another instructive way to obtain the same results is to consider the spin-
spin connected correlation function

19(o})
B on;

where 7; is a local field applied on the spin j (and then sent to zero) H —
H —mnj;o;. By using a telescopic identity and the recursion relations on the field,

Ci = <Jfaj-> —(o?) <O']Z-> = (2.8)

for two spins 4, j separated by a path of vertices {v, }Z_, of length L = d(i, j):
] =v0,V1,...,0L =1

we have (denoting v, = j +n and vy_,, =i — m) that the main contribution
to the correlation function is given by

9(07) Ohy 11 _Ohjun

1 ) 2.9
=5 Ohi—y Onj = Ohjyr— (2:9)

Now
Ohe  tanh(BJgq-1) cosh_Q(ﬁha,l)

Oha—1 11— tanh(8Jy,4—1)2 tanhQ(ﬁha,l)'
Since we are studying the stability of the paramagnetic phase and the critical

region we can set h, — 0, which gives

Oh,
aha 1

(2.10)

~ tanh(8Jg q—1)- (2.11)

Considering that at a distance L ~ In N/In K > 1, diameter of the RRG, there
are K paths that lead from one spin to another, we have that the susceptibility
on a single path has to be summed over all the K paths p

KE

d (o
1
= 8" 3773 Z tanh(BJa, 0, —1)- (2.12)

=la,=1

Since this is a sum of randomly signed, i.i.d. terms, we have that the typical
value is

<Cﬁi+L> ~ KL/ tanh(BJ)E. (2.13)
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This decays exponentially if and only if g < . in Eq. . Notice that this
sum is not dominated by a single term, but it is a collective behavior of the
single terms which gives rise to the transition.

This correlation function can be used to define the shattered susceptibility

1
Xa = > ez, (2.14)
ij

which diverges at the transition and remains infinite in the whole SG phase,
below the AT line [51], [50]. On the Bethe lattice this is due to the fact that the
exponential growth of the number of sites at distance r, K", dominates over the
exponential decay of the typical spin-spin correlation.

2.1.6 Computational Complexity

From a computational perspective, the spin model of Eq. is interesting
because finding or approximating its ground state energy is a hard optimization
problem in the worst-case. We have remarked before that the D-Wave machine’s
only purpose is to find the ground state of a classical spin glass Hamiltonian.
Even though this could be hard to do, it would seem prima facie to be a problem
with rather limited applications. Actually, the opposite is true, as it turns out
that solving this problem efficiently would provide us a way of solving a vast set
of problems called NP.

Informally, NP is the class of decision problems whose candidates for so-
lutions are easy to check, but whose solutions might be hard to find. As an
example, take integer factorization: suppose we are given two integers N and
M and we are asked whether IV has a divisor K such that 1 < K < M. Deciding
this could be hard as one would need to find such a divisor among many possible
candidates. However, if we are given an integer K as a candidate solution for
the problem and asked whether it is indeed a solution, then this is much easier
as one can simply use the Euclidian algorithm to check if K divides N (also,
the condition 1 < K < M is trivial to check).

NP-hard problems are in a sense at least as hard as any problem in NP: a
problem P is NP-hard if for all problems @ € NP there is a way to map instances
of @) to instances P so that if one can efficiently solve instances of the problem
P then they are also able to solve efficiently the corresponding instances of Q).
As NP is a very large class of problems, being able to solve efficiently even one
NP-hard problem would be an extremely significant result.

The NP-hardness of the Ising spin glass problem follows from the fact that it
is dual to the well-known NP-hard problem WEIGHTED MAX-CUT with weights
w = £J, in the sense that we now explain.

Given a graph G = (V, E), a cut is a subset W C V of the vertices of G, and
its size is defined to be the number of edges incident to one vertex in W and
one vertex in its complement W¢ =V \ W. In the notation of Subsection [2.1.4]

size(W) = |E(W, W*€)].

The MAX-CuUT problem is to find a cut with the largest size. If the edges e € E
of the graph G are assigned a weight w(e) € R, then one defines the size of a
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cut by the sum of the weight of its boundary:
size(W) = Z w(e).
ec E(W,W¢)

Then the WEIGHTED MAX-CUT problem is to find a cut with the largest size,
according to this second meaning. The WEIGHTED MAX-CUT can be cast as a
decision problem (admitting a yes/no answer) in the usual way.

WEIGHTD MAX-CuT

Instance: a graph G = (V,E) with weighted edges w(e) € R. A real
number z.

Question: is there a cut W C V such that >° ¢ gy ey w(e) is larger than
x?

Given a specific realization of Eq. (2.1 defined on a generic graph G = (V, E)
and the energy of a specific spin configuration S

H(S) ==Y J;5:5;,
<’]>

one can split the sum into the edges that connect spins that are aligned in the
configuration S, and the edges that connect anti-aligned spins:

H(S) = - Z Jij + Z Jij.
(4,5):8i =S5 (4,5):Si#S;

Now, we can add the same configuration-independent quantity > (i.5) Jij to both
sides of the equation

H(§)+Zjij = - Z Jij + Z Jij+ZJi'
(4,4) (4,3):5:=5; (4,3):5:#5; (4.3)

= 2 Z Jij-

(4,):8:#8;
So if we associate a spin configuration S to a set of vertices X gCV
Se{ieV ]S =+1}=Xg
and define )
W(Xg) = g(H(S) +Y Jij) = > T (2.15)
(i,5) (1,3):8:#S
we get a WEIGHTED MAX-CUT instance with weighted edges w(i,j) = J;;.

The affine relation (2.15) between energy H(S) and weight W (X g) entails in
particular that

—

arg min H(S) = arg max W (Xg).
S 5

Moreover, since WEIGHTED MAX-CUT is NP-hard this is also true for the fol-
lowing decision problem.
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ISING SPIN GLASS

Instance: a graph G = (V, E) with weighted edges J;; = £J, with J > 0
a real number. A real number E.

Question: is there a spin configuration S e {£1}V such that H(g) =
— Z<i’j> J;;5;S; is smaller than E?7

Therefore finding the ground state energy of an Ising spin glass system de-
fined on a generic interaction graph is NP-hard, as this would allow one to
solve the ISING SPIN GLASS decision problem. For comparison, finding the
ground state energy of the same Ising spin glass Hamiltonian defined on planar
or toroidal graphs is a problem that can be solved exactly in polynomial time
[52] (that is, easily).

Even when exact solutions are unknown or unlikely to exist one can often
find some approximating algorithm that gives a solution close to the exact one.
Sometimes one can even find arbitrarily good approximations, such as in the
case of a N-vertex cubic lattice in three dimensions, whose ground-state energy
is O(eN)-approximable for any € > 0. In a nutshell, one can partition the lattice
into small cubes of size L x L x L and define a new Hamiltonian H' by discarding
from H the interaction terms that cross from one cube into another. Then H’
is a sum of terms defined on different, non-interacting regions of the system
and one can solve each term separately, even by brute force (e.g. checking the
energy of each possible configuration and taking one with minimal energy). This
takes linear time since there are O(N) cubes and each one requires 2L steps
which is a constant in N. Finally one gives the ground-state energy of H' as the
approximation of the ground-state energy of the original Hamiltonian H. The
number of bonds discarder by the approximation is given by

% |acube| X Neubes = 3L2% = % = O(%)

where Neypes is the number of small cubes and |Oeype| is the number of bonds

across the boundary of a single cube. Since |J;;| = J for all bonds (4, j) then

the absolute error of the estimated ground-state energy is upper bounded by

3JN/L and one can then choose a large enough L so that the O(N) prefactor
is as small as desired.

The success of this approximation is based on the fact that surface effects
can be neglected since these grow like L? while volume effects grow like L3.
However, this condition is not satisfied in the case of a low-degree regular ran-
dom graph because large RRGs are with high probability good expander graphs
[53], so the boundary of any region is proportional to the volume of that re-
gion. Physical systems whose interaction graphs are expanders have boundary
effects that cannot be neglected. In the cubic lattice example, if we had that
|Ocube| L? then we would get an absolute error which is independent of L and
therefore the previous approximation scheme cannot be fine-tuned to achieve
any desired error. From a computational complexity perspective this is in fact
to be expected, as WEIGHTED MAX-CUT is known to be APX-hard, mean-
ing that (under the standard assumption that P # NP) it does not have a
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polynomial-time approximation scheme (PTAS) capable of approximating the
optimal solution to arbitrarily small error.
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Chapter 3

Thermodynamics of the
Quantum Ising Spin Glass

In this chapter we focus on studying the equilibrium properties of the quantum
version of the Ising spin glass on the Bethe lattice we described in Chapter 2. In
Section [3.1] we quantize the classical Hamiltonian by introducing a transverse
field and discuss the relevant literature of the model we obtain. This model
transitions from a paramagnetic to a spin glass phase at small temperature and
transverse field. Section describes the physical quantities we are interested
in computing in order to study the quantum phase transition between the para-
magnetic and the glassy phase of this model, as well as the numerical methods
we use to compute them. Section describes a perturbation expansion we
employ to explain the quantitative results obtained from the numerics and get
a better understanding of the critical point.

3.1 Quantization of a classical spin glass

The usual way to quantize a spin system Hamiltonian such as (2.1)) is to choose
a quantization axis (in our case it will be the z-axis) and promote a classical
spins S; to a Pauli operator o along this axis:

H = — Z JijO'izO';.
(i5)
In order to give the system non-trivial dynamics we include an additional, non-

commuting term to this Hamiltonian. The simplest example is a transverse-field
term —I') ", oF. We obtain the Hamiltonian

N

H:—ZJijafoj—FZJf, (3.1
(i,3) i=1

where I' > 0 is the strength of the transverse field, and o (for a = z,z2) is

a Pauli matrix acting on the i-th spin of the system. We remind the reader

that this is the typical example of a Hamiltonian used in a Quantum Annealing
protocol, where I' = I'(¢) is large at the initial time ¢ = 0 and is then slowly

41
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decreased to zero. If we start in the ground state of the transverse-field term,
then at the end of the process the system will be in the ground state of the
spin glass term, which encodes the solution to the combinatorial problem we
are trying to solve.

In this chapter we study the equilibrium properties of the quantized version
of the Ising spin glass Hamiltonian we described in the previous chapter, i.e.
a system of IV interacting quantum spins with quenched disorder, affected by
a transverse field, described by the Hamiltonian of Eq. (3.1). The disordered
interaction couplings J;; are independently, identically distributed variables that
take either of the two values in {+1} with equal probability. The first sum index
(i,7) is taken over the edges of an interaction graph that we take to be a regular
random graph, which for convenvience will have degree d = 3 in the rest of
this thesis. This particular choice is dictated by the numerical treatments, since
this allows us to have systems of larger “linear dimension”, the diameter of the
regular random graph L ~In N/In K.

This model is no longer exactly solvable but it was studied in [54] using a
quantum version of the cavity method, where it was found to exhibit a transition
from a paramagnetic to a glassy phase for small values of the transverse field I"
and temperature T. The method is exact on trees and is expected to be a good
approximation on locally tree-like graphs. However, it becomes less reliable
close to the T' = 0 line and an estimate for the zero-temperature I'. was given
as lying between 1.5 and 2.0. In [55] the antiferromagnetic version of Eq.
was studied, where all J;; = —1. This is known as the 3-MAX-CUT problem in
the computer science community. The authors used again a cavity approach to
estimate a critical point corresponding to I'. & 1.78 in our notation, but gave no
appraisal of the error of this figure. Since these two models are conjectured to
share the same thermodynamical properties, this estimate is expected to apply
also to the spin glass model .

We consider the partition function of the system (8 = 1/T))
Z =Tre PH (3.2)

assuming the dynamics is ergodic. This is almost certainly true if the system
is coupled to a bath (which is the situation we consider here) but it is also
probably true for an isolated system in a large region of parameters, including
the paramagnetic region, although a complete analysis of this problem would
require an analysis on the line of Refs [56] [57]. In particular we assume that
taking the limit 7" — 0 the region of parameters investigated is within the
ergodic region (this is one of the reasons we do not push our analysis deep in
the spin glass phase).

The transition at I' = 0 is the classical transition (described in the previous
chapter), as it is due solely to the Langevin forces generated by the interaction
with the bath. This transitions is supposed to determine the characteristics of
the whole line extending up to, but not including, T = 0. This can be under-
stood using the Suzuki—Trotter approach in order to map the system defined
by Eq. to a classical systems with one additional dimension defined by an
effective classical Hamiltonian H.g. The details of this mapping are reviewed in
Appendix By splitting the term SH into the sum of a number m of terms



3.1. QUANTIZATION OF A CLASSICAL SPIN GLASS 43

ABH with A = 3/m one can write

Z=Tre PH = Z<5(0)|<He*AﬁH)|s(0)>
5(0) i=1
= Z Z H<8(k)|€fAﬁH‘3(k+1)>
5O gm—1) k=1
~ Z Z e~ ABHos(5)
5O gm—1)

Here the set {|s*))}; is a product basis [s*)) = &, |s;) of the Hilbert space of
the system where |s;) = | 1),] J) and it is understood that s(™) = s The
approximation is exact in the limit m — oo. The key point is the possibility of
rewriting the bra-ket terms as

<S(k:) ‘6_A6H|S(k+1)> e—AﬁH(k)(s("'),s(k*l))7

where H*®) is a classical energy term defined on classical spins. Then Heg =
Yoo H (k) In this way the system is given a transverse dimension of size 5 = 1 /T,
or more precisely ~ J/T. When one is close to the transition such that the
critical system size exceeds this length the system can be “renormalized” back
to the original RRG. This cannot be done when 7" = 0.

As a further point of interest, the ground state of the Hamiltonian of Eq.
is expected to be highly entangled somewhere along the T' = 0 line. This is
because the topological properties of the interaction structure of a local Hamil-
tonian such as those of Eq. are known to affect the entanglement of its
ground state. A very rough way of estimating the entanglement entropy of a re-
gion A, valid at least for the ground states of gapped Hamiltonians, is to assign
a fixed contribution to each interaction that cross from A into the rest of the
system. This implies that if many regions of the system are sparsely interacting
with the rest of the system (i.e. if the spins inside of the region interact with
only a few spins on the outside) then the entanglement will be comparatively
low on average. On the other hand, if each spin participates in too many inter-
actions then the entanglement in the ground state is suppressed as well, as the
monogamy of entanglement [| prevents spins from being highly entangled with a
large number of other spins. A Hamiltonian defined on an expander graph (such
as a low-degree regular random graph) seems to lie halfway between these two
extremal cases as these graphs are sparse but at the same time every subregion
is highly-connected with the rest of the graph, and is therefore expected to be
highly entangled.

Since decoherence is one of the main obstacles to building a fault-tolerant
quantum computer, having a quantitative study of the theoretical amount of
entanglement that is generated in an adiabatic path can provide a useful way of
knowing the degree to which a quantum computer is performing a fully coherent
adiabatic quantum algorithm. Consequently, one of the goal of this chapter is
to study the entanglement dynamics of an ideal quantum annealing protocol,
i.e. an actually adiabatic path where the transverse-field coupling constant I"
starts at a large value and is then quasi-statically decreased, in order to provide
a benchmark for prospective in-depth studies of the entanglement dynamics of
a real-life quantum annealer such as the D-Wave machine.
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2.5
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Figure 3.1: taken from Ref. [54]. Phase diagram of the model obtained
from a quantum version of the cavity method. This model exhibits a transition
from a paramagnetic (PM) to a spin glass phase (SG) at small values of I' and
T (respectively equivalent to the B; and 7 coordinates in the figure). Note
that the boundary between the two phases (solid black line) computed from
the numerics is affected by a spurious deviation as the quantum cavity method
become unreliable when one approaches the zero-temperature line.
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3.2 Numerical Study

We numerically compute the Rényi entropy, quantum Fisher information, Edwards—
Anderson order parameter and two-point correlation functions using exact di-
agonalization for small system sizes N =~ 20, and MC simulations for large
systems sizes (up to N = 140). This allows us to obtain information about the
thermodynamic-limit properties via finite-size scaling analysis.

3.2.1 Methods

Systems of small size (N < 20) are amenable to exact diagonalization (ED)
methods, which means that the spectrum of the reduced density matrix is fully
accessible.
We use the Lanczos algorithm to extract the ground state of H. This step
constitutes the bottleneck of the whole procedure, as the Hamiltonian matrix
is 2V x 2V (albeit sparse), which effectively constrains the system size not to
exceed N = 20 by too much. The reduced density matrix of half of the system,
on the other hand, is only 27V/2 x 2N/2 making it much easier to probe its full
spectrum.

Another quantity we can probe via exact diagonalization is the quantum
Fisher information of the ground state with respect to some observable O. Fol-
lowing [36] we use the direction-averaged total spin operator, namely

FQ[wOa ‘]33] + FQ[¢07 Jy] + FQ[¢O7 Jz}
3 ;

Foltho]

where, for a € {z,y, 2z}

Ja

DO =

N
a
E oj.

i=1
We noted in Section (see Eq. (1.19)) that for a pure state |¢) it holds that

FQW}a Jo] = 4(<77Z}‘Ja<]a|1/)> - <w|JaW}>2) = 4 Var(J,)

so knowledge of the ground state |tp) is sufficient for computing Fg[to].
Where exact diagonalization stops being feasible (system sizes N > 20) one can
compute thermal quantities numerically using the path-integral quantum Monte
Carlo (PIMC) approach (see Appendix . Expectation values of quantum
observables O can then be computed in a straightforward manner by applying
this quantum-to-classical map to the expression

(0) =Tr(0e )/ Z,

and then using standard Monte Carlo sampling on the resulting classical system.
Ground-state properties are accessible in the limit 5 — oco. We use this stan-
dard PIMC approach when computing the quantum versions of the Edwards—
Anderson order parameter of Eq. and the spatial correlation functions of
Eq. (see Egs. and later in this chapter).

However, one must take a somewhat different approach when computing en-
tanglement entropies using Monte Carlo. Rényi entropies are not observables
of the system (trivially, they are not linear operators) hence a naive PIMC is
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inapplicable. In order to compute the Rényi entanglement entropy of a region
A of the system we use the replica-approach described in Section coupled
with the algorithm of Ref. [58] (presented in Appendix that allows for
computations of nonlinear quantities.

When computing the Rényi entropy using the Monte Carlo approach described
before we set an inverse temperature of § = 15 in order to project the thermal
state to the ground state and we use m = 150 timeslices for each replica so that
the imaginary time discretization is given by AS = 1/10. For all quantities we
report in this thesis, we verified that the (small) systematic error due to the
imaginary time discretization is within the statistical uncertainties. We also
add a weak longitudinal field term —h )", o7 with & = 0.05 to the Hamiltonian
(3.1) since we noticed that the Monte Carlo convergence times are somewhat
reduced if the Zs symmetry is partially lifted. It is important to stress that
this small longitudinal field does not qualtitatively affect the system properties,
in particular its glassy nature at small I' values. In fact, this glassy nature
makes the PIMC computations of the Rényi entropy rather computationally
expensive, in particular for small T' values and large system sizes, where the
Edwards-Anderson order parameter is large. The (small) effect that this field
has on the Rényi entropy values is expained in Subsection [3.2.3] In order to
assign an error bar to the result for each disorder realization we performed ten
independent simulations starting from a different initial configuration (the same
for all replicas). In this case, the value of Sff) for each realization of disorder
is obtained by averaging over the ten results. For the Edwards—Anderson order
parameter and the correlation functions we use 8 = 40 and AS = 1/8.

We emphasize that our analysis focuses on the regime of large and interme-
diate values of I' > v/K > 1 where K is the connectivity of the RRG. Here,
for the finite system size we consider, the problems due to the slowdown of the
Monte Carlo dynamics in the glassy phase are not overwhelming. More details
on all these techniques are contained in the Appendix [A2]

3.2.2 Average over the disorder

Our system contains disorder and our numerical methods only work on a fixed
realization of disorder at a time. The natural way of taking a disorder aver-
age is then to generate a large number of realizations, compute the desidered
quantity for each realization and then take the average of the results. When
computing these average values for a fixed system size N we have to consider
two distinct disorder variables: i) the topological structure of the interaction
graph G = (V, E) and %) the couplings J;; in the interaction Hamiltonian. A
specific instance of the simulation is defined by the values assigned to these two
variables. To create such an instance iy = iy (G, J;;) for a system of N spins
we generate an N-vertex regular random graph using the Steger and Wormald
algorithm [59] and then we randomly assign a coupling J;; = %1 to each edge
of the graph, with equal probability.

In the case of the Rényi entropy an instance is defined by three variables
in = in(G, Ji;, A), since one has to take into account also the region A of
which we compute the Rényi entropy. This region is generated according to the
Random Region protocol described in Fig. (3.2]).
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RANDOM REGION

We select a connected region A of N/2 vertices in the following way

1) Select a vertex v uniformly at random and define A = {v}.

2) Given the region A, select uniformly at random a vertex u from the
boundary 0A of the region A. Then update the region A — A’ =
AUA{u}.

3) Repeat point 2) until the desired size of A is reached.

Figure 3.2: Protocol for the generation of a random region A.

3.2.3 Results

Rényi entropy — Our first goal is understanding the thermodynamic-limit be-

haviour of the disorder-averaged Rényi entropy of order o = 2 (gf), in the
following abbreviated as Rényi-2) on the 7' = 0 line of the (T, T")-phase diagram
of the Hamiltonian . The choice o = 2 was made because it is the least de-
manding in terms of computational resources. First we compute the finite-size

values gf)(N ) and then we study the limit N — oo.

Small-sizes results obtained by exact diagonalization suggest a volume-law scal-
ing for all values of T' (Figs. , which is confirmed by the Monte Carlo
results (Figs. [3.5)13.7). Comparing the QMC and the ED results we note that
the weak longitudinal field we use in the Monte Carlo simulations reduces the
numerical value of the Rényi entropy in the critical region while leaving the
positions of the peaks essentially unaffected. Moreover, we verified that ED and
QMC results agree on system sizes where both can be applied when the weak
longitudinal field is included also in the ED calculations. We see that, for each
system size N, the S’f) curve attains a peak. These peaks of the entanglement
entropy have been associated to criticality in quantum phase transitions [60],
where the position of the maximum in the thermodynamic limit is the critical
point of the transition. In order to extract this value from our finite-size data
we define, for each finite N, the estimator I'.(IN') as the point where the Sf)(N)
curve attains its maximum and then we study the limit as N — oc.

We approximate the peaks by fitting the numerical data with parabolic curves
and then we take the vertices of the parabolas to be the finite-size estimators
['.(N). Then we use a simple 1/N fitting ansatz to extract I'. = limpy 00 ['c(IV)
by looking at the convergence of these peaks in the thermodynamic limit

AT,
T.(N)=T, . 3.3
(N)=Tet+ = (33)
We obtain a critical point of T'. = 1.84 £ 0.02 (Fig. [3.6). By considering both

the critical scaling of Sf) and the finite-size shift on I'.(N) we propose the
finite-size scaling (FSS) ansatz
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Figure 3.3: Plot of the average value of the Rényi entropy S‘f) as a function of
the transverse field strength T, for different sizes of the system (exact diagonal-
ization results).

SO(N,T) = §<F - I‘C(N)) (aN +b), (3.4)

which gives the data collapse shown in Fig. . As explained above, the
convergence times of the PIMC calculations increase when going deep into the
glassy phase, where the Edward-Anderson order parameter is large; this sets
some limitations to the regime of I' and IV values that we can explore.

Quantum Fisher Information — We compute the Quantum Fisher Informa-
tion (QFI) by exact diagonalization for system sizes N < 20. The QFI curves
have a shape reminiscent of the entanglement entropy curves, including the peak
at D.(IV). A FSS analysis of the peak leads to Fig. confirming a linear size
scaling with linear coefficient a = 0.85(1).

It can be shown that the condition (basically a refinement of Eq. )

1
Foly] > 3 [s(k* + 2k — 831) + 7% 4+ 2r — 6,1], (3.5)
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Figure 3.4: Data collapse for the finite-size scaling of the data of Fig.
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Figure 3.5: Plot of the average value of the Rényi entropy 51(42) as a function of
the transverse field strength T, for different sizes of the system (quantum Monte
Carlo results).
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Figure 3.6: Estimated maxima of Sf) are fitted with a 1/N scaling behaviour.
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Figure 3.7: Data collapse for the finite-size scaling of the Monte Carlo data.
Finite-size estimates to the critical point T'. are given by the fit T.(N) =T, +
AT,/N.
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Figure 3.8: Disorder-averaged ground-state quantum Fisher information density
Fq/N as a function of the transverse field strength I'. The lower dashed line
represents the separability criterion violation: states above it are entangled.
States above the upper dashed line are at least 3-entangled.
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where s = | N/k] and r = N —sk, implies that the state |1)) contains multipartite
entanglement between at least k + 1 spins [36], 37], i.e. it cannot be written as
[Y) = @), [¢i) where each [1);) is a state of n; < k spins.

Note that for N even, proving 3-entanglement from Eq. requires Fg[io] /N >
4/3, which FSS suggests will never be satisfied (since 0.85 < 4/3, see Fig. |3.8
and : the entanglement in the ground state seems to be limited to two-spins
states. We emphasize that the QFI Fg[, J] is dependent on the specific choice
of the generator J so, strictly speaking, the previous results are to be taken as
lower bounds to the multipartite entanglement present in the ground state. The
actual value is obtained by maximizing Fgl-, J] over all possible choices of J,
as explained in Section We are unable to solve this maximization problem
but our choice of generator seems to be a natural one when considering only
one-spin operators.

Edwards—Anderson order parameter — In order to characterize the glassy
properties on the low I'" phase, and also to cross-check our estimate for the
critical point I';, we compute the quantity

1 X
— z\2
qEA = N lg 1(01») , (3.6)

in the ground state of the Hamiltonian of Eq. (3.I)))over a 3-regular random
graph. While the Z, symmetry of Eq. implies gga = 0 for all finite
sizes, by running a Monte Carlo simulation for a finite time one can effectively
reproduce the spontaneous breaking of the symmetry that is encountered in the
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thermodynamic limit, as the probability of having Zs-transitions vanish in the
limit N — oo. For each specific realization of the disorder in = in(G, J;;) we
obtain the quantity of Eq. by computing each value of (0?) via Monte
Carlo simulations. Then we take the average over the disorder obtaining a
curve qg\?(f‘) = qpa(T, N) at fixed size N (results are shown in Fig. . The

critical point I' =T'; is then the point of singularity of the curve

gpa(l) = lim g} ().

We observe strong finite-size effects and most curves have smooth transitions
from a region where they are zero (within statistical error) to a region where they
attain positive values. Therefore, for any fixed size IV, our finite-size estimates
of the critical point T'.(IV) are obtained in the following way. First we shift all of
the curves horizontally so that they fall on top of each other, as in Fig. (3.11).
Then we take a linear fit of the accumulated data around the point where qg 4
starts being finite and obtain a slope s. Finally we take linear approximations
to each of the qg\g curves in Fig. using the fixed slope s. The values
I'.(N) are defined as the z-intercept of these new linear fits. The ansatz

AT,
FC(N) - Fc + T

for these points gives I'. = 1.82 £ 0.02. We get an excellent agreement with the
critical point we extracted from the study of the Rényi entropy. We see this as
an indication that the QPT we detected using the Rényi entropy is exactly the
glassy phase transition of the model.

Connected correlations — We compute the connected correlation function

Cij = (o7 05) — (07)(05) (3.7)
of the Hamiltonian as follows: for each realization of disorder we randomly
choose a central spin ¢ on the interaction graph and we compute all connected
correlation functions C;; for all sites j in the system. Then for any integer r we
define the mean correlation at distance r, Cipean (1), and the maximal correlation
at distance 7, Ciyax(r), by taking respectively the average and the maximum of
(the absolute value of) the correlations among all sites j that are r steps away
from the central spin 4 in the distance of the graph G = (V, E)

Cinean(T) mean{ |C;;| : j € V., dist(¢,j) =r},
Cmax(r) = max{ |Cyj|:j € V,dist(s,j) =1},

then we average these quantities over many realizations of disorder to get the
average mean correlation Cean () and the average maximal correlation Cinax(7)
as functions of the distance r. We find that both Cean and Chax follow a
stretched-exponential behaviour

C ~ e (/0"

Cmean,max
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Figure 3.10: Disorder-averaged Edwards—Anderson order parameter qp4 as a
function of the transverse field strength I', for different system sizes. The finite-
size effects induce a smoothing-out of the curves that disappears as N — oco.
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Figure 3.11: Data collapse of the curves of Fig. (3.10). The scaling for T'.(IV)

is shown in Fig.
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Figure 3.12: Stretched expenential fit for the disorder-averaged maximal cor-
relation Cax for system size N = 120 and I' = 1.50. Fitting parameters are
a = 0.28, £ = 0.25. Other values of N and I' give qualitatively similar results,
with different values for the fitting parameters a, &.
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Figure 3.13: Correlation lengths {(I') obtained from the stretched-exponential
fit to the numerical results of Cyax. Finite-size estimators T'.(N) for the critical
point are defined as the vertices of parabolic fits to the curves.

at any transverse field value T' (see Figure . Stretched exponentials are
usually encountered in disordered systems when taking the disorder average
of an exponentially-decaying quantity @ that has different exponential decay
constants &; for each realization of disorder i, i.e. Q;(r) ~ e~"/%. Therefore
we argue that our model shows a distribution of correlation lengths &; between
different disorder realizations. By defining I'.(/N) as the value of I" where the
curve £(T") for size N attains its maximum, we note that for both quantities
Cmean and Clax, the critical correlation lengths &r,(N) we obtained from the
fits are decreasing with the system size IV, and converge to a finite value in the
thermodynamic limit (Fig. [3.14)).

Critical Point — Summarizing our results, we have computed four inde-
pendent ways of estimating the critical point of the glassy phase transition, i.e.
four sets of finite-size estimators I'.(IV) that are free of the systematic error that
affected previous cavity method approaches. Each set was extracted from the
study of a different physical quantity whose behaviour is known to be affected by
criticality. Finite-size corrections disappear as 1/N and in the thermodynam-
ical limit all estimates seem to converge to a critical point 1.82 < I', < 1.85,
as shown in Fig. (3.15)). This estimate is compatible with the previous ones in
Refs. [54, B5].
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Figure 3.16: Phase diagram of the model (3.1)) as computed from our numerical
results.

3.3 A mean-field model of the transition

The fact that I'./J = 1 (and, as we will see, that it grows with K), should
suggest us that a better starting point for analyzing the transition is I' = oo
rather than I' = 0, which has been the method adopted in previous investigations
of the glassy phase.

We are going to show that a simple mean field theory, obtained by dressing
the excitations around I"' = oo, gives a transition point quite close to the un-
biased prediction obtained from the Monte Carlo simulations and predicts two
main things: a) the scaling of the critical point T'. o« v/K and b) the expo-
nential decay of correlations inside the paramagnetic phase. Both facts can be
deduced from other thermodynamic considerations (the first one for example
by comparing the order of the two terms in the Hamiltonian for large K'), but
our derivation will highlight some properties of the dynamics of the excitations
as seen as quasiparticles. In particular, by connecting the VK factor to delo-
calization of the excitations we exclude the possibility that the glass transition
coincides with the MBL transition. We will return on this point after Eq. .

If we take J = |J;;| to be the perturbative parameters, then the “free”
Hamiltonian is the transverse-field term Hy = —I' )", of. By shifting the ground
state energy Ey = —I'N to zero, its spectrum is given by

Sp(Hy) = {0,2T,4T, ..., 2NT}.



3.3. A MEAN-FIELD MODEL OF THE TRANSITION 59

Its unique ground state |0) (where we denote 0%| =) = | —))
N
0) = &)1 =i
i=1

is taken as a pseudovacuum of quasiparticles. The operators o create an exci-
tation on top of the ground state

i) =otl0) = | <) w (1)),

J#i

which is interpreted as a state containing a quasiparticle at site <. These form
the N-fold degenerate eigenspace of Hy with energy 2I'. Additional applications
of the {o7} operators either move the state upwards in the spectrum, creating
states with two, three, or more quasiparticles |4, j), |7, j, k), ..., or downwards,
by annihilating existing quasiparticles.

The perturbed Hamiltonian is

H(J)=Hy+JV

where V' is the dimensionless spin-glass term V' = —(1/J) >_, »y Jijof o}
First-order perturbation theory gives a null correction to the ground-state en-
ergy

Eo(J)=JEY =0

since JE((Jl) = (0|JV|0) = 0. Instead, the degenerate band of one-particle states
is split by the perturbation into distinct levels

En(J)=2T + JEV (3.8)
for m =1,..., N, where JE,, are eigenvalues and {|¢,,)} are the eigenvectors

of the operator V, which is the perturbation operator V restricted to the (un-
perturbed) one-particle subspace. The direct computation of the ES) requires
the diagonalization of an N by N matrix which, we will show, is a hopping
matrix on the RRG.

Let us start by noticing that the term o707 applied to a quasiparticle state
li’,4', K, ...) can affect it in one of three ways: (i) it can create a pair of adjacent
quasiparticles provided the sites ¢ and j are devoid of them, (ii) it can move a
quasiparticle from site 7 to site j provided site j is empty and site 7 is occupied
(or vice versa, swapping the role of ¢ and j), or (iii) it can annihilate a pair of
adjacent quasiparticles sitting on sites ¢ and j.

Note also that in the one-particle subspace annihilation processes cannot hap-
pen, while creation processes map a state into the three-particle subspace, which
is orthogonal to the one-particle subspace. Therefore, only the hopping pro-
cesses give a contribution to Eq. . For any state [¢) in the one-particle
subspace, the action of J V is then equivalent to that of Hyp, the Hamiltonian
of a particle hopping on the same graph G, with disordered hopping constants
Jij =+J

Higp = = Y Jij (10431 + 13} ).
(4,)
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For contrast, consider the Hamiltonian H}(llggm) = —JXup (|z> (| + |j><z\)
of a particle hopping on the graph G with homogeneous hopping coefficients
J > 0. Even though solving for the spectrum of the latter Hamiltonian is
difficult for any finite graph G, in the thermodynamic limit, our RRG G is the
Bethe lattice and so spectral properties of this model can be computed exactly
using an iterative method (see e.g. [61,62] and Fig. 3.17). In particular, its
spectral density is known to be supported on the set [-2JvK,2JvK], where
K is the constant connectivity of the graph. We give the proof here: one
starts by writing down iteration equations for the diagonal Green’s function
G; = (i|(E — Hpop) i) at the site i for generic complex F

-1

Gi=|B-Y 726\ | (3.9)
jEOI

where the cavity Green’s function G;C) = (J|(F — H}(lf))p
function of the operator H}(lz)p obtained from the Hamiltonian Hyep by remov-
ing the hopping terms associated to the edges incident to the site i. On the
Bethe lattice the removal of these terms splits the system into K + 1 isomorphic
disconnected components that can be considered independently. Each compo-
nent is an infinite rooted tree with a branching factor of K. These trees are
isomorphic to each of their infinite descending subtrees rooted at any of their
vertices. By writing the iteration equation for G;C) one gets

)71|5) is the Green’s

—1

=B~ 2a| | (3.10)
kedj

where G;:l) is a second-step cavity Green’s functions obtained from the ch)
Hamiltonian by further removing the hopping terms associated to the edges
incident to j. By solving and plugging the result in one recovers G
and from G; the spectral density

1
pi(E) = 7r Imll}JIEOJr GilB).

One can find P(Im¥;) by ¥;(E) = E — G; ' and taking the limit Im E' — 0.
As we know from [63], the distribution of Im X will tend to a delta function for
delocalized states and to a long-tailed distribution for localized states. However
we can sidestep all this procedure recognizing that in all the equations only
J}; appears and therefore the case Ji; = £J is identical to the case J;; =
J constant, which has only delocalized states. The latter statement follows
from the observation that, given the constant connectivity of the graph and the
constant value of the hopping J the distribution of G(¢) must be a delta function
centered on the solution of the deterministic equation

-1
G© = (E - KJ2G<C>) : (3.11)
which gives

2
E—VE2Z —4KJ?

G = (3.12)
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By inserting (3.12)) into (3.9) one gets

G7' = E—(K+1)J*GY
2(K +1)J?2

= E—
E—VE? - 4K J?

SO
2(K +1)J2

—VE? — 4K J?

irrespective of 7 and therefore all the eigenstates are delocalizeaﬂ

EF AR

Figure 3.17: (Left) The diagonal Green’s function G; at the point ¢ = 0 on a

%=

3-regular Bethe lattice can be computed once the values G§ ) are known at the

points j = 1,2,3 (shown in red). ch) is the Green’s function, computed at
the site j, of the operator obtained from the Hamiltonian Hy.p by removing
the hopping terms terms associated to the dashed edges of the graph. (Right)
Each disconnected component thus obtained is an infinite binary tree that is
isomorphic to all its infinite descending binary subtrees (one such subtree is
shown in green).

We take the greatest lower bound of the support of the spectral density p(E)
as the energy E(Y) = —J/K of the ground state in the thermodynamic limit.
If we neglect processes of O(J?/I'?) which dress both the ground state and the
excited states we get a crossing when E(M) 4+ 2T' = 0, or

'Y = JVK ~1.41J. (3.13)

This is an underestimate, but quite a good one, of the critical point as observed
in the numerics 1.82 < I'. < 1.85. Notice also that this scaling of I'. with
K is important as the limit K — oo should reproduce the fully connected,
Sherrington-Kirkpatrick model [64, 65, 66], by scaling J — J//K. This scaling
keeps the transition temperature T finite and we find here that the independent
particle picture also returns a finite I'.

1we will more closely examine localization in the next chapter.
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Figure 3.18: Perturbative lifting of the degeneracy of the bands in the spectrum
of the transverse-field Hamiltonian Hy (at fixed I') as J is increased from zero.
Color code denotes the average value of S, = >, o7 of the state associated with
the energy level.
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We now try to go beyond the independent particle approximation. By going
to higher n sectors we need to solve the problem with n particles which, to
first order in J/T', are hard-core bosons. This is a complicated problem (which,
by the way, is equivalent to replacing o7os — 0?‘ 0]-_). If n < N, as a first
approximation we can assume the particles as non-interacting.

First, note that as soon as n is finite when N — oo we can conclude that all
such few-particle states are delocalized. As n/N becomes appreciable so does
the interaction between the particles, we shall conjecture that the introduction
of a small interaction between the particles (which is of O(J?/T)), irrespective
of its attractive or repulsive nature, does not localize excitations (this is true
even in the presence of bound states) and the phase remains delocalized. The
value of I'/J where this breaks down we cannot predict without considering
quantitatively the interaction between the particles.

As for the critical point of the transition, note that the non-interaction
assumption gives for the ground state of the n-th sector Eén) = —2nJVK, and
by matching E(™ + 2nT" = 0 we find the very same result of Eq. .

In the spirit of mean-field theory we can add the interaction of the particles
by observing that, when considering only two-particles processes, the process
Joioi| <,+) = | —,—) which reduces by 4I' the energy of the state, can
be interpreted as a zero-range attraction potential energy V = —4I' when two
particles are on top of each other. This correction to the energy of the ground
state goes in the right direction, increasing the value of I'.. In fact, we have
an expected energy per particle Vp/2 = —2I'p where p = n/N < 1 is the
probability to find two particles on the same site, assuming the particles are
indeed delocalized

E™ /n=—-2JVK —2Tp, (3.14)

and therefore the equation defining the critical point is —2JvK —2Tp+2T' = 0
SO
= JVK(1+p—0(p?)). (3.15)

The modification is in the right direction: increasing the density p = n/N, the
value of T, at the critical point increases; moreover the v/K scaling is preserved.
Higher and higher n sectors cross the ground state at larger I'. Of course this
approximation is reliable only if p <« 1 (agreement with the observed 1.82 <
I'. < 1.85 requires p ~ 0.3, close to the center of the band p = 1/2, although
one cannot claim K = 2 to be in the correct large-K regime).

Let us now see how to connect the computed spin—spin correlation function
with the propagator of the particle on the Bethe lattice. From the definition

C(i, ) = (Wolo7 o} [Wo) — (oo [Wo) (Yoo |Wo) (3.16)

we see that we can write the correlation function as the susceptibilty of the
magnetization at ¢ with respect to a magnetic field n; at j:

Cli.d) = - (ol o) (317)

where Uy(n;) is the ground state with the field at n;. By perturbation theory
this is (|0 [Ty
n o 0
Uo(n;)) = |¥ i U, ) —t
[Wo(n;)) = | 0>+77JnZ>O| ) E, — Eq

+0(n?) (3.18)

J
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and after rewriting the denominators as integrals over time we define o%|¥o) =

|5> is the position ket of an excitation at j. Notice that, to lowest order in
J/T, |) is exactly the single z-spin flipped state |j) we introduced before. So,
ignoring this difference, we can write

C(i,j) :i/ dt ot (i|e= 1t 5), (3.19)
0

i.e. the spin—spin correlation function is the frequency component Ej of the
propagator of a particle created at j and detected at i:

C(i, j) = G(i, j| Eo). (3.20)

Since the band is away from the ground state, the particles will be exponentially
damped, irrespective of the fact that the states in the band are, according to
this independent particle picture, delocalized.

So at the transition the picture is that of a finite density of particles which
interact and annihilate in couples (like anyons) and whose gain in energy due to
delocalization makes the vacuum state unstable. Remembering that the single
particle eigenstates are excitations on top of the ground state of the paramag-
netic phase this means that excitations are delocalized. Therefore there is no
localization in the region of the parameters space containing the phase transition
(in the particles mean field picture). The only possible source of localization for
the excitations could from the disorder in the average magnetizations

(o) = (Wolo:|¥o) = my, (3.21)

inside the glassy phase. The excitations would then feel an effective disorder
due to the variance of the magnetization site-by-site: W o /qgga. When this
disorder exceeds a critical value function of both the hopping ~ I' and the
effective interaction between the particles the particles would be localized, and
this would be the onset of localization.

This point will be addressed in Chapter 4, where we anticipate that different
numerical techniques will be needed as QMC numerics is not suited to study
the dynamics of isolated quantum system.

We now move to the prediction of this mean field for the entanglement
entropy of the ground state. Let us use the basis |0), %), |i,5), ¢, 4, k),... .
Then writing a generic state in this basis

N N
W) = col0) + Y eili) + > cijliyg)+--- (3.22)
i=1 i,j=1

The reduced density matrix pa = Trg |[¥)(¥| can be broken in different blocks
pertaining to different particle numbers

PA=poDp1 D DpPN,, (3.23)

where N4 is the number of sites in A, which is the maximum number of particles
allowed in the region. Any Rényi entropy, including the entanglement entropy,
will be written as a sum over the Rényi entropies of the different sectors:
Na
Trph =Y Trpl. (3.24)

n=1
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Now, the sector with n particles contains at most (]\; A) states, so it is clear that
if we want to have
S? = —InTrp4 o< Ny (3.25)

as our numerics shows, we need to have n «x N4 so that at least one of the
contributions Tr p? is exponential in N4 oc N. So, both the extensivity of the
Rényi entropy and the correction to I'. point in the direction of a finite density
of excitations in the ground state.

Summarizing this section, and refraining from doing numerology, there is a

lesson to be learned from a mean-field theory of excitations on the x-polarized
ground state. First of all, the starting point I' = co seems a good one, both qual-
itatively and quantitatively, in particular at large K. It is very instructive, in
order to build an intuition of this glass transition, to consider this phenomenol-
ogy complementary to the one obtained by starting from the classical z-spin
glass at I' = 0 and the dressing it with excitations. Then again, it seems that
looking at different particle numbers sector n we get a better approximation
going up with n so the transition occurs when a highly occupied state comes
close to the ground state, which has only “virtual” particles.
This points in a direction which is completely different from that advocated in
previous studies. The phase transition is dominated by quantum processes and
probably has little signature of the complexity of the classical problem. Since
it is reasonable to expect that the latter has to manifest itself at some point
during the adiabatic evolution, it is conceivable that an inner region of the glassy
phase is characterized by another phase transition. A natural candidate would
be an MBL region, which is typically affected by exponentially small gaps, which
would therefore be encountered by the adiabatic algorithm before the classical
point. This research direction will be discussed in the next chapter.



66 CHAPTER 3. THERMODYNAMICS OF THE QUANTUM ISING SPIN GLASS



Chapter 4

Localization Properties

In this chapter we study some dynamical properties of the transverse-field Ising
spin glass model. In particular, we are interested in the existence of a local-
ization/delocalization transition as the transverse field strength I is decreased
from infinity. This was linked to poor performances of the Adiabatic Quantum
Algorithm on random instances of NP-hard problems in the influential paper
[67]. In Section we review the phenomenon of Anderson localization and in
Section[4:2) we see how this affects the quantum adiabatic algorithm according to
Ref. [67]. In Section we study the localization properties of the transverse-
field Ising spin glass model using the Forward Scattering Approximation of the
locator expansion. Numerical results are given in Section In Section |4.6| we
try to understand localization by studying the level statistics of the model.

4.1 Anderson Localization

In a seminal paper [63] published in 1958, Philip Anderson studied the suppres-
sion of transport in disordered materials. Anderson proposed a tight-binding
model (nowaday called Anderson model) to describe spinless, non-interacting
electrons hopping on a lattice and scattering off a random potential. Its Hamil-
tonian is given by

Hay = Z eicjci — Z Vij (cjcj + c;[-ci>, (4.1)
i (4,9)

where the first term is the disordered local potential term with random energies
¢; independently and identically distributed with uniform probability in the
interval [-W/2,W/2]. W > 0 is a constant that controls the strength of the
disorder in the system. The coefficients V;; are hopping coefficients between
sites ¢ and j, which we take to be equal to a constant V' > 0 for all 4,j. The
sum in the hopping term is taken over the nearest neighbours in a d-dimensional
hypercubic lattice Z¢ (or a hypercube of finite size L¢ with periodic boundary
conditions, when a finite system is preferable).

In the limit of vanishing potential, W = 0, the hopping term is the dis-
crete version of a kinetic term —V?2. In the continuum limit, the eigenstates
of the Hamiltonian are given by plane waves, and are associated to a continu-
ous spectrum. In the position basis the eigenstates are extended, in the sense

67
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that their wavefunction ¢ (z) = (x|¢) does not decay with the distance as one
moves away from any fixed position . This extended shape of the wavefunc-
tions is conserved also in the discrete case over the lattice Z¢ with position basis
{li) | i € Z?}. The dynamics of the system, generated by the kinetic term, is
ballistic in the sense that for a generic initial state |¢)) one has that the mean
square displacement goes like

Y @O PR G~

€24

for sufficiently large times ¢. Here ¢ (i,t) = (i|¢(¢)), and r(4) is the displacement
of a lattice site ¢ from a fixed site 0 in the lattice.

In the opposite limit W — oo the hopping is completely suppressed and
the eigenstates are delta functions (j|v;) = ¢;(j) = 6;; localized at site i:
H|i) = ¢;i). These eigenstates are obviously localized and correspond to a
point spectrum (in both the continuous and the discrete case). The real-time
evolution of the system satisfies

3" (@) (i, t)2— constant

€24

in the large time limit.

Given the very different behaviours of these two opposite limits, the expec-
tation is that there will be a transition between them driven by the parameter
V/W, which controls the relative strength of the disordered potential (that in-
duces localization) and the hopping term (that delocalizes the system). Indeed
what happens in general is that, by moving from the free theory in the direction
of stronger disorder one finds that at some point in the middle of the delocalized
spectrum of the systems an interval of energies appears whose associated energy
eigenstates are localized. This interval then spreads until the entire spectrum
is localized. For this reason, after having fixed the hopping constant V' which
sets the energy scale, a disorder-driven localization/delocalization transition is
usually studied as a function of two quantities: the energy density e of the
eigenstates considered and the strength W of the disorder in the Hamiltonian.
One usually finds that states at a fixed energy density e change from delocalized
to localized as the disorder strength W is increased, with an energy-dependent
critial value W, (¢) that marks the boundary between these two behaviours. The
set of critical points W, (e) for different values of € define the “mobility edge” of
the system.

One can study the delocalization transition in the strong disorder regime
by considering the hopping constant V' as a small parameter and then expand
perturbatively from the potential term. The first-order correction in V' gives

o) = oy + 3 L bopld

€p — €
mn n m

where Hyop = =V 32, 5 cjcﬂ—h.c. is the hopping term. Note that (m|Hpop|n) =
0 unless the classical states |m), |n) are localized on adiacent sites in the lattice,
so the sum can be taken over the nearest neighbours of the site n. If V' is small,
then these wavefunction amplitudes |(m|i,)| for m # n are small, unless for
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some m it happens that €, ~ €, and the (m|Hyop|n)/(€n — €m) term blows up.
At second order we have

n) = n) + 3 (m|Hyop|1) my+ 3 (m|Hnop k) (k| Hop|n) im)
m#n €n — €Em m,k#n (671 - em)(en - Gk)

and the same argument applies, only this time we have to consider the energy

differences between ¢, and site at distance two from n. One can see that at

higher orders in the theory of perturbation one has to consider the probability

of finding resonances, i.e. very small energy differences €,, — €, ~ 0 arbitrarily

far away from the initial site n.

Generally we have that as we move from weak to strong disorder, the wave-
functions change form a roughly uniformly spread, extended shape to a shape
that decays exponentially as one moves away from a finite region of the lattice
(see Fig. . In the first case we say that the eigenstate is extended while in
the second case we say it is localized. We will give formal definitions of these
terms in Section A3

Figure 4.1: (Left) Extended state. The probability density |¢(x)|> does not
decay exponentially over the space coordinate z. (Right) Localized state. The
probability density |¢(x)|? is contained under an exponentially-decaying enve-
lope centered at a point called the localization center. The coefficient £ of the
exponential decay is called the localization length.

[ ()

At this point we have three apparently independent properties of the system
that should undergo a transition driven by the parameter V/W:

1. the dynamics changes from ballistic to essentially freezed

2. the spectrum changes from a continuous to a point spectrum (in the con-
tinuous limit)

3. the energy eigenstates change from extended to localized

Important results in mathematical physics show that these properties are not
independent, but there are ways to relate them.

The connection between spectral properties and dynamics can be formulated
using the RAGE theorerrﬂ [68] 69, [70], which we briefly state. In order to study
the real-time dynamics of a quantum system defined over a graph G = (V, E)
(such as the Anderson model of Eq. (£.1])) and define the Hilbert space H =

lfrom the name of its authors, Ruelle, Amrein, Georgescu and Enss
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?%(@) to be the square-summable sequences of complex numbers indicized by
the set of vertices V'

€%®:{¢ﬂﬁ+C‘§]MwF<m}

veV

For a fixed Hamiltonian H defined on this Hilbert space, and an initial state
[1(0)) = ), let [1h(t)) = e~ Ht1p) be the time-evolved sate. The idea we want
to capture is whether a given initial state will be spread by the dynamics over
arbitrarily large regions of H or whether it will remain contained in a finite
region. Thus, for a given subset of vertices W C V' we indicate with Pr[W,¢]
the probability that the state |1 (¢)) is inside of W

Pr(w.e] = 3 [wlo(o)P

weWw

It turns out that the spreading of a state generated by the dynamics is dependent
on some spectral characteristics of the Hamiltonian H: given a self-adjoint
operator H and a state |1)) € H, then the spectral theorem [71] allows us to
write the expectation values with respect to the state |i) of any operator f(H),
where f is a bounded and limited functions f : R — C, as the integral of the
energy function f(E) with respect to a measure p,(E)

WD) = [ F(B)dun(E),
This measure py(E) admits a Lebesgue decomposition
P = 4+

into an absolutely continuous component (with respect to the Lebesgue measure
over R), a singular continuous component and a pure point component. This
decomposition induces a direct-sum decomposition of the Hilbert space into
orthogonal subspaces

H =H* @ H* @ HP,

where a state [¢)) belongs to H*® if and only if its spectral measure i, coin-
cides with its absolutely continuous component, and analogously for the singular
continuous and pure point components. Then the RAGE theorem describes the
evolution e~*#*|¢)) of an initial state |¢)) depending on which of these subspaces
the state belongs to.

Theorem 3 (RAGE Theorem, [72]). Let H be a Hamiltonian defined on the
Hilbert space H = (*(GQ), where G = (V, E) is a graph. Then the following facts
hold.

o If the initial state 1) belongs to the absolutely continuous subspace H>®,
then for any ball of fixed radius r centered on any vertex v € V

lim Pr {B(vm),t} =0.

t—o00

This means that the systems leaves any finite region.
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o [f the initial state |¢b) belongs to the pure point subspace HPP, then

lim sup Pr [B(O,T)C,t} =0

T—00 ¢
This means that the system is confined for all time to a finite region.

Of course these statements are meaningful only for systems defined on infinitely-
large graphs, otherwise the limits 7 — oo become pathological. By the RAGE
theorem, dynamical localization is related to spectral localization: a Hamil-
tonian H is localized in the energy interval [E, E + AE] if the subset of its
spectrum Sp(H) contained in [E, F + AE] is only pure point.

4.2 Anderson Localization and AQC

In the previous section we have briefly described some features of the theory of
Anderson localization but up to now these seems unrelated to the underlying
topic of this thesis, which is quantum annealing. The following is an intuitive
explanation of the reason why localization and the suppression of transport
might play a role in adiabatic quantum computation. A possible picture of the
adiabatic algorithm is a process defined by the time-dependent energy landscape
described by the Hamiltonian H () used in the annealing process. If we consider
the quantum annealing of the transverse-field Ising spin glass Hamiltonian of Eq.
then we have that at large values of I' the energy landscape of the system
will be dominated by the transverse-field term, with a single potential well with
a non-degenerate ground state. As I' is decreased below the the critical value
I'. that marks the boundary of the glassy phase, new local minima will start to
appear and their relative heights and positions will get shifted as I' changes.

At each avoided crossing encountered in the adiabatic path, the energy of
ground state falls below the energy of a metastable state, so that this metastable
state becomes the new ground state. In order to follow the adiabatic path, the
system then has to tunnel from the old ground state to the new, in a process
similar to an escape from a metastable state. The intuitive idea is that if we
are in a regime where tunnelling is suppressed exponentially, this will require
an exponentially long time, thus rendering the adiabatic algorithm inefficient.

More rigorously, the connection between Anderson localization and the Adi-
abatic Quantum Algorithm was established in a paper by Altshuler et al. [67]
(see also the subsequent papers [73, [74]), where it was shown that by writing
the Hamiltonian of a typical quantum annealing protocol H = Ho+T')", 07 in
the o* (i.e. “classical”) basis, one gets

H=Ycls)sl =T > (Is)(s']+Is')s1) (4.2)
s s,8":dist(s,s’)=1

where e, = f(s) are the classical energies of the COP Hamiltonian Hy =

> s f(s)|s)(s], and the sum in the second term is taken over pairs s,s’ that

differ only by exactly one spin flip, as the matrix element of the transverse-field

term satisfies

(5] Zaﬂs’) _ {1 if |s) = o3[s’) for some j
i

0 otherwise.
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One can see that the first term in Eq. can be interpreted as the analogue
of the local potential of the Anderson model while the second term defines the
hopping of a particle on the N-dimensional Boolean hypercube By = {+1}V.
Notice in this case that the local energies €5 are no longer independent but cor-
related, as they are the energy levels of a system with complicated interactions
(i.e. , the Hamiltonian that encodes constraint satisfaction problem). In a typ-
ical setup of the Adiabatic Quantum Algorithm, one starts with a large value of
T" that is slowly decreased to zero. In the small I' regime, the disorderd potential
will dominate on the hopping term and one might expect that localization will
set in, as it happens in the Anderson model.

In [67], the classical Hamiltonian Hj is not a spin glass model but an encod-
ing of the decision problem known as 3-EXACT-COVER, described in Section|1.2
Nevertheless, most of the details apply for any reasonable constraint satisfaction
problem.

The classical Hamiltonian Hy that codifies an instance f = ) . f; of 3-
ExacT-COVER instances can be chosen of the form

1 1 &
Ho=MI -3 > Bio; + 1 > Jijoios
i=1 ij=1
where M is the total number of constraints, B; is the number of constraints
where the variable X; appears and J;; is the number of constraints where both of
the variables X;, X; appear. Satisfying solutions x to the instance are associated
to eigenstates |z) of zero energy, Hylx) = 0.

The main idea behind the Altshuler et al. paper is the following. Suppose
we have a 3-EXACT-COVER instance with f two solutions z,y, i.e. f(x) =
f(y) = 0. In the Hamiltonian Hy of the combinatorial optimization problem,
these will correspond to the classical, localized states |z) and |y) with energies
E, = Ey, = 0. By turning on the transverse field, their degeneracy will be
split and the energy of the two solutions will be shifted by different amounts.
If we increase T, the energy difference between the state [1,(I")) and |, (T))
will eventually exceed the O(1) energy contribution that a single constraint can
contribute to the total energy of the system. If this is the case, then a modified
instance with an additional constraint satisfied only by one of the two solutions
x,y will introduce an avoided crossing in the annealing path (see Fig. [4.2).
The authors first compute the position I'* of such an avoided crossing, then the
width of its minimal gap. Since I'* is found to be very small, it follows that
if the solutions |x), |y) are very different from each other (say, O(N)-far in the
Hamming distance) then the perturbed states |1, (I'*)) and |, (I'"*)) will also
be very different simply because the perturbation is not strong enough to affect
the states |z), |y) significantly. Then it will be hard for the system to tunnel
from the old ground state |1, (I")) to the new one |, (I")). This translates into
a small energy gap at the avoided crossing, which is indeed found to close faster
than exponentially with the system size.

In the following we review the main points in the derivation. The self-energy
operator for the Hamiltonian H(T) is defined as

Y(E,I)=Go(E)™' —G(E,T)™!

where Go(E) = (E — Hp) ™! is the Green’s function of the classical Hamiltonian
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Figure 4.2: (Left) the two solutions z,y satisfy E,(I') = E,(I') =0 at I' = 0.
However, if the transverse field is turned on, their two energy levels will split.
(Right) By adding a constraint to the 3-EXACT-COVER instance that is satisfied
by solution y but violated by x, the shift in the energy level E,(T') will create
an avoided crossing at a point I'* where the energy difference E,(I") — E,(T")
between the two levels is large enough. The requirement that one needs to be
sure that AE,,(T") is larger than the 4 = O(1) energy contribution of a single
constraint is necessary to avoid the possibility that the E,(I') level of the new
instance lies above E,(T") for all T.

Hy and G(E,T') = (E — H(T'))~! is the Green’s function of the perturbed
Hamiltonian H(T"). By taking the diagonal part of the self-energy with respect
to a classical basis vector |z) we define the self-energy of z as

Y.(E,T) = (z|X(E,T)|x).

Note that this quantity can be expanded in series of I' as follows

c- @VIy) @' V) - (v V)
Y. (E,T)= r? 4.
LT S p Sl e
=1 yp,.yrt
where none of the classical state g1,...,y9" ! is equal to  and V = — > 0F

is the transverse-field perturbative term. The diagonal part of the perturbed
Green’s function is related to the diagonal part of the self-energy operator
through the identity

Go(B.T) = 5= ij(E,F)' (4.4)

Since the poles {E;} of the Green’s function G(E,T") correspond to the eigen-
values of the Hamiltonian H(T"), then we have that Eq. implies that the
energy levels F,(I") must satisfy the equation F — E, — ¥, (E,T") = 0, which is
equivalent to

E = E, 4+ %,(E,T). (4.5)

This is a self-consistent equation that can be solved iteratively through repeated
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substitutions of £ — E, + ¥, (F,T), obtaining

E = E,+3,(ET)
= E,+3.(FE,+X,(ET),T)
= E:c+Ex(Em+Eac(Ex+Zx(EaF)7F)aF)

It is not at all obvious what a solution should look like in the infinite limit of
this iterative process. However, we can use the expansion of Eq. (4.3) in order
to obtain a perturbative expansion for the energy level E,(I")

E,(I)=> T*EP
k=0

using the fact that for any fixed order k, the energy contribution E;k) can be
computed from an equation obtained from Eq. by appying only a finite
number of self-consistent substitutions.

Given two solutions z, y then define AE,,(I") = E,(I") — Ey(T') as the energy
gap between them. Then one can plug in the expansion for E,(I"), E,(I") and
obtain a perturbative expansion for the gap

(oo}
AE,,(T) =Y T/AE{),
q=0

where AEQ(E?} = Eg(oq) — EZ(,Q). For the EXACT-COVER problem, the first non-zero
correction is AE%), as combinatorial properties entail that qu) = 0 for all odd
q and that the correction to the energy Eg(cz) is independent of the choice of
x. Then the leading order of AE,,(I") is given by F4AE§2§). Moreover, the

term AE%) is a sum of O(N) random variables of zero mean, so we expect its
variance to be of order O(N)

(ED?) ~ (BSY = {(EG?) ~ N,

which in turn implies that the e-th percentile is of order 05(4)N = O(N). This
means that Pr[(Eg(;;))2 > C£4)N} ~ 1— 155+ So, with probability 1— 155 we have
AE,,(T)=T*E{}) > T*CYWN)/2

Now, since the energy contribution of a single constraint is 4, we need to find out
how strongly we must perturb the classical Hamiltonian H(I' = 0) to find a gap

that exceeds 4. In order to have I“L(C’E(zl)N)l/2 > 4 we have to take I' > I'* =

\/§(C§4)N)_1/S. If this is the case then the introduction of a new constraint
that is satisfied by the assignment x but not by y introduces an avoided crossing
at the point I'*, as shown in Fig. Since at the avoided crossing the ground
state of the system changes from the wavefunction adiabatically connected to |x)
to the wavefunction adiabatically connected to |y) (similarly to what happens
in a Landau-Zener anticrossing, see Section 7 then in order to follow the
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adiabatic path the system has to tunnel from |, (I")) to |1, (I')). The tunnelling
amplitude can be computed as

A;cy(F) = <xW}y(F)>

The authors perturbatively compute A, (I'*), which gives the gap g at the point
' of the avoided crossing, finding that is scales with the system size N as

g(N) — 2—O(N logN).

This is a superexponentially-closing gap, which means that the Adiabatic Quan-
tum Algorithm on a random instance performs worse than the classical solvers
(which at worse require exponential time). These results, however, are based
on the assumptions that the perturbation theory starting from the classical
H(T = 0) Hamiltonian is convergent. We have seen that a system such as that
of Eq. (3.1) is localized at T' = 0 and delocalized at T' = oco. If the localiza-
tion/delocalization transition happens at a critical value of ', smaller than I'*
then the perturbation expansion will diverge and all conclusions for values of I'
larger than I'. are invalid.

The publication of [67] stirred up reactions in the scientific community. In
[75] it was argued that the argument presented in [67] only shows that a ran-
domly chosen energy level belonging to the ground state band and a randomly
chosen level in the first band will have an avoided crossing with the described
properties. These two levels need not evolve to the ground state and the first
excited state of the system when the perturbation is turned on unless their re-
spective bands are non-degenerate, which is extremely unlikely as the spectra
of constrain satisfaction problems are typically expected to have exponential
degeneracy. By considering an exponential density of states and focussing on
the ground state and the first excited state only, the authors obtain a crossing
at a distance O(1) away from I' = 0, which might be outside of the convergence
radius of the perturbation theory. Others have proposed ways to go around the
avoided crossing, at least in some cases [70] [77]. While controversial, the [67]
paper is still one of the main stepping stones in the understanding of the physics
behind the Adiabatic Quantum Algorithm.

4.3 Localization in the transverse-field Ising spin
glass model

In light of the results described in the previous section, our goal for the rest of
the chapter is to study the localization properties of the transverse-field Ising
spin glass model H(T") on the 3-regular random graph.

H() ==Y Jijoic; =T of (4.6)
(i) i

As usual in our setup we keep the strength of the disordered interactions fixed

W = |J;;| = 1 so the relative strength of the disorder with respect to the ordering

term —I') ", of is controlled by the parameter W/I' = 1/I". The mobility edge
will consequently be defined by the critical values T'.(¢) = 1/W.(e).
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In particular, we want to understand if, for a given value of I' and a given
energy density interval & = [e,e + Ae], the eigenstates |[¢(T")) of H(T') with
energy density in £ are exponentially-decaying in the ¢* basis or not.

Let us better define the kind of localization we will study. First, we fix a
value € for the energy density and I' for the strength of the transverse field. For
a given realization of disorder of the Hamiltonian H(T') of Eq. defined on
a system of size N and a energy eigenstate |¢) with localization center |v) and
energy density € we define

Yy = max{|<w|w>\ cw € {£1HY dist(v, w) = r} r=12,... (4.7

where the distance is taken over the Boolean hypercubeﬂ Next, for fixed N,r €
N and real numbers C, £ > 0 we define the quantity P(N,r, &) as the probability
(taken over all disorder realizations of H(T') of size N and energy eigenstates of
energy density €) that the random variable |1, satisfies [,.|? < Ce~"/¢

P(N,7,6) = Pr(l[? < Ce"/%). (4.8)

This means that the probability distribution p(z) = [¢(x)|? is under an
exponentially-decaying envelope, except possibly for a region of finite radius,
for all disorder realizations except for a fraction that vanishes in the thermody-
namic limit. If no such exponential bound can be established, then the state is
delocalized. What usually happens in this case, however, is something stronger.
For all £ > 0 the probability of not being under any such exponential envelope
goes to one as the system size is increased

1— P(N,r,¢) = Pr(|z/JT|2 > Ce—*/f).

This suggests the following definitions.

Definition 5 (Localized/Extended state). We say that the disordered Hamil-
tonian H(T') is localized at energy density € if for all there exist a real number
& > 0 such that

lim lim P(N,r &) =1.

r—00 N—o0

We say that the H(T") is extended at energy density € if for all € > 0 we have

lim lim P(N,r, &) =0.

r—00 N—00

Notice that in place of Eq. (4.8) we can write equivalently

Pann) = (M < g +0(3)).

2Note that in order to compute 1, from the amplitudes |(w|t))| one needs to know (or
find out) the localization center of the state |¢). Since |¢)) is an eigenstate of the perturbed
Hamiltonian H(T") then in the limit I' — 0 it will be connected to an unperturbed eigenstate
|a), which is a Kronecker delta in the unpertubed energy eigenbasis (i.e. it exhibits an extreme
form of localization). If small perturbations do not destroy the localization, then the perturbed
eigenstate [¢) = |1q (")) will still be localized around |a). Therefore in the following Sections
we will start from the working hypothesis that if |1, (I")) is localized, then |a) is its localization
center.
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so we can study the distribution of the values of the random variable Z, =
In|¢),|/r. It was observed numerically in Ref. [78] (see Fig. that if the
system is localized then in the limit N — oo the random variable Z is peaked
around the value

1
Iy = % —In(T/T.)  as N — oo, (4.9)

which gives the value of I'.(€). In practice one can calculate ¢ with T' =1 and
get I'..

10 I . T 1t —Tr=40
s r=85
s §> los —r=130
A ' —Tr=175
- N —1r=202
e 6
N 2
o | ‘ 0.
[ 15 20 25 30 ]
4
w
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07 L |
2.7 2.8 2.9 3.0 3.1 32 3.3 34 35

Figure 4.3: taken from Ref. [78]. Probability density of the variable Z,., for
different r, computed for the Anderson model on the cubic lattice Z2. Note the
concentration of the distribution of Z, on the point log(W./t) (equivalent to
log(T"/T'.) in our notation) as r is increased.

4.3.1 The Forward Scattering Approximation

We have seen how one can statistically study the localization properties of dis-
ordered systems by sampling wavefunction values |1 (z)|?. Of course this is not
always a simple task, as in general one needs to diagonalize a Hamiltonian whose
size grows exponentially with the size of the system. However, in a setup such
as the one defined by a quantum annealing protocol, where we are interested in
studying the localization of the energy eigenstates of a perturbed Hamiltonian
H=H()
H()=Hy+TV

in the basis of the (simpler) unperturbed energy eigenstates |a) then one can
use a technique known as the forward scattering approximation.

Now and throughout this section we use Latin letters a,b,c,...,x,y,z to
label energies and eigenstates of the unperturbed Hamiltonian Hy, such as |x)
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and E,, while the perturbed eigenstates and energies will be indicated as |9, (I"))
and E,(T). It is intended that in the limit I' — 0 we have |¢,(T')) — |z) and
E,(T) — E,.

First, note that we can extract the values 1, (z,I') = (x[1)o(T')) of the en-
ergy eigenfunctions |¢,(T")) by writing the resolvent G(E,T") of the perturbed
Hamiltonian H(T') in the unperturbed energy eigenbasis

Ga(E.T) = (GBI = (ol g 1) = 3 g5 e (D) el

Assuming that the perturbed energy E,(T') is non-degenerate, we can write
E—-E,(T
(B~Eu(D)) GunlB.T) = (albulD) O+ 3 el (O (D))
a’#a @

so by taking the limit £ — E,(T") we have

lim (B = Ea(T))Gap(B,T) = (alga(D) (Wa(D))  (4.10)
E—E,(T)

Then we can extract |1, (b, T')|> by taking a = b. We assume we do not know

the perturbed resolvent G but we do know the unperturbed resolvent Gy. Then

we can use the standard perturbative expansion in I"

G=Gy+TGy)VGy+ F2GOVG0VGO + FSGOVGOVGOVGQ + e

and by inserting resolutions of the identity in the unperturbed energy eigenbasis
(I=3", |k)(k|) we write the Green’s function G4,(E,T") as a series whose n-th
order term is of the form

. 1 1 1 1

U Y mEem Eom Eo RV Vi,
(4.11)

In the case of Hamiltonian we have V' = —3 . 0¥ and the kets |k) can

be taken to be products states of the local 0% eigenstates, | 1) and | ), so

(k|V|k"y = —1 if the states |k) and |k} are linked by exactly one spin flip (i.e.

|k"y = oF|k) for some position i) and (k|V|k’) = 0 otherwise. This means that

not all terms in the sum over kq,...,k,_1 will contribute, but only those that

define a path in the Boolean hypercube. Thus the n-th order term can

be rewritten as

. 1 1 1 1
(-I) Z — — e —
E-E,E—E, FE—E, E-E
pEpaths(a,b) "
Ipl=n

Assuming the series converges absolutely in some region, we can write the
Green’s function as

CGu(ET) = Y (_F)p(kl;[p E_lEk) (4.12)

p€Epaths(a,b)

Note that this path representation of the Green’s function is a sum of in-
finitely many terms, even if the system is finite-dimensional. This is because the
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r.h.s of Eq. contains repeating paths: paths that visit the same vertices
more than once (actually, an arbitrary number of times). Moreover, the mero-
morphic structure of the Green’s function is not conserved at any finite order
(e.g. the expansion does not have E,(T") as simple poles) so we cannot
extract the amplitudes of the perturbed eigenstates from its residues. To solve
these problems one needs to re-sum the series. For each site i, the sum of all
loops around 7 is used to “renormalize” the weight of the paths. One defines
the self-energy term ¥, (F,I") through the identity

1
E— E,—%,(E,I)’

Go.(E,T) = (4.13)

where G, (E,T') = G4o(FE,T). Remember that 3,(E,T) is equal to the sum of
the amplitudes of all the closed paths in which site a appears only as starting
and ending point (see Eq. (4.3)). Note that ¥,(F,T") has a zero first-order
term:

F2
So(B,T) = Y B +0(I®), (4.14)
Ji{a,j) J

where the sum is over the sites j adiacent to a in the Boolean hypercube.
After this is done, one obtains a series over the set paths*(a,b) of simple
(non-repeating) paths connecting the sites a and b:

1 1
Gra(E,T) = (-1 :
E—FE,—%,(E,T) pepg* ) g, E—-E —XP(ET)

(4.15)
The path-dependent term ng ) (E,T) is a self-energy term defined on the reduced

graph where the sites (a, 1,--- ,4—1) previously visited by the path p have been
removed.

Now using Eqgs. (4.10) and (4.15):

1
Oa) = e Jim (B~ Eu(1))Guu(BLT)
(. B - B,(T) . |
= — 1 TP
(ta(I)|a) Eﬁl]gll(r) E—E,—Y.(ET) pepatzhs:*(a b) g E—-F;— Egp)(E, I)
WalD)la){alall) i
lim p
(Ya()|a) E_)E“(F)pepaczh:s*(ab) g E—E, — zp)(E I)
1
= (a[¢a(T)) (-I)7! :
pEpa%s:*(a,b) g) Eo — E; — Ez(’p) (Ea(r)’ r)

Now we keep the leading-order contribution in I' to (bt (T")). Taking into
account that the self-energies are ¥,(FE,T) = O(I'?), we have to lowest order
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which gives

Bl = Y (4)'?'Hﬁ, (4.16)

p€Espaths(a,b) i€p

where the set spaths(a,b) C paths®(a,b) contains the shortest paths from a to
b.

While strictly speaking the forward-scattering approximation is an uncon-
trolled approximation (no error bounds are known), it has been used since An-
derson’s seminal work [63] and checked numerically in many cases (e.g. [7§]).
It was found to be convergent in the localized phase and divergent?] in the de-
localized phase.

Notice that the sum over paths of Eq. can be computed numerically
using a transfer matrix technique, in which case one computes iteratively the
vector |z;) € £%(B) defined by

|xt) = Do - A~ |xp—1) (4.17)
with
. . 1
(i|Dalj) = 6ij7Ea*Ei’ (4.18)
(ilAl7) = V1], (4.19)
lzo) = la) (4.20)
and
(0tha(T)) = (blzn) (4.21)

where N is the distance between a and b in the Boolean hypercube. One can
decrease memory requirements by noting that the vector v is very sparse during
most of the computation, so at each step most entries of the transfer matrix
T = D,A are irrelevant. This is because repeated applications of T to the
initial state define a diffusion process on the Boolean hypercube where at each
step t one needs to propagate only the amplitudes of the vertices exactly at
distance t from the initial vertex. This means that in practice one does not
need to store in memory the entire transfer matrix 7', but instead a new transfer
matrix T} is defined at each step that only propagates amplitudes from vertices
actually relevant for that single step of propagation. This requires storing only
(N —1t)(%) non-zero entries instead of N2V of the full transfer matrix 7' = D, A.
The vector |z;) need to store only (%) entries. The full details of this method
and a study of its time and memory requirements are contained in Appendix

AT

4.4 Numerical results

In this section we apply the previously-described methods to the transverse-
field Ising spin glass Hamiltonian. Here we immediately face an issue: the
computation of the forward approximation is obstructed by the fact that the
spin glass term Hy = — ), Jijofo; has highly degenerate energy levels. This
gives rise to diverging terms in Eq. when E, = F;. In order to avoid

3in the thermodynamic limit. For any finite N Eq. (#.16) only has finitely-many terms.
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this problem we add a weak and random longitudinal field term Higng to the

Hamiltonian Hy:
Hlong = - Z hio‘iz
i

where each h; is distributed uniformly in (—h,h) with A = 0.001 (this has
to be < 1/N but > e~*N). This has the effect of splitting the degeneracies
while introducing only a negligible effect in the energies of the configurations
(and therefore in the amplitudes (b|t),(I"))) and on the amplitudes of transition
between non degenerate states.

We compute the many-body mobility edge for the system in the following
way. For each system size N = 18,20, 22, 24, 26 we randomly generate a suitable
number of realizations of disorder and for each of these we generate a set of initial

states a = ay,as, ..., ai, making sure that their energy densities ¢, = E,/N are
(approximately) uniformly distributed in the range allowed by the model. Each
of these states a is then propagated to its Zs-symmetric state b = —a (global

spin flip) using the forward approximation algorithm with fixed I' = 1 in order
to compute

(—alga(l' = 1))

Notice that the configuration —a is the only configuration b € {£1}" to satisfy
dist(a,b) = N, ergo for the state |¢,) we read from Eq. (4.7)) that (after setting
r=N)

U = max {|(Bla(T = 1)[: b € {£1}Y,dist(a,0) = N} = [(~althu(T = 1).

The results are then binned according to the energy density of the initial state
a and the average of the random variable Zy = In|¢|/N value was taken for
each bin, obtaining Zy(€) = (Zn).

Using the formula I'.(¢) = exp(— In|yn(€)|/N) = exp(—Zn(€)) from Eq.
we obtain a plot of the critical point for the localization transition as a function
of the energy density € shown in Fig. Note that this is the energy density of
the unperturbed eigenstates |a), while usually one would write T'.. as a function of
the energy density of the perturbed eigenstates |1, (I')). However, the perturbed
energies E,(T) = E, + O(T'?) coincide with the unperturbed ones up to second-
order corrections in I', which we neglect.

In order to plot the mobility edge in the (7,I')-phase diagram and com-
pare it to the boundary of the glassy phase, we have to compute the relation
T = T(e) between temperature and (disorder-averaged) energy density. We
used standard Monte Carlo methods to extract the (thermal) average energy
density of different realizations of disorder at various temperatures (see Fig.
and fixed I' = 0, then we took the average over the resultﬂ In order to
better understand the low energy regime we studied the ground state of the un-
perturbed (i.e. T' = 0) model. For each size N = 18,20, 22,24, 26 we generated
a large number (> 1000) of instances and extracted one of the ground states by
performing a thermal annealing (whose results were checked against an exact
solver for the smaller sizes). For each ground state we computed the I'. value

4We note that as one approaches the ground state energy, small difference of energies
translate to (relatively) large difference of temperatures due to small values of the heat capacity
in the low-temperature regime. In order to effectively control this effect one would require
better precision in the M.C. energy estimation.
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using the forward approximation. The disorder-averaged results are show in
Fig. Extrapolations give a value of I, = 0.67 in the thermodynamic limit,
which seems consistent with Fig.

Finally, we plotted a finite-size (N = 26) estimate of the mobility edge and
the line of the glassy transition in the (T,T")-phase diagram (Fig. [4.7). The
localized phase seems to be strictly contained in the glassy phase, therefore
there is a region of the phase diagram where the system is both glassy and
delocalized.
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Figure 4.4: The disordered-averaged average energy density (F) /N at tempera-
ture T of the classical Ising spin glass Hamiltonian on the RRG of degree d = 3.
The data was obtained using standard Monte Carlo techniques on systems of
size N = 150.

4.5 Gibbs Averaging and Improved Analysis

One of the disadvantages of the method explained in the previous section is
the necessity of mapping energies to temperatures in order to write the mobility
edge I'.(€) as a function of the temperature I'.(T'), so as to identify the localized
phase in the equilibrium (T, T)-phase diagram of the model. This is a source
of error in the data, as one can see from Fig. [£4] that the very small value of
the heat capacity 0 (E) /OT at low temperatures means that one needs increas-
ingly better precision on the energy estimates in order to extract temperature
differences with statistical confidence.
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Figure 4.5: Finite-size estimates for I'; as a function of the unperturbed energy
density €, obtained using the forward approximation together with a linear fit
of the data at largest V. The ground-state energy density of the unperturbed
model in the thermodynamic limit is g = —1.25, shown here as a dashed line
while the critical energy density for the classical (I' = 0) glassy transition is
€. ~ —1.05.
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Figure 4.6: Estimates of the T'. for the ground state (T = 0 case) for different
system sizes N. As N — oo the disorder-averaged energy density of the ground
state decreases towards the expected thermodynamic limit value of ¢g = —1.25.
A linear interpolation of the I'. values obtained give a thermodynamic limit
value of I', = 0.67.
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Figure 4.7: Phase diagram of the Hamiltonian of the Ising spin glass in a
transverse field (Eq. (3.1)). The mobility edge obtained from the numeri-
cal data is shown as linked blue dots. The T = 0 point was obtained from
the thermodynamic-limit extrapolation of Fig. [4.6] while the finite-temperature
points were derived from the T'. values for the largest size (N = 26) of Fig. [4.5
With the possible exception of the T' > 1.1 tail the localized phase seems to be
a proper subset of the glassy phase.
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One possible solution to this problem is to generate the initial states by
sampling from the Gibbs distribution at temperature T and average the results,
rather than generate some random states and then bin them according to their
energy density e. In this way one recovers imediately the critical value of I' as a
function of the temperature I'.(T"). So we proceed as follows. First we compute
the thermal average of the value of Zy over all the eigenstates |E,[J,T]) of the
Hamiltonian H(J,I') of a given disorder realization J, for a fixed value of I'":

(Zn(J,T)) ZG( JP)ZN(|E [er) (4.22)

where

G (EnLL F]) o exp(—En[J,T]/T)

is the Gibbs probability given to the eigenstate |F,[J,T]). Then we take its
disorder-average

Zp ) (Zn(J,T)). (4.23)

Then using Eq. with (Zny(T)) and I' = 1 we can extract a finite-size
estimator for the critical value T'.(T) as a function of T. As before, we approx-
imate the energies E,, [J,T'] by their unperturbed values E,,[J, 0] since these are
corrected only at second order in I". Under this approximation, the computa-
tion can go as follows. For a fixed value of the system size N and temperature
T we generate a number of disorder realizations Ji, ..., J,. For each disorder
realization J we use a classical Monte Carlo simulation to sample a number of
states |z1),...,|zr) which are typical for the given temperature T, i.e. they are
sampled according to the Gibbs distribution at temperature T'. Then using the
forward scattering approximations we compute ¥y = |(x;|¢),)| and through av-
eraging of the quantity Zy = log(¢n)/N over the results we obtain (Zy(J,T))
of Eq. [4.22| Then we take the average over the disorder and obtain (Zy (7)) and
To(T) = exp(—(Zn(T))). The results are shown in Fig. Figures
and show how the distribution of the random variable Zx (T) changes as
one increases the size of the system, for fixed temperatures 7" = 1.1,0.7,0.5.
These three temperatures examplify three behaviours of the I'.(IV) curves seen
in Fig. at T'= 1.1 the I'.(N) curve is decreasing with N, at T' = 0.5 the
curve is increasing with N, and at T = 0.7 the curve increases, then reaches a
maximum and then decreases.

Localization transitions are dynamical rather than thermodynamical tran-
sitions, so we cannot use the finite-size scaling Ansatz to study this transition.
However, we can always try to find a universal curve that fits the data. In order
to do this, the first step is to obtain a data collapse of the curves at different
temperatures by some temperature-dependent transformation ¢ applied to the
data points (1/N,T.(N,T)) that make up the I'.(N)-curve for temperature 7'
This was accomplished in essentially the following way. By starting with the
curve of T = 0.9 as reference, we tried to rescale the coordinates of the next
curve, T'= 1.1 so as to make it overlap with the first. We discovered that by in-
dependently rescaling the two coordinates T'.(N,T') and 1/N by factors A ~ 1.8

and B ~ 1.125 . LN.T) B
¥ - (G F)

o(rev. 1),
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one could obtain the desired collapse of the two curves. We repeated the proce-
dure for the other curves and obtained a set of temperature-dependent scaling
factors A(T) and B(T) that produce a full data collapse (see Fig. of the
curves in Fig. The transformation o for a generic T is then given by

1 I.(N,T) B(T)
T (FC(N’ ), N) - ( AT) N ) (4.24)
The fact that the values of A(T), B(T) are well fitted by simple, monotonic
functions (shown in Fig. [4.8]) is a sanity check that our method is not arbitrary.
Once the data collapse was obtained we tried to find a curve through the
collapsed data. We used a modified Padé approximant [79] (i.e. a ratio of two
polynomial functions of given orders) with the coefficients of the polynomials
as fitting parameters. We discovered that one can fit the collapsed data with a
universal curve f(z) given by
1

f(l') Exl_’_cxg,/g

where C' = 4.91 is a fixed parameter. Fig. shows the data collapse and
the universal curve. While we stress the fact that this is just a tentative inter-
pretation of the data, and should not be taken as definitive, this data collapse
suggests the possibility that the MBL region disappears in the thermodynamic
limit, collapsing onto the I' = 0 line of the phase diagram.

(4.25)
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Figure 4.8: plot of the temperature-dependent dilation parameters A(T'), B(T)
for the rescaling of (respectively) the T'. and the 1/N coordinates according to
Eq. (4.24)
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Figure 4.9: finite-size estimates for the critical point I'.(IN) of the localization
transition, for different sizes N = 10,12,14,...,26 and temperatures 7.
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Figure 4.10: Distribution of the random variable Zn (T') for fixed temperature
T = 1.1 and increasing system sizes N = 10,18,26 (increasing from left to
right). Note the formation of an asymmetric peak with a comparatively larger
left tail. This behaviour is typical of temperatures whose I'.(NN) curves decrease
monotonically with N within a given range of system sizes (see Fig. 4.9).
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Figure 4.11: Distribution of the random variable Zy (T') for fixed temperature
T = 0.5 and increasing system sizes N = 10,18,26 (increasing from left to
right). Here as well we see the appearance of an asymmetric peak. In this
case however the larger tail of the distribution is the right one. This behaviour
is typical of temperatures whose I'.(N) curves increase monotonically with N
within a given range of system sizes (see Fig. [4.9).
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%

Figure 4.12: Distribution of the random variable Zy(T') for fixed temperature
T = 0.7 and increasing system sizes N = 10, 18, 26 (increasing from left to right).
The distribution starts similar to the 7" = 0.5 case but develops a second peak
at larger sizes. This behaviour is consistent with the data of Fig. [1.9] where
the curve for T' = 0.7 is seen to grow at small system sizes, reach a maximum
and then drop at larger system sizes. Analogously, the distribution of Zy (T
seems to be connecting the behaviour of the T' = 0.5 case to the behaviour of
the T'=1.1 case.

4.6 Many-body Localization and Level Spacing

Anderson localization is the theory of non-interacting electrons in random po-
tentials. This looks like a very drastic oversimplification, as electrons cannot
be shielded from the Coulomb interaction. The analogue of Anderson local-
ization where electron-electron interactions are not neglected goes under the
name of many-body localization (MBL). Originally discussed in the early days
of Anderson localization, it has recently received great attention after Ref. [80]
shown that localization is not destroyed by weak interactions. MBL theory was
further expanded to include more generic systems than just electrons hopping
on a lattice and was also extended to apply also for disordered spin systems
[811, 82 [83].

While the representation of the transverse-field Ising spin glass in the Eq.
bears a close resemblance to the Anderson model — and therefore suggests
Anderson localization — the physical system is made of interactiong spins, so it
is probably more proper to call the localization seen in the previous section an
example of many-body localization. What matters for the Adiabatic Quantum
Algorithm are the spectral and dynamical properties of the Hamiltonian H (T),
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Figure 4.13: Data collapse for the Ansatz given by Eq. (4.24).
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Figure 4.14: Universal curve defined by Eq. shown on top of the data
collapse of Fig. [£.13] If correct, this interpretation would show that the MBL
exists only at finite system sizes, at least according to the forward scattering
approximation. It is possible that the self-energies neglected in the FSA could
shift the I', values and restore localization.
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and these are independent of any choice of basis.

Many-body localization is the robust breaking of ergodicity due to the emer-
gence of quasi-local integrals of motion which constrain the dynamics in a way
similar to how conserved local charges do in the case on integrable systems.
Quantum ergodicity is often studied by looking at the spectral statistics of the
model’s Hamiltonian. The justification for this approach is to be found in the
connection between classical systems and their quantized counterparts. There
are two main results to consider: firstly, we have the Bohigas-Giannoni-Schmit
(BGS) conjecture [84] which states that the spectra of (time-reversal invariant)
quantum systems whose classical analogues are ergodic exhibit the same statis-
tics of the Wigner-Dyson ensembles. This entails in particular that the joint
probability distribution for the energy eigenvalues of such quantum Hamiltoni-
ans is of the form

P(Ey,...,Ex_1) = N1 [[IEi = EjI exp(-N2 > E),

i<j i

where N1, N3 are normalization constants and the parameter 8 > 1 depends on
the specific random matrix ensemble which correctly describes the symmetries
of the Hamiltoniarﬂ The term |E; — F;|? is indicative of a phenomenon typical
of ergodic systems called level repulsion, as spectra with energy levels very close
together, |E; — E;j| < 1, receive a small probability.

There is an analogous conjecture that applies to integrable systems. The
Berry-Tabor (BT) conjecture [85] states that the level spacing in the spectra of
quantum systems whose classical analogues are integrable exhibit a Poisson-like
distribution, and level repulsion is absent.

While these are indeed conjectures, there is a great deal of numerical evidence
supporting them, even though a few exceptions are known [86] 87]. It is common
to take them to be the definition of ergodicity (or ergodicity breaking) of the
states belonging to the given energy shell in quantum system [88]. The naive
approach to decide whether a system is ergodic or ergodicity-breaking would
be to generate a large enough number of disorder realizations, extract the full
spectrum using e.g. the Lanczos method, and try and fit the level spacing
statistics with either a Wigner-Dyson or a Poisson distribution.

However, since the system we want to study has a mobility edge, the ex-
pectation is that ergodicity is mantained at all the energies corresponding to
temperatures outside of the localized region in Fig. [£.7] while inside of the lo-
calized region one should witness the breaking of ergodicity. For this reason we
need a way to check ergodicity inside of a given energy interval. A way to do
this was proposed in [89], where the authors proposed the average spacing ratio
T as a witness for ergodicity. If Ey, F1, ... are the energies of the system, then
one defines the sequence of spacing ratios {r,}

min(Ap,, Apt1)
max(An, Apiq)

Ty =

where A, = E,, — E,,_1. This quantity is then computed for the energy levels
in a small energy shell and averaged with respect to the realizations of disorder,

5the most common ensembles are the Gaussian Orthogonal Ensemble (GOE) with 8 = 1,
the Gaussian Unitary Ensemble (GOE) with 8 = 2, and Gaussian Symplectic Ensemble (GOE)
with g = 4.
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obtaining 7(E). It is known that 7 ~ 0.39 for a Poisson distribution while
7 ~ 0.53 for a Wigner-Dyson distribution [89]. One would then use this fact to
check whether, for a given energy F, the system is ergodic in the energy shell
(E,E + dE) by averaging the spacing ratio r, for energy levels inside of this
interval.

When applied to the transverse-field Ising spin glass, this technique proved
unsatisfactory for a number of reasons. The main bottleneck of the method is
the necessity to extract the full spectrum of the Hamiltonian, as this strongly
limits the largest system size one can access. Note that at I' = 0 the spectrum
of the Hamiltonian is given by the classical (0*-diagonal) spin glass term.
The disordered interactions J;; = +J being of the Ising type, these energy levels
are usually highly degenerate, because by going back to the COP picture one
can see that these count the number of constraints violated by a given classical
spin configuration. The spectrum Sp(H) is then composed of integer multiples
of J. It is easy to see that on a regular graph of degree d = 3, the energy
densities populated by energy levels are contained in the set

[—J%,J%} nJZ.

For a system of size N the separation between two adiacent values of the energy
density is 3J/N, so that for two consecutive sizes N and N +2 the two sequences
of possible values for the energy density {ez(N)} and {EEN+2)} are shifted, and
have points that lie in between one another, so that extracting a large-N limit of
any function of the energy density is hard unless one goes to very large system
sizes where the available energy density values accumulate inside of a given
window of energy density.

To each energy level of the unperturbed I' = 0 Hamiltonian is associated
a cluster of classical spin configurations, all with the same energy. When the
transverse field term is turned on and I' > 0, these clusters split into a number
of different energy levels but, even for I' &~ J these cluster are still fairly well-
separated. Therefore the same issues with extracting a thermodynamic-limit
behaviour from the numerical data remain.

Finally, the temperatures at which the system is in the glassy phase cor-
respond to a very small energy interval above the ground state energy, as one
can see for example from the “temperature-to-energy density” conversion table
we have computed for large (N = 150) at I' = 0 (see Fig. , so that the
energy density interval associated to glassy dynamics lies at the edge of the
spectrum that is pathologically affected by large fluctuations of the value 7 (see
Fig. [15]b)).

For the sake of completeness, let us try anyway with two values of I', one
that lies completely outside of the glassy phase, say I' = 2.0 and another where
the system is expected to have temperature-driven localized/delocalized tran-
sition. In the first case we expect the system to be ergodic at essentially any
temperature T' (see the phase diagram of Fig. 7 while in the second case
this will be true only at high temperatures. As a first sanity check, note that
for both values of I', if we look at the behaviour of the average spacing ratio
around the € = 0 energy density (which is the energy region associated to high
temperatures) the value is monotonically increasing (see Fig. and is at
least compatible with a possible convergence to the expected value of 7 ~ 0.53.
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However, we were unable to reproduce even this very weak result when we
tried to probe the low energies associated to localization. For example, according
to our estimate given in Fig. [L5] if I' = 0.6 then the energies densities at
which the system is localized should lie approximately between ¢ = —1.2 and
€ = —1.25. Within this narrow interval the statistics we were able to accumulate
(whose T values are shown in Fig. is extremely scarse consisting in < 10
samples per point, and even though one notices a slight monotonic behaviour
with NN, the differences between distinct data points are so small and their
values so remote from the expected value of 7 ~ 0.39 that the information we
can extract about their convergence is essentially nil.

For these reasons, the final results is that the spacing ratio analysis we
attempted is unfortunately inconclusive isofar as establishing ergodicity, or lack
thereof, is concerned.
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(a) Spacing ratios at I' = 0 (classical spin glass). Note the
well-separated peaks associated to the degenerate, integer-
valued energy levels.
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(b) Spacing ratios at I' = 0.6 (inside of the glassy phase).
The clusters spread and start fusing together. However there
are strong fluctuations at the boundary of the spectrum.
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(c) I' = 2.0 (ergodic phase)

Figure 4.15: Spacing ratios of the spectrum of the Hamiltonian (3.1)) at different
values of the transverse-field strength I'.



4.6. MANY-BODY LOCALIZATION AND LEVEL SPACING 95

0.55 -
$ & I'=06
$ 8 =20
[ ]
0.50 {
= 0.45}
[ ]
0.40 %
0.35 L
9 10 11 12 13 14 15 16

Figure 4.16: The average spacing ratios of the Hamiltonian H (T") for two values
of I' = 0.6, 2.0 at a fixed energy density € = 0.1 and system sizes N = 10,12, 14.
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Figure 4.17: The average spacing ratios of the Hamiltonian H(T') for I' = 0.6
inside of the energy density interval [—1.25, —1.2] for system sizes N = 10,12, 14.
Even though the error bars are smaller than the data points, they are likely to
be unreliable due to the very scarce statistics available.
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Chapter 5

Conclusions

The goal of this thesis was to study the Adiabatic Quantum Algorithm from
the perspective of statistical physics and condensed matter physics. In order to
accomplish this task we chose to focus on the transverse-field Ising spin glass
model defined on a regular random graph of degree d = 3. This classical Ising
spin glass model is widely believed to capture the complicated combinatorial
structure of general NP-hard computational problems. As the strength I' of
the transverse field is taken from infinity to zero, this defines a common choice
for the adiabatic path of the Adiabatic Quantum Algorithm called quantum
annealing. From the point of view of quantum statistical mechanics, this path
represents the T = 0 line in the (T, T')-plane of the model. Before our work,
this line was the final piece that was missing from its phase diagram, which
was pieced together in a number of previous works. With this contribution the
picture of the phase diagram is now complete. We computed numerically the
disorder-averaged Rényi entropy Sf) when the region A is taken to be half of
the system. We focused on the paramagnetic phase up to the critical point. We
found that the Rényi entanglement entropy satisfies a volume law for all values
of the transverse field I' we considered, with a prefactor that is maximal at a
point we interpret as the critical point of a QPT. We saw that the critical point
I'. we extracted from the Rényi entropy data coincides within statistical errors
with the critical point of the glassy phase transition of the model, which we
found by studying the Edwards—Anderson parameter qp4. We also saw that
qE 4 is continuous at this critical point.

We studied the disorder-averaged values of two (spatial) two-point correlation
functions of the model — the maximal correlation and the mean correlation
— in order to get a better understanding of this phase transition. The de-
cay of both of these correlation functions was found to be compatible with a
stretched-exponential for all values of I', both critical and off-critical. We ex-
tracted critical correlation lengths £y (T'.) and observed that they decrease with
the system size N and converge to a finite value at the critical point of the
glassy transition. We conclude that this phase transition exhibits features of
both first-order transitions (finite critical correlation length) and second-order
ones (continuous order parameter). From the four above-mentioned quantities
we extracted the following estimate for the critical point: 1.82 < I', < 1.85.
Small-size numerical studies of the quantum Fisher information point to the
fact that critical and off-critical multipartite entanglement are microscopic, i.e.
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they never involve more than a number of spins that is constant in the system
size. This might prima facie seem to contrast with the volume-law of the Rényi
entropy but we believe that the following simple picture of the wavefunction to
be compatible with all the data. At I' = co the wavefunction is a product state
of o” eigenstates. As I is decreased, pairs of nearest-neighbours entangled spins
are created and become increasingly entangled as I' approaches the critical point
of the QPT. The volume-law scaling of the Rényi entropy is a consequence of the
expander-graph structure of the interaction graph of the model: any bipartition
A cuts through an extensive number of these 2-spin entangled states, each of
which gives a finite contribution to the entanglement entropy Sf).

In order to further explain these results we attempted a perturbative calcula-
tion using the large-T" transverse-field term as the unperturbed Hamiltonian and
the spin-glass coupling strength J as the perturbative parameter. The spectrum
of the unperturbed Hamiltonian can be interpreted as a vacuum of quasiparti-
cles, on top of which there are equally-spaced bands of increasing quasiparticle
density. First-order parturbation theory in J showed that the energy of the first
excited state (belonging to the one-particle band) crosses the ground state en-
ergy at ', &~ 1.414. Going to higher bands and using a mean-field Hamiltonian
that reproduces some of the contributions of higher-order perturbation terms
we see that the critical points moves to higher values of I', in better agreement
with the numerics. The idea is then that at the critical point one of the higher
bands crosses the vacuum energy of the quasiparticles, so that energy consider-
ations favour the creation of a finite density of quasiparticles. This perturbative
approach is also corroborated by the fact that its predictions are consistent with
the known results for the limit d — oo of infinite degree, where the RRG Ising
spin glass goes to the Sherrington-Kirkpatrick model.

We also studied the localization properties of the model in the limit where
the transverse-field is weak compared to the disordered interactions. This regime
describes the final stage of a quantum annealing protocol designed to find the
ground-state energy of the Ising spin glass. Many-body localization has been
argued to be an obstacle to efficient quantum annealing due to the presence of
exponentially-closing gaps in the localized phase.

We computed numerically the many-body mobility edge of the system in the
forward approximation, finding that the energy eigenstates of the system indeed
localize for small values of the transverse field at finite system sizes. When
plotted against the equilibrium phase diagram of the model, we discovered that
the localized region does not coincide with the glassy phase. In particular,
evidence points to the fact that the glassy phase is partitioned into a delocalized
region and a localized one.

Let us examine these results with respect to the background literature. From
the point of view of quantum computation we note that the microscopicity of the
entanglement, along with the fact that exponentially-closing avoided crossings
in the paramagnetic region are highly unlikely, suggest on the one hand that
quantum annealers do not need to generate and sustain an inordinate amount of
entanglement in order to correctly follow the adiabatic path, at least up to the
critical point of the transition. On the other hand, this part of the adiabatic-
evolution dynamics can be efficiently simulated on a classical computer using
the standard methods of Refs. [90] [40]. The extension of these considerations
to the entire adiabatic path rests upon the scaling behaviour of the multipartite
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entanglement and the minimal gap inside of the glassy phase. Previous results
on the related problem 3-regular MAX-CuT (which is equivalent to our model
without disordered interactions J;;) found that the gap closes superpolynomially
fast inside of the glassy phase. We expect this to be the same also in the
Ising spin glass. Also, classical considerations suggest that at least for I' = 0
we should have ground states that are superpositions of (quantum states that
represent) the solutions to the classical problem, i.e. the classical Ising spin
glass. These quantum states are expected to be products of smaller entangled
and unentangled states. For example, if “000101” and “000011” are the only
two solutions to the classical problem, then their superposition can be written
as

1000101) 4 |000011) = 000) @ (|10) + |01)) ® |1)

that is, a six-qubit state that is only 2-entangled. Therefore entanglement is
dependent on the structure of the solutions to the classical problem, which
was studied extensively [01l [02]. Nevertheless, we are unable to derive the
disorder-averaged entanglement properties of the quantum ground states given
the current state of knowledge.

The presence of a MBL region inside of the glassy phase model is consistent
with the predictions of the Altshuler et al. paper [67]. However, while our
numerical data show the existence of a localized phase at finite system sizes,
the data collapse we presented at the end of Chapter 4 suggests this region
shrinks more and more as one approaches the thermodynamic limit. While
finite-size properties are the ones that are really relevant for applications in
real-life quantum computers, one has to admit that the extension and indeed
the existence of the MBL phase in the thermodynamic limit is still open to
question as we are currently lacking a proper finite-size scaling of the mobility
edge.

We believe there are several future directions that are worth exploring. For
the transverse-field Ising spin glass model, an obvious one is to extend our study
of the Rényi entropy inside of the glassy phase, where ergodicity breaking mani-
fests itself as a fast increase of the convergence time needed by the Monte Carlo
simulations. Methods such as parallel tempering have been used to ameliorate
this effect so it is reasonable to believe that this obstacle is not an insurmount-
able one. Further, a more systematic study of the mean-field approach and of
the developement of quasiparticle descriptions of the physics of adiabatic paths
seem useful in order to develop a better intuition.

For the MBL part, the first desideratum would be to try and confirm the pre-
dictions of the forward scattering approximation. Self-energy corrections to the
FSA can be computed using a similar, albeit more resource-heavy version of the
transfer matrix method we described and used in Chapter 4. Another natural
future direction would be to check whether the same localization/delocalization
transition is present when the disordered term of the Hamiltonian encodes a
real-life computational problems such as 3-SAT. In the affirmative case, a de-
tailed comparison of the performance of e.g. simulated annealing and quantum
annealing (either simulated numerically or by an actual experiment) inside of
the region that is both glassy and delocalized would help shed light on the realis-
tic capabilities of quantum annealers over classical thermal annealing and other
algorithms based on stochastic local optimization. Moreover, while our work
considered the eigenstate localization the dynamical properties of the glassy,
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delocalized phase are at this point unknown. This is worthy of further investi-
gation as we expect that classical methods that exploit the fine-tuning of thermal
relaxation (such as simulated annealing) will perform poorly in the entire glassy
phase while quantum annealers will perform poorly only once (dynamical) lo-
calization sets in. In case the glassy, delocalized region of the phase diagram
should turn out to be ergodic (e.g. thanks to quantum tunnelling) then this
could constitute an example of a region of the phase diagram where quantum
annealing algorithms can be expected to outperform any classical thermal an-
nealing protocol. This would be solve an open problem that has troubled the
quantum community in the past ten years.

For the larger picture of Adiabatic Quantum Computing, a better under-
standing of the entanglement in the ground-state wavefunctions of the Quantum
Adiabatic Algorithm seems auspicable. In particular, when does an adiabatic
path encounters points of macroscopic entanglement (i.e. entangled blocks of
size O(N), as measured by the quantum Fisher information), and how does this
feature relate with the minimal gap? From a computational perspective, there
are many reason to believe that quantum computing is strictly more power-
ful than classical computing, so at least is some cases the Adiabatic Quantum
Algorithm should be impossible to simulate efficiently on a classical computer.
Currently, the only known way for this to happen is if multipartite entanglement
should scale extensively at least at some point of the adiabatic path. Quantum
algorithms that efficiently solve problems that do not have efficient classical
algorithms should show this behaviour. On the other hand, if a quantum algo-
rithm is already inefficient (e.g. it has a gap that closes exponentially fast), then
no conclusions on the entanglement follow. One could then ask what happens
in this case. Is extensive multipartite entanglement simply a typical feature of
all (or most) adiabatic runs, or does it correlate with the minimal gap? It seems
that further research is needed to address this point.

In closing, we hope that this thesis has shown adiabatic quantum computing
to be a useful framework for the analysis of quantum algorithms, where physical
intuitions, concepts and techniques can be brought to bear profitably.
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Appendices

A.1 Perturbation Theory by Transfer Matrix

As mentioned in Chapter 2, the adjacency matrix Ag of an undirected graph
G = (V, E) is defined by

1 if (,7) is an edge in E

(ilAgli) = {

0 otherwise

It is a well-known result in algebraic graph theory that the powers of the adja-
cency matrix Ag of an undirected graph G contain information about the paths
in the graph, specifically

(1|(Ag)"|7) = number of paths of length n connecting the vertices i and j

This can be generalized for directed, weighted graphs: in this case each directed
edge e = (i — j) of G will be associated to a weight w(e). The weight of a path
p = (e1,...,er) (a sequence of pairwise incident edges of G) is defined as the
product of the weights of its edges:

k

W(p) = H w(e;)

i=1
In this case we can define the transfer matrix T

- w(e) if e=(j — i) is a directed edge in E
(i T5) = ; :
0 otherwise

Now the powers of T encode sum-over-paths quantities in G:

W)=Y, Wwe= >  J]we (A1)

pEpaths(j,isn) pEpaths(j,i;n) €i€p

where the sum is taken over all paths p in G of length n (i.e. composed of
exactly n edges) connecting j to ¢. One can use transfer matrices over weighted
graphs to compute the forward-scattering approximation (FSA) of Eq. (A.2).
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In Section [4.3.1] we needed to compute the amplitudes of the perturbed energy
eigenstates |(I")) of a transverse-field Hamiltonian H(I")

HT)=Ho-T) o}
i
where Hj is diagonal in the o* basis. For eigenstates |z),|y) of Hp, using the

FSA we have r
e~ > ] (A.2)

)
. €xr — €
pEpaths(z,y,n) 1€p r g

where n = dist(z,y) is the Hamming distance between z and y (the number of
spin flips that connectes them). Again, we indicate with |4, (T")) the eigenstate
of H(T") that is adiabatically connected to |z) in the limit I" — 0.

The r.h.s of Eq. can be seen as a special case of Eq. (A.1]) where the
underlying graph G is the N-th dimensional Boolean hypercube BY = {0, 1}V
and the weight of an edge e = (j — ) of the graph is given by

w(j —1) =

€ — €
We see then that the transfer matrix T' = T, is
Tac = Dan

where A is the adjacency matrix of the Boolean hypercube and D is a matrix
defined by (i|Dy|j) = §;;T'/(€x — €;). Then Eq. is equal to (y|T¢|z) where
d = dist(x, y). Therefore we can compute the amplitude (y|i,(T')) by starting in
the initial state |x) = |zo) and repeatedly applying the transfer matrix, defining
vectors |zo), |1), . ..

|Ter1) = Txy) fort=1,2,...,n.

Then (y[¢2(T)) = (ylan).

Efficient implementation

Of course |z;) is a vector with 2%V entries and T, is a 2V x 2V matrix with real
coefficients, so their sizes are exponential in N. However, one can use a number
of tricks to implement the procedure more efficiently.

1. Reduced transfer matrix. When written in the ¢* basis, the vector
|z¢) is very sparse during most of the computation, so at each step most
entries of the transfer matrix 7" are irrelevant (since they will be multiplied
by the zero entries of |x;)). This is because the transfer matrix 7' connects
only neighbouring states on the hypercube, so if we start in a basis state
|zo) = |x) (totally localized), then T%|z) will be supported on states inside
of a ball of radius k centered in z:

Tz) = Z a|2).

z:dist(z,2)<k

Moreover, since we need to propagate only for n = dist(x,y) steps, the
final state y at the final time ¢ = n will be exactly on the boundary of



Al

PERTURBATION THEORY BY TRANSFER MATRIX 103

such a ball. This means that at each step we need only to propagate
the boundary of this ball: the amplitude of the states in its interior are
irrelevant for the FSA. This means that

e the vector |z;) requires only (]X ) real-valued entries to be described
completely, instead of 2%

e one does not need to store in memory the entire transfer matrix
T,. At each step t one needs only a reduced transfer matrix T} ; to
propagate |z¢) to |2¢41). This matrix has only (N —t) (1;[) non-zero
entries, instead of N2V of T,.

. Propagation cost (memory). At the t-th propagation step we have to

compute the vector |zs+1) from the vector |z;) by applying the (reduced,
directed) transfer matrix T, . Both vectors have to be stored in mem-
ory during a single propagation step and only when we have completed
computing |z;1) can then |z;) be discarded. Combined together, the two
vectors have (JZ ) + (tfl) = (1;[111) non-zero entries. The transfer matrix
T,+ can be computed on the fly entry by entry and does not use any ap-
preciable amount of memory. The bottleneck is then around the middle of
the propagation, where t +1 ~ (N +1)/2 € exp(N). This is confirmed by
the data from the simulations we did using the ULYSSES cluster, where
an exponential fit gives a memory requirement (for the full propagation
on the entire hypercube of dimension N) of

Mem(N) = aexp(8N)

with parameters o« = 0.032 £ 0.006 and 8 = 0.713 £ 0.007 (see Fig. [A.1)).
Memory is measured in kilobytes. Using this estimate, we see that the
maximum size we can reach with 1 Petabyteﬂ is N = 43. Later on we
will describe how to relax these requirements using parallelization.

Propagation cost (time). At the ¢-th propagation step, each of the
( tfl) entries of the vector |z:41) are computed by summing the contribu-
tions of ¢ + 1 vertices from the previous propagation step, e.g.

(lrer1) = wlis — J)(irlae) + - wlizer — 3)(Eerr|ze)

where w(i — j) = I'/(e; —€;). We assume that ¢; can be computed
using O(1) FLOPs from the energy of a previous configuration, so that
the computation of each weight w(i — j) takes O(1) FLOPs. Then each
entry takes O(N) FLOPs. Therefore the ¢-th step of computation takes
O(N ( N )) FLOPs and the entire propagation on the hypercube of dimen-

t+1
sion N takes order of

NZ_:lN( N ) = N2V —1) = 0(N2N)

= t+1

floating-point operations. Again, this is confirmed by the data from the
simulations we did, where a fit

Time(N) = aN exp(8N)
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Figure A.1: fit for the memory usage of the algorithm for the full-propagation
over the Boolean hypercube BY = {0,1}" (all N propagation steps), as a
function of the system size N. Memory scale is shown in Megabytes. The
curve aexp(SN) obtained from the analytic estimate gives fit parameters o =
0.032 £ 0.006 and S = 0.713 £ 0.007

gives fit parameters aw = 0.032 £ 0.006 and 5 = 0.713 £ 0.007 (see Fig.
IA.2). Memory is measured in seconds.

4. Divide and conquer, parallelization. In order to obtain the results
presented in Chapter 4, the previous optimization was found to be suffi-
cient. However, if one wants to access large system sizes, then one has to
find a way around the memory requirements described above. One such
way is parallelization: since the propagation process is done by a transfer
matrix, i.e. a linear operator, then it is easy to split into independent sub-
processes. As an example, suppose we want to map |zg) to |x3) = T%|zo).
One way of doing this would just be to apply the transfer matrix k times
to the initial vector |xo). However, one can easily see that the same re-
sult is obtained if we propagate |zg) for a smaller time (say k' = k/2)
then expand the resulting vector |zy/o) in the standard basis {|i)}; and
propagate each component independently by another 7%/2, summing the
resulting vectors:

o) = TF|zo) = TH2TH2|00) = T |2y ) (A.3)

- Tk/Q(ZaiH)) =D aTli). (A.4)

Of course one is not required to split the vector |z /) into basis vectors.
One might decide to use any decomposition |z/2) = |v1) + -+ + |Uym).

Lapproximately the memory available to the largest supercomputers available today
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Figure A.2: fit for the time requirements of the algorithm for the full-
propagation over the Boolean hypercube BY = {0,1}" (all N propagation
steps), as a function of the system size N. Time scale is shown in seconds. The
curve aN exp(8N) obtained from the analytic estimate gives fit parameters
a = 0.032 £ 0.006 and 8 = 0.713 £ 0.007

We propose the following approach to bypass the memory bottleneck de-
scribed above. The system is propagated up to a large enough time
t < N/2 so that the vector |z;) with (12[) entries is reasonably easy to
store in memory. Then the goal is to propagate this vector to |zn_¢), a
vector with other (JX ) entries on the opposite side of the Boolean hyper-
cube (i.e. on the other side of the memory bottleneck). This is done by
expanding |z;) in the computational basis

) = Y il (A.5)

(note that this is a sum of at most (12[ ) non-zero terms). Then each state
«;|@) is propagated by N — 2t steps, giving a contribution to |zy_;):

|$N—t> _ TN72t|1‘t> — ZaiTN72t|i>

We will call each smaller propagation a;|i) — a; TV ~%|i) a “propagation-
bridge”. Each propagation bridge is equivalent to a propagation on a
reduced Boolean hypercube BM with M = N —t. The advantage with this
approach is that the propagation-bridges need not be run simultaneously
and the hard limit for the memory used is given by 1) the size of the
two vectors |z¢), |xy_¢), and 2) the bottleneck of the propagation on the

reduced hypercube, min { ((Nl\i;i‘g)lm% <1</v:2t:k11) } The bottleneck of this
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“bridge” method is of order

Mem(N, 1) =2 @[) - min { <(NN—_t t++1)1/2>’ <]]\>[:;t—:—11) } (A.6)

Fig. [A-3]shows a comparison of the bottlenecks for the usual, full-propagation
method and the bridge method. After we have reconstructed |xy_;) we
are past the memory bottleneck and the propagation can proceed again
as usual.

Now, if we blindly apply the method just described one sees that the
number of propagation-bridges one needs to compute in order to propagate
|zt) to |zy—¢) is very large, being (IX) The solution to this would be to
expand |z;) into a fixed number of vectors |z;) = 7, |y%) rather than

in the computational basis. One could for example collect the 2%V basis
vectors {|i)} into r sets S1,..., S, and define (compare with Eq. (A.5))

vl = auli).

€S

Then one would need to propagate |y%) to TN_2t|y§->, forall j =1,...,r.
This, depending on the choice of r, can be a much smaller number that
(]X ) The downside is of course that each of these larger propagation-
bridges requires more memory than the ones described before. The opti-

mal course will require to balance time and memory requirements.

A.2 PIMC

The path-integral Monte Carlo (PIMC) method applies the path-integral rep-
resentation for the partition function of a quantum system in order to compute
the thermal average (O) o Tr(Oe=PH) of an observable O [93, [04]. In this way
one identifies the thermodynamical properties of a d-dimensional quantum sys-
tem with those of a (d+ 1)-dimensional classical system. The distribution of the
classical observable is then sampled with a standard Markov-chain Monte Carlo.
In order to be able to do this it is crucial that the weights that the quantum
action associates to the paths be renormalizable to a bona fide probability dis-
tribution. This effectively means that they all need to be real and non-negative.
The presence of weights with a negative sign completely invalidates this method,
and one speaks of the emergence of a sign problem. In this appendix we review
the derivation of the effective classical Hamiltonian for a transverse-field Ising
spin glass system such as the one in Eq. . The same quantum Monte Carlo
approach has also been employed in simulations of the quantum annealing of
quantum Ising glasses [05] [12], and in the calculation of minimum gaps along
adiabatic annealing dynamics [96].

Thanks to this quantum-to-classical mapping, the static properties of the
system, including the thermodynamic potentials and the correlation functions,
can be computed via standard Monte Carlo techniques by sampling (e.g., using
the Metropolis algorithm) configurations according to the probability density
function obtained from the derivation.
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Figure A.3: Comparison of the memory bottlenecks for the full propagation
method vs the bridge method, for a system of size N = 30. The full-propagation
memory bottleneck has no t-dependence since its bottleneck is always given by
(( Nj\ﬁ)l /2). The memory bottleneck of bridge method depends on the time ¢
where we start breaking the propagation into smaller ones, as shown in Eq.

(9.

Note that this derivation makes no assumption on the topology of the inter-
action graph of the spin-glass term. In this respect, this is completely general.

Note that the e ## factor of a thermal state p(j3) is an imaginary-time
propagator U(—if) for the system described by the Hamiltonian H. The first
thing one needs to do is to split the imaginary-time interval 3 into m subintervals
ApB = B/m. Then the propagator U(—if3) factorizes into

U(=iB) = U(=iAp) - -- U(—iAp),

and the quantum partition function Z = Tr(e ) can then be written as

Tr(e PH) = Tr(ﬁe*AﬂH)
i=1

Z Z 7ﬁ1<8(k)|e—AﬂH|s(k+1)>’

5(0) 5(7"*1) k=0

where the upper indices (k) are taken modulo m, i.e. (m) = (0). In the second
line we have introduced m — 1 resolutions of the identity I = > ) [s*))(s¥|
between the e~2#H factors. The outermost sum Y o) (s(?)] - - |50} is given by
the trace operator. The choice for the basis vectors of these sums is, at this
point, completely free. Nevertheless, we choose the product o*-basis for all k:

s = |s1) @ |s2) @ - - @ |s) where s; € {£1} for all i,
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Figure A.4: A quantum theory on a cubic graph is turned via the quantum-to-
classical mapping into an equivalent classical theory on a 5-regular graph, where
an additional “imaginary time” dimension is to be taken into account. Effective
couplings along this directions, some of which are represented by dashed lines in
the above figure, replace the real-space transverse interactions of the quantum
theory.
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where we use the usual identification | 1) = [1),] ) = | — 1).
Next we compute the bra-ket term (s(®)|e=2#H |s(k+1)) where

H=-— ZJO’O’ FZO’
(i5)

We apply the first-order approximation of the Suzuki-Trotter formula

eAtB = lim (eA/"eB/")n

n—oo
to the operator e *#H 5o that
exp (ABZ Jijoio; + AﬂFZaf) = exp (Aﬁz Jijo;o% )
(ig) i
X exp (Aﬁrz ) +O(AR).

Note that the first factor on the r.h.s is diagonal in the chosen o*-basis, therefore
in a term like (s|e"®#H|s’) we can multiply it to the left with the bra (s| and
obtain

<S| —A5H|s> Aﬂz<”> Jijsi SJ< |6ABFZ:1 ?

),

where s; = £1 are the classical spin values that label the elements of the product
state |s) = @), |si). The approximation in the previous equation becomes exact
in the limit of m — oo (equivalently, when AS — 0).

Note that the energy term ), o7 is non-interacting, in the sense that it is
a sum of operators that act non-trivially on disjoint sets of spins. This means
that we can write

N
(5129 2T |f) = [ (sife 07 |s). (A7)

=1

The last thing we need to do is to evaluate the single-spin bra-ket term (s;|e*%T77 |s!).
It is an exercise in trigonometry to prove that

(si|eA5F”f|s;> = Cexp(Bs;s;)
where

B = f% In tanh(AST)

Q
|

1
3 sinh(2AfT).
Then Eq. (A.7) becomes

N exp (JLAB Z JijSZ_(k)Si(kJrl))

where

Jt = ffﬁ In tanh (FAB)
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and the partition function Z = Tr(e™#H) of the quantum system can be ap-
proximated by
Zm = CNm Z e—ABHeff

S

where H.g is the Hamiltonian of a system of Nm classical spins:

m—1
9= 5 (- X0, - S ss )

k=0 (i) i

This is a system that can be easily simulated using standard Monte Carlo tech-
niques.

A.3 The Trotterization of Replica Systems

The computation of entropies, and in particular of the Rényi entanglement
entropy, is a challenging computational task, even when the Monte Carlo sim-
ulations of the effective classical model can be efficiently performed without
negative sign problems nor frustration. Several approaches to compute Rényi
entropies using Monte Carlo simulations have been engineered, including the
temperature-integration method of Ref. [97], the swap operator method of Ref. [98]
(for SU(2)-invariant lattice spin systems), the weight-ratio estimator method of
Ref. [99] 100] 10T], the mixed-ensemble method of Ref. [I02], and the extended
configuration-space method of Ref [58]. While all these methods have their
own appealing features, we chose to adopt the extended configuration-space
method, since it is extremely versatile and, more importantly, efficient in the
large system-size regime. We briefly describe it below, following Ref [58].

This method is based on Eq. (1.21)) of Chapter 1, derived in Ref. [41]:

(2)
Z
Te(ph) = Y alpala’) (@' |pala) = A

a,a’

where Zf) is the “partition function” of two replicas of the systems glued along

the region A in the imaginary-time direction

29 = 37 al{ble™ 0"y ) (a0 |~ |a) 1),

a,a’,b,b’
and Z2 is the partition function of two independent replicas
2% = (al{Ble|a)|b)(a’|(t|e= P |a) |b').
a,a’,b,b’

We can apply the same path-integral mapping described in the previous sec-
tion to both of these partition functions, obtaining two classical Hamiltonians
(respectively, H4 and Hp) defined on the same system of 2Nm classical spins.
The form of the Hamiltonian is the same for both cases X € {4, 0}

2m—1

Hy = Z (_ Z JijSi(k)Sj(_k) et Z SZ_(k)S«i(kJrl) et Z Sl_(k)gi(ml)).

k=0 (i,5) icA i€B
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where {Si(k) |1 <i< N,0<k<2m—1} is the set of spins that composes
the system, and the notation Sl(k) is used to explain the difference between the
two cases in the boundary conditions in the imaginary-time direction. For the
independent-replicas Hamiltonian Hy, all imaginary-time loops close on them-
selves after an imaginary-time interval 3, for both replicas. This means that
the spins S'Z(k) satisfy, forall i =1,... N

° S’Z(k) = Si(k) for all “bulk” timeslices k # m,2m
° S’i(m) = Si(o) and Sl@m) = Si(m) for the two “boundary” timeslices m, 2m.

For the glued-replicas Hamiltonian H 4, if ¢ is a spin in the region B, then
the imaginary-time loops close on themselves after an imaginary-time interval
B, the same as before. Instead, if i € A, then the imaginary-time loops close on
themselves after an imaginary-time interval 23. The boundary conditions on
these spins are

. ka) = Si(k) for all “bulk” timeslices k # 2m
° S'i(m) = Si(o) for the single “boundary” timeslice 2m.

These boundary conditions are shown in Fig.

Region A Region B
A

Replica 1

Replica 2

N

Real space coupling J;; Imaginary time propagator e #H

Figure A.5: Pictorial representation of the system described by Zf42). Two
copies of the original system are connected by imaginary time couplings, but
only in the region A. Wobbly lines denote random interactions, solid lines are
ferromagnetic.
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Now, for each classical spin configuration x € {£1}*¥™ we can define two

weights

= e—ABH@(x)7 = ¢~ ABHA(2)

wg(z) wa(x)

A.4 Humeniuk-Roscilde Algorithm

In [58] the replica method was recast as a quantum Monte Carlo algorithm
capable in principle to compute the Rényi entropies of generic systems. As we
think the full proof is instructive and does not — to our knowledge — appear in
the literature, we describe it here.

If X is the configuration space of the Trotterized system (i.e. the set of all
possible classical spin states), define an extended state space S = X x {0, A}. A
state in S is a pair (z,4) where € X is a configuration of the original system
and i € (), A is a label for one of the two partition functions Zf) and Z2. Define
over S the (possibli unnormalized) probability distribution

= Jw@) ifi=10
P(%Z)_{wA(x) ifi=A,

where w(z) is the weight that the partition function Z2 gives to the configuration
x and wy(z) is the weight that the partition function fo) gives to the same

configuration. Call P = %Ij’ its normalized version. Note that normalizing P

over the configurational veriable z we have

P(A) = /iv S P, A) = /iv S wale) = %Zf)

zeX zeX

and
1 ~ 1 L o
P() = NG Z P(z,0) = NG Z w(z) = NZ .
zeX reX
Therefore the ratio of the two marginals give
Py NZP  ZQ

POy N z2 727

The bottom line is that by sampling P and by keeping track of how many times
we get a state of type (z, A) and (z,()) we can learn the ratio of the two partition
functions. Let N4(m) be the number of times we got a state of type (x, A) after
m samplings, and let Ny(m) be the number of times we got a state of type
(x,0). Then for m — oo we have that Na(m)/Nyg(m) — P(A)/P(0). What is
needed now is a way of sampling the probability P. We construct a Markov
chain over S that has P as its limiting steady-state distribution.

A.4.1 Transition matrix

The transition matrix is a matrix T(x,i — 2’,4') that gives the probability of
transitioning from a state (z,i) € S to a new state (2/,i') € S. Instead of
explicitly defining its entries we describe it algorithmically. Fix a real number
0 < p < 1. If we are in a state (z,i) € S we
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e with probability p do the usual Metropolis-Hastings algorithm according
to the probability P;(x) = P(z,1):

1. generate a new configuration 2’ according to a symmetric (i.e. Q(z|x’)
Q(2'|z)) conditional probability Q(x|z’).

2. accept the new configuration x’ with probability
P(a, i))
| P(x,i)

3. if accepted, update the configuration part of the state (z,i) — (', 7).

Prlaccept '] = min (1

e with probability 1 — p do the following

1. generate a new dynamical label j € {0, A} according to a symmetric
conditional probability G(j]7). In Ref. [58] this probability is defined
by G(A|A) = G(0|0) = 0 and G(A|0) = G(0|A) = 1, i.e. one always
tries to move to the other dynamics.

2. accept the new candidate j according to the probability

P(z,7)
’ P(m,Z)>

3. if accepted, update the dynamical part of the state (z,7) — (z, j).

Pr[accept j] = min (1

Note that this method is similar to the simulated tempering Monte Carlo tech-
nique [103], a modified version of simulated annealing that was proposed to
more easily study rough energy landscapes. In simulated tempering the inverse
temperature [ is a dynamical variable in the simulation, here instead [ is kept
constant but the Hamiltonian of the replicated system is updated dynamically.

It is worth mentioning that the efficiency of this algorithm might degrade
when the subsystem size [4 increases, due to the decrease of the acceptance
rate of the Monte Carlo updates that switch between the two sectors Z2 and
Zf), resulting in large statistical fluctuations. This eventual problem could be
circumvented by using the incremental formula implemented in Refs. [97, B8],
where the Rényi entropy of a (large) subsystem A is obtained by decomposing
it into subparts of increasing size; however, we verified that in the disordered
RRG considered in this work, the basic algorithm (without the incremental
decomposition) is sufficiently efficient even for considerably large system sizes,
and that the incremental formula does not provide a critical performance boost.

A.4.2 Detailed Balance

We prove that the probability distribution P(x,7) and the transition matrix
T(xz,i — 2',4) implicitly defined by the algorithm of the previous section satisfy
detailed balance, that is

Pz, i)T(z,i — o' ,i'") = P(2',i")T(2',i" — x,4) (A.8)

for all z,2’ € X and 4,7’ € {(), A}. This entails that the Markov chain defined
by T has P as a limiting distribution. We distinguish four cases, for all possible
identity relations between the elements z,z’ and 4,47’ in Eq. (A.3g).
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o 1 2 3 4 5 6 0.0 0.2 0.4 06 0.8 1.0
Monte Carlo time le7 Monte Carlo time 1le8

Figure A.6: Convergence times of the Humeniuk-Roscilde algorithm for the
computation of the Rényi entanglement entropy. Shown here is the cumulative
estimator — log(N4/Ny) for S®. The black lines represent simulations of the
same realization of disorder initialized with different initial states. The red line
is the exact value obtained by exact diagonalization. The left Figure shows
simulations at I' = 1.5. The evolution is essentially ergodic at this system
size. In the right Figure (at I' = 0.7) the glassy dynamics translates to longer
convergence times for the Monte Carlo simulation.

e v =2’ and i =i’ case. Trivial.

e x # 2 and i # ' case. Trivial, as the transition (z,4) — (2/,7’) has zero
probability of happening.

e z # 2’ and i = i’ case. This means that the configurational part of the
state was updated. This happens with probability

0 PELi)Q)
pmin (1 5 0wl

By defining P;(z) = P(z,4) then the proof follows the textbook case for
the standard Metropolis-Hastings algorithm.

e v =7 and i # ' case. This means that the dynamical part of the state
was updated. This happens with probability

, P(x,i")G(i'|i)
—p)-min (1, —————=).
(1= p) - min ( P(x,i)G(i|z”)>

Now define k € R as

Suppose k > 1 then 1/k < 1. Then

P(x,))T(z,i — z,i') = (1 — p)P(z,1)
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and
P(a,i)T(x,i" »z,i) = (1 p)P(x,i/)g(j ,;/))((;?((?/Z;)
1 ~
= (1- p)ﬁp(x, i)
= (1-p)P(z,1)

and therefore detailed balance is satisfied. The case where k < 1 is perfectly
analogous.

A.5 Simulated Annealing

Simulated annealing is a numerical technique designed to find the solution to

combinatorial optimization problems. Givena COP f(Xy,...,Xn) =", fi(X1,...

over N Boolean variables X1, ..., Xy, one defines N classical spins S; = —2X;+
1. Then a Hamiltonian H is defined over this fictitious spins

H(S1,...,Sn) =E+Y hiSi+ > JijSiS;+ Y JijuSiS;Sk+ -

.9,k

so that the f(Xy,...,Xy) = H(S1,...,Sy) and therefore the ground state of
H corresponds to the solution to the minimization problem f.

Then the thermal state of the fictitious spin system at temperature T is
described by the Gibbs probability distribution

1 ,
Pp(z) = Ee_H(“')/(TkB)

where Z =) ef(@)/(TkB) is the partition function. At high temperature all
the microstates are approximately equiprobable while at low temperature the
probability distribution will concentrate on the low-energy states of H.

The idea is to implement numerically the quasi-static transformation that
takes the system from an infinite-temperature state, where all microstates x are
equiprobable, to a zero-temperature state where the system settles to one of
the (possibly degenerate) ground states. This is usually done with a Markov
Chain Monte Carlo, a randomized algorithm that is able to sample the Gibbs
distribution of a system at a given temperature T starting from any given initial
state.

A common run of simulated annealing goes as follows. At the beginning of
the algorithm, a state x is generated uniformly at random. By definition, this
state is typical of a T' = oo thermal state. Then the system is thermalized to a
high enough temperature T, so that the Gibbs probability Pr_ can be reason-
ably taken to be a good approximation to the uniform probability distribution
over X. At successive steps, the temperature is lowered by a finite amount AT
and the system is allowed to thermalize at the new temperature. By repeatedly
lowering the temperature, T' = 0 is reached eventually.

Special care must be taken when the system enters a glassy phase at low
temperature, as is often the case for combinatorial optimization problems. The
issue in this case is that, due to the emergence of a rough free energy landscape at
low temperatures, if in the simulation the temperature is changed too abruptly
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(AT is too large) or if these changes are too close together in time (so the system
is not allowed to thermalize at the new, lower temperature), then the system
will go out of equilibrium, it will get stuck in a metastable state and will not
reach the ground state at the end of the algorithm.
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