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We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe
diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring)
polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show
that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution
display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes
with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of
linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that
nanoprobe motion in rings’ solutions shows both Gaussian and ergodic behaviors, in all regimes
considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter
show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain
architecture in the motion of nanoprobes dispersed in polymer solutions. Published by AIP Publishing.
https://doi.org/10.1063/1.5022446

I. INTRODUCTION

The micro-mechanical and viscoelastic properties of com-
plex polymer fluids and, more in general, of soft and biological
materials can be efficiently explored owing to the advent of
microrheology,1–8 a versatile technique based on the direct
tracking of the diffusive motion of nanoprobes injected into
the medium. Through the analysis of the motion of the probes,
one can measure the mechanical response of the material
and get quantitative information about its elastic and viscous
properties typically on larger time and length scales and at
higher resolution than by traditional rheology. At the same
time, given amounts of nanoprobes embedded in polymer
matrices may be employed to alter significantly their mechan-
ical properties and thus contribute to the design of novel
materials.9,10

The study of nanoprobe motion in semi-dilute and con-
centrated solutions (melts) of polymer chains constitutes an
important and yet largely unexplored chapter in the long his-
tory of microrheology.9,11–18 These systems appear in fact
particularly challenging due to the complex interplay between
different length scales such as nanoprobe size, mesh size of
the polymer solution, and chain contour length.

More recently, it has been suggested15,17,18 that another
factor, namely, chain architecture, may play a quite sub-
tle role when it comes to describe the detailed motion of
nanoprobes. In particular, by considering the two examples of
entangled solutions of linear chains vs. unknotted and uncon-
catenated circular (ring) chains, Nahali and Rosa15 and Ge
et al.17 have shown that nanoprobes of linear sizes larger
than the mesh size of the solution move definitely faster
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in solutions of rings than in solutions of linear chains. In
the same paper, Ge et al. described a theory where the
observed discrepancy is understood in terms of the different
spatial and temporal behaviors of linear chains vs. rings in
solution.

Under the same environmental conditions, linear chains
and rings in solution do behave in fact quite differently: in
particular, because the unconcatenation constraint rings fold
into self-similar, compact conformations with non-Gaussian
statistics and because the lack of free ends do not perform
reptation,19–46 both features being instead well established
trademarks of linear chains in solution.47–49 Moreover, the
presence of threadings between close-by ring polymers in high
density solutions has been held responsible for chain dynam-
ics becoming glassy and heterogenous,44,46 a feature, once
again, completely absent in linear chains. All these features
are likely to influence the motion of nanoprobes embedded in
the solution.

Motivated by these considerations, in this paper, we
(re)consider the problem of nanoprobe motion in entangled
solutions of linear vs. ring polymers. By employing large
scale Molecular Dynamics (MD) computer simulations, we
provide a quantitative, in-depth description of nanoprobe
dynamics in terms of chain architecture and topological con-
straints between close-by chains. Mainly, the present work
extends the numerical analysis pioneered by Refs. 15 and
17 along two directions: (1) we consider wider ranges for
probe sizes and solution densities and (2) we provide a sys-
tematic characterization of nanoprobe dynamics in terms of
the (van-Hove) probability distribution function of spatial dis-
placements and other observables borrowed from the theory of
glassy systems50 which allow us to define the conditions under
which nanoprobe dynamics shifts from Gaussian/ergodic to
non-Gaussian/non-ergodic behavior.
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The paper is structured as follows: In Sec. II, we give a
concise account of the state-of-the-art concerning single-chain
conformations and nanoprobe diffusion in entangled solutions
of linear chains and rings. In Sec. III, we explain the com-
putational model and the numerical methods employed in the
article. In Sec. IV, we describe in detail our results and inter-
pret some of them in the light of the theoretical framework of
Sec. II. Finally, in Sec. V, we summarize the main conclusions
with an outlook for future work.

II. THEORY

In this section, we describe (Sec. II A) the relevant physics
of polymer conformations in entangled solutions and we high-
light, in particular, the main differences between linear chains
and rings. This is followed (Secs. II B and II C) by a concise
account of the scaling theory by Ge et al.12,14,17 linking chain
statistics to nanoprobe diffusion.

A. Polymer conformations in entangled solutions:
Linear vs. ring chains

The physics of polymer conformations in entangled solu-
tions can be described in terms of a set of few relevant length
scales:47–49 (1) The microscopic correlation length, ξ, defined
as the average spatial distance from a monomer on one chain
to the nearest monomer on another chain. (2) The Kuhn
length of the polymer fiber, `K , characterizing the crossover
from rigid rod to random coil behavior. (3) The entangle-
ment length, Le, corresponding to the chain contour length
spanning the tube-like region where topological constraints
from surrounding polymers confine each given chain. The
length scale dT ≈

√
Le`K corresponds to the tube diameter

(see Sec. III D), which is a measure for the mesh size of the
solution.

On chain contour lengths L . Le, topological constraints
play no role and linear and ring chains display the same behav-
ior, the mean-square end-to-end distances characterized by the
familiar crossover from rigid rod to random coil behavior at
`K

〈R2(L)〉lin, ring ≈




L2, L . `K

`K L, `K . L . Le

. (1)

On larger contour lengths L & Le, linear chains remain ideal
because of the screening of excluded volume effects,47–49

while the additional unlinking constraint forces rings into
space-filling compact conformations.26,27,31,32 Summarizing

〈R2(L)〉lin ≈ `K Le

(
L
Le

)1

, (2)

〈R2(L)〉ring ≈ `K Le

(
L
Le

)2/3

. (3)

B. Nanoprobe motion: Solutions of linear polymers

The erratic motion of a single nanoprobe can be cap-
tured51 by its mean-square displacement (MSD), ∆r2(T; τ),
as a function of the lag-time τ and the measurement time T

∆r2(T; τ) ≡
1

T − τ

∫ T−τ

0
(~r(t + τ) −~r(t))2dt, (4)

where ~r(t) is the nanoprobe spatial position at time t. The
time-average displacement can be defined as

∆r2(τ) ≡ lim
T→∞
∆r2(T; τ), (5)

while its ensemble average is defined as

〈∆r2(T; τ)〉 ≡
1

Nnp

Nnp∑
i=1

∆r2
i (T; τ) (6)

with the sum indicating that the average is performed over
the whole set of Nnp independent nanoprobes used to explore
the system. Accordingly, we indicate the time- and ensemble-
average displacement as 〈∆r2(τ)〉.

According to nanoprobe diameter d, three regimes can be
distinguished:

(I) Small nanoprobes, d . ξ. In this case, nanoprobe
motion is barely influenced by the surrounding polymers and
its MSD is described by

〈∆r2(τ)〉lin ≈ Ds τ ≈
κBT
ηs d

τ, (7)

where Ds is the diffusion coefficient, ηs is the viscosity
of the solvent, κB is the Boltzmann constant, and T is the
temperature.

(II) Intermediate nanoprobes, ξ . d . dT . Now, nano-
probe motion is affected by the polymers and its MSD displays
three regimes

〈∆r2(τ)〉lin ≈




Ds τ, τ < τξ ≈
ηsξ

3

κBT , (a)

Dsτξ

(
τ
τξ

)1/2
, τξ < τ < τd ≈ τξ

(
d
ξ

)4
, (b)

Ds

(
ξ
d

)2
τ, τ > τd . (c)

(8)

At short times [Eq. (8a)], nanoprobe motion is driven only
by random collisions with the solvent, as in I. This regime
stops at τξ , the relaxation time of a polymer strand of spatial
size ξ. Then [Eq. (8b)], the nanoprobe experiences a time-

dependent viscosity η(τ) ≈ ηs nstr(τ) ≡ ηs

(
τ
τξ

)1/2
, where

nstr(τ) is the number of strands which have relaxed at time
τ. This regime stops at time τd , the relaxation time of a larger
polymer strand of spatial size = d = ξ

√
nstr(τd). Above τd

[Eq. (8c)], nanoprobe motion becomes diffusive again with
effective viscosity ≈ηs·nstr(τd), which is ≈ (d/ξ)2 times larger
than the value in pure solvent.

(III) Large nanoprobes, d & dT . The regime described
by Eq. (8a) still holds, while the regime of Eq. (8b) stops

at τd=dT = τξ
(

dT
ξ

)4
. Above τdT , nanoprobes are trapped by

entanglements and the MSD becomes plateau-like: 〈∆r2(τ)〉lin
= 〈∆r2(τdT )〉lin ≈ Ds

(
ξ
dT

)2
τdT ≈

ξ
d d2

T . Interestingly, this last
expression depends on all three relevant time scales of the prob-
lem. Neglecting hopping14 between close-by entanglements,
the trapping regime persists up to complete chain reptation48

at τ ≈ τrep ≈ τe

(
Lc
Le

)3
, where τe (the entanglement time,

see Sec. III D) corresponds to the relaxation time scale of
polymer strands of contour length = Le. With bulk viscosity
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ηbulk ≈
κBT
d2

T ξ
τrep, at larger times nanoprobe motion becomes

diffusive again

〈∆r2(τ)〉lin ≈
κBT
ηbulk d

τ ≈
ξ

d
d2

T

(
Lc

Le

)−3
τ

τe
. (9)

C. Nanoprobe motion: Solutions of ring polymers

On length scales smaller than the tube diameter
dT ≈ (`K Le)1/2, ring and linear polymers behave similarly [see
Eq. (1)], so dynamics of nanoprobes of small and intermediate
sizes d . dT is described by the same expressions derived for
nanoprobes immersed in linear chains, Eqs. (7) and (8).

Conversely, for nanoprobes with diameters &dT , dynam-
ics at time scales & τdT reflects the different spatial organiza-
tion of rings compared to linear polymers (Sec. II A). In this
case, the time-dependent friction of the solution49 η = η(τ)
≈ τG(τ). G(τ) ≈ κBT

b2Le

(
τ
τe

)−α
is the power-law stress relax-

ation modulus expected for rings in entangled solutions and b
is the monomer linear size,25 and it corresponds to the simul-
taneous rearrangement of polymer strands of contour length
L(τ) ≈ Le

(
τ
τe

)α
. The time MSD of the nanoprobe is thus given

by

〈∆r2(τ)〉ring ≈
κBT
η(τ)d

τ ≈
b2Le

d

(
τ

τe

)α
. (10)

The regime breaks down at τ′d ≈ τe

(
d

dT

)3/α
, namely, at the

relaxation time of a polymer strand of spatial extension ≈d
in the compact regime [Eq. (3)]. Above τ′d , the nanoprobe is
diffusive with MSD

〈∆r2(τ)〉ring ≈
κBT
η(τ′d)d

τ ≈
b2Le

d

(
d
dT

)3(1−1/α)
τ

τe
. (11)

With α ≈ 0.4,25 Eqs. (9) and (11) for diffusional motions in
solutions of linear vs. ring polymers suggest that, already at
moderate ratios Lc/Le > 1, nanoprobes diffuse much faster in
the latter case than in the former.

III. MODEL AND METHODS
A. The model

Polymer model—To model solutions of dilute nanoprobes
and linear and ring polymers at various monomer densities, we
employ the same numerical framework considered in our pre-
vious studies15,46 consisting of a variant of the known Kremer
and Grest52 polymer model.

Excluded volume interactions between beads (including
consecutive ones along the contour of the chains) are modelled
by the shifted and truncated Lennard-Jones (LJ) potential

ULJ(r) =



4ε
[(
σ
r

)12
−

(
σ
r

)6
+ 1

4

]
r ≤ rc

0 r > rc

, (12)

where r denotes the separation between the bead centers. The
cutoff distance rc = 21/6σ is chosen so that only the repulsive
part of the Lennard-Jones is used. The energy scale is set by
ε = κBT and the length scale is set by σ, both of which are set
to unity in our simulations. Consistent with that, in this work
all quantities are reported in reduced LJ units.

Nearest-neighbour monomers along the contour of the
chains are connected by the finitely extensible nonlinear elastic
(FENE) potential, given by

UFENE(r) =



−0.5kR2
0 ln

(
1 − (r/R0)2

)
r ≤ R0

∞ r > R0

, (13)

where k = 30ε /σ2 is the spring constant and R0 = 1.5σ is the
maximum extension of the elastic FENE bond.

In order to maximize mutual chain interpenetration at
relatively moderate chain length23 and hence reduce the com-
putational effort, we have introduced an additional bending
energy penalty between consecutive triplets of neighbouring
beads along the chains in order to control polymer stiffness

Ubend(θ) = kθ
(
1 − cos θ

)
. (14)

Here, θ is the angle formed between adjacent bonds and
kθ = 5κBT is the bending constant. With this choice, the
polymer is equivalent to a worm-like chain with Kuhn length
`K = 10σ.53

Nanoprobe model—Nanoprobe-monomer and nanoprobe-
nanoprobe interactions are described by the model potentials
introduced by Everaers and Ejtehadi.54

The total interaction energy between probes at center-to-
center distance r can be represented as the sum of two functions

Ucc(r) =



UA
cc(r) + UR

cc(r) r ≤ rcc

0 r > rcc

. (15)

UA
cc(r) is the attractive component and it is given by

UA
cc(r) = −

Acc

6

[
2a2

r2 − 4a2
+

2a2

r2
+ ln

(
r2 − 4a2

r2

)]
. (16)

The repulsive component of the interaction, UR
pp(r), is

UR
cc(r) =

Acc

37800
σ6

r

[
r2 − 14ar + 54a2

(r − 2a)7

+
r2 + 14ar + 54a2

(r + 2a)7
− 2

r2 − 30a2

r7

]
, (17)

where54 Acc = 39.478 kBT. We have considered non-sticky,
athermal probe particles with diameters d/σ ≡ 2a/σ = 2.5,
5.0, 7.5 which correspond to truncating the interaction Ucc(r)
to rcc/σ = 3.08, 5.60, 8.08. The smallest probe is comparable to
or larger than the smallest polymer correlation length ξ . 2.3σ
(Table I), meaning that all probes are on or above length scales
where polymer effects become dominant (Sec. II).

Finally, the interaction potential, Umc, between a single
monomer and a nanoprobe with center-to-center distance r is
given by

Umc(r) =



2a3σ3Amc
9(a2−r2)3

[
1− (5a6+45a4r2+63a2r4+15r6)σ6

15(a−r)6(a+r)6

]
r ≤ rmc

0 r ≥ rmc

,

(18)

where54 Amc = 75.358 kBT. According to our choices of probe
diameters, the interaction Umc(r) is truncated to rmc/σ = 2.11,
3.36, 4.61.
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TABLE I. Summary of the physical properties of polymer solutions and diffusing nanoprobes as functions of solution density expressed in monomer (ρ) or
Kuhn segment (ρK ) units: (a) Le, entanglement length. (b) dT , tube diameter. (c) τe, entanglement time. (d) d, nanoprobe diameter. (e) ξ , correlation length.
(f) D, terminal diffusion coefficient of dispersed nanoprobes obtained by averaging the results of linear fits to single-nanoprobe displacements for lag-times
τ > 100τe. Error bars correspond to standard deviations.

Linear polymers Ring polymers

ρσ3 ρK`
3
K Le/σ [Eq. (19)] dT /σ [Eq. (20)] τe/τMD d/σ ξ /σ D [σ2/τMD] ξ /σ D [σ2/τMD]

2.5 (4.73± 2.33)× 10�1 (4.91± 2.36)× 10�1

0.1 10 40.0 8.2 ≈1600 5.0 2.1 (1.28± 0.72)× 10�1 2.3 (1.23± 0.63)× 10�1

7.5 (3.18± 1.59)× 10�2 (3.37± 1.37)× 10�2

2.5 (1.51± 0.84)× 10�1 (1.60± 0.75)× 10�1

0.2 20 16.2 5.2 ≈570 5.0 1.6 (2.46± 1.28)× 10�2 1.7 (3.22± 1.60)× 10�2

7.5 (2.82± 1.32)× 10�3 (7.91± 3.83)× 10�3

2.5 (6.24± 3.13)× 10�2 (6.62± 3.28)× 10�2

0.3 30 11.0 4.3 ≈490 5.0 1.4 (6.24± 3.04)× 10�3 1.4 (1.25± 0.56)× 10�2

7.5 (7.67± 6.17)× 10�5 (2.66± 1.12)× 10�3

2.5 (2.57± 1.21)× 10�2 (2.93± 1.58)× 10�2

0.4 40 8.8 3.8 ≈540 5.0 1.3 (1.94± 1.03)× 10�3 1.3 (4.92± 2.49)× 10�3

7.5 (1.75± 1.55)× 10�6 (7.13± 3.64)× 10�4

B. Simulation details

As in our former work,15 we consider polymer solutions
consisting of M = 80 circular or linear chains made of Nm = 500
monomers each. The total number of monomers is then fixed
to 40 000 monomer units. Each polymer solution includes
also Nnp = 100 nanoprobes of diameters d/σ = 2.5, 5.0, 7.5.
These values were suitably chosen to cover the range from
below to above the tube diameters of the polymer solutions
(see Sec. III D). The volumes of the simulation box accessible
to chain monomers have been chosen in order to explore
monomer densities ρσ3 = 0.1, 0.2, 0.3, 0.4, corresponding,
respectively, to Kuhn segment densities ρK`

3
K = 10, 20, 30, 40.

The static and kinetic properties of chains and nanoprobes
are studied using fixed-volume and constant-temperature
Molecular Dynamics (MD) simulations with implicit sol-
vent and periodic boundary conditions. MD simulations are
performed using the LAMMPS package.55 The equations
of motion are integrated using a velocity Verlet algorithm,
in which all beads are weakly coupled to a Langevin heat
bath with a local damping constant Γ = 0.5τ−1

MD, where
τMD = σ(m/ε)1/2 is the Lennard-Jones time and m = 1 is the
conventional mass unit for monomer and colloidal probes. The
integration time step is set to ∆t = 0.012τMD.

The length of each MD run is equal to 2.4 × 107τMD,
during which (see the supplementary material of Ref. 15) each
polymer moves on average of a spatial distance larger than its
own average size or gyration radius Rg.

C. Choice of initial configurations and check
for equilibration

At any given ρ, we started from the equilibrated poly-
mer solutions made of M × Nm = 80 × 500 monomers and
Nnp = 100 dilute nanoprobes of diameter d/σ = 5.0 described
in our previous publication.15 With no modifications, those
configurations have been used as the starting configurations for
MD runs with the same probe diameter. For simulations with

probe diameter of d/σ = 2.5, we have simply replaced the for-
mer probes by the corresponding smaller ones and proceeded
to compress the simulation box slightly, in order to work at
the same monomer densities. Sticking into the same logic, for
simulations with larger probe diameter d/σ = 7.5, we have pro-
ceeded to inflate simultaneously the probes and the simulation
box. We have accomplished this task by performing short (of
the order of a few tens of τMD’s) MD runs with a soft (i.e.,
non-diverging), capped repulsive interaction between chain
monomers and probes. At the end of these preparatory runs, we
have checked the perturbation of chains’ conformations after
the deflation/inflation steps by measuring53 the mean-square
internal distances, 〈R2(L)〉, between pairs of monomers at con-
tour length separation L, see Fig. 1. The perfect agreement
between different curves at each density demonstrates that the
probes have perturbed in no sensible manner the overall chains’
conformations.

D. Estimating entanglement length (Le), tube diameter
(dT ), and entanglement time (τe)

As briefly mentioned in Sec. II A, topological constraints
confine the motion of any given linear chain to a tube-like
region of diameter dT . The contour length of sub-chains span-
ning a region of linear size = dT and the associated diffusion
time define, respectively, the entanglement length, Le, and the
entanglement time, τe.

As in our previous studies,15,32,56 all these quantities can
be estimated by employing the results by Uchida et al.57 The
entanglement length, Le, is given by the following function
of the polymer Kuhn length, `K , and the density of Kuhn
segments, ρK :

Le

`K
=

1

(0.06(ρK`
3
K ))2/5

+
1

(0.06(ρK`
3
K ))2

. (19)

Accordingly, the tube diameter is defined48,58 as the average
gyration radius of a linear chain of contour length Le
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FIG. 1. Mean-square internal dis-
tances, 〈R2(L)〉, between pair of
monomers at contour length separation
L: results for linear chains (solid lines)
and ring polymers (dashed lines).
Averages have been calculated on the
first parts of the corresponding MD
trajectories, immediately after the
introduction of the nanoprobes.

dT =

√
`K Le

6
. (20)

Finally, the entanglement time (τe) was estimated from the
monomer mean-square displacement, 〈g1(τ)〉, at lag-time τ
by using48,58 〈g1(τe)〉 = 2d2

T . As for nanoprobe displacement
〈δr2(τ)〉 (Sec. II B), 〈g1(τ)〉 is both time- and ensemble-
averaged

〈g1(τ)〉 ≡
1

M × Nm

M×Nm∑
i=1

lim
T→∞

1
T − τ

×

∫ T−τ

0
(~ri(t + τ) −~ri(t))

2dt (21)

with ~ri(t) being the spatial coordinate of monomer i at time t.
Le, dT , and τe have been calculated for our solutions of

linear chains at different Kuhn densities ρK and summarized
in Table I. For the sake of comparison, the same values have
been applied to ring polymers.

IV. RESULTS
A. Nanoprobe diffusion in entangled polymer
solutions: Average properties

In order to study the influence of chain architecture on
the diffusion of nanoprobes dispersed in polymer solutions,
we consider their time- and ensemble-averaged displacement
〈∆r2(τ)〉 at lag-time τ (see Sec. II B for definition). We
employ the notation 〈∆r2(τ)〉lin (respectively, 〈∆r2(τ)〉ring) for
solutions of linear (respectively, ring) polymers.

Results are shown in Fig. 2, with the horizontal and ver-
tical axes scaled down by units of entanglement times τe

and tube diameters dT (Table I), respectively. Insets show
the corresponding ratios of MSDs for unconcatenated rings’
solutions vs. linear chains’ solutions. Figure 3 shows results
for the corresponding time local exponents, α(τ), defined

as α(τ) ≡ d log〈∆r2(τ)〉
d logτ , which provides a direct visualiza-

tion of those regimes where diffusion markedly deviates from
standard Brownian motion (i.e., α = 1).

By comparing the results for different densities ρ (or,
tube diameters dT ) and probe diameters d, we may clearly
distinguish two regimes: (1) for d < dT , entanglements
have no effect on probe diffusion which looks almost
identical for solutions of linear and ring polymers. More-
over, at short times 〈∆r2(τ)〉∼ τα with α approaching 1/2
suggesting coupling of nanoprobe motion to the Rouse modes
of the chains; (2) conversely, for d > dT , nanoprobe diffusion
is markedly slower in solutions of linear chains compared to
rings. This is particularly evident in the “ρσ3 = 0.4”-panel in
Fig. 2 and nanoprobe diameter d = 7.5σ. Here, nanoprobes in
rings’ solutions shift from anomalous to normal diffusion at
about τe, while the same probes in solutions of linear chains
show a longer subdiffusive behavior with a smaller scaling
exponent (see the corresponding panel in Fig. 3). Then, nor-
mal terminal diffusion is characterized by a ≈ 400× smaller
diffusion coefficient, D (Table I).

In general, these results are in qualitative agreement with
the theory by Ge et al. summarized in Secs. II B and II C.
More quantitatively, it is instructive to compare the ratio of
terminal diffusion coefficient for linear chains and rings pre-
dicted by Eqs. (9) and (11), respectively. We consider again
the case of ρσ3 = 0.4 and nanoprobe diameter d = 7.5σ.
By using data reported in Table I with polymer diameter
b/σ ≈ 1, we get limτ→∞〈∆r2(τ)〉ring/〈∆r2(τ)〉lin ≈ 4 × 103.
This is ≈10× our numerical estimate. Several factors may be
advocated, which may explain this discrepancy. First, Eqs. (9)
and (11) are not exact but systematically neglect unknown
prefactors. Second (and equally important), as it was pointed
out by Ge et al.14 “hopping” between close-by entanglements
may enhance nanoprobe diffusion in solutions of linear chains,
which, in turn, may lead to better agreement with numerical
simulations.
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FIG. 2. Mean-square displacements as
functions of lag-time τ for nanoprobes
of diameters d/σ = 2.5, 5.0, 7.5:
results for entangled solutions of linear
polymers (〈∆r2(τ)〉lin, solid lines)
and unconcatenated ring polymers
(〈∆r2(τ)〉ring, dashed lines). Insets:
corresponding ratios 〈∆r2(τ)〉ring/

〈∆r2(τ)〉lin. Probes of diameter d
larger than the tube diameter dT of the
corresponding polymer solution diffuse
markedly faster in rings’ systems. Color
code and symbols are as in Fig. 1.

On the other hand, there is more to nanoprobe motion that
cannot be captured by just its mean-square displacement: in
Sec. IV B, we will discuss the statistical properties of distribu-
tion functions for several selected observables which provide
a far more vivid description of nanoprobe behavior.

B. Nanoprobe diffusion in entangled polymer
solutions: Distribution functions

In order to characterize nanoprobe dynamics beyond
the MSD, we introduce the probability distribution functions

P(τ; ∆x) ≡ 〈(∆x � (x(t + τ) � x(t)))〉 of one-dimensional
displacements ∆x for a given lag-time τ. P(τ; ∆x) corresponds
to the self-part of the so-called van-Hove function,59 and it
measures the probability that a probe reaches the spatial posi-
tion x(t + τ) from x(t) after time τ. Thus, while 〈∆r2(τ)〉
= 3〈∆x2(τ)〉 is just proportional to the second moment of
P(τ; ∆x), the detailed knowledge of P(τ; ∆x) gives deeper
insight for the whole diffusion process.

To fix the ideas, we have considered the three represen-
tative lag-times τ/τe = 10�1, 100, 103. Results are illustrated

FIG. 3. Time-dependent differential
exponents of nanoprobe mean square

displacements, α(τ)≡ d log〈∆r2(τ)〉
d log τ .

Color code and symbols are as in Fig. 1.
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FIG. 4. Probability distribution functions of one-dimensional nanoprobe displacements, P(τ; ∆x), for lag-time τ. Representative curves for given polymer
solution density ρ, nanoprobe diameter d, and lag-time τ. The black solid line in each panel corresponds to the Gaussian distribution. Color code is as in Fig. 1.

in Fig. 4 where, in order to ease visualization between differ-
ent lag-times, horizontal axes have been scaled to the square
root of the corresponding second moment,

√
〈∆x2(τ)〉 and the

curves compared to the universal Gaussian curve P(τ;∆x)

= P(∆x) =
√

1
2π〈∆x2〉

exp(− ∆x2

2〈∆x2〉
) (black solid lines).

Interpretation of results appears thus straightforward: with
the notable exception of nanoprobes of diameter = 7.5σ, distri-
butions are always or almost Gaussian. Tiny deviations from
Gaussian behavior can be seen at the shortest lag-time and
should be ascribed to the coupling of nanoprobes with the
Rouse modes of the chains. Unperturbed Gaussian behavior is
also observed for large nanoprobes in rings’ solutions at any
density.

Intriguingly, the case of large (d = 7.5σ, bottom row)
nanoprobes in solutions of linear chains appears far from triv-
ial. For low-density solutions, nanoprobes remain Gaussian.
Conversely, for the highest densities ρσ3 = 0.3, 0.4, we observe
(1) a more pronounced peak around ∆x = 0 and (2) the appear-
ance of “fat”, exponential tails which become increasingly
evident at large lag-times.

The rationale behind the highest peak is the follow-
ing: nanoprobe dynamics is hindered by the presence of
entanglements arising from surrounding polymers which
act as “cages”. In order to quantify this further, we con-
sider6 the distribution function P(τ; θ) ≡ 〈θ − cos−1(

(~r(t+τ)−~r(t))·(~r(t+2τ)−~r(t+τ))
|~r(t+τ)−~r(t)| |~r(t+2τ)−~r(t+τ)|

)
〉 of angles θ between spatial

FIG. 5. Probability distribution function, P(τ; θ), of angles θ between spatial orientations of pairs of nanoprobe displacements separated by lag-time τ.
Representative curves for given polymer solution density ρ, nanoprobe diameter d and lag-time τ (as in Fig. 4). The black solid line in each panel corresponds
to the “random” distribution P(θ) = sin(θ)/2. Color code is as in Fig. 1.
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orientations of pairs of nanoprobe displacements separated by
lag-time τ. For random displacements, we expect that P(τ; θ)
= sin(θ)/2. Caged particles, instead, are expected to be skewed
toward θ > π/2. These predictions get confirmed by the plots
shown in Fig. 5 representing distribution functions P(τ; θ)
corresponding to the same lag-times as in Fig. 4. Particularly
pronounced is the difference between distributions observed
in solutions of linear chains vs. rings with large nanoprobes
(bottom row), a vivid signature of the different role of entan-
glements in the two systems. Deviations from the “random”
distribution are also observable in rings’ solutions; however,
they appear overall “less persistent” in time than for solutions
of linear chains.

The presence of exponential tails in the van-Hove function
has been reported long ago50 in connection to single-particle
dynamics in glassy and jammed systems. Recently, we have
shown46 that this property characterizes also the dynamics of
unconcatenated rings in high-density solutions, while linear
chains remain Gaussian. Simultaneously, in that work we have
demonstrated that topological constraints between close-by
rings tend to cluster the polymers into distinct sub-populations
with definite diffusivities, thus triggering non-ergodic hetero-
geneous dynamics.

To verify if anything similar applies to nanoprobe dynam-
ics as well and in order to better understand their devi-
ations from Gaussian behavior, we consider46 the ratio

FIG. 6. Spatial heterogeneity of
displacements ∆r2(T;τ)/〈∆r2(τ)〉 of
nanoprobes of diameter d = 7.5σ as a
function of measurement time T and
lag-time τ/τe = 10. At high densi-
ties, nanoprobe dynamics becomes
heterogeneous alternating slow to fast
trajectories. Color code and symbols
are as in Fig. 1.
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FIG. 7. Ergodicity-breaking (EB) para-
meter [Eq. (22)] as a function of mea-
surement time T and lag-time τ/τe = 10.
EB(T ) ∼ T −1 marks standard diffusive
processes, whereas EB(T ) ∼ T 0 is a
signature of ergodicity breaking. Color
code and symbols are as in Fig. 1.

∆r2(T; τ)/〈∆r2(τ)〉 as a function of measurement time T and
fixed lag-time τ. Figure 6 shows representative curves for
the largest nanoprobes (d = 7.5σ) in solutions of linear and
ring polymers. Thus, while Gaussian behavior implies that
the curves converge to the corresponding average value, non-
Gaussian nanoprobes in high-density solutions of linear chains
(see Fig. 4) alternate between slow to fast trajectories and
are thus characterized by heterogeneous dynamics. Then, to
quantify relaxation to equilibrium and ergodicity breaking
(EB), we introduce the so-called ergodicity-breaking (EB)
parameter46,60

EB(T ) =
〈(∆r2(T; τ))2〉

〈∆r2(T; τ)〉2
− 1, (22)

which captures how fast the single-nanoprobe trajectories
∆r2(T; τ) narrow around the mean 〈∆r2(τ)〉 for some specific
lag-time τ. For standard diffusive solutions, EB(T ) decays as60

T −1, whereas in nonergodic systems61 EB(T ) ∼ T 0. Indeed,
Fig. 7 shows that topological constraints in systems of lin-
ear chains trigger ergodicity breaking of diffusive nanoprobes
when the size of those exceeds the tube diameter of the solu-
tion. Inversely, we highlight that solutions of ring polymers do
not induce anything similar and, thus, probe dynamics remains
ergodic.

V. CONCLUSIONS AND OUTLOOK

In this work, we have employed large-scale computer sim-
ulations to investigate the physics of nanoprobe motion in
polymer solutions of linear chains vs. unconcatenated ring
polymers which represent the most simple, yet not trivial,
examples of complex polymer systems where entanglements
between close-by chains operate on polymer conformations
in “distinct” manners: linear chains follow Gaussian statistics
and strongly overlap with each other,48 while ring polymers
tend to crumple as space-filling objects.31,32

By tuning physical parameters like nanoprobe diam-
eter and solution density, we have focused, in partic-
ular, on nanoprobe diffusion at the transition from the
non-entangled to the entangled regime corresponding to
nanoprobes smaller/larger than the tube diameter of the solu-
tion. We have thus confirmed and extended (Sec. IV A)
recent15,17 numerical results demonstrating that nanoprobes
in rings’ solutions diffuse faster than in the corresponding
solutions of linear chains whenever nanoprobe size exceeds
the tube diameter of the embedding solution, in agreement
with the theoretical picture proposed recently by Ge et al.
(Secs. II B and II C). Then, we have shown (Sec. IV B) that the
corresponding distribution functions for spatial displacements
markedly deviate from Gaussian statistics only in solutions
of linear chains with nanoprobe motion turning to be non-
ergodic. Conversely, nanoprobe motion in solutions of rings
remains both Gaussian and ergodic.

In a recent publication,46 we have demonstrated that “non-
Gaussian/non-ergodic” dynamics is a characteristic trademark
of self-diffusing rings in sufficiently dense solutions while lin-
ear chains follow conventional dynamics: this strikes as the
opposite of the trend reported here for dispersed nanoprobes
in the same media. At the same time, a consistent amount
of theoretical and experimental studies (see, for instance, the
recent studies10,62) have demonstrated that doping polymer
solutions through the insertion of nanoprobes may enhance to
a significant extent the mechanical property of the solution.
As a follow-up of this work, it would be then interesting to
quantify to which extent the presence of nanoprobes is able to
alter the dynamical properties of the chains, especially rings
in high-density solutions which appear to be characterized by
heterogeneous dynamics. Second, future investigations should
not be bound only to homogeneous solutions: notoriously,
even a minimal amount of linear contaminants in solutions of
ring polymers is able to enhance their mechanical response in
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comparison to pure samples.25 It would then be especially
interesting to address nanoprobe diffusion in such mixed
linear/ring polymer solutions.
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