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Abstract

Andrej Obuljen

Large-Scale Structure with 21cm Intensity Mapping

We are witnessing exciting times in the field of cosmology. Current and future ex-
periments and surveys will provide us with tight constraints on the key cosmological
parameters. A new and promising technique of mapping the Large-Scale Structure
(LSS) in our Universe is the 21cm Intensity Mapping (IM) in which one uses the
emission of the neutral hydrogen as a tracer of the underlying matter field. In prin-
ciple this technique can be used to map huge portions of our Universe and deliver
3D structure measurements providing us with the information that is complementary
to the information extracted from the Cosmic Microwave Background (CMB) exper-
iments. However, the field of 21cm IM cosmology is still in its raising and is severely
limited by the foreground issues and problems.

In this thesis we will consider several aspects of using the 21cm IM as an LSS
probe in order to better constrain the cosmological parameters.

First, we present and analyse a Baryon Acoustic Oscillation (BAO) reconstruction
method that consists of displacing pixels instead of galaxies and whose implementa-
tion is easier than the standard reconstruction method. We show that this method is
equivalent to the standard reconstruction technique in the limit where the number of
pixels becomes very large. This method is particularly useful in surveys where indi-
vidual galaxies are not resolved, as in 21cm IM observations. We validate this method
by reconstructing mock pixelated maps, that we build from the distribution of matter
and halos in real- and redshift-space, from a large set of numerical simulations. We
find that this method is able to decrease the uncertainty in the BAO peak position
by 30-50% over the typical angular resolution scales of 21 cm IM experiments.

Second, we investigate the possibility of performing cosmological studies in the
redshift range 2.5 < z < 5 through suitable extensions of existing and upcoming
radio-telescopes like CHIME, HIRAX and FAST. We use the Fisher matrix tech-
nique to forecast the bounds that those instruments can place on the growth rate,
the BAO distance scale parameters, the sum of the neutrino masses and the number
of relativistic degrees of freedom at decoupling, Neff . We point out that quantities
that depend on the amplitude of the 21cm power spectrum, like fσ8, are completely
degenerate with ΩHI and bHI. Then, we propose several strategies to independently
constrain them through cross-correlations with other probes. We study in detail the
dependence of our results on the instrument, amplitude of the HI bias, the foreground
wedge coverage, the nonlinear scale used in the analysis, uncertainties in the theo-
retical modeling and the priors on bHI and ΩHI. We conclude that 21cm IM surveys
operating in this redshift range can provide extremely competitive constraints on key
cosmological parameters.

Thridly, we have used TNG100, a large state-of-the-art magneto-hydrodynamic
simulation of a 75h−1 Mpc box size, which is part of the IllustrisTNG Project, to
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study the neutral hydrogen density profiles in dark matter halos. We find that while
the density profiles of HI exhibit a large halo-to-halo scatter, the mean profiles are
universal across mass and redshift.

Finally, we combine information from the clustering of HI galaxies in the 100%
data release of the Arecibo Legacy Fast ALFA survey (ALFALFA), and from the
HI content of optically-selected galaxy groups found in the Sloan Digital Sky Survey
(SDSS) to constrain the relation between halo massMh and its average total HI mass
content MHI. We model the abundance and clustering of neutral hydrogen through
a halo-model-based approach, parametrizing the MHI(Mh) relation as a power law
with an exponential mass cutoff. To break the degeneracy between the amplitude
and low-mass cutoff of the MHI(Mh) relation, we also include a recent measurement
of the cosmic HI abundance from the 100% ALFALFA sample. We find that all
datasets are consistent with a power-law index α = 0.44±0.08 and a cutoff halo mass
log10Mmin/(h−1M�) = 11.27+0.24

−0.30. We compare these results with predictions from
state-of-the-art magneto-hydrodynamical simulations, and find both to be in good
qualitative agreement, although the data favours a significantly larger cutoff mass that
is consistent with the higher cosmic HI abundance found in simulations. Both data
and simulations seem to predict a similar value for the HI bias (bHI = 0.875± 0.022)
and shot-noise power (PSN = 92+20

−18 [h−1Mpc]3) at redshift z = 0.
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Chapter 1

Introduction

The main goal of cosmology is to describe the content, geometry, dynamics and
evolution of our Universe. In the last decades the field of cosmology has gone through
a tremendous progress. We now have a well established theoretical model (ΛCDM
model) with only 6 parameters which provides us with a very detailed picture of how
the Universe evolved since its beginning. This model is tested at different scales,
energies and epochs by observations at the percent (and in many cases at the sub-
percent) level.

The era of precision cosmology started with the measurement of the anisotropies
in the temperature of the Cosmic Microwave Background (CMB) in the beginning of
the 1990’s done with the COBE satellite [1]. Since then, the CMB anisotropies have
been measured with more precision by other experiments, e.g. Boomerang, WMAP,
Planck etc, which have provided us with a wealth of information [2, 3, 4, 5, 6]. We
are still in the regime where the most of the constraining power on the ΛCDM model
comes from CMB.

In parallel, we now also have very precise measurements of the Large Scale Struc-
ture (LSS) in the late Universe. This was achieved by increasingly deeper and more
precise galaxy surveys studying the spatial distribution of galaxies, weak lensing or
the properties of the Lyα forest, e.g. [7, 8]. The way galaxies are distributed is tightly
related to the initial fluctuations seen in the CMB and thus we expect the same model
can describe both observations. All of these datasets are consistent with the ΛCDM
model and in synergy provide us with even tighter constraints on the cosmological
parameters.

The main difference between the LSS and CMB is the number of scales one can
measure. While the CMB is coming from a thin shell known as the last scattering sur-
face, LSS is three-dimensional. We thus expect LSS to have more constraining power
than CMB. However, only recently LSS has become comparable to the constraints
from CMB. This is due to the different physical regimes that these two approaches
probe. However, with galaxy surveys we are still very far from using all the available
volume. In fact, we are only using a small fraction of it. This is mainly due to the
fact that distant galaxies become fainter and harder to detect.

A promising new tracer to use in order to map the rest of the Universe is the
neutral hydrogen (HI). HI can be seen in absorption of the CMB photons up to
very early cosmic times but also in emission in the post-reionization epoch. It could
in principle allow us to map out most of the volume of the observable Universe and
extract the information we are still largely missing. In the post-reionization Universe,
HI can be mapped with radio telescopes with a technique called intensity mapping
(IM). In this thesis we will discuss and give contribution to this field and in particular
in its use as a LSS probe of the Universe in the post-reionization epoch.
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Standard Cosmological ΛCDM Model
In the standard cosmological model, our Universe is assumed to be isotropic and
homogeneous on very large scales (>100 Mpc). This assumption is what is called the
cosmological principle (CP) and it is crucial in order to solve the Einstein equations
and make predictions. In this paradigm, the Universes’ background evolution is
governed by its content. The main constituents are assumed to be the following:

• Baryonic Matter – representing the regular atomic matter visible by EM radia-
tion, e.g. stars, planets, gas etc. Current measurements show that this compo-
nents constitutes around 5% of the total energy density of the Universe.

• Cold Dark Matter (CDM) – currently unknown form of matter making up
roughly 25% of the total energy density of the Universe and 5 times more
abundant than baryonic matter. It is called dark because it does not emit
or absorb EM spectrum in the way that "normal" baryonic matter does. Its
existence is inferred by the gravitational effect it has on the dynamics of the
Universe as a whole, the kinematics of objects and the light propagation inside
our Universe.

• Dark Energy (DE, Λ) – component making up roughly 70% of the total energy
density at present time discovered in the late 1990’s [9, 10]. Current measure-
ments point towards it behaving like the energy density of vacuum and being
constant with time, in contrast to standard matter whose energy density decays
with the expansion.

• Relativistic species – this includes radiation made in the early Universe whose
energy density was dominant early on, but has decayed below the energy density
of all other components very quickly.

• Neutrinos – almost massless non-relativistic particles at present time, while
relativistic early on (at the time of recombination).

Aside from that, the ΛCDM model also assumes that the spatial curvature of our
Universe is very small.

1.1 Homogeneous Universe

1.1.1 Friedmann equations

Assuming CP and General Relativity (GR), the most general spacetime metric one
can write in terms of the comoving coordinates also known as the Friedmann-Robertson-
Walker (FRW) metric1:

ds2 = −c2dt2 + a(t)2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (1.1)

where the function a(t) is known as the scale factor and it describes the expan-
sion/contraction. It also describes the distances between objects at fixed comoving
coordinates as a function of time. This function is usually normalised to its value at
the present time a(t0) = 1.

The dynamics of the expansion is described by the following Friedmann equations:
1Throughout the thesis we will assume a spatially flat Universe, an assumption that is consistent

with current observations [11] and predicted by inflation.
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H2 ≡
(
ȧ

a

)2
= 8πG

3 ρ,
ä

a
= −4πG

3 (ρ+ 3p), (1.2)

where ρ is the total energy density, p is the pressure of the fluid and the dots denote
the derivatives with respect to cosmic time t. These equations are obtained by solving
the Einstein equations assuming a flat Universe2. The quantityH is called the Hubble
parameter.

By combining equations 1.2 we can obtain the continuity equation:

ρ̇+ 3H(ρ+ p) = 0. (1.3)

This equation holds for any present fluid separately. Assuming a simple form of
the equation of state p = wρ, where w is a constant parameter, one can integrate the
previous equation to obtain the evolution of the energy density of a given component:

ρ ∝ a−3(1+w). (1.4)

Furthermore, it is also straightforward to find a solution for the scale factor as a
function of time:

a(t) ∝

t
2

3(1+w) , w 6= 1
eHt, w = 1

(1.5)

Usually, we consider three types of fluids: non-relativistic matter, e.g. ordinary
and dark matter, with wm = 0, relativistic matter, e.g. radiation, with wr = 1/3 and
dark energy with wΛ = −1. We can thus see that the corresponding energy densities
and the scale factor scale as ρm ∝ a3 and a(t) ∝ t2/3, ρr ∝ a4 and a(t) ∝ t1/2, while
ρΛ is constant and the Universe expands exponentially.

The present time critical energy density required for the flat space geometry is
defined as ρcrit = 3H2

0
8πG . It is now useful to also define the dimensionless cosmological

parameters3 as ratios of different components to the critical density Ωi(t) = ρi(t)/ρcrit
and write the first Friedmann equation as:

H2(t)
H2

0
= Ωma

−3 + Ωra
−4 + ΩΛ. (1.6)

1.1.2 Redshift

The redshift of an emitting source is defined as the fractional difference of the observed
and the emitted wavelength with respect to the emitted wavelength:

z = λo
λe
− 1. (1.7)

In the homogeneous and isotropic Universe this shift is caused by the expansion
of the Universe and is a measurable quantity. This is why it is useful to relate it to
the scale factor a(t):

a(to)
a(te)

= 1
a(t) = 1 + z. (1.8)

2For a complete derivation of Friedmann equations from GR we refer the reader to classic text-
books, e.g. [12].

3These form a subset of the full ΛCDM model parameters.
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We see that when we observe objects at high redshift, we are observing the Uni-
verse at early times (a(t) � 1), while the objects in the present Universe have low
redshifts. We can now write the equation 1.6 in terms of redshift:

H2(z)
H2

0
= Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ. (1.9)

1.1.3 Distances in cosmology

One of the most important endeavours in astronomy and cosmology is to measure
both accurately and precisely the distances. In the expanding Universe distance
measurements need to be taken with special care since distances change with time
(for a pedagogical and complete review see [13]). Given the cosmological parameters
we can use the geodesic equation and compute what is the proper distance travelled
by a photon moving along the radial direction towards an observer centred at the
origin of coordinate system (dθ = dφ = 0):

ds = a(t)dr = cdt. (1.10)

The proper distance is then

r(z) =
∫ to

te

cdt

a(t) =
∫ z

0

cdz

H(z) = DH

∫ z

0

dz

E(z) , (1.11)

where DH ≡ c/H0 is the Hubble distance and we have used H(z) = H0E(z) with:

E(z) ≡
√

ΩM(1 + z)3 + Ωr(1 + z)4 + ΩΛ. (1.12)

We can see that the proper distances are determined by the content of the Universe
and thus one can use the measured distances to constrain the cosmological parameters.
However, the proper distance is not a measurable quantity. Therefore we need a way
to relate the proper distance to quantities we measure – redshifts, fluxes and angles.

• Luminosity distance One way is to consider the case in which we measure
the redshifts and fluxes of objects, e.g. galaxies or supernovae (SN). Given an
intrinsic luminosity of the source (L), the measured flux (f) depends on the
distance to an object by:

f = L

4πd2
L
, (1.13)

where dL is called the luminosity distance. Due to the expansion of the Universe,
the observed wavelength of the photon is stretched and its energy is reduced
by a factor of Eo = Ee(1 + z). Additionally, the rate of arrival of photons is
reduced by a factor of δto = δte(1 +z). The net result is that the measured flux
is smaller by a factor of (1 + z)2

f = L

4π(1 + z)2r(z)2 . (1.14)

The luminosity distance can then be be related to the proper distance:

dL = (1 + z)r(z). (1.15)

Luminosity distance is actually something we can measure. For objects that
have known luminosity, also known as standard candles, we can measure the
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flux and infer dL. One example of such objects are SN Ia. In fact, measurements
of the distances to nearby SN Ia have been used to constrain the cosmological
parameters which has led to the discovery of the accelerated expansion [9, 10].

• Angular diameter distance Another way to measure distances is purely ge-
ometrical. If one knows the physical size l that subtends an angle θ in the
sky then in the static and Euclidian Universe this angle is related to the
distance by dA ≡ l/θ. In the expanding Universe, the physical size is re-
lated to the comoving distance by the scale factor at the time of the emission
l = a(te)r(z)θ = r(z)θ/(1 + z). Thus the angular comoving distance is defined
as dA ≡ r(z)/(1 + z). Cases where we know the intrinsic physical size are called
standard rulers and we can use them to measure dA. An example of a standard
ruler is the physical scale ≈ 150 Mpc of the baryon acoustic oscillations (BAO)
peak in the two-point correlation function of, e.g. galaxies (see section 1.2.7)
that has been used extensively to constrain the distance-redshift relation at a
range of distances/redshifts not easily accessible by other means of measuring
distances.

1.2 Inhomogeneous Universe
In the previous section we have shown how a perfectly homogeneous Universe ex-
pands, how its components evolve on average and how one goes about constraining
the cosmological parameters by measuring the distances. However, the Universe is
obviously not homogeneous on all scales and all times. We have large inhomogeneities
in our Local Universe (galaxy clusters, groups of galaxies, galaxies, voids) which are
even more pronounced on small scales (different galactic components, globular clus-
ters, interstellar medium, stars, planets etc.). We now also have measurements that
give us a glimpse at how the Universe looked at very early stages and from CMB
we see a completely different picture than the one today. The Universe back then
was much more homogeneous with average relative inhomegeneities of ≈ 10−5. In
contrast, in the local Universe this number is many orders of magnitude larger. As
an example, the typical relative inhomogenity value necessary to form a DM halo
is ≈ 200. In order to understand how has all of this structure formed and evolved
with time, we need to consider inhomogeneities in the primordial density field. While
the details of these primordial inhomogeneities is still unclear and some inflationary
models do predict primordial non-gaussianities, it appears that the initial conditions
(IC) could not have been far from those of the Gaussian random field. In fact all
of the current observations are consistent with completely Gaussian primordial field
[14] and in this thesis we will assume Gaussian IC. These IC will eventually evolve
into the non-linear structure we observe in the local Universe and become less and
less Gaussian.

1.2.1 Linear Perturbation Theory

We are now interested in describing the evolution of the matter field ρ(~x) using the
linear perturbation theory (PT). We will do this in terms of the overdensity field
defined as:

δ(~x, t) = ρ(~x, t)
ρ̄(t) − 1, (1.16)

where ρ̄ is the average matter field density over all the space. We can see that the
overdensity field has to satisfy −1 ≤ δ(~x, t) < ∞. At large enough scales and at
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early enough times, δ is a small quantity so it is justified to use it as the expansion
parameter in PT.

To describe the evolution of ρ(~x) we will describe the main results under a few as-
sumptions. First one is that all dark matter is cold. Second is that we are considering
scales smaller than the Hubble horizon (λ� H−1) where the GR effects become more
important and that the peculiar velocities of particles are non-relativistic (vp � c) –
also known as the Newtonian approximation. Furthermore, we will first consider the
matter dominated era where ΩM = 1, while later on we will generalise the solution
for the full ΛCDM.

The linearised equations for a perfect fluid can be written in terms of δ(~x) as:

δ̇ + 1
a
∇ · v = 0, (1.17)

v̇ +Hv + ∇P
ρa

+ 1
a
∇Φ = 0, (1.18)

∇2Φ = 4πGa2ρδ, (1.19)

where Φ is the gravitational potential, P is the pressure and the spatial derivatives
are taken with respect to the comoving coordinates x. Equations 1.17, 1.18 and 1.19
are derived from the continuity, Euler’s and Poisson equations, respectively, when
working up to first-order in δ.

These three equations can be combined into one second-order equation of δ:

∂2δ

∂t2
+ 2H∂δ

∂t
− 4πGρδ = ∇

2P

ρa2 . (1.20)

Under the assumption of pressureless fluid and neglecting entropy perturbations,
this equation is reduced to:

∂2δ

∂t2
+ 2H∂δ

∂t
− 4πGρδ = 0. (1.21)

The second term in 1.21 acts as a friction term and is slowing down the growth of
perturbations due to the Hubble expansion, while the last term is the gravitational
source term. We can solve this equation by requesting δ(~x, t) = D(a)δin(~x), where
D(a) is known as the linear growth factor and δin(~x) is the initial overdensity field.
The solution for a given initial field in the matter dominated era is given by two
independent growth factor functions:

D+(t) ∝ a(t),
D−(t) ∝ a(t)−3/2.

(1.22)

We call D+ and D− the growing and decaying mode, respectively. The final solution
is given by the linear combination of the two modes:

δ(~x, t) = A(~x)D+(t) +B(~x)D−(t). (1.23)

Relaxing the constraint of ΩM = 1 and considering the full ΛCDM, the linear
growth factor is given by:

D+(z) = 5
2ΩmH(z)

∫ ∞
z

dz
1 + z

H(z)3 . (1.24)
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We conclude this section by pointing out that in linear theory the growth of
initial perturbations is self-similar. The overdense regions (δ > 0) will grow, and the
underdense (δ < 0) will become more underdense. At some point δ will become a
quantity larger than 1 where the linear PT breaks down.

1.2.2 Correlation function

In order to describe and model the observed clustering of matter, galaxies or gas, it
is useful to look at the correlation function of the overdensity field of these tracers.
Assuming that the overdensity is a Gaussian random field with mean value of zero,
all the information is contained in the 2-point (auto)correlation function. However,
the non-linear structure formation causes a part of this information to move into
higher n-point correlation functions, though the majority of the information is still
in 2-point correlation function4. The correlation function ξ(r) can be defined as an
excess probability of finding a pair of galaxies at a given separation r12:

dP = n2δV1δV2[1 + ξ(r12)], (1.25)

where n is the average number density, δVi are the volume elements at separation
r12. Because of the assumed homogeneity and isotropy, the correlation function is
invariant to translations and rotations, and thus must only depend on the relative
distance. The correlation function can also be defined as 〈δ(x1)δ(x2)〉 ≡ ξ(r12).

1.2.3 Power spectrum

The overdensity field δ(~x) can be also transformed into the Fourier space. The quan-
tities in Fourier space have the same information as the ones in the configuration
space (space of ~x), though sometimes it is easier to work in rather that the other. We
will use the following notation to move in and out of Fourier space in the example of
δ(~x) and δ(~k):

δ(~x) =
∫

d3k

(2π)3 δ(~k)e−i~k·~x, δ(~k) =
∫
d3xδ(~x)ei~k·~x. (1.26)

where the wavenumber (or mode) k is related to the wavelength λ of the fluctuation
by k = 2π/λ.

The power spectrum P (k) of the overdensity field is defined as:〈
δ(~k1)δ∗(~k2)

〉
≡ (2π)3δD(~k1 + ~k2)P (k1), (1.27)

and can be identified as the Fourier transform of the correlation function:

ξ(r) =
∫

d3k

(2π)3P (k)e−i~k·~x. (1.28)

One advantage of working at the level of the power spectrum is that it is the
quantity predicted by theories of inflation and structure formation. Another one
is that at the level of the linear density field, modes evolve independently and the
covariance matrix is purely diagonal. As the density filed becomes more non-linear
with time, modes become coupled (see [15] and references therein).

4For brevity, from now on we will call the 2-point correlation function just the correlation function
as in this thesis we do not deal with the higher correlation functions.
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1.2.4 Linear matter power spectrum

As we saw in section 1.2.1, we can use the linear theory to predict the evolution of
an overdensity field. However, those results hold only for the matter field. We know
that the Universe has went through three main epochs. At early stages the radiation
was the dominant component, followed by the matter domination and finally the DE
era we are living in now. In order to compute the matter power spectrum in any of
these stages, one has to account for all the various components present (radiation field,
baryons, DM, DE) and evolve the full fluid equations. These different components are
interacting and thus affect the evolution of growth of structures. For example, at early
epochs the baryons are tightly coupled with the radiation field which is preventing
the growth of baryon structures. On the other hand, DM perturbations grow in this
regime. After recombination the perturbations in DM are different that the ones of
baryons. Baryons infall into the gravitational wells of DM and form galaxies. On the
other hand, the perturbations due to sound waves in the photon-baryon fluid remains
imprinted in the distribution of baryons which in turn affects the distribution of DM
also.

We also need to know the primordial spectrum of perturbations. Even before
the inflationary paradigm emerged as a way to explain the initial conditions, it was
proposed that the power spectrum of initial perturbations in the gravitational poten-
tial needs to have a scale-invariant power spectrum k3PΦ ∝ const. To describe any
deviation from the scale-invariance it is conventional to write the primordial power
spectrum as PΦ ∝ kns−1/k3 where ns is the spectral index with a value close to unity.
A case of ns = 1 is known as the Harrison-Zeld́ovich power spectrum. Inflationary
paradigms also predict a scale-free spectrum with a small deviation from ns = 1.

Since we are interested in the matter power spectrum, a way to relate the potential
perturbations power spectrum – PΦ ∝

〈
|Φ(k)|2

〉
to the matter power spectrum –

Pm ∝
〈
|δ(k)|2

〉
, is by using the Poisson equation which relates the gravitational

potential and the matter overdensity field δ(k) ∝ k2Φ(k). Finally, we see that the
predicted initial matter power spectrum has the following scale dependence:

Pm(k, z) ∝ kns (1.29)

Spectral index ns is also one of the main cosmological parameters in the ΛCDM.
Current measurement of this parameter from the Planck CMB experiment is ns =
0.968 ± 0.006 [6], shows a small deviation from unity, as predicted by inflationary
paradigm.

Another important effect to be taken into account is the effect of the size of the
Hubble horizon on the growth of different modes. The Hubble horizon (∝ H−1)
grows with time. At early times, all relevant scales are outside the horizon and do
not grow. Once the mode enters the horizon, it starts growing depending on the
era in which this happens. Since the growth is different in eras in which radiation
or matter dominates, modes entering at different times will have different histories.
This information is encoded in the transfer function T (k, z).

We write the linear matter power spectrum as a function of scale and time as:

Pm(k, z) ∝ D2(z)T 2(k, z)kns (1.30)

In order to obtain the prediction of the power spectrum by including all different
components, one needs to solve the full Boltzmann equations numerically. There are
two publicly available numerical codes that are mostly used: CAMB [16] which is the
one used in this thesis and CLASS [17].
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Figure 1.1: The linear matter power spectrum (at z = 0) obtained
from different probes along with the best-fit model (solid black line).
This plot is taken from [18] where all the details about datasets used

can be found.

The shape of the power spectrum is very sensitive to the cosmological parameters
and different cosmological probes allow us to measure it at different scales. Further-
more, we can also measure the temporal evolution of the shape at different redshifts
with galaxy surveys and lensing studies. By combining these different probes we have
been able to measure the cosmological parameters to a level of high precision we have
today. To illustrate this, in figure 1.1 we show the reconstructed linear matter power
spectrum at z = 0 obtained using different cosmological probes [18]. We can see how
different experiments probe different scales and the results agree remarkably well
across over a huge range of scales with the linear theory prediction for the standard
ΛCDM model.

1.2.5 Galaxy power spectrum

While in the previous sections we focused on the power spectrum of the total matter
field (baryons + dark matter), in reality this is not something we can directly ob-
serve. What we do observe are tracers of the underlying matter field which can be:
galaxies, gas in emission or absorption lines in distant quasar spectra etc. The task of
inferring the clustering properties of the total matter field from the observed tracers
is complicated due to the unknown relation between the clustering properties of the
two fields. A simple approximation is that galaxies follow the distribution of total
matter up to factor called the linear galaxy bias bg:

Pg(k, z) = b2g(z)Pm(k, z). (1.31)

This assumption holds true only at large scales and it becomes much more com-
plicated when going to smaller scales [19].
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1.2.6 Redshift space distortions

So far we have assumed that we can observe objects at their comoving coordinates
~x, also known as the real space coordinates. However, what we measure is actually
the redshift from which we infer the positions. Furthermore, objects have peculiar
velocities, i.e. they are not moving relative to us only due to the Hubble expansion
(aka Hubble flow). If an object has a peculiar velocity and is moving towards us,
we will measure a lower redshift and naively conclude that the object is closer to us.
The reverse holds for objects moving away from us. On large scales we expect the
peculiar velocities to be uncorrelated and the main contribution are the coherent flows
of matter. These coherent flows will increase the clustering on large scales as they
tend to move galaxies towards the overdense regions. On the contrary, going to small
scales, for example the surroundings of a massive DM halo, the peculiar velocities
become more random and large. This randomness will erase any correlation at those
scales. Thus we expect on large scales to have more power, while at small scales to
have less power with respect to the real space. These effects of peculiar velocities
on the clustering are called redshift space distortions (RSD) we have to account for
them in our model of the observed overdensity field. We will first start showing the
effect on large scales and then move to modelling on smaller scales.

We start by differentiating the proper distance ~r(t) = a(t)~x(t) with respect to
time:

~v(t) = d~r(t)
dt

= H(t)~r(t) + ~u(t), (1.32)

where we have defined the peculiar velocities field ~u(t) = a(t)d~xdt . We see that in
the radial direction which we denote with ẑ throughout the thesis (though not to be
confused with the redshift): vz = Hrz + uz = H(rz + uz/H). Thus we can define
a new comoving coordinate system that includes the effect of the peculiar velocities:
~s = ~r + uẑ ẑ/H. We will call this new system the redshift space and use subscripts s
for quantities dealing with redshift space, while the one with only ~r is called the real
space with subscript r.

By using the linearised continuity equation 1.17, moving to Fourier space and
under the assumption that the velocity field is irrotational, we can express the peculiar
velocity field:

vk = −iaH
k
fδk, (1.33)

where f is the growth rate defined

f ≡ d ln δ
d ln a. (1.34)

Another requirement is that the number of objects in real and redshift space
must be conserved. Using this, the redshift space overdensity field can be expressed
in terms of the real space overdensity field:

δs(~k) = (1 + βµ2)δr(~k), (1.35)

where µ = k‖/k is the cosine of the angle between ~k and the line-of-sight, while we
define β ≡ f/b with b being the linear bias of a tracer considered.

The linear prediction for the matter power spectrum in redshift space is then [20,
21]:

Ps(k, µ, z) = (1 + β(z)µ2)2Pr(k, z). (1.36)
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One way to parametrize the growth rate is to use an approximation f(z) = ΩM(z)γ
[22], where γ is the growth index. In the case of GR+ΛCDM Universe the growth
index is equal to 0.545 [23] and we will use this approximation throughout this thesis.
From equation 1.36 we can see that the amplitude of the power spectrum has an
angular dependance but that it also depends on the growth rate. Thus by measuring
the angular dependence of the power spectrum we can constrain the growth rate but
also test the validity of GR [24].

Moving to small scales the physics of the RSD becomes more complicated since
there the non-linear effects are larger. What is generally expected is the suppression
of the power spectrum in the radial direction due to the random peculiar velocities
inside collapsed objects, i.e. clusters and halos. Due to these large velocities, objects
in redshift space appear stretched along the line-of-sight, an effect called the fingers-
of-god (FoG). This effect is difficult to model and one of the models used in the
literature is the Gaussian streaming model [21]:

F (k, µ,Σs) = e−(kµΣs)2 (1.37)

where Σs is the streaming scale describing the dispersion of random peculiar velocities
along the line-of-sight direction that washes out the information on small scales. In
principle this scale is also redshift dependant, though in chapter 3 we will fix it to a
certain value.

The total effect of RSD on the power spectrum is then given by:

Ps(k, µ, z) = (1 + β(z)µ2)2F (k, µ,Σs)Pr(k, z). (1.38)

In contrast to real space, the redshift space power spectrum introduces anisotropy.
This anisotropy can then be used to measure the growth rate. In chapter 4 we will
see how well the futuristic 21cm IM surveys (discussed in chapter 2) can constrain
the growth rate at 2.5 ≤ z ≤ 5.

One can then decompose the 2D power spectrum into Legendre polynomials L`(µ):

P (k, µ, z) = Σ∞`=0P`(k, z)L`(µ) (1.39)

P`(k, z) = 2`+ 1
2

∫ 1

−1
P (k, µ, z)L`(µ)dµ (1.40)

and also get the multipoles of the 2D correlation function:

ξ`(r) = i`
∫
k3d log k

2π2 P`(k)j`(kr), (1.41)

where j` is the spherical Bessel function of the l-th order. Without the FoG effect,
the only non-zero multipoles in linear theory are the monopole (` = 0), quadrupole
(` = 2) and hexadecapole (` = 4). All other even multipoles are zero, along with all
odd multipoles. Adding the FoG term, higher multipoles also become non-zero, while
the odd ones still remain zero.

1.2.7 Baryon Acoustic Oscillations

We now turn our attention to the behaviour of the photon-baryon fluid prior to re-
combination. In this epoch, the photons are coupled to free electrons by the Compton
scattering and together act as a single fluid. The sound speed in such a fluid is given
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by:

cs =
√

1
3(1 +R) , (1.42)

where R = 3ρb/(4ργ). We see that this reduces to the standard cs =
√

1/3 when
baryons are absent. With baryons present and contributing with their mass to the
fluid, the sound speed becomes lower.

Now let us assume an initial overdensity in some region of this fluid. The in-
creased energy density of photons in this region will exert radiation pressure on the
surrounding medium causing an spherical acoustic wave to propagate. This wave will
travel with a speed cs until the decoupling of the photons. The distance which such
a wave can travel in time from the Big-Bang to the decoupling is given by the sound
horizon:

rs(tdec) =
∫ tdec

0

cs(t)
a(t) dt. (1.43)

From this simple consideration we expect that, by the time recombination ends,
there will be an overdensity of baryons at a scale of rs which for a standard cosmology
is ≈ 150 Mpc. This will imprint a peak in the correlation function at the scales of
the sound horizon at recombination known as the baryon acoustic oscillations (BAO)
peak. In Fourier space at a given cosmic time this single acoustic wave will produce
harmonic oscillations. Thus in the power spectrum we expect to observe oscillatory
behaviour at wavenumbers corresponding to rs.

Let us consider the total matter field. Perturbations in DM were growing even
before recombination and after recombination happens, baryons will interact with
DM gravitationally and will infall into the potential wells. This will cause baryons to
infall into the overdensities of DM, but also the DM to be affected by the distribution
of baryons. Eventually, galaxies will start forming around centres of dark matter
halos. Statistically there will be a scale at which the number of galaxies will be more
correlated. Thus we expect the BAO peak to be imprinted in both the matter field
and the galaxies.

While this simplified explanation of the origin of the BAO considered a single
initial overdensity, in reality there will be a continuous field of over- and underdensities
and the acoustic waves in the fluid will be a superposition of many different waves.
The end effect remains unchanged – statistically there will be an increased probability
of finding galaxies at a separation of ≈ 150 Mpc.

One of the advantages of BAOs is its robustness against systematic effects, that
can impact more strongly other cosmological observables such as those making use of
the shape of the galaxy clustering pattern. BAOs produce a peak in the correlation
function at r ∼ 100 h−1Mpc while in the power spectrum it produces a set of wiggles
at k & 0.01 hMpc−1.

This feature has been first seen in the power spectrum of the temperature fluctu-
ations in the CMB. It appears as a series of peaks in the CMB temperature angular
power spectrum. The first peak corresponds to the angle of the sound horizon at
the time of recombination and was first detected at the end of the 20th century with
instruments TOCO [2], Boomerang [3] and Maxima [4]. Other peaks have been de-
tected in the following years with other more advanced satellite instruments, e.g.
WMAP, and the Planck satellite has measured 18 acoustic peaks in the temperature
and polarization angular power spectra [18].

We thus expect this feature, imprinted at very early times, to be present in the
matter density field even today. In order to detect it one needs to find a tracer (e.g.
galaxies, Lyα forest or the 21cm emission) of the matter density field and compute
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its correlation function in a given redshift bin. The position of the BAO peak in the
correlation function corresponds to the sound horizon which is well constrained with
the CMB measurements. The BAO peak can be measured in the transverse direction
or along the line of sight. By knowing the subtended angle of this known scale
one can determine the comoving angular diameter distance DA(z) up to the given
redshift. On the other hand using the l.o.s. separation one can measure the Hubble
parameter as a function of redshift H(z). By doing this at several redshift bins, one
can measure distances as a function of redshift even at redshifts where other ways of
measuring distances fail. However, seeing this feature in the LSS data required deeper
galaxy surveys that probe larger volumes since the scale of the BAO peak is very
large. Eventually, in 2005 using the data gathered by 2dF Galaxy Redshift Survey
(2dFGRS) and the Sloan Digital Sky Survey (SDSS), the BAO has also been detected
in the galaxy correlation function [25, 26]. Consequently, the BAO position has
been measured more precisely and at different redshifts with better galaxy surveys.
Nowadays, BAOs are routinely used for quantitative cosmological investigations (e.g.
[27, 7, 28, 29]).

1.2.8 Non-linear effects on the BAO

Since the BAO scale is large, we would expect linear theory to be sufficient enough
for the description of the evolution of the BAO even at late times, i.e. low redshifts.
Unfortunately, non-linear gravitational evolution produces a damping, broadening
[30, 31, 32] and also induces a shift [33, 34, 35] in these features that 1) makes
more difficult the task of measuring the sound horizon and 2) could bias the inferred
cosmological quantities. While the position of the BAO peak is almost unaffected by
the non-linearities, the broadening of the BAO peak increases with time and the effect
is largest at recent times, i.e. low-redshifts. In figure 1.2 we show how the BAO peak
is affected at different times, i.e. redshifts both at the level of the matter correlation
function and the power spectrum. We see that at high redshifts the BAO is peak is
more pronounced and the power spectrum wiggles are close to the linear theory ones.
With decreasing redshift the wiggles in the power spectrum get damped while the
BAO peak gets broader. These non-linear effects on the BAO proved to be modelled
fairly well as an additional exponential damping term of the galaxy power spectrum
in redshift-space in the following way [36]:

P nl
s (k, µ) ∝ P lin

s (k, µ) exp
(
−k

2
⊥Σ2
⊥

2 −
k2
‖Σ

2
‖

2

)
, (1.44)

where Σ⊥ and Σ‖ are the non-linear damping scales in the transverse and the radial
direction, respectively. The damping scales roughly correspond to the rms of the
displacements and depend on the redshift.

The main reason for the BAO damping has been understood to be caused by
the bulk motions on large scales, rather than the random motions of galaxies on
small scales [37]. A technique to overcome, or at least to mitigate this problem, has
been recently developed and it is called BAO reconstruction [38, 15, 37, 39, 40, 41].
The underlying idea is that non-linear gravitational clustering on BAO scales can
be accurately modeled by perturbation theory, and in particular, with Lagrangian
perturbation theory: the Zel’dovich approximation [42, 43] in its simplest version. In
figure 1.3 we show the effect of applying this method on real data. The BAO peak
clearly gets sharper and the wiggles more pronounced.

In chapter 3 we will review and summarise the main points of the standard BAO
reconstruction method. Then we will present a detailed analysis of a mesh-grid BAO



14 Chapter 1. Introduction

Figure 1.2: The effect of non-linearities on the shape of the BAO
peak as a function of redshift (taken from [44]). Left panel shows the
redshift-space matter correlation function obtained at four different
redshifts using numerical simulations. The right panel shows the mat-
ter power spectrum divided by the smooth, no-wiggle power spectrum

to show more clearly the acoustic oscillations.

reconstruction method with pixels. While the discussion in this section was mainly
based on using galaxies as tracers and the information from LSS have mostly came
from galaxy surveys, there are other tracers available. For example, the 21cm emission
(see chapter 3) from the neutral hydrogen is thought to be very promising tracer of
the underlying matter density field.

1.2.9 Massive neutrinos

In the Standard Model of Particle Physics, neutrinos are massless and chargeless par-
ticles interacting through the weak force and there are three flavours of neutrinos –
νe, ντ and νµ. However, observations of neutrinos from the Sun and from our atmo-
sphere have shown that neutrinos can change their flavours through a process called
neutrino oscillations [46, 47]. This result can only be explained if neutrinos have
non-zero mass. These experiments measure only the squared mass difference between
neutrinos and hence the absolute mass difference information is unknown. There
are two possible hierarchy schemes that are both consistent with the observations –
normal (m1 < m2 < m3) and inverted (m1 ' m2 � m3). Neutrino oscillations ex-
periments can only put the lower bounds on the total neutrino mass – Σmν and they
indicate two possible scenarios for the sum of neutrino masses, the normal hierarchy
where

∑
mν ≥ 0.06 eV and the inverted one where

∑
mν ≥ 0.1 eV [48].

Massive neutrinos have several effects on the cosmological observables. While
these effects are in general small, with current and future surveys they are important
for two main reasons. First is that by measuring these effects we can put upper
bounds or potentially measure their total mass. Second is that in the era of precision
cosmology these effects, if unaccounted for, can bias the results of the cosmological
parameters. There are several excellent review papers on the effects of massive neu-
trinos in cosmology [49, 47, 50] and here we only briefly describe the main points and
effects at the linear level of perturbations used in this thesis.

In the cosmological context, neutrinos were generated in the early Universe and
were once kept in thermal equilibrium with the cosmic plasma. Due to their weak
interaction, they decoupled from the plasma early on when the temperature of the
Universe was T ∼ 1MeV and behaved like ultra-relativistic particles. At that stage
neutrinos are contributing to the radiation energy density along with photons and
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Figure 1.3: The effect of BAO reconstruction on the shape of the
measured BAO peak in the SDSS-III Baryon Oscillation Spectroscopic
Survey (BOSS) at the level of the correlation function (left panels)
and the power spectrum (right panels) before (upper panels) and after
(lower panels) applying the reconstruction method (taken from [45]).

their perturbations do not grow. Once their thermal energy drops below their mass
mν , they become non-relativistic. This happens at redshift znr given by [51]:

1 + znr (mν) ' 1890
(
mν

1eV

)
. (1.45)

After that neutrinos act as matter component and contribute to the total matter
energy density with Ων [49]:

Ωm = Ωc + Ωb + Ων , Ων =
∑
mν

93.14h2eV . (1.46)

Even after becoming non-relativistic, neutrinos have large thermal velocities vth
which introduce a free-streaming scale defined as [49]:

λFS (mν , z) = a(z)
( 2π
kFS

)
' 7.7H0(1 + z)

H(z)

(1eV
mν

)
h−1Mpc, (1.47)

where kFS is given by [49]

kFS (znr) ' 0.018 Ω1/2
m

(
mν

1eV

)
hMpc−1. (1.48)

These remnant thermal velocities have a physical effect on the neutrino and con-
sequently on the matter perturbations. Due to free-streaming neutrinos erase density
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Figure 1.4: The effect of massive neutrinos on the matter power
spectrum as a function of scale for different values of Σmν (taken from

[50]).

fluctuations below λFS, while on larger scales they behave as CDM. This has an ef-
fect on the shape and the amplitude of the power spectrum we observe. In figure 1.4
(taken from [50]) we show this effect of massive neutrinos on the total matter power
spectrum as a function of scale for different values of Σmν . This effect is shown as
a fractional difference between power spectra with non-zero and the power spectra
with zero neutrino mass. Also shown are the ranges of scales different cosmologi-
cal probes are sensitive to. Constraining neutrino masses is one of the main goals
of current and future cosmological surveys by combining probes of large scales, like
CMB anisotropies, with data from intermediate/small scales. Currently the best con-
straints are

∑
mν < 0.11 eV [52], but we expect the next generation of galaxy surveys

and CMB probes to significantly improve those bounds. The benchmark to achieve
for the error on neutrino masses is set by the laboratory measurements of neutrino
oscillations.

In chapter 4, section 4.3.1, we will study further the effects of neutrinos in the case
of the expected signal from the neutral hydrogen in the post-reionization Universe
and show how the constraints on their total mass can be improved when adding
information from 21cm IM surveys covering the redshift range of 2.5 < z < 5.
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Chapter 2

21cm Cosmology

Hydrogen atom is the most abundant element in the Universe both by number and
the mass. After it is produced in the first three minutes of Universe, it comes in three
forms: ionized (HII), neutral (HI) and molecular (H2) hydrogen. Early on hydrogen is
completely ionized by the radiation field. After recombination (zrec ≈ 1100) happens
it is mostly in its neutral form. As the gas clouds start to condense and cool, molecular
hydrogen is also formed. This lasts through the dark ages and until the first stars form
(400 . z . 20). During reionization the hydrogen neutral fraction xHI is decreased,
due to the ultraviolet (UV) and X-ray radiation from the new born stars, reaching
almost xHI ≈ 0 when reionization ends. After reionization ends we can assume most
of the neutral hydrogen lives in halos and galaxies, where it remains self-shielded
from the background UV ionizing radiation [53]. In this thesis we will focus on post-
reionization HI as a probe of the LSS.

HI has a characteristic spin-flip transition resulting in the emission/absorption of
a spectral line at λ21 = 21.11 cm or ν21 = 1420.4 MHz. The typical temperatures
of the clouds hosting neutral hydrogen in galaxies is on the order of 10− 100K [54],
larger than the energy difference between the hyperfine levels while lower than the
energy needed for the Lyα transition. This makes the excited level more populated
and hence gives rise to emission of 21cm photons. This hyperfine transition has a very
low probability and in turn makes this line very narrow. Fortunately, there is still
a lot of HI inside galaxies which makes it possible to observe this line in emission.
Owing to the small line width it makes it easier to measure the velocities of the
emitting source. This is what has been used in order to map the HI distribution
and velocities in our, but also in other nearby galaxies, by using the Doppler shift
to infer the radial velocity of the emitting HI. Moving to extragalactic scales, the
21cm line is redshifted due to Hubble expansion λ(z) = (1 + z)λ21. Therefore, by
measuring the position of this line from observations we can infer the redshift of
the emitting source and perform the 21cm tomography. This can then be used to
map out the distribution of HI throughout the Universe by detecting 21cm line at
different frequencies, i.e. different cosmic times. In principle, this allows us to probe
most of the observable Universe: from the dark ages to current day (for a review see
[55]). Figure 2.1 (taken from [56]) shows the amount of observable volume available
through the 21cm tomography compared to CMB and galaxy surveys1. However, we
are currently drastically limited by issues we will discuss below.

The distribution of HI roughly follows the distribution of gas and stars in galaxies,
though it also extends to larger distances from the galactic centre [54]. Numerical
simulations show that almost all the HI in the post-reionization Universe is inside

1Note that this figure is of 2008. Meanwhile galaxy surveys (red) did extend to higher redshifts
(z ≈ 2) and future surveys will go even higher. The main point however still remains, there is a large
portion of the observable Universe we are still not probing and that is in principle available through
the 21cm tomography.
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Figure 2.1: Observable volume with the 21cm surveys in cyan (taken
from [56]). Also shown is a thin slice probed by the CMB (at z ≈
1100) and the galaxy surveys (red). The area of the circles shown is

proportional to the comoving volume.

dark matter halos [57, 53]. At low redshift more than 99% of all HI is inside DM
halos, while at z = 5 this amount drops to 80%. For the rest of this thesis we will
assume that all of the neutral hydrogen is inside galaxies. Under that assumption,
HI follows the distribution of DM and can be used as a probe of the LSS in a similar
fashion as the galaxies.

There are two ways to go about observing the HI. One is to resolve individual
galaxies. Similar to galaxy surveys, one uses the radio telescopes to resolve individual
galaxies. The redshift comes for free, since it depends on which frequency one observes
at. Since the flux is low, one needs long exposure times per galaxy. While plausible in
the nearby Universe, going at larger distances one loses the angular resolution and the
integration times needed to resolve a galaxy increase drastically due to the increased
foregrounds.

Another, more promising technique is the IM [58, 59, 60, 61, 62, 63, 64, 65, 66]
– a technique that consists in performing a low angular resolution survey to map
the 21cm emission from unresolved galaxies or HI clouds. IM for the Lyα emission
line has already been successfully applied for large scale clustering studies at high
redshift using BOSS data [67]. The advantages of this technique over traditional
methods, such as galaxy redshift surveys, are many. Firstly, IM can survey efficiently
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very large cosmological volumes. Secondly, IM is spectroscopic in nature and thus
offers high radial resolution. Thirdly, it can efficiently probe the spatial distribution
of neutral hydrogen from the local Universe to the dark ages. However, its practical
implementation is affected by some major challenges which we will discuss below.
Many IM surveys (CHIME2 [68], HIRAX3[69], Tianlai4, SKA5 [65], FAST6 [70]) are
currently being built and taking data with the goal of measuring the BAO scale
between 0.4 . z . 3 with unprecedented precision. On the other hand, the Ooty
Wide Field Array (OWFA)7[71] is intended to measure the 21cm HI power spectrum
at redshift 3.35 [72, 73, 74, 75].

In this thesis we will focus on using IM as an observing strategy. What one
measures with 21cm IM is the flux sourced by the HI emitting galaxies. This flux
corresponds to a brightness temperature Tb at various redshifts and angles in the sky
and the end result is a series of Tb sky maps. This temperature will depend on the
spatial distribution of HI and the observed redshift, while its amplitude will depend
on the total amount of HI in the Universe. Similar to the galaxy surveys, we can
then use these temperature fluctuations as a probe of the underlying DM field. In
the following section we will describe the model we use to predict and describe the
relation between the matter power spectrum and the power spectrum of 21cm signal.

2.1 The signal power spectrum
The properties of HI, especially in terms of clustering, are still not fully understood.
This is due to a number of reasons: the early stage of IM as an observational probe,
the difficulty of detecting the faint 21cm line for a sufficiently large number of sources
at high redshifts, and the possibly conflicting evidence [76] coming from observations
of low-redshift HI surveys [77, 78], the Lyα forest [79, 80, 81, 82] and the clustering
of damped Lyα systems [83, 84]. Understanding HI is vital both for cosmology and
astrophysics, since it also plays a vital role in understanding the star formation history
[85].

At linear order, the amplitude of the 21cm power spectrum at redshift z is pro-
portional to the product of the HI bias bHI(z) and its cosmic abundance ΩHI(z) =
ρHI(z)/ρc(z = 0), where ρHI(z) is the mean HI density at redshift z and ρc(z = 0) is
the critical density at z = 0. While the value of ΩHI(z) is relatively well constrained
in the redshift range z ∈ [0, 5] by several observations [86, 87, 88, 89, 90, 91, 92, 93,
94, 82], the value of the HI bias is poorly known [95, 78, 96].

As stated above, the main assumption is that the distribution of HI follows the
distribution of DM. In this scenario at the linear level, the signal power spectrum can
be related to the linear matter power spectrum

P21(k, z, µ) = T
2
b(z)

(
bHI(z) + f(z)µ2

)2
Pm(k, z), (2.1)

where the mean brightness temperature as function of redshift is given by (see e.g.
[97]):

T b(z) = 180H0(1 + z)2

H(z) ΩHI(z)hmK. (2.2)

2http://chime.phas.ubc.ca/
3http://www.acru.ukzn.ac.za/~hirax/
4http://tianlai.bao.ac.cn
5https://www.skatelescope.org/
6http://fast.bao.ac.cn/en/
7http://rac.ncra.tifr.res.in

http://chime.phas.ubc.ca/
http://www.acru.ukzn.ac.za/~hirax/
http://tianlai.bao.ac.cn
https://www.skatelescope.org/
http://fast.bao.ac.cn/en/
http://rac.ncra.tifr.res.in
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One important difference with respect to the standard galaxy survey power spec-
trum is the prefactor T 2

b. This makes any amplitude measurement completely degen-
erate with the amount of HI in the Universe. In chapter 4 we will show how we can
overcome this problem by using external measurements of the amount of HI and the
bHI.

2.1.1 HI halo model

In order to proceed, we need a model for the abundance and spatial distribution of HI.
We use the halo-model formalism [98, 99, 100, 101, 102] which offers an alternative
method to predict the abundance and clustering of HI after including two extra
ingredients: a relation between total halo mass Mh and the total HI mass inside the
halo MHI, and a model for the distribution of HI within each halo ρHI(r|Mh).

We start by assuming that, on average, the HI content of halos depends solely on
their mass, and we parametrize the MHI(Mh) relation as [57, 76, 103]:

MHI(Mh) = M0

(
Mh

Mmin

)α
exp

(
−Mmin

Mh

)
. (2.3)

where the two free parameters of the model are α, which describes the scaling of MHI
with halo mass, and the low-mass cutoff Mmin, which represents the threshold mass
needed for a halo to host HI. This mass cut-off is expected, since the gravitational
potential of small halos is not deep enough to trigger the clustering and cooling of
the hot gas heated by the UV background [57]. The overall normalization M0 can
be immediately associated with the cosmic HI fraction. Both quantities are related
through:

ΩHI = 1
ρc

∫ ∞
0

dMh n(Mh)MHI(Mh), (2.4)

where n(Mh) is the halo mass function.
The HI bias is then fully determined by the model and is given by

bHI(z) =
∫∞

0 b(Mh, z)n(Mh, z)MHI(Mh, z)dMh∫∞
0 n(Mh, z)MHI(Mh, z)dMh

, (2.5)

where b(Mh, z) represents the bias of halos of mass Mh at redshift z. For both the
theoretical halo mass function and the halo bias we use the fitting functions calibrated
from N-body simulations presented in [104]. Similar halo models for the HI are also
presented in [105, 103].

The halo model prediction [76, 103, 57] for the HI power spectrum at a fixed
redshift is given by the sum of a 1-halo and a 2-halo term:

P21,1h(k) = F 0
2 (k), P21,2h(k) = P (k)

[
F 1

1 (k)
]2
, (2.6)

Fαβ (k) ≡
∫ ∞

0
n(Mh)bα(Mh)

[
MHI(Mh)

ρ̄HI
uHI(k|Mh)

]β
dMh, (2.7)

where uHI(k|Mh) is the normalized HI density profile in Fourier space.
We can notice that written in this form, bHI = F 1

1 (k = 0). At large scales the
shape of the power spectrum is determined by the 2-halo term, i.e. the linear matter
power spectrum multiplied by the standard b2HI. The normalized HI density profile
is constant at large scales and the 1-halo term thus acts as a constant contribution
to the total power spectrum. This contribution is related to the shot-noise of the
HI power spectrum coming from the discreteness of the HI sources is also predicted
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in the halo model as a limit of the 1-halo term at largest scales, i.e. k → 0, and is
given by PSN = F 0

2 (k = 0). Even though the level of this shot-noise depends on
parameters α,Mmin in equation 2.3, it has been shown that the level of the HI shot-
noise is always sub-dominant compared to the signal power spectrum [76]. This is
fortunate since it makes the HI power spectrum high signal-to-noise measurement in
the post-reionization epoch, in the absence of other noise contributions (instrumental
noise, foreground contamination, etc).

On small scales, the clustering of HI is dominated by its distribution within the
halo (1-halo term), i.e. the HI density profile. This is very hard to determine from
the observations. Instead high-resolution hydrodynamic numerical simulations are
needed and are currently being used for this purpose.

The HI halo model, described here, can be used to predict the 21cm signal and
the shot-noise. The ingredients needed to make prediction are the free parameters
of the MHI(Mh) relation and the HI density profile. In this thesis we will focus
and constrain both of these quantities. In the next section we will show results of
determining the mean HI density profile by using a large state-of-the-art magneto-
hydrodynamic simulations. In chapter 5 we will show the results of measurement of
the free parameters inMHI(Mh) relation – α,Mmin, at z ≈ 0 by using the information
from the clustering of HI galaxies from the ALFALFA survey and the HI content of
optically-selected galaxy groups found in the SDSS catalog. As stated above, this
also allows us to determine the bHI and PSN at z ≈ 0 which we will also show.

2.1.2 HI density profiles from numerical simulations

As we have seen in the previous section, an important ingredient in describing the
spatial distribution of cosmic neutral hydrogen using HI halo models is the HI density
profile inside halos. In this section we show the results from [57] where we investigate
the spatial distribution of HI inside simulated dark matter halos using the state-of-
the-art hydrodynamic simulations TNG100 – part of the IllustrisTNG Project [106,
107, 108, 109, 110]. These simulation follow the evolution of billions of resolution
elements representing CDM, gas, black holes and stars in the largest volumes ever
explored at such mass and spatial resolution. The simulations are ran using the AREPO
code [111] which uses tree-particle-mesh method to calculate the gravitational inter-
action, Godunov method on moving Voronoi mesh for the magneto-hydrodynamics
and and sub-grid models to include a range of astrophysical processes (for the full
characteristics of these simulations see [57]). The comoving size of the cosmological
box evolved in TNG100 is 75h−1 Mpc comoving on the side and the mean mass of
the baryonic resolution element is 1.4 × 106 M�. The dark matter halos have been
identified using the Friends-of-Friends algorithm [112] with a linking length parameter
b = 0.2.

For each halo we have computed the HI mass within narrow spherical shells up to
the virial radius, and from them the HI profile. In figure 2.2 we show individual HI
profiles for halos in a narrow mass bin at different redshifts with grey lines. The blue
lines with errorbars show the mean and the standard deviation of HI profiles from
all halos in a given redshift and mass bin, while the red lines show the median. The
large halo-to-halo scatter is surprising, and highlights that individual HI profiles, as
opposed to dark matter ones, are far from universal.

The scatter is particularly large towards the centers of massive halos which is
expected as the halo HI mass function obtained using these simulations also exhibits
large scatter in that range as found in [57]. Furthermore, the clustering of halos in
that mass range depends significantly on their HI mass. Thus, it is likely that the
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HI content of these halos is influenced by their environment, so small halos around
more massive ones may have lose or gain a significant fraction of their HI mass due
to related effects.

The scatter generally tends to be lower at higher redshifts, and, in particular, is
small in halos with masses above 1010 h−1M� at redshift z = 5. This is related to the
lower scatter found at high redshift in the halo HI mass function in these simulations,
MHI(Mh, z) [57]. We speculate that this originates from a reduced role that AGN
feedback and environmental gas stripping play at earlier times.

As shown in figure 2.2, in some cases the mean and the median profiles differ
substantially. This behavior can be partially attributed to the HI profiles arising
from two distinct populations: i.e. HI-rich blue galaxies versus HI-poor red ones
[108]. This can clearly be seen in the panel in figure 2.2 corresponding to halos in the
mass range M ∈ [1−2]×1012 h−1M� at z = 0. In this range, some halos have a core
in their HI profiles while others do not. The reason is that the central galaxy of some
halos is experiencing AGN feedback (those with holes in the profile) and are therefore
becoming red, while the galaxies in the other halos are not yet being affected by AGN
feedback, remaining blue [108].

We find that the HI density profiles of small halos (M . 1012 h−1M�) increase
towards their halo center. We note, however, that the amplitude of the HI profile
tends to saturate; i.e. the slope of the profiles declines significantly towards the halo
center. For example, at z = 0 and z = 1 and for halos with masses larger than
1011 h−1M�, the mean HI profiles change slope around ∼ 20 h−1kpc. This is expected
since neutral hydrogen at high densities will turn into molecular hydrogen and stars
on short time scales. For higher halo masses (M ' 1013 h−1M�) the HI density
profile exhibits a hole in the center. This is caused by AGN feedback in the central
galaxy of those halos. We note that higher densities in the center of halos can give
rise to the formation of molecular hydrogen, that can produce a similar effect [110].
Holes, which extend even further than in groups, are also found in the HI profiles
of galaxy clusters, which we however do not show here since there are only a few of
them and only at low redshift.

In order to quantitatively investigate what is the effective average HI density
profile across different halo masses and redshift, we use the mean measured HI density
profile and test two models of HI density that both include an exponential cutoff on
small scales.

First we consider a simple power law with an exponential cutoff on small scales
— Model 1:

ρHI(r) = ρ0
rα?

exp(−r0/r), (2.8)

where ρ0 is the overall normalisation, α? is the slope parameter and r0 is the inner
radius at which the density drops and the profile changes its slope.

Second, we consider an altered NFW profile [113, 114], found to be a good fit to
the multiphase gas distribution at high redshifts in hydrodynamical simulations, with
an exponential cutoff on small scales — Model 2:

ρHI(r) = ρ0r
3
s

(r + 3/4rs)(r + rs)2 exp(−r0/r), (2.9)

where ρ0 is the overall normalisation and rs is the scale radius of the HI cloud. In
both cases the overall normalisation — ρ0, is fixed such that the volume integral of
the model density profile integrated up to the virial radius of a given halo matches the
mean total HI mass obtained from the density profile found in simulations (blue lines
in figure 5). We are then left with two free parameters for each model: {α?, r0} and
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Figure 2.2: Density profiles of HI for halos of different masses in
different rows (see labels in the left column) at redshifts z = 0 (left),
z = 1 (middle-left), z = 2 (middle-right) and z = 5 (right). In each
panel we display up to 50 individual profiles (grey lines), the mean
profile and the standard deviation (blue lines) and the median profile
(red lines). Empty panels correspond to situations with either no
halos (top-right) or with halos far below the cutoff mass Mmin. In
contrast to dark matter, HI density profiles are not universal, and
they exhibit, in most of the cases, a very large scatter. The HI-H2
transition saturates the amplitude of the profiles in the core, while
processes such as AGN feedback create HI holes in the core of the
most massive halos. The mean and the median can be quite different,
indicating that the distribution is asymmetric. In some cases, that
asymmetry is due to the presence of two different populations such as

blue and red galaxies.

{rs, r0}. We fit these models to the measured mean HI density profiles limiting our
analysis only to the scales above r ≥ 2h−1kpc. For the uncertainties in the density
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profiles we use the scatter among different galaxies (blue error-bars in figure 5) and
assume that these uncertainties are uncorrelated between different scales.

The best-fit values along with the 68% confidence intervals are presented in table
A.1. In figure 2.3 we show the best-fit results (solid lines) for the Model 1 and in
each panel of this plot we also show the best-fit value of rs, r0 and the value of the
reduced χ2. Based on the resulting best-fit χ2, we find that both Model 1 and 2 are
good fits for all the considered redshifts and halo masses, except for the most massive
halo bin Mh = 1014 [h−1M�] at z = 0. We find that the difference in the best-fit χ2

between the two models to be negligible. This is to be expected since the models are
rather similar and have the same slope on large scales. In the case of Model 1, we
find the HI density profile slope to be consistent with a value of α? = 3 for all the
halo masses and redshifts. The inner radius r0 depends on the halo mass and is larger
for larger halo masses at a fixed redshift, while at a fixed halo mass, it increases with
increasing redshift. For example, for halos with Mh ≤ 1011h1−Mpc and z ≤ 2, r0 is
below the minimum scale considered and the uncertainties are rather large. In the
case of Model 2, we find a similar behaviour. The inferred values of r0 are consistent
between two models, with Model 2 having larger uncertainties which is due to the
degeneracy between parameters r0 and rs.

We note that other observational and simulation studies have found that the
HI surface density profile of galaxies can be reproduced by an exponential profile
[115, 116]. Based on these studies, other spherically averaged density models have
been used in the literature, e.g. an exponential profile [103]. We find that using an
exponential profile for the spherically averaged profile does not reproduce our mean
data very well.

In summary, we find that the HI density profiles inside halos exhibit a large halo-
to-halo variation, while the average HI density profiles are universal. We will use this
result as a motivation for the choice of HI profile in HI halo model in chapter 5 where
we try to model the observed HI clustering.

2.2 The foregrounds
The major challenge in detecting the HI signal is the presence of strong and complex
radio foregrounds [117, 118, 119, 120, 121] which are several orders of magnitude
larger than the signal we are after. This is illustrated in figure 2.4 (taken from [122])
where different simulated foreground components are shown as a function of frequency
along LOS at different galactic latitudes.

At the frequencies of HI emission in the post-reionization epoch there are several
foregrounds that contribute to the measured radio flux. These foregrounds include:
Galactic synchrotron radiation, Galactic and extra-galactic free-free emission and the
emission of the extra-galactic point sources.

Without dwelling into details of these foregrounds, we state that most of the fore-
ground components have a smooth frequency dependence in contrast to the frequency
dependence of the HI emission. Thus, the hope is that one can remove these smooth
foregrounds and extract the non-smooth part coming from the HI. In a way this is a
similar situation to the one of early CMB measurements and the idea of measuring
the CMB polarization. The CMB temperature signal is weaker than the synchrotron
and dust emission at most of the frequencies, while the fluctuations in the polariza-
tion are even weaker and were considered to be hard to observe. However, we must
say that in the case of CMB an advantage is that the underlying signal is accurately
described by the linear theory at all scales. Unfortunately, with 21cm this is only the
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Figure 2.3: Each panel shows the mean and standard deviation of
the HI profiles for halos in the mass range indicated in the upper-right
part. We fit the results using the form ρHI(r) = exp(−r0/r)ρ0r

3
s/[(r+

3/4rs)(r+ rs)2], where ρ0, rs and r0 are free parameters. The best-fit
is shown with a solid line. The dashed region represents the error on
the fit. Each panel shows the best-fit values of r0 and rs and the value

of χ2.

case at large scales. At small scales, the model too becomes uncertain and, to say at
least, hard to compute and predict.

In this thesis we will assume a somewhat ideal situation concerning the fore-
ground contamination. In chapter 3 we will assume no system noise and foreground
contaminations when discussing the BAO reconstruction in the case of the 21cm IM
observations. In chapter 4 we will consider the system noise and assume that all the
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Figure 2.4: Frequency dependence along the LOS of different simu-
lated foreground components at different galactic latitudes (taken from

[122]).

astrophysical foregrounds, extragalactic point-sources and radio frequency interfer-
ence (RFI) have been removed perfectly.
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Chapter 3

BAO reconstruction with pixels

Introduction
In section 1.2.8 we have introduced the BAO reconstruction method. The BAO re-
construction technique can be applied to galaxy surveys, where the goal is to try to
move back galaxies to their initial positions (or equivalently to move information em-
bedded into higher order correlations back to the two-point function [123]). However,
there are some observables, like 21cm IM maps where the output of observations does
not consist of a catalogue with the positions of galaxies on the sky, but pixelated
maps. For this type of observations the standard reconstruction technique can not be
applied, although one possibility would be to use Eulerian reconstruction techniques
(see [123]). Recently, a mesh-based method has been proposed [124] to carry out BAO
reconstruction from 21cm interferometry observations in the presence of foreground
contaminations and has been tested at the level of the propagator.

In this chapter we provide a more complete and detailed study of the mesh-
based reconstruction technique that can be applied to both galaxy surveys and 21cm
single-dish IM observations. This method is similar to the standard reconstruction
technique, but relies on moving pixels instead of points (galaxies). By using a large
set of numerical simulations we create mock pixelated maps from the distribution of
both matter and halos in both real- and redshift-space. We then apply our method to
those maps and investigate the performance of the method. We also demonstrate that
in the case of galaxy surveys, this method is equivalent to standard reconstruction in
the limit of very small pixels.

This chapter is organized as follows. In section 3.1 we investigate the impact of
instrumental effects on the amplitude and shape of the BAO peak from observations
consisting on pixelated maps, focusing our attention for concreteness on the case of
21cm IM. In section 3.2 we outline the simulations used in this work, while in section
3.3 we describe the reconstruction algorithm. Our theoretical model and the methods
we use to fit the results from the simulations is described in section 3.4. We show and
discuss the main results of this chapter in section 3.5. Finally, the main conclusions
of this work are presented in section 3.6.

3.1 Pixelated maps observations and instrumental ef-
fects

We begin this section by describing briefly one type of cosmological survey that
produces as output pixelated maps: single-dish 21cm IM observations. We then
investigate the impact of instrumental effects, that determine the resolution of the
pixelated maps, onto the shape and amplitude of the BAO peak as inferred from
those maps. The goal of this section is to study the impact of maps resolution on the
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monopole and quadrupole of the correlation function and incorporate those effects
into our theoretical template that we will use to determine the position of the BAO
peak from our mock maps.

3.1.1 Pixelated observations: IM

An example of surveys producing pixelated maps is given by 21cm IM observations
[64, 125, 126]. The IM technique consists in carrying out a low angular resolution
survey, where individual galaxies or HI blobs are not resolved, to measure the 21cm
radiation from cosmic neutral hydrogen from large patches of the sky. The idea
is the same as with galaxy surveys: HI perturbations on large-scales will trace the
underlying matter perturbations. There are two types of observations that can be
carried out with radio-telescopes: single-dish or interferometry. In this chapter we
focus our analysis on single-dish autocorrelation observations1, where the resolution
of the maps depends on the size of the antennae and where the maximum angular
transversal scales that can be probed are not limited by the field-of-view (FoV) of the
radio-telescope. However, we stress that low angular resolution is a limiting factor
also for interferometry. A detailed description of the pros and cons of the two different
techniques can be found in [64, 125]. A way to perform reconstruction by combining
observations from 21cm IM and galaxy redshift surveys has also been suggested in
order to fill in the missing modes lost due to the foregrounds contaminations [127].

In single-dish radio surveys the angular resolution of the 21cm maps is given by
θFWHM ∼= λ/D, where λ = 0.21(1 + z) m is the wavelength (in meters) of the 21cm
radiation and D is the diameter of the antenna. We assume for simplicity that the
primary beam of the telescope is well described by a Gaussian, thus the measured
temperature on the n̂ direction of the sky is

T̃b(n̂, ν) =
∫
dš⊥Tb(ν,~s⊥) 1

2πσ2 e
−s2⊥/2σ

2 ; (3.1)

in Fourier space the amplitude of the modes will be given by

δ̃T b(k‖,~k⊥) = e−k
2
⊥σ

2/2δTb(k‖,~k⊥) , (3.2)

where δ̃T b and δTb represent the observed and cosmological modes and the comoving
angular smoothing scale, σ, is given by

σ = χ(z)θFWHM
2
√

2 log 2
(3.3)

with χ(z) being the comoving distance to redshift z and the factor 2
√

2 log 2 is due
to the relation between the FWHM and the standard deviation in the Gaussian
function. We notice that while in real observations the density of pixels in a map is
closely related to the map resolution, in this chapter we consider these two quantities
separately. The reason, as we will see clearly on section 3.3.2, is that the number of
pixels can be taken arbitrarily high and this has some benefits for reconstruction. We
emphasize that the important quantity in our study is the angular resolution of the
maps, parametrized by the parameter σ.
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Figure 3.1: Linear theory prediction for matter monopole (solid) and
quadrupole (dashed) of the correlation function for various smoothing
scales in real- (left panel) and redshift-space (right panel) at z = 0.

3.1.2 Instrumental effects

The amplitude and shape of the BAO peak is affected by both non-linear gravita-
tional evolution and instrumental effects. While the goal of this work is to develop a
method to undo, at least partially, the effect of non-linearities, the effects induced by
the instrument may not be taken out. An example is given by the maps resolution
from single-dish 21cm IM observations, an effect induced by the antenna diameter
and that the presence of system noise avoids the possibility of deconvolving the signal
to recover to underlying field (see for instance [125]). In this situation, it is impor-
tant to incorporate the instrumental effects on the BAO peak when building up the
theoretical template. We limit our analysis to the impact of resolution on the shape
and amplitude of the BAO peak, but we notice that other effects, such as system
noise and foregrounds contamination can also affect it (see [125] for a study where
these effects were taking into account when detecting the radial BAO). The aim of
this subsection is to show the effects induced by the resolution of the pixelated maps
on the BAO feature.

Low angular resolution of the radio telescopes is one of the instrumental effects
that must be taken into account when fitting for the position of BAO. The 21cm power
spectrum in redshift-space from single-dish observations in linear theory is given by
(see Section 4.1.1):

P̃21cm(k, µ) = b221cm(1 + βµ2)2e−(1−µ2)k2σ2
Pm(k), (3.4)

where b21cm is the bias of the 21cm signal, which is given by b21cm = T̄bbHI, with bHI
being the HI bias and T̄b is the mean brightness temperature.

We notice that even in real-space (β = 0), the measured 21cm power spectrum is
not isotropic, since this symmetry is broken by the angular smoothing in the angular
direction. The multipoles of the observed 21cm power spectrum are given by

P̃21cm,`(k) = 2`+ 1
2

∫ 1

−1
L`(µ)P̃21cm(k, µ)dµ, (3.5)

1We refer the reader to [124] for a study in reconstruction with interferometry observations.
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where L`(x) is the Legendre polinomial of order `. The multipoles of the observed
21cm correlation function can be written as a function of their power spectrum coun-
terparts

ξ̃21cm,`(r) = i`
∫ ∞

0

k2dk

2π2 P̃21cm,`(k)j`(kr), (3.6)

with j`(x) being the spherical Bessel function of order `. In figure 3.1 we plot the
monopole and quadrupole of the observed 21cm correlation function in real- and
redshift-space at linear order for 21cm maps having different resolutions (character-
ized by the parameter σ). For simplicity in figure 3.1 we have taken b21cm = 1 mK
and bHI = 1. It can be seen that the shape of the BAO peak gets distorted by the
map resolution; the effect is similar to the one induced by non-linearities, i.e. the
BAO peak gets damped and broader. This distortion increases with σ, both in real-
and redshift-space. This happens because the smoothing in the transverse direction
erases correlations on angular scales smaller than ∼ σ. For angular smoothing scales
σ & 10 h−1Mpc the BAO feature will be almost completely erased in the monopole of
the correlation function, however the BAO peak can still be seen in the radial 21cm
power spectrum [125], although the amount of information embedded there is much
smaller.

As expected in linear theory, the quadrupole in real-space is zero when no an-
gular smoothing is applied. On the other hand, for values of σ larger than zero the
quadrupole deviates significantly from zero in real-space. The reason is that the an-
gular smoothing breaks the isotropy present in real-space, inducing a non-negligible
quadrupole that increases with σ. In redshift-space the amplitude of the quadrupole
on large scales arising from the Kaiser term is much larger that the one induced by the
angular smoothing, so the impact of the telescope angular resolution does not modify
significantly the shape and amplitude of the quadrupole on scales r & 80 h−1Mpc. On
smaller scales the angular smoothing becomes more important, with the amplitude
of the quadrupole increasing with σ.

3.2 Simulations
Generating mock 21cm maps is computationally very challenging since large box-size
high-resolution hydrodynamic simulations, coupled to radiative transfer calculations,
are needed to properly simulate the spatial distribution of neutral hydrogen in the
post-reionzation era. A computationally less expensive alternative, although less pre-
cise, way consists in populating dark matter halos with neutral hydrogen a-posteriori
[53]. The way dark matter halos are populated with HI can be calibrated using hy-
drodynamic simulations with small box sizes or by means of analytic models that
reproduce the observational data [128, 76]. The idea of this method is thus to run
a standard N-body simulation to obtain a catalogue of dark matter halos which are
populated with HI during the post-processing. While N-body simulations are much
faster than hydrodynamic simulations, the simulation set this work requires (500
simulations) made this method computationally unfeasible given the computational
resources we have access to.

Many different methods have been developed such as PTHALOS [129], Aug-
mented Lagrangian Perturbation Theory (ALPT) [130], PerturbAtion Theory Cat-
alog generator of Halo and galaxY distributions (PATCHY) [131], Comoving La-
grangian Acceleration method (COLA) [132, 133, 134], Effective Zel’dovich approx-
imation mocks (EZmocks) [135], FastPM [136] and PINOCCHIO [137, 138, 139,
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140] (see [141] for a comparison among the different methods and N-body simula-
tions) that are able to either generate a mock distribution of dark matter halos or to
evolve directly the matter distribution in an N-body manner. These methods make
use of different approximations that determine, in most cases, the accuracy they can
reach when comparing results against N-body simulations.

The rationale behind the use of the above methods is to generate halo catalogues
and simulate the spatial distribution of matter into the fully non-linear regime in
a faster way than an N-body simulation. Among the previous methods, we have
chosen COLA to run our numerical simulations. COLA is basically a particle-mesh
(PM) code and therefore can be considered as an N-body code. The difference with
respect to a fully N-body is the number of times steps and the way COLA deals with
small scales. In comparison with the fully non-linear N-body simulations, COLA
implementation can achieve an agreement at the level of the dark matter power
spectrum to within 2% to 5% at z = 0 on scales up to k = 0.3hMpc−1 – relevant for
BAO and RSD studies [134]. Given this high accuracy COLA can reach and the fact
that it is computationally much faster than an N-body simulation, we decide to use
this code to run our numerical simulations.

We have run 500 simulations using the publicly available L-PICOLA code [134],
a version of the original COLA code [132]. In the simulations we follow the evolution
of 5123 dark matter particles within a box of side 1 h−1Gpc from z = 9 to z = 0
using a grid with a number of cells equal to the number of particles. The values of the
cosmological parameters we use for all simulations are: Ωm = 0.3175, ΩΛ = 0.6825,
Ωb = 0.049, Ων = 0.0, h = 0.6711, ns = 0.9624, σ8 = 0.834. We save snapshots at
z = 1 and z = 0. The outputs at z = 1 are obtained using 10 time-steps, while we
use 50 time-steps linearly spaced in scale factor a for outputs at z = 0. The mass
resolution of the dark matter particles is 6.56×1011 h−1M�. We identify dark matter
halos using the Friends-of-Friends algorithm [112] with a linking length parameter
b = 0.2. Halos containing less than 32 dark matter particles (Mhalo . 2×1013h−1M�)
are discarded from our catalogues.

3.2.1 Creating mock maps

Here we explain how we simulate the intrinsic resolution of the 21cm maps in our
simulations. From the output of the numerical simulations we build mock pixelated
maps using the distribution of matter or halos in both real- and redshift-space. We
compute the overdensity field δ(~x) of particles in a simulation on a regular grid using
cloud-in-cell (CIC) scheme. We Fourier transform δ(~x) to obtain δ̃(~k) and we correct
for the CIC mass assignment scheme. We then apply a transverse 2D Gaussian filter
to the density field with an angular smoothing scale σ:

δ̃sm(~k) = δ̃(~k)e−k2(1−µ2)σ2/2. (3.7)

We varied the angular smoothing scale within a reasonable range of values σ =
5, 8, 10h−1Mpc, that we use throughout the chapter. We call the resulting fields –
matter and halo maps.

We emphasize that the matter and halo maps constructed following the above
procedure do not correspond to actual 21cm IM maps (see for instance [53]). The
goal is to create pixelated maps with different levels of complexity, i.e. incorporating
redshift-space distortions, halo bias...etc, in order to investigate the robustness of our
method against these processes.
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When analysing the matter maps in redshift-space, in each realisation we measure
the monopole and the quadrupole along three different axes of our simulation and
use the average monopole and quadrupole.

To create a pixelated map from a galaxy survey, in which the angular resolution
effects are negligible, we follow the procedure described above and set the angular
smoothing scale σ = 0.

3.3 Reconstruction algorithm
We start this section by explaining how the standard reconstruction method works.
We then describe in detail our pixelated BAO reconstruction algorithm together with
its practical implementation.

3.3.1 Standard reconstruction

The density field reconstruction method was first presented in [38] and it has proved
very successful in both data [142, 143, 144] and simulations [15, 145, 39, 146]. Here
we summarise the method briefly to set up notation and outline the general idea.

A position of a particle in Eulerian coordinates ~x after time t can be mapped to
the initial Lagrangian position ~q using the displacement field ~Ψ(~q, t):

~x(~q, t) = ~q + ~Ψ(~q, t). (3.8)

Lagrangian Perturbation Theory (LPT) gives a perturbative solution for this dis-
placement field and the first order solution is the Zel’dovich Approximation (ZA)
[147]. In ZA we can express the overdensity field in Eulerian coordinates in terms of
the displacement field:

δ(x) = −∇~x · ~Ψ(~x). (3.9)

In Fourier space the displacement field is thus given by:

~̃Ψ(~k) = i~k

k2 δ̃(~k). (3.10)

The idea of BAO reconstruction is to get an estimate of the large scale displace-
ment field from the observed non-linear density field and then use this field to displace
the galaxies back to their initial positions. This results in removing the displacements
of galaxies on large scales that contribute the most to the smearing of the acoustic
peak. When considering also the redshift-space distortions, there are two main ways
to do the reconstruction: anisotropic and isotropic (see [148]). In this work we focus
on the anisotropic reconstruction in which the redshift-space distortions are kept in
the final density field. Following the convention of [148], the algorithm proceeds in
the following way:

1. The observed density field is convolved with a smoothing kernel S(k) to re-
duce the small-scale non-linearities: δ̃(~k) → δ̃snl(~k)S(k), where S(k) is usually
a Gaussian filter S(k) = exp[−0.5k2R2

Ψ] with RΨ the displacement smoothing
scale and δ̃snl is the observed redshift-space density field.

2. We estimate the negative real-space displacement field from the smoothed den-
sity field:

~̃sr(~k) = − i
~k

k2
δ̃snl(~k)
b

S(k),
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where b is the linear galaxy bias.

3. We displace the galaxies by:

~ss(~x) = ~sr(~x) + f − β
1 + β

(~sr(~x) · ~z)~z

to obtain the displaced density field δd(~x), where f is the growth rate and β
is the redshift-space distortion parameter: β = f/b and ~ss(~x) is the negative
redshift-space displacement field.

4. We shift a uniformly distributed grid of particles by the same ~ss to obtain the
shifted density field δs(~x).

5. The reconstructed density field is then defined as δr(~x) ≡ δd(~x)− δs(~x).

While this method is intended for observations of galaxies in redshift-space, one
can also apply it to a particle set such as the matter density field from an N-body
simulation by setting b = 1. If the galaxy/matter catalogue is in real-space, redshift-
space distortions can be switched off by setting β = f = 0. When applying this
method to halo catalogues, instead of galaxies, we use linear halo bias bh.

3.3.2 Pixelated BAO reconstruction

The standard reconstruction improves the significance of the BAO peak position in
the power spectrum or the correlation function of the observed galaxy distribution.
However, in the description of the algorithm in the previous section, the fact that
the density field was estimated from a discrete number of tracers never played any
role2. Moreover the ZA, or higher order LPT, are thought to effectively describe the
motion of dark matter fluid elements, which could end up containing more than one
galaxy. It is therefore worth to see how BAO reconstruction performs on mesh-based
fields, and in this section we define the relevant modifications to the original method
required when dealing with pixels. A similar method was presented in [124] to derive
the reconstructed density field in the presence of the foreground wedge effect.

The main modification compared to the standard reconstruction technique is that
we work at the level of a regular grid and we treat the grid cells in the simulations
as galaxies in the standard reconstruction algorithm. The grid cells we use are the
same as the ones we used to produce the matter and halo maps, as described in 3.2.1.
Once we have the matter and halo maps, we proceed to compute the displacement
field using the already smoothed density field δ̃sm(~k) We do this by first applying a
Gaussian smoothing kernel to δ̃sm(~k) such that it is effectively smoothed isotropically
with a displacement smoothing scale RΨ:

δ̃~Ψ(~k) = δ̃sm(~k) exp
[
−k

2

2 ((1− µ2)R2
⊥ + µ2R2

Ψ)
]
, (3.11)

where R⊥ =
√
R2

Ψ − σ2 is the transverse smoothing scale which is smaller than RΨ to
take into account the fact that we have already smoothed the field in the transverse
direction. The choice of RΨ will be discussed below.

2Although note that estimates of the displacement field from very sparse samples affect the per-
formance of BAO reconstruction [149].
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Using this overdensity field we calculate the negative displacement field at the
centres of grid cells using:

~s(~x) = IFFT
[
− i
~k

k2 δ̃~Ψ(~k)
]
. (3.12)

We then use this displacement field to move the centres of grid cells according
to the derived displacement field. Next, we compute the displaced field δd(~x) of
displaced grid cells on a regular grid using CIC scheme and weighting each grid cell
by (1 + δd). When computing the shifted field we only need to modify the weights in
the CIC scheme since in both the displaced and the shifted field case the initial grid
cells have been displaced by the same displacement field. We thus use the positions
of displaced grid cells and apply equal weights using the CIC scheme to compute the
shifted field δs(~x).

In the last step we subtract shifted field from the displaced field to obtain the
reconstructed density field:

δr(~x) = δd(~x)− δs(~x).

In the case of σ = 0, we tested several sizes of grid cells and we find that the
reconstruction improves as we increase the resolution, converging when the size of
the grid cells approaches the mean particle separation in the simulation. In our case
this separation is 1000h−1Mpc/512 ≈ 2h−1Mpc, and we use this size for the rest of
the chapter. We also find that the choice of grid cell size that we use for performing
reconstruction does not depend on the angular resolution σ. This is mainly due to
the fact that the radial direction is unaffected by the angular resolution and having
smaller grid cell sizes along the radial direction improves the reconstructed density
field.

We have tested this method using the matter and halo maps in real- and redshift-
space at z = 0 and z = 1 created from 500 COLA simulations. In Figure 3.2 we show
the average monopole and quadrupole at z = 0 in real- and redshift-space before and
after reconstruction of the matter maps. We show the results at z = 1 in Figure 3.3.
In Figure 3.4 we show the average monopole and quadrupole at z = 0 in real- and
redshift-space before and after reconstruction of the halo maps. We would like to note
that in Figures 3.2, 3.3 and 3.4 the position of the linear point at roughly 90h−1Mpc,
as proposed recently in [150], remains unchanged with varying the angular resolution.
Perhaps more importantly is that it appears invariant after reconstruction, both in
scale and height.

We also apply our reconstruction method to matter maps in real-space at z = 0
that correspond to a galaxy survey (σ = 0). We measure the correlation function in
each of the simulations before and after performing both standard and our reconstruc-
tion method. In Figure 3.5 we show the comparison between the average measured
correlation function using the standard and our reconstruction method. In both cases
we use the same displacement smoothing scale RΨ = 20h−1Mpc. We see that the
two methods basically overlap inside the uncertainty on the mean. In section 3.5.1
we show a more quantitative comparison and agreement between the two methods.
In the case of a galaxy survey, we find that this way of performing reconstruction is
almost identical to the standard reconstruction as long as the cell sizes are small and
the CIC correction is properly accounted for. Furthermore, it is less computationally
expensive, since there is no need to 1) interpolate the displacement field for every par-
ticle and 2) generate uniform random field of particles, interpolate the displacement
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Figure 3.2: Average monopoles and quadrupoles of the pixelated
matter maps in real-space (top) and redshift-space (bottom) at z = 0
before (blue) and after (red) reconstruction in cases of different angular
resolution. Overplotted is the linear theory prediction in solid lines.

field and move the particles.

3.3.3 Smoothing scale for the displacement field

The choice of the smoothing scale RΨ should be made such as to tame the non-
linearities at very small scales, while at the same time keep the valuable information
of the mildly non-linear regime. The first requirement means making this scale larger,
while the second requires it to be not too large. The impact of the smoothing scale
RΨ on the standard reconstruction performance has been previously studied in detail
both in mocks and data, e.g. [151, 152, 153, 148]. The choice depends on the level of
non-linearity in the density field and in the shot-noise contribution [149, 124, 127].
Optimal choice of the scale depends on the case in study and has a broad range of
values, ranging from 5 − 15 h−1Mpc. We are facing a somewhat different situation
when we study the observables with low angular resolution. Therefore we tested the
performance of our reconstruction method using different smoothing scales. In Figure
3.6 we show mean measured monopole and quadrupole of matter correlation function
in real- and redshift-space at z = 0 after reconstruction for several different smoothing
scales RΨ. Using RΨ = 20h−1Mpc we find better agreement with the linear theory
both in real- and redshift-space. We use this value in the rest of the chapter and leave
the full analysis of the impact of this choice for future work.
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Figure 3.3: Average monopoles and quadrupoles of the pixelated
matter maps in real-space (top) and redshift-space (bottom) at z = 1
before (blue) and after (red) reconstruction in cases of different angular
resolution. Overplotted is the linear theory prediction in solid lines.

3.4 Analysis - Fitting the BAO peak
In this section we describe the models we use to obtain the templates for the non-
linear correlation functions we are measuring. We then use these templates to build
up a model that we use to fit the measured correlation functions in several cases.
Our analysis is based on previous BAO analyses, which aim at measuring and put
constraints on the position of the BAO peak [154, 143, 155, 144]. In the isotropic
case, the BAO peak position we measure in the correlation function provides a mea-
sure of spherically averaged distance DV (z). We also need to take into account in
our model the fact that, even if our template is a good approximation, assuming a
fiducial cosmology can shift the measured BAO peak and therefore affect the distance
measurement. This shift can be parametrised by:

α = DV (z)/rd
DV,f (z)/rd,f

(3.13)

where rd is the sound horizon at the drag epoch. Subscript f corresponds to the
assumed fiducial cosmology, while the quantities without subscript refer to the true
cosmology.

Once we have anisotropic clustering, like observations in redshift-space or with
angular smoothing, we can measure the BAO position both along the line-of-sight
and in the transverse direction, corresponding to separately measuring the Hubble
parameter H(z) and the angular diameter distance DA(z), respectively. In this case,
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Figure 3.4: Average monopoles and quadrupoles of the pixelated
halos maps in real-space (top) and redshift-space (bottom) at z = 0
before (blue) and after (red) reconstruction in cases of different angular
resolution. Overplotted is the linear theory prediction in solid lines.

assuming a fiducial cosmology different from the true one will shift the measured
BAO position differently along the line-of-sight and transverse directions. To account
for this we will follow the method based on [154, 155]. In this formalism the isotropic
shift α in the BAO positions is defined as:

α =
[
D2
A(z)

D2
A,f (z)

Hf (z)
H(z)

]1/3
rd,f
rd

(3.14)

and the anisotropic shift ε:

1 + ε =
[
DA,f (z)
DA(z)

Hf (z)
H(z)

]1/3
. (3.15)

Since we are using numerical simulations with a known cosmology, we expect
α = 1 and ε = 0.

3.4.1 Isotropic case

In order to compare the standard (ST) and pixelated (PM) reconstruction methods
we need a theoretical model, for the measured matter correlation function in real-
space. In real-space the correlation function is isotropic and we use the following
template:
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of the mean.

ξt(r) =
∫
k3d log k

2π2 Pdw(k)j0(kr), (3.16)

where Pdw(k) is the de-wiggled power spectrum [31]. The de-wiggled power spectrum
is designed to account for the damping of the power spectrum due to non-linear effects
and is given by:

Pdw(k) = [Plin(k)− Pnw(k)] exp
[
−k

2Σ2
nl

2

]
+ Pnw(k), (3.17)

where Plin(k) is the linear theory power spectrum computed using CAMB [16], Pnw(k)
is the linear power spectrum without the BAO wiggles computed using a fitting
formula in [156] and Σnl is the Gaussian damping scale. The final model we use to
perform the fit is:

ξm(r) = B2
0ξt(αr) +A(r) (3.18)

where A(r) is a polynomial function:

A(r) = a1
r2 + a2

r
+ a3 (3.19)
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Figure 3.6: Mean monopoles and quadrupoles of pixelated mat-
ter maps in real-space (left) and redshift-space (right) after recon-
struction using different smoothing scales for the displacement field:
RΨ = 10, 15, 20h−1Mpc. Here we are only showing results using

σ = 8h−1Mpc while similar results hold for other values of σ.

introduced to model effects that modify the broadband shape of the measured corre-
lation function such as redshift-space distortions, halo bias and so on. The term B2

0
controls the overall amplitude of the monopole template and, as in the case of the
polynomial coefficients, represents a nuisance parameter.

3.4.2 Matter maps

In case of low angular resolution observables, the correlation function becomes anisotropic
even in real-space. We write our template for the 2D smoothed non-linear power spec-
trum of matter field in real-space as:

Pt(k, µ) = Pdw(k, µ)e−k2(1−µ2)σ2 (3.20)

where the exponential term represents our 2D smoothing of the density field. At z = 0
for the matter density field we fix Σnl = 7.5 h−1Mpc for non-reconstructed model and
Σnl = 4.5 h−1Mpc for the reconstructed model, while at z = 1 we fix Σnl = 5 h−1Mpc
for non- and Σnl = 3 h−1Mpc for the reconstructed model. We choose these values
based on a best fit to the average measured monopole and quadrupole.

In redshift-space we model the 2D smoothed non-linear power spectrum as:

Pt(k, µ) = (1 + βµ2)2F (k, µ,Σs)Pdw(k, µ)e−k2(1−µ2)σ2
. (3.21)

The term (1 + βµ2)2 is the Kaiser factor [20], that models redshift-space distortions
on very large scales. We model the finger-of-God (FoG) effect [21] using a Gaussian
form [64]:

F (k, µ,Σs) = e−k
2µ2Σ2

s , (3.22)

where Σs is the streaming scale describing the dispersion of random peculiar velocities
along the line-of-sight direction that washes out the information on small scales.
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Another form usually used is a Lorentzian [155] with a streaming scale Σ′s which is
different from ours by Σs = Σ′s

√
2.

In redshift-space, the non-linear damping is not isotropic anymore. To take the
anisotropy into account we use the de-wiggled power spectrum Pdw(k, µ) given by
[31]:

Pdw(k, µ) = [Plin(k)− Pnw(k)] exp
[
−
k2(1− µ2)Σ2

⊥ + k2µ2Σ2
‖

2

]
+ Pnw(k). (3.23)

Non-linear effects that cause the smearing of the BAO peak are modelled by a
Gaussian with damping scale Σ2

nl = (Σ2
‖+ Σ2

⊥)/2, with components Σ‖ along and Σ⊥
perpendicular to the line-of-sight.

We fix the components of the damping scale to the best-fit of the average measured
monopole and quadrupole over all simulations. For the non-reconstructed case we set
Σ‖ = (1 + f)Σ⊥. At z = 0 for the matter density field we fix Σ⊥ = 6.5 h−1Mpc,
Σ‖ = 9.96 h−1Mpc and Σs = 4.1

√
2 h−1Mpc. For the reconstructed case we fix

Σ⊥ = Σ‖ = 4 h−1Mpc and Σs = 3.5
√

2 h−1Mpc. At z = 1 for the non-reconstructed
case we fix Σ⊥ = 5 h−1Mpc, Σ‖ = 9.39 h−1Mpc and Σs = 2

√
2 h−1Mpc. For the

reconstructed case we fix Σ⊥ = Σ‖ = 3 h−1Mpc and Σs = 2
√

2 h−1Mpc.
The power spectrum multipoles of the matter maps templates in real- and redshift-

space are given by:

P`,t(k) = 2`+ 1
2

∫ 1

−1
Pt(k, µ)L`(µ)dµ, (3.24)

where L` is the Legendre polynomial of order `. The multipoles of the correlation
function are then given by:

ξ`,t(r) = i`
∫
k3d log k

2π2 P`,t(k)j`(kr). (3.25)

We use the perturbative expansion in terms of α and ε to construct models for
the monopole and quadrupole of the matter correlation function [155]:

ξm0 (r) = B2
0ξ0,t(αr) + 2

5ε
[
3ξ2,t(αr) + dξ2,t(αr)

d log(r)

]
+A0(r), (3.26)

ξm2 (r) = 2B2
0ε
dξ0,t(αr)
d log(r) +

(
1 + 6

7ε
)
ξ2,t(αr) + 4

7ε
dξ2,t(αr)
d log(r)

+4
7ε
[
5ξ4,t(αr) + dξ4,t(αr)

d log(r)

]
+A2(r), (3.27)

where
A`(r) = a`,1

r2 + a`,2
r

+ a`,3. (3.28)

The polynomials A`(r) are standardly added in these analysis to account for
systematics and in general to model effects not included in the template as non-linear
redshift-space distortions and scale-dependent bias, that are expected to affect the
broadband shape of the correlation function but not the position of the BAO peak.

When performing the best-fit analysis, we keep the following parameters free: B0,
coefficients of the A` polynomials, α and ε.
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3.4.3 Halo maps

For the analysis of halo maps we restrict ourselves to maps at z = 0. Due to the low
mass resolution in our simulations, halos we identify at z = 1 are not dense enough
tracers of the density field and the shot noise is high enough that we do not see any
improvement with reconstruction. At z = 1 the mean number density of halos is
n̄ ≈ 5 × 10−5(hMpc−1)3 which is below the limit (∼ 10−4(hMpc−1)3) at which the
standard reconstruction gains saturate [149]. The mean number density of halos at
z = 0 is n̄ ≈ 1.4× 10−4(hMpc−1)3 which is above this limit.

In addition, we find that the measured halo quadrupole in our simulations is
dominated by noise both in real- and redshift-space (see Figure 3.4). For these reasons
we focus on fitting only the monopole of the correlation function of the halo maps at
z = 0.

We use monopole templates for matter maps in real- and redshift-space. The final
model we use to perform the fit to the monopole of the halo maps is:

ξmh (r) = B2
0ξ0,t(αr) +A(r). (3.29)

Before performing a fit to the halo monopole, we normalise our template for the
halo monopole to the halo bias b2h measured from the simulations. We measure the
halo bias as the ratio of halo and matter power spectrum over 500 simulations and
take the average value on large scales.

When fitting the results, we fix the non-linear damping scale Σnl to the value we
find is the best fit to the average measured monopole from the halo maps. In real-
space, for the non-reconstructed case we set Σnl = 6.5 h−1Mpc. After reconstruction
we fix Σnl = 2.5 h−1Mpc. In redshift-space we set Σ‖ = Σ⊥ = Σnl. For the non-
reconstructed case we set Σnl = 6.5 h−1Mpc and Σs = 3.5

√
2 h−1Mpc, while after

reconstruction we fix Σnl = 2.5 h−1Mpc and Σs = 2.8
√

2 h−1Mpc.
When performing the best-fit analysis, we keep the following parameters free: B0,

coefficients of the A(r) polynomial and α.

3.4.4 Fitting procedure

We assume that the measured correlation function follows a Gaussian distribution.
Thus, finding the best model that describe the data is equivalent to minimizing

χ2 = (~m− ~d)TC−1(~m− ~d), (3.30)

where ~m and ~d are vectors containing the values of correlation function of model and
data, respectively. In the anisotropic case of matter maps, the vectors of the model
and the data contain both the results of the monopole and quadrupole, while in the
case of halos we use only the monopole values. C−1 is the inverse covariance matrix
described below.

We fit the results in the range 50 h−1Mpc 6 r 6 150 h−1Mpc. In the case in
which we compare standard and pixelated reconstruction in real-space we use bin
sizes of 2 h−1Mpc and we thus employ 51 data points for the correlation function. In
the anisotropic case of matter maps we use bin sizes of 4 h−1Mpc and in the fitting
range we have 25 data points for monopole and the same for quadrupole, a total of
50 data points. When performing a fit to the monopole of the halo maps, we also use
bin sizes 4 h−1Mpc and we have 25 data points.

We minimise the χ2 and sample the model parameter space using Monte Caro
Markov Chain (MCMC) using publicly available code emcee [157]. We apply a 20%
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tophat prior on α and 1+ ε in order to avoid unphysical values for shift parameters in
simulations where the BAO peak is less pronounced. We leave all nuisance parameters
free.

3.4.5 Covariance matrices

We calculate the covariance matrix directly from the simulations:

Cij = 1
Ns − 1

Ns∑
n=1

[dn(ri)− d̄(ri)][dn(rj)− d̄(rj)], (3.31)

where Ns is the number of simulations, dn(r) is a vector containing the values of
correlation function calculated from nth simulation at radius r and d̄(r) is the vec-
tor containing the mean values of correlation function at radius r over all simula-
tions. In anisotropic case, the vectors dn(r) and d̄(r) contain both the monopole and
quadrupole of the correlation function, while for halo maps we use only monopole
values.

Since we are using a finite number of simulations, the estimated covariance matrix
will be affected by sample noise. This results in a biased estimate for the inverse
covariance matrix. This bias can be removed when estimating the inverse covariance
matrix by multiplying the inverse estimate by [158]:

C−1 = C−1
original

Ns −Nb − 2
Ns − 1 , (3.32)

where Nb is the number of bins we are using. In the case of comparing standard and
pixelated reconstruction method we have 51 data points. For the halo maps we have
25 data bins and for the matter maps we have 50 data bins: 25 from the monopole
and 25 from the quadrupole.

Even with this correction, it has been shown that the noise still affects the con-
straints of the fitting parameters and this has to be accounted for [159]. We account
for this by multiplying all the measured variances of the fitting parameters by a factor
that depends on Nb, Ns and the number of fitting parameters Np (see equation 22 in
[159]).

3.5 Results
In this section we present the constraints we derive, in terms of the position of the
BAO peak, before and after reconstruction. First, we show the results of the compar-
ison between standard reconstruction and our method for a standard galaxy survey,
which in our method we simplify to the distribution of pixelated matter in real-space
from numerical simulations. Then we show the results of applying our reconstruction
method to matter and halos maps in real- and redshift-space.

3.5.1 Standard versus pixelated reconstruction method

We first present the results of comparing the standard (ST) and pixelated (PM)
reconstruction methods when applying them on the spatial distribution of matter in
real-space at z = 0 from our numerical simulations. We have performed the analysis
using different smoothing scales for the displacement field RΨ. We choose the non-
linear damping parameters Σnl for each case by a fit to the average of the measured
correlation function. As expected, we find these parameters to be smaller for both
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reconstruction methods compared to the non-reconstructed case and on average their
values decrease by a ∼ 50% after reconstruction. We also find that the obtained
values depend on the smoothing scale for the displacement field used. However, we
find no significant difference of the reconstructed Σnl between the two reconstruction
methods.

We measure the BAO shift parameter α in each of our 500 simulations before
and after reconstruction (using the two different methods). In Table 3.1 we give
the summary of best-fit results of the BAO shift parameter α as a function of the
smoothing scale for the displacement field RΨ and used Σnl for each case.

RΨ Reconstruction Σnl α
〈
χ2〉 /dof

[h−1Mpc] method [h−1Mpc]
– No 8.0 1.001± 0.018 42.1/45

10 ST 3.4 1.000± 0.008 42.5/45
PM 3.5 0.999± 0.008 48.6/45

15 ST 4.3 1.000± 0.010 42.6/45
PM 4.4 0.999± 0.009 43.4/45

20 ST 5.0 0.999± 0.011 42.4/45
PM 5.0 0.999± 0.011 42.4/45

Table 3.1: Constraints on the BAO shift parameter (column 4) us-
ing the matter density field in real space – corresponding to a galaxy-
survey with σ = 0. Results shown are obtained from simulations
without applying reconstruction (first row) and after applying recon-
struction (rows 2-7). The non-linear damping parameter Σnl used in
the fit is given in Column 3. Results are shown for different smoothing
scales for the displacement field RΨ (column 1) and the mean χ2/dof
is given in column 5. The errors shown for α are the standard devi-
ations over 500 simulations. The actual errors on the means of the

parameter α are the listed values divided by
√

500.

In Figure 3.7 (left panel) we plot these results for various smoothing scales for the
displacement field RΨ. The points shown are the best-fit values and the error bars
shown are standard deviations divided by

√
50 to show the expected uncertainty in a

survey of 50 [h−1Gpc]3 volume size. Best fits to the reconstructed correlation function
in ST and PM case are shown in middle and right panel of Figure 3.7, respectively,
in the case of RΨ = 20h−1Mpc.

We find the obtained values of α to be consistent with the expected value α = 1
at the level of uncertainties in both ST and PM methods. The uncertainty on α after
reconstruction decreases by 40 − 60%, depending on which RΨ is used. We find no
significant difference in ST and PM methods.

3.5.2 Matter maps

We now focus our attention on the case of matter maps in both real- and redshift-
space, considering maps with different resolutions, σ. We measure the BAO shift
parameters α and ε in each of our 500 simulations before and after reconstruction
using the template models outlined in Section 3.4.2. A summary of the best-fit results
both in real- and redshift-space at z = 0 and z = 1 is presented in Table 3.2.

In Figure 3.8 we show the best-fit BAO shift parameters α (left) and ε (right) in
real- and redshift-space as a function of the smoothing scale σ at z = 0 and z = 1.
Blue points correspond to non- and red to reconstructed maps fits. The error bars
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Figure 3.7: Reconstruction of the matter density field in real-space
– corresponding to a galaxy-survey with σ = 0, at z = 0. Left
panel: Mean best-fit values of BAO shift parameters α as a function of
smoothing scale of the displacement field RΨ showing the comparison
between standard and pixelated reconstruction algorithm. The error
bars shown are the standard deviation from 500 simulations divided
by
√

50 (i.e. the expected error for a survey covering a volume of
∼ 50 (h−1Gpc)3). Middle and right panel: The best-fits to the recon-
structed matter correlation function in case of standard and pixelated

reconstruction method, using RΨ = 20h−1Mpc.

correspond to standard deviations of BAO shift parameters divided by
√

50 to show
the expected uncertainty we would expect in a survey of ∼ 50 [h−1Gpc]3 volume size.

Real-space

We find that the uncertainties in both α and ε decrease by ∼ 50 % after reconstruction
across the considered range of map angular resolutions σ. The 2D smoothing is
smearing the BAO peak in the monopole with increasing σ so one would expect the
uncertainty in α to increase as well. On the other hand, larger smoothing scales
make the quadrupole more pronounced and therefore more constraining for the shift
parameters. After reconstruction, the recovered values of α are closer and consistent
with the expected α = 1 at the single simulation level. Even by considering the error
on the mean, i.e. combining the results of all the simulations to probe a volume equal
to 500 (h−1Gpc)3, we find that α is consistent with 1 at 5σ level. We however find a
∼ 0.2% shift in the recovered values of ε.

Similar to z = 0, at z = 1 we again find that the uncertainties in both α and
ε decrease after reconstruction. These decreases are however smaller compared to
z = 0, and reach ∼ 35% in α and ε. This is expected since the non-linear effects
are smaller at higher redshifts. Recovered means of reconstructed α are within 0.2%
of the expected values, while the reconstructed ε stays within 0.1% of the expected
value and within the uncertainties of the full simulated volume.

In Figures 3.9 and 3.10 we show the best-fit to the monopole and quadrupole of
the matter maps in real-space after (top) and before (bottom) reconstruction at z = 0
and z = 1, respectively. Comparing the monopole and quadrupole before and after
reconstruction, we find the acoustic peak gets more pronounced after reconstruction.
This is more evident at z = 0 than at z = 1 since the non-linear effects are smaller
at higher redshift. We also find that for smaller smoothing scales reconstruction
makes the BAO peak more pronounced both in monopole and quadrupole. This
improvement of reconstruction decreases as we move to lower resolution maps. Still,
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Matter maps – real-space

z = 0

σ[h−1Mpc] Reconstruction α ε
〈
χ2〉 /dof

5 no 1.004± 0.018 0.001± 0.022 45.3/41
yes 1.0005± 0.0096 0.002± 0.010 44.1/41

8 no 1.002± 0.021 0.003± 0.023 45.5/41
yes 1.0008± 0.0096 0.003± 0.010 46.2/41

10 no 1.004± 0.019 0.004± 0.021 45.4/41
yes 1.002± 0.010 0.004± 0.011 47.8/41

z = 1

5 no 1.0000± 0.0098 −0.001± 0.012 43.8/41
yes 0.9983± 0.0070 0.0008± 0.0080 41.8/41

8 no 1.003± 0.011 −0.001± 0.013 45.1/41
yes 0.9999± 0.0071 0.0006± 0.0088 44.7/41

10 no 1.005± 0.011 0.001± 0.013 46.3/41
yes 1.0021± 0.0095 0.0003± 0.0095 50.4/41
Matter maps – redshift-space

z = 0

σ[h−1Mpc] Reconstruction α ε
〈
χ2〉 /dof

5 no 1.000± 0.023 0.0021± 0.0075 39.2/41
yes 0.998± 0.011 0.0002± 0.0042 40.0/41

8 no 1.001± 0.025 0.0045± 0.0097 38.6/41
yes 0.996± 0.013 0.0011± 0.0060 40.4/41

10 no 1.001± 0.026 0.005± 0.012 38.9/41
yes 0.995± 0.015 0.0016± 0.0076 41.8/41

z = 1

5 no 0.997± 0.014 0.0012± 0.0077 30.4/41
yes 1.000± 0.011 0.0000± 0.0040 31.9/41

8 no 0.998± 0.018 0.001± 0.010 30.2/41
yes 1.000± 0.013 0.0000± 0.0055 31.6/41

10 no 1.000± 0.022 0.000± 0.013 31.2/41
yes 1.001± 0.015 0.0000± 0.0067 32.4/41

Table 3.2: Constraints on BAO shift parameters α and ε for matter
maps with different angular resolutions (column 2) before and after
reconstruction. Columns 3 and 4 show the mean and the standard
deviation of BAO shift parameters α and ε, respectively. The mean
χ2/dof is given in column 5. The errors shown for α and ε are the
standard deviations over 500 simulations. The actual errors on the
means of the parameters α and ε are the listed values divided by

√
500.

one should compare the reconstructed results with the linear theory prediction (solid
lines in Figure 3.2, upper panel) and notice that even the linear theory prediction
monopole is getting less pronounced as we move to larger values of smoothing scales.

Another test we perform is to check which is the significance of the BAO detection
in the case of different angular smoothing scales we are considering and to quantify
the improvement after performing reconstruction. We do this by performing another
fit to the measured matter monopole and quadrupole with a model that has no
BAO feature. This model is constructed by taking Σnl → ∞. Having obtained the
χ2

NO BAO for each of our 500 simulations, we quantify the significance as the square
root of ∆χ2 = χ2

NO BAO − χ2
BAO. In Figure 3.11 we show the histograms of

√
∆χ2

before (blue) and after (red) reconstruction for different map resolutions σ at z = 0
(top) and z = 1 (bottom).

We find that performing reconstruction greatly improves the significance of BAO
detection. At z = 0, using our matter maps in real-space covering a volume equal to
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Figure 3.8: Mean best-fit values of BAO shift parameters α (left) and
ε (right) as a function of map spatial resolution, σ, at z = 0 and z = 1
for matter maps. Blue points represent the non-reconstructed, while
red points represent the reconstructed density field results. The error
bars shown are the standard deviation from 500 simulations divided
by
√

50 to show the uncertainty we would expect in a survey of ∼
50 [h−1Gpc]3 volume size

1h−1Gpc3, we find that 100% (99%) of our mocks shows better than 3σ (5σ) signifi-
cance of detecting BAO after reconstruction. This result holds for all the considered
map resolutions. We find similar results for reconstruction at z = 1: 100% (98.6%)
of our mocks shows a detection of the BAO with a significance above 3σ (5σ).

We also find that the improvement over the significance of BAO detection after
reconstruction is greater for smaller values of the angular resolution, while the im-
provement decreases as we use larger values of angular resolution. Furthermore, the
improvement is greater at z = 0 than at z = 1, as expected, since the non-linear
effects that reconstruction partially removes are smaller at higher redshifts.

Redshift-space

By performing reconstruction over matter maps at z = 0 in redshift-space we find that
uncertainties in α decrease by ∼ 50 % after reconstruction, while the uncertainties in
ε decrease by ∼ 40 % (see Table 3.2). Recovered mean values of ε after reconstruction
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Figure 3.9: The best-fit to monopole and quadrupole correlation
function for matter maps in real-space at z = 0 – reconstructed (top)

and unreconstructed (bottom).
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Figure 3.10: The best-fit to monopole and quadrupole correlation
function for matter maps in real-space at z = 1 – reconstructed (top)

and unreconstructed (bottom).

are at most 0.2% away from the expected ε = 0 value and are within 5σ uncertainties
considering the error on the mean, i.e. a total volume of 500 (h−1Gpc)3. On the
other hand, we find a biased estimate of the recovered values in α that increases up
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Figure 3.11: Significance of detecting a BAO peak with (red) and
without (blue) reconstruction at z = 0 (top) and z = 1 (bottom).
Histograms show the distribution of the square root of the absolute
difference between best-fit χ2 values with and without the BAO feature
in a template for matter maps in real-space. Vertical dashed lines show

the 3σ and 5σ detection significance.

to 0.5% for larger smoothing scales σ. Even though this bias is statistically significant
at a level of more than 5σ for a total simulated volume, it is still compatible with the
expected value considering the typical volume of a future 21cm survey.

At z = 1 we find that the uncertainties after reconstruction in α decrease by
∼ 30 %, while for ε we find ∼ 50 % decrease. All the recovered values of both α
and ε are consistent with the expected values. Small biases we find are within 5σ
uncertainties for the full simulation volume.

As can be seen from Table 3.2 and Figure 3.8 the errors on ε parameter are
significantly smaller than the errors on α. This result is in contrast to the results from
real-space where the errors on α and ε are similar. The reason why this happens in
redshift-space is due to the following fact. As described in Section 3.2, for matter maps
in redshift-space we measure the monopole and the quadrupole along three different
axes of our simulation. We then compute the covariance matrix by taking the average
monopole and quadrupole along three different axes for each realisation. Since the
scatter of quadrupole is high along three different axes in a particular realisation,
taking the average reduces the variance and in effect makes the covariance matrix
values smaller. Since the quadrupole is more sensitive to ε, in turn this makes the
uncertainties on ε smaller by roughly a factor of 3 compared to the case we use only
one axis. On the other hand, since the monopole is using the spherically averaged
information, the measured scatter between different axes is much smaller. In turn
the scatter is not affected by averaging over three different axes. Being that the
monopole is more sensitive to the α parameter, the constraints are very similar when
considering only one axis or average over three axes. To summarise, if we use only
one axis, which is a more realistic scenario and what we have done in real-space, we
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get the errors on ε to be comparable and larger than the errors on α. In this case,
the main reason why the constraints are similar for alpha and epsilon is the angular
resolution, similar to the real-space consideration.

We show the best-fit model for matter maps in redshift space before and after
reconstruction at z = 0 in Figure 3.12 and at z = 1 in Figure 3.13. Similar to real-
space, monopole is more broad for maps with larger angular smoothing scale, while in
the quadrupole this effect is reversed. We find both monopole and quadrupole to be
more pronounced after reconstruction. The effect is not so evident for the monopole,
but we emphasize again that these results should be compared with the linear theory
prediction (solid lines in Figure 3.2, bottom panel).
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Figure 3.12: The best-fit to monopole and quadrupole correlation
function for matter maps in redshift-space at z = 0 – reconstructed

(top) and unreconstructed (bottom).

3.5.3 Impact of angular resolution on measured distances

Another useful parametrization of the position of the acoustic scale is in terms of
dilations along the line of sight and perpendicular to the line of sight,

α|| ≡
Hfrd,f
Hrd

and α⊥ ≡
DArd,f
DA,frd

, (3.33)

which in real-space define r2 = α2
||r

2
||+α2

⊥r
2
⊥. A nice property of this parametrization

is that it is linear in the cosmological parameters one wants to measure and therefore
easier to interpret. The relation to the α and ε previously defined reads (see equation
3.14)

α = α
1/3
|| α

2/3
⊥ and ε =

(
α||
α⊥

)1/3
. (3.34)

As discussed in Section 3.4, the effect of angular resolution is to further smooth the
field perpendicularly to the line of sight, hence we expect the constraints on the
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Figure 3.13: The best-fit to monopole and quadrupole correlation
function for matter maps in redshift-space at z = 1 – reconstructed

(top) and unreconstructed (bottom).

angular diameter distance to be more affected by the value of σ than the Hubble
parameter (this has been extensively discussed in [125]). This is shown in Figure 3.14
where we plot the constraints on α|| and α⊥ for dark matter in redshift space. While
α|| benefit from reconstruction, both in terms of central value and 1σ error, almost
independently of the additional angular smoothing, the same is not true for α⊥. At
z = 0, and for large values of σ, the best fit value of α⊥ is still biased with respect to
the true value even after reconstruction. This indicates that non-linear shifts of the
BAO are not well captured by the reconstruction procedure when too many modes
are missing. We also note that the error on α⊥ is not reduced much by reconstruction
when the angular resolution is too low. At z = 1 the picture is somehow better, since
change in the position of the acoustic peak induced by gravity are less important as
one moves to higher redshift. However the gain in errorbars after reconstruction is
only marginal. This result actually questions how well the BAO could be measured
in the transverse direction by a 21 cm IM experiment (in [125] it was shown that
SKA1-MID will not even detect the isotropic BAO peak at z ≥ 1). For instance,
an experiment like CHIME has an angular resolution at z = 1 comparable to our
idealized single-dish case.

3.5.4 Halo maps

We measure the BAO shift parameter α in each of our 500 halo maps before and after
reconstruction using the template models outlined in Section 3.4.3. In Table 3.3 we
give the summary of the best-fit results for the isotropic BAO shift parameter α in
real- and redshift-space at z = 0.
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Figure 3.14: Mean best-fit values of BAO dilation parameters α||
and α⊥ in redshift-space as a function of the smoothing scale σ. Blue
points represent the non-reconstructed, while red points represent the
reconstructed halo maps results. The error bars shown are the stan-
dard deviation from 500 simulations divided by

√
50 to show the un-

certainty we would expect in a survey of ∼ 50 [h−1Gpc]3 volume size.

Halos – Real Space
σ[h−1Mpc] Reconstruction α

〈
χ2〉 /dof

5 no 1.002± 0.026 32.2/20
yes 1.000± 0.016 27.0/20

8 no 1.004± 0.028 31.5/20
yes 1.001± 0.018 27.7/20

10 no 1.005± 0.031 28.0/20
yes 1.001± 0.020 26.2/20

Halos – Redshift Space
σ[h−1Mpc] Reconstruction α

〈
χ2〉 /dof

5 no 0.999± 0.032 28.1/20
yes 0.998± 0.019 26.3/20

8 no 0.998± 0.034 27.6/20
yes 0.998± 0.022 26.3/20

10 no 0.998± 0.036 25.2/20
yes 0.999± 0.024 24.5/20

Table 3.3: Fitting results for halo maps in real- and redshift-space
at z = 0 for different map resolutions σ (column 1). Column 3 show
the mean and the standard deviation of BAO shift parameter α. The
mean χ2/dof is given in column 4. The errors shown for α are the
standard deviations over 500 simulations. The actual errors on the

means of the parameter α are the listed values divided by
√

500.

Real-space

In Figure 3.15 we show the mean best-fit values of the shift parameter α as a function
of the angular resolution σ in real-space (left panel). We find that our reconstruction
method works well in real-space and decreases the uncertainties on the parameter α
by roughly 40% compared to the unreconstructed case. The recovered shift parameter
are consistent with the expected α = 1 and are within the uncertainties for all angular
resolutions considered.
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The uncertainty on α shows an increases as we go to larger values of the angular
resolution - σ. This is expected as we are here only considering the monopole in which
the BAO peak gets less pronounced with larger angular resolution σ. We also expect
that the constraints on α could get tighter and less σ-dependent if we were also able
to use the information from the halo maps quadrupole.

In Figure 3.16 we show the best-fit to the halo monopole in real-space. The BAO
peak in the monopole gets more pronounced after reconstruction, suggesting our
reconstruction method is able to partially remove the non-linear effects that cause
the smearing of the BAO peak. With higher angular resolution σ used, the monopole
gets more broad, even in linear theory (as shown in upper panel in Figure 3.4) and
the effect of reconstruction is not so evident anymore.

Redshift-space

Figure 3.15 shows the mean best-fit values of shift parameter α as a function of angular
resolution σ in redshift-space (right panel). Similar to the results in real-space, we
find the uncertainties on α after reconstruction decrease by 30% – for larger angular
resolution, up to 40% – for smaller angular resolution σ. Our recovered mean values
of α after reconstruction are within 0.2% and consistent with the expected value 1.
The biases we find are at the level of 3σ for the full 500 simulations volume.

In Figure 3.17 we show the best-fit to halo correlation function in redshift space.
Similar to the results in real-space, the BAO peak in the monopole gets more pro-
nounced after reconstruction, suggesting our reconstruction method is able to par-
tially remove the non-linear effects that cause the smearing of the BAO peak in
redshift-space too. Using higher angular resolution scales, the monopole gets less
pronounce.
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Figure 3.15: Halo maps at z = 0: Mean best-fit values of BAO shift
parameter α in real- (left panel) and redshift-space (right panel) as a
function of the angular resolution σ. Blue points represent the non-
reconstructed, while red points represent the reconstructed halo maps
results. The error bars shown are the standard deviation from 500
simulations divided by

√
50 to show the uncertainty we would expect

in a survey of ∼ 50 [h−1Gpc]3 volume size.

3.6 Summary and Conclusions
Perturbations in the early Universe produced sounds waves, called baryon acoustic
oscillations, that propagated in the baryon-photon plasma until the recombination
epoch. This phenomenon left its signature on the spatial distribution of matter and
galaxies in the Universe as a peak (or set of wiggles) in the correlation function (power
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Figure 3.16: The best-fit to monopole of the correlation function
for halo maps maps in real-space at z = 0 – reconstructed (top) and

unreconstructed (bottom).
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Figure 3.17: The best-fit to monopole of the correlation function
for halo maps in redshift-space at z = 0 – reconstructed (top) and

unreconstructed (bottom).

spectrum) that can be used as a standard ruler. The position of the BAO peak is
very well constrained by CMB experiments, and by measuring it from low redshift
cosmological probes (such as galaxy catalogues or 21cm IM observations) constraints
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on the value of the cosmological parameters, and therefore on the nature of dark
energy, can be set.

BAO are extremely robust cosmological probes with respect to systematic effects.
Unfortunately, non-linear gravitational evolution tends to smear out that feature
by inducing a damping and broadening on the BAO peak and produces a shift in
its position. Those effects will induce a systematic bias on the derived value of
the cosmological parameters (due to the peak shift) and will increase the error bars
on those since the peak position will be less clear. Reconstruction is a technique
developed to undo (at least partially) the effects of non-linear gravitational evolution.

The ultimate goal of standard reconstruction methods is to place galaxies in their
initial positions. This is partially achieved by moving back galaxies by estimating
the amplitude of the underlying density field and using the Zel’dovich approximation
to compute displacement field [38]. This procedure has proven to be very successful
and the constraints on the value of the cosmological parameters have improved after
applying this technique [151, 144].

However, there are cosmological observations that do not produce as output galaxy
catalogues, but pixelated maps; an example of this kind of observations is a 21cm
IM survey. While the power spectrum or correlation function inferred from these
observations will be affected by non-linearities, in the same way galaxy surveys are, it
is not obvious, a-priori, the way reconstruction should be performed on those density
maps.

In this chapter we have tested a new BAO reconstruction method that consists in
moving pixels instead of galaxies. We work on a regular grid to compute the displace-
ment field and then treat the grid cells as galaxies in the standard reconstruction.
By doing this we avoid two interpolations of the displacement field – one for the par-
ticles/galaxies and one for the uniform field of particles to compute the shifted field.
Having the grid cells small enough, we recover the results from the standard method.

The main features of this method are:

• It can be applied to both galaxy surveys and pixelated maps (e.g. 21cm IM
observations).

• In the limit of very small pixels it is equivalent to standard reconstruction
method.

• It is faster and easier to implement than the standard method.

We have tested this method against the standard one in the case of matter density
field in real-space on a large set of large box-size numerical simulations. We varied
the smoothing scale for the displacement field across a wide range and we find that
the methods agree. We find no significant difference between the methods in the
constraints on the position of the BAO peak that we recover.

We have then applied this method to the spatial distribution of matter and halos
in both real- and redshift-space using the same numerical simulations. In all cases we
take into account the pixelated nature of the observations by creating mock maps that
we obtain by convolving the simulating field (matter or halos) with a 2-dimensional
Gaussian beam that mimic the effect of the telescope primary beam.

We use a theoretical template that parametrizes the effect of non-linearities on
the broadening of the BAO peak, redshift-space distortions, FoG effect and basic in-
strumental effects such as the telescope beam size (embedded into the map resolution
in our analysis) to fully model the measured correlation functions.

Our findings can be summarized as follow:
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• By reconstructing maps created from the spatial distribution of matter in real-
space at z = 0 and z = 1 we find that the recovered values on α and ε are
compatible with those expected, α = 1 and ε = 0, respectively. At z = 0
the errors on α and ε decrease by ∼ 50% with respect to the case without
reconstruction. We find the relative decrease in errors after reconstruction on
both shift parameters vary within 5% and shows no evident dependence on the
map resolution. At z = 1 the error on ε decreases by ∼ 30 %, while the errors
on α decrease by 30% after reconstruction for smaller values of the smoothing
scale, while it decreases by 15% for larger values of the smoothing scale.

• By reconstructing maps created from the spatial distribution of matter in redshift-
space at z = 0 and z = 1, we find that, at the level of expected precision of a
future 21cm survey, the recovered values on α and ε are compatible with those
expected, α = 1 and ε = 0. At z = 0 the error on α error decreases by a 40-50%
with respect to the case without reconstruction, while the error of ε decreases
by 35-45% after reconstruction. We find the relative decrease in errors depends
on the angular smoothing scale and the performance of reconstruction is more
effective for smaller smoothing scales. At z = 1 errors decrease by 30% and
50% for α and ε, respectively, after reconstruction, and we find no significant
dependence on the angular smoothing scale used.

• Using a different parametrisation of the BAO peak shifts (α‖, α⊥), we see more
clearly the effect of low angular resolution on the constraints on the BAO peak
position along the line-of-sight and in the transverse direction. Our reconstruc-
tion of matter maps in redshift-space recovers the expected values of α‖ at the
level of expected precision of a future 21cm survey and provides better con-
straints at both z = 0 and z = 1 with almost no dependence on the angular
smoothing scale σ. In the case of α⊥, we find that with increasing angular
smoothing scale, relative gains of reconstruction get smaller at z = 0, while the
situation is somewhat better at z = 1.

• By reconstructing maps created from the spatial distribution of halos in real-
space at z = 0 we find that the recovered value on α is compatible with 1. The
error on the α after reconstruction decreases by a 40% for the smallest smoothing
scale, while it decreases by 30% for the largest smoothing scale we used. We
find the relative improvement on the constraints of α after reconstruction to
depend on the smoothing scale.

• By reconstructing maps created from the spatial distribution of halos in redshift-
space at z = 0 we find that the recovered value on α is compatible with 1.
The error on α after reconstruction decreases by 40% with respect to the case
without reconstruction for the smallest, while the decrease is 30% for the largest
smoothing scale used.
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Chapter 4

High-redshift post-reionization
cosmology with 21cm IM

Introduction
We have already seen in chapter 3 some of the current and near future 21cm IM
surveys. At the same time galaxy surveys such as DESI [160], Euclid [161], LSST
[162], WFIRST [163] will detect millions of galaxies up to z ' 2 and will allow us to
tightly constrain the value of the cosmological parameters.

The redshift window 2.5 < z < 5 remains however vastly unexplored on cosmo-
logical scales. DESI will measure the BAO in the three dimensional clustering of
the Lyα-forest in the range 2 < z < 3.5 remarkably well, with a 1-2% precision,
but still far from the cosmic variance limit, and HETDEX [164] will observe Lyα
emitting galaxies over 400 square degrees between 1.9 < z < 3.5 probing both BAO
and redshift space distortions (RSD). Indeed, carrying out galaxy redshift surveys
at high-redshifts becomes increasingly more difficult, as galaxies become fainter and
fainter. IM can survey these redshifts without any limitation, and therefore, assum-
ing its technical difficulties can be overcome, it offers a natural solution to map the
high-redshift Universe. For these and other reasons, a hypothetical 21cm survey at
high-redshift has been considered by the Cosmic Vision program [165] as one the five
possible experiment for the next generation of cosmological surveys.

Although in most models the relative contribution of dark energy to the energy
content of the Universe decreases with redshift, it is important to carry out observa-
tions at redshifts z > 2 in order to probe the consistency of the model. Alternatively,
extensions of the models as for example early dark energy still provide viable solutions
to the cosmological constant problem and could be exquisitely probed with IM of the
21cm line [166, 167, 168]. The nature of dark matter can be tested by using IM [169].
Another possibility is to constrain extensions of the vanilla ΛCDM cosmology, e.g.
to massive neutrinos and curvature. More generally, measurements at high-redshift
could increase our lever arm to constrain any deviation from the standard paradigm.

At high-redshift the modeling of RSD is also more robust, as the dark matter
field is more linear on a cosmological scales. Unfortunately, a major limitation of all
IM measurements is the interpretation of the redshift-space clustering. This is due
to the conversion factor from the measured brightness temperature of the 21cm line
to the underlying dark matter distribution, which is related to the mean distribution
of neutral hydrogen in the Universe. Exploiting the full potential of 21cm IM, would
therefore require external information about this astrophysical parameter.

In this work we want to study how much the cosmological constraints of a 21cm
survey will be affected by uncertainties in the astrophysics of neutral hydrogen. We
will discuss novel ways of tackle this problem, and then focus our attention to the
performances of a hypothetical 21cm survey in the redshift range 2.5 < z < 5. One
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of the main goals is to find the cosmological parameters that will mostly benefit from
a combination of CMB probes, galaxy survey and 21cm observations.

This chapter is organized as follows. In section 4.1 we present the modelling of the
21cm signal and of the noise along with the Fisher matrix formalism employed for this
work. The characteristics of the 21cm IM surveys considered are outlined in section
4.1.2. The constraints on the growth rate are shown in section 4.2.1. In sections
4.3.1 and 4.3.2 we discuss the constraints on two possible extensions of the baseline
cosmological model: neutrino masses and effective number of neutrinos, respectively.
We finally outline the main conclusions of this work in section 4.4.

4.1 Method
Estimates of the performance of a given survey in constraining cosmological parame-
ters are usually carried out using the Fisher Matrix formalism [170]. Its main ingre-
dients are a model for the signal and the noise one would like to measure. In our case
we need to define the 21cm power spectrum, P21(k, z), and the noise level of a given
configuration of radio antennas.

The fiducial cosmology we use is the Planck 2015 [6] best-fit ΛCDM: ΩM = 0.3075,
h = 0.6774, ΩK = 0, ns = 0.9667, As = 2.142 × 10−9, σ8,0 = 0.828, Ων = 0. For
massive neutrinos we assume a fiducial value of Σmν = 0.06 eV, and for the number
of relativistic degrees of freedom Neff = 3.046. In all the calculations with non-zero
Σmν we keep the total matter fraction ΩM = Ωcdm+Ωb+Ων fixed when varying Σmν .
We do this by including the neutrinos as the part of CDM fraction and decreasing
the fiducial CDM fraction Ωcdm by Ων = Σmν/(94.07 eVh2)1. Throughout the whole
analysis we keep the baryon fraction Ωb fixed. Power spectra have been computed
using CAMB [16].

4.1.1 21cm signal model

We use equation 2.1 for the 21cm power spectrum model. In principle, due to the non-
linear effects that tend to damp the BAO peak (see section 1.2.8), equation 2.1 should
contain an additional damping term given by equation 1.44. However, the damping
scales in equation 1.44 decrease with redshift roughly as the linear growth factor.
Since we will be considering high-redshift window, the effects of non-linearities are
pushed to small scales. Furthermore, a way to ameliorate this effects is to perform
a BAO reconstruction method on the observed non-linear galaxy distribution [38]
or the HI intensity maps at low-redshifts (see [124] and chapter 3). Applying these
techniques can effectively half the damping scales, pushing the effects of non-linearities
to even smaller scales. In fact, we have explicitly checked that including these effects
in the redshift range we consider does not make a significant difference in our results.
For simplicity, we will not include the damping term in the model for the 21cm power
spectrum we consider here.

One immediately sees in equation 2.1 the main difference with respect to a cosmo-
logical analysis of a galaxy power spectrum: any constraint on the amplitude of the
fluctuations, σ8, of RSD parameters, e.g. f , or a combination of the two, is completely
degenerate with the amount of HI in the Universe. This quantity is very uncertain in
the theory modeling, so any information on it must come from independent datasets.
If no external priors are available then RSD measurements with the 21cm line will

1Note that this expression is slightly different from equation 1.46. We use it in this chapter in
order to be consistent with the way that this quantity is defined in the CAMB code [16, 171]
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not be competitive with galaxy surveys. On the other hand, constraints on the BAO
scales are still safe, as they are mostly independent of the broadband shape and
normalization of the power spectrum.

The good news is that several measurements of the HI mean density are available
nowadays [82, 91, 81, 172]. They mostly come from the detection in quasars (QSO)
spectra of Damped Lyα (DLA) systems. DLAs are objects with high column density,
NHI > 1020.3 cm−2, and contain more than the 90% of the total HI in the Universe [91,
76]. The abundance of DLAs gives a direct estimate of ΩHI(z), with current errorbars
around 5% at z < 3.5 and around 30% at z > 3.5 [see e.g. 82]. In both cases there
is a lot of margin for improvement, as existing low redshift measurements are limited
by the noise level in the spectra, whereas at high-redshift by the low numbers of
QSO spectra publicly available. In the near future surveys like DESI and WEAVE
[173] will collect hundreds of thousands of QSO spectra, 10 times more than current
surveys, yielding much better estimates of the abundance of HI. Motivated by this,
in the remaining of this work we will assume three different priors on ΩHI: 2%, 5%,
10%. We take the above priors to be redshift independent, although one could also
imagine a prior degrading with increasing redshift.

The other astrophysical parameter which is quite degenerate with cosmological
parameters is the HI linear bias bHI. In particular, any measurement that can break
the ΩHI− bHI would be of great value for parameter estimation with the 21cm power
spectrum. Naive cross-correlation with other kinds of tracers will not help, and weak
lensing is not a particularly viable option since it probes the k|| → 0 limit of the
density field which for 21cm surveys is the most affected by foreground contaminants
[174, 119].

What we propose, based on the arguments in [76], is to measure the clustering
of the same objects one uses to measure ΩHI, e.g. Lyman-limit systems (LLS) and
DLAs, but weighting each of them by the value of its column density. This weighted
density field can then be cross-correlated with the Lyman-α forest or the 21cm field
itself to partially break the ΩHI− bHI degeneracy. We stress that such a measurement
can already be done with existing datasets, yielding the first ever measurement of the
bias of the HI field. As indeed shown in [76] the bias of the DLAs and of the HI can
be written as

bHI(z) = c

H0

∫∞
0 b(M, z)n(M, z)dM

∫∞
0 dσNHI∫∞

0 f(z,NHI)NHI dNHI
(4.1)

bDLA(z) = c

H0

∫∞
0 b(M, z)n(M, z)dM

∫∞
σ(1020.3) dσ∫∞

1020.3 f(z,NHI) dNHI
(4.2)

where b(M, z) is the halo bias, n(M, z) is the halo mass function,

dσ ≡ dNHI
dσ

dNHI
(NHI|M, z)

is the cross-section of systems with column density NHI, i.e. the probability of observ-
ing an object with NHI in a halo, and f(z,NHI) is the column density distribution
function, i.e. the abundance of such systems. We see that the difference between the
two is just an extra factor NHI. This means that if we weight DLAs by the value
of their column density and then cross-correlate with another tracer would yield an
estimate of the HI bias. The lower integration limit in equation 4.2 is not important
in this discussion, since most of the neutral hydrogen, 95% or more, lives in objects
with NHI ' 1021cm−2 [91, 76], and the weighing by NHI will make the integrals above
completely dominated by the tail of the column density distribution function. In the
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Figure 4.1: The figure shows the dependence on redshift of the HI
bias (left) and the HI shot-noise (right) for two different models of the

HI distribution (see text).

limiting case the bias of DLAs does not depend on this lower threshold, i.e. the DLA
cross-section does not depend on halo mass, then bDLA = bHI. Recent measurements
in [175] show a slight statistical preference for the latter situation.

The cross-correlation of the weighted DLA field, δwDLA, with the Lyman-α forest
flux, δF , will therefore return in the linear regime

〈δwDLAδF 〉 = bHIbFP (k)(1 + fµ2/bHI)(1 + bvfµ
2/bF ) (4.3)

with bF and bv the density and velocity bias of the forest. Projected correlation
function will get rid of most of the RSD contribution allowing a clear determination
of bHI. Recent measurements of the cross-correlation between the forest and DLAs
presented in [176, 175] provide an estimate of bDLA ' 2 with a 5-10% error depending
on different data cuts, which in the limit the DLA cross-section does not depend on
halo mass exactly yields a measurement of HI bias, see equation 4.2. Another option
would be to cross-correlate δwDLA with the 21cm field itself,

〈δwDLAδ21〉 = T̄bb
2
HIP (k)(1 + fµ2/bHI)2, (4.4)

and again we see that the degeneracy between ΩHI and the bias can be partially
broken by combining different probes.

We expect next generation of galaxy surveys to drastically improve on these num-
bers. We will therefore assume, as we did above for the cosmic neutral fraction, three
different redshift independent priors on bHI: 2%, 5%, 10%

In a Fisher analysis we also need to specify the fiducial value of both the cosmo-
logical and astrophysical parameters. For the latter we use the halo model for the
HI explained in chapter 3. In this chapter we take α = 1 and consider two values of
Mmin = 2 × 1010h−1M� and 2 × 1011h−1M�. The overall normalization parameter,
M0, is chosen such that ΩHI(z) = 4 × 10−4(1 + z)0.6 [82]. The values of the free pa-
rameters are motivated by the poorly understood redshift evolution of the HI fraction
and the HI bias, both in simulations and data [53, 177, 128, 178, 105, 82]. The HI
bias and the HI shot-noise are then computed following the equations given in section
2.1.1. In figure 4.1 we show the fiducial value for the bias and the effective HI shot-
noise – PSN, for the two different choices of minimum mass Mmin = 2 × 1011 M�/h
(blue) and Mmin = 2× 1010 M�/h (orange).
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4.1.2 Noise model and 21cm IM surveys

Current and planned 21cm IM surveys focus either on the reionization epoch at z > 6
(e.g. HERA, PAPER, SKA) or on the low-redshift Universe z < 2.5, targeting the
BAO feature in the 21cm power spectrum (e.g. CHIME, Tianlai, HIRAX, FAST,
SKA1-MID). Some surveys (e.g. SKA1-LOW) will cover both redshift ranges but at
the price of low angular resolution [66], while OWFA will focus on a single redshift [75].
Our analysis focuses on the range 2.5 < z < 5, and therefore we first have to make a
few choices on instrument specifications. We consider two approaches: interferometer
instruments (similiar to CHIME and HIRAX) and single-dish telescopes (similar to
FAST). We modify the configuration of both types of instruments such that they
can probe higher redshifts. The main requirement is to keep angular resolution good
enough for the scales we want to probe, as a fixed physical distance subtend a smaller
angular scale at higher redshift. This usually means we have to increase the size of
the longest baseline in an interferometer or the size of the dishes in auto-correlation
mode. We dub the interferometers as Ext-CHIME and Ext-HIRAX, while we dub
the single-dish with highzFAST. Table 4.1 shows the characteristics of Ext-CHIME,
Ext-HIRAX and highzFAST.

Ext-CHIME Ext-HIRAX highzFAST
Ta(K) 10 10 10
Lcyl(m) 200 - -
Wcyl(m) 20 - -
Ncyl 10 - -
Nf 256 - -
Ddish(m) - 10 500
Ndish - 64× 64 1
η 0.7 1.0 -
Dmax(m) 269 800 -
Dmin(m) Lcyl/Nf 10 -
Nb 2560 - -
S21 (deg2) 25000 25000 5000
npol 2 2 2
∆ν(kHz) - - 50

Table 4.1: Main characteristics of the considered surveys.

Thermal noise power spectrum - Interferometers

We model the thermal noise power spectrum of an interferometer as in [64],

P th
N (z) =

T 2
sys(z)X2(z)Y (z)λ4(z)S21

A2
effFOV(z)t0npoln(u, z)

, (4.5)

which we use for Ext-CHIME and Ext-HIRAX. The system temperature is the sum
of antenna and the background sky temperature Tsys(z) = Ta + Tsky(z). We take
the antenna temperature Ta = 10 K and we model the sky temperature as Tsky(z) =
60 K × (ν21(z)/300MHz)−2.55[64]. While the background sky temperature is usually
below antenna temperature at low-redshifts, going to higher redshifts it increases
significantly and represents the major noise contribution.
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The terms X(z) and Y (z) are used to convert from angular and frequency space
to physical space. X(z) is the comoving distance and Y (z) = c(1+z)2

ν21H(z) , where c is the
speed of light, H(z) is the Hubble parameter, and ν21 is the frequency of the 21cm line
(1420 MHz). The wavelength of the 21cm line at a given redshift is λ(z) = λ21(1+z).
We assume a survey area S21 = 25000 deg2, the observing time of tobs = 10000 hours
and the number of polarisation states npol = 2 for both Ext-CHIME and Ext-HIRAX.

The last term in the denominator is the number density of baselines in visibility
space. We will assume a uniform distribution of n(u; z) = Nb(Nb−1)/2π/(u2

max(z)−
u2

min(z)) between umin = Dmin/λ(z) and umax = Dmax/λ(z). We will use an approxi-
mation of this expression n(u; z) ' N2

b/2π/u2
max(z). The total number of beams Nb

is the total number of antenna feeds Nf ×Ncyl in the case of Ext-CHIME, while for
Ext-HIRAX it is the number of dishes Ndish.

Ext-CHIME The effective area per feed is computed as Aeff = ηLcylWcyl/Nf ,
where η is the efficiency factor that we take η = 0.7; Lcyl and Wcyl are the length and
the width of the cylinders, respectively, and Nf is the number of feeds per cylinder.
While the primary beam of each element in this set-up is anisotropic, we will assume
an isotropic field of view (FOV) for each element and we will use FOV ≈ 90◦ ×
1.22λ(z)/Wcyl [64].

Ext-HIRAX The effective area per beam is Aeff = π(Ddish/2)2 where Ddish is
the diameter of a single dish. The primary beam of each dish is isotropic and defined
as FOV =

(
1.22 λ(z)

Ddish

)2
[65].

Window functions for interferometers

In the case we consider – uniform number density of baselines – the noise power
spectrum is scale-independent. Nevertheless, this will not be the real case and there
will be a range of modes that are going to be (un)observable. To account for this we
include sharp cut offs in the k-range probed by the survey, both in k‖ and k⊥. We
take the limits for k⊥ according to [64]:

kmin⊥ (z) = kDmin(z) = 2πDmin

D(z)λ(z) , (4.6)

kmax⊥ (z) = kDmax(z) = 2πDmax

D(z)λ(z) , (4.7)

where D(z) is the comoving distance. The values for Dmin and Dmax depend on the
configuration we consider and are given in table 4.1. For k‖(z) we take the upper
limit kmax(z) to be 0.2hMpc−1 or the non-linear scale knl(z) = knl,0(1 + z)2/3, where
knl,0 = 0.2hMpc−1 [101]. We take the lower limit kmin

‖ (z) = 2π/V 1/3
sur (z). Based on

these, we can now define a window function that defines the range of scales available
to a given configuration.

W (z, k, µ) = Θ(kDmax − k⊥)Θ(k⊥ − kDmin)Θ(k‖ − kmin
‖ )Θ(knl − kµ)Θ(knl − k),

where Θ is the Heaviside step function. We show the effect of this window function on
the signal power spectrum in figure 4.2 in the case of Ext-HIRAX and in the bottom
left panel of figure 4.3 in the case of Ext-HIRAX and Ext-CHIME.
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The foreground wedge

The 21cm cosmological signal is several orders of magnitude weaker than the astro-
physical foreground emissions. Isolating the cosmological signal will be the major
challenge in the data analysis, and it mostly relies on the assumption that fore-
grounds are spectrally smooth. In principle this means that only the smallest radial
wave-numbers k‖ are affected by the foregrounds, allowing us to clean the data with-
out much of the cosmological information being lost. However, the chromaticity of
the interferometers response function will cause foregrounds to leak into the high-k⊥
modes. This will make the foreground cleaning very difficult. This effect is limited
to a certain region in k‖ − k⊥ space, acting on low-k‖ and high-k⊥, and it is known
in the literature as the foreground wedge [179, 180, 181, 182, 183, 184, 124]:

k‖ < sin(θFoV)D(z)H(z)
c(1 + z) k⊥, (4.8)

where θFoV is the field-of-view (or the primary beam width) of an interferometer
element. We can also express the wedge region in terms of all the modes having
µ < µmin with:

µmin(z) =
k‖√

k2
‖ + k2

⊥
= sin(θFoV)D(z)H(z)/(c(1 + z))√

1 + [sin(θFoV)D(z)H(z)/(c(1 + z))]2
. (4.9)

It is important to stress that the foreground wedge is not an intrinsic limitation of a
21cm interferometric survey, but rather a manifestation of our incomplete knowledge
of the calibration of the antennas. Accurate calibration is a difficult task of any data
analysis, in IM in particular because of the 105 difference in signal strength between
the foregrounds and the signal one is trying to measure.

Unfortunately, this contaminated region grows at higher redshifts, as both the co-
moving distance and the Hubble parameter increase faster than (1+z). For instance,
at z = 2 the foreground wedge contaminates all wave modes with µ ≤ µmin(2) = 0.77,
and the situation gets much worse at z = 4 with µ ≤ 0.9. The simplest approach is
to ignore the modes inside the wedge in data analysis (or in Fisher forecasts). This
would mean that we discard 90% of the available modes at z = 4. Another possibility
is to develop techniques that can recover as much as possible information inside the
wedge [174, 119]. While these methods strongly depend on the details of the instru-
mental set up and of the data analysis procedure, in this chapter, for simplicity we
will consider few idealised cases:

1. Wedge – we discard all the modes inside the wedge assuming a horizon limit,
i.e. sin(θFoV) = 1;

2. Mid-wedge – (i) in the case of Ext-HIRAX we use µ = µmin; (ii) in the case of
Ext-CHIME where the primary beam is anisotropic we assume modes with µ =
µmin/1.5 are unavailable, i.e. one third of the contaminated region is cleaned;

3. No wedge case – the foreground cleaning works perfectly for all the modes.

In figure 4.2 we show the effect of the wedge and the window function on the
available modes in the case of Ext-HIRAX. In the left panel we show the effective to
survey volume ratio as a function of k and µ. Available modes in the three cases we
consider are above the solid lines of constant µmin. We show the µmin in the wedge
and mid-wedge case in solid blue and solid line, respectively. Similarly, in the right
panel, we show the signal-to-noise ratio as a function of k⊥ and k‖, where the effect of
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Figure 4.2: This plot shows the effect of the window function, wedge
and knl on the number of modes available to extract cosmological in-
formation for Ext-HIRAX. The left panel displays the ratio between
the effective volume to the survey volume as a function of k and µ.
The right panel represents the signal-to-noise ratio as a function of k⊥
and k‖. For both panels we have considered a redshift bin ∆z = 0.1
centered at z = 4 and assumed kmax = knl(z). Unavailable modes are
shown as white regions. The effect of the wedge can be seen from the
solid black and blue lines. If no wedge is present all modes shown in
the panels contribute, while only the modes above the black/blue line

contribute in the case of full/mid wedge.

the wedge is more clearly seen. Again, solid blue and black line represent the wedge
cases we consider and the available modes are on restricted on the left side of these
lines. In both of the panels we use kmax = knl.

Thermal noise power spectrum - highzFAST

We model the noise power spectrum of a single dish as [185]

P th
N (k, µ, z) = σ2

pix(z)Vpix(z)W−2(k⊥, z). (4.10)

The first term is the pixel thermal noise given by

σ2
pix =

T 2
sys

∆νtobs(Ωpix/S21)NdishNbeam
, (4.11)

where Tsys is the system temperature described above, ∆ν is the frequency resolution,
tobs is the total observing time, Ωpix is the pixel area, S21 is the survey sky area, while
Ndish and Nbeam are the number of dishes and number of beams per dish, respectively.
The pixel area is calculated assuming a Gaussian beam Ωpix = 1.13θ2

FWHM, where
θFWHM = λ(z)/Ddish. The volume of a pixel Vpix is computed by integrating the
comoving volume element of the pixel area along the line-of-sight in the redshift
range corresponding to the frequency resolution ∆ν:

Vpix = Ωpix

∫ z+∆z/2

z−∆z/2
dz′

cD2(z′)
H(z′) . (4.12)

The last term in the noise power spectrum is the response function describing
the angular resolution of a single-dish telescope. Since the frequency resolution we
assume here is very high, we will not take into account the radial response and will
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only consider the angular one. We use

W 2(k⊥, z) = exp
[
−k2
⊥D

2
c(z)

(
θFWHM√

8 ln 2

)2]
. (4.13)

For an instrument like the highzFAST the scales which will be accessible are

kmin⊥ (z) = 2π√
D(z)2S21

, (4.14)

kmax⊥ (z) = 2πDdish
D(z)λ(z) . (4.15)

We show the noise power spectrum of highzFAST at z = 4 in the bottom right
panel of figure 4.3 in dashed line. The dashed gray line is the signal power spectrum,
while the blue solid line includes the effect of the accessible modes.

4.1.3 Total noise power spectrum

The total noise power spectrum is therefore equal to

P tot
N = P th

N (z) + PSN(z)T 2
b(z). (4.16)

We plot the different noise contributions for a survey like Ext-HIRAX at z = 4 in the
top-left panel of figure 4.3. In the top-right panel we show the expected signal-to-noise
ratio for different µ values and different values of Mmin in the case of Ext-HIRAX.
Bottom panels show the total noise power spectra for both interferometers (left panel)
and single-dish (right panel) in dashed lines at z = 4 and fixed value of Mmin. As
expected the thermal noise is the major source of uncertainties, especially going to
high-redshift. We see that on cosmological scales smaller than k ' 0.2hMpc−1 all
surveys we consider become noise dominated. In the upper left panel we plot the
signal-to-noise at k ' 0.2hMpc−1 for different values of µ

nP0.2(z) ≡ P21(k, µ; z)
P tot

N
. (4.17)

Since the shot-noise is always much smaller than the thermal noise in the antennas,
a higher Mmin, i.e. a higher HI bias, results in a higher signal to noise ratio.

4.1.4 Fisher Matrix formalism

Given the signal and noise models discussed in the previous section we can use the
Fisher matrix formalism to forecast the constraints on a set of parameters of interest
{p} from a 21cm IM survey. The Fisher matrix for a single redshift bin is given by
[170]

Fij = 1
8π2

∫ 1

−1
dµ

∫
k2dk

∂ lnP21(k, µ)
∂pi

∂ lnP21(k, µ)
∂pj

Veff(k, µ). (4.18)

The effective volume is related to the comoving survey volume in a redshift bin Vsur
by

Veff(k, µ) = Vsur

(
P21(k, µ)W (k, µ)

P21(k, µ)W (k, µ) + P tot
N (k, µ)

)2

. (4.19)

The instrument response/window function W (k, µ) is included to account for the
modes that are unavailable to a given instrument. The total noise P tot

N accounts
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Figure 4.3: Top-left: HI power spectrum at µ = 0.5 (solid lines)
together with the total noise (dashed) and shot-noise (dotted) for Ext-
HIRAX at z = 4. The different colors show the results for different
values ofMmin = 2×1010 h−1M� (orange) and 2×1011 h−1M� (blue).
Top-right: Signal-to-noise ratio at k = 0.2hMpc−1 for different values
of µ, 1 (solid), 0.5 (dashed) and 0 (dotted), for the two models with
different values of Mmin. Bottom-left: Effects of the window function
on the HI power spectrum for µ = 0.5 for Ext-HIRAX (orange) and
Ext-CHIME (green) at z = 4. The dashed lines show the amplitude
of the noise power spectrum. Bottom-right: Same as before but for

highzFAST.

for the instrument thermal noise and the shot-noise of the HI sources as defined in
equation 4.16.

The total redshift window of the 21cm IM surveys considered here, 2.5 < z < 5,
is divided into smaller redshift bins, in each of them we calculate the Fisher matrix
for a set of parameters. Under the assumption that each redshift bin is independent,
the sum of the Fisher matrices in each redshift bin gives the total Fisher matrix.

Having obtained the Fisher matrix for a given redshift bin or the total redshift
window, the forecasted constraint on a given parameter pi marginalised over all the
other parameters is related to the Fisher matrix by σ(pi) =

√
[F−1]ii. We quote these

numbers as the 1σ constraints throughout the chapter.
In observations one needs to convert angular coordinates and redshifts to wave

vectors in Fourier space. That is done by assuming a fiducial cosmology, which
could be different from the true underlying one. By using a cosmology different from
the fiducial one, we introduce an additional artificial anisotropy in the clustering
measurements. This effect, known as Alcock-Paczynski(AP) effect [186], must be
taken into account in the forecast. We include all the geometrical distortions arising
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from the assumption of a fiducial cosmology [187, 188]. The fiducial wavenumber
vector ~k is determined by two numbers, namely, the amplitude kf and by the cosine
of the angle between the ~k and the line-of-sight, µf = k‖,f/kf . The component along
and transverse to the line-of-sight are related to the true values by k‖ = k‖,f (H/Hf )
and k⊥ = k⊥,f (DA,f/DA). Furthermore the amplitudes of the wavenumber vectors ~k
and ~kf are related

k2 =
(

(1− µ2
f )
D2
A,f

D2
A

+ µ2
f

H2

H2
f

)
k2
f . (4.20)

We write our full signal power spectrum in a redshift bin centred at redshift z as
[189]:

P21(kf , µf , z) = T
2
b(z)

DA(z)2
fH(z)

DA(z)2H(z)f

(
bHI(z) + f(k, z)µ2

)2
P (k, z). (4.21)

We will also use another way of writing the full power spectrum, particularly
in the case we are interested in the redshift-space distortions where an important
parameter is fσ8:

P21(kf , µf , z) = T
2
b(z)

DA(z)2
fH(z)

DA(z)2H(z)f

(
bHIσ8(z) + fσ8(z)µ2

)2 P (k, z)
σ2

8,f
. (4.22)

Within our model, the derivative of the HI power spectrum with respect to a
generic parameter X looks like

∂ lnP21
∂X

= ∂ lnT 2
b

∂X
+ ∂ lnD−2

A

∂X
+ ∂ lnH

∂X
+ ∂ lnP (k)

∂X
+ ∂ lnP (k)

∂k

∂k

∂X

+ 2µ2

bHI + f(k)µ2

[
∂f(k)
∂X

+ ∂f(k)
∂k

∂k

∂X
+ 2f(k)(1− µ2)

(
∂ lnH
∂X

+ ∂ lnDA

∂X

)]
, (4.23)

where
∂k

∂X
= k

[
µ2∂ lnH

∂X
− (1− µ2)∂ lnDA

∂X

]
. (4.24)

The Fisher matrix formalism can also accommodate theoretical errors in the signal
model, for instance due to poor knowledge of non-linearities, along the way described
in [190, 191]. We do not include such terms in our analysis, but in Section 4.3.1 we
will comment on the effect of marginalising over uncertainties in non-linear models
using templates.

4.2 Results from IM alone
In this section we present the constraints on the value of the cosmological parameters
that can be achieved by using 21cm data alone. We focus our analysis on the growth
rate and on the BAO distance scale parameters.

4.2.1 Growth of structures

We will first consider the case in which we assume that the geometry is fixed, e.g. by
CMB measurements, and we can fit for the amplitude of the power spectrum using
two parameters only: bσ8(z) and fσ8(z). This choice is motivated by a comparison
with the forecasts presented in [192, 160, 193], where BAO distance scale parameters
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Figure 4.4: 1σ constraints on fσ8 for highFAST (blue), Ext-HIRAX
(orange) and Ext-CHIME (green) for different wedge configurations:
no-wedge (solid), mid-wedge (dashed) and full wedge (dotted). Notice
that the wedge only apply to interferometers. The different panels
show the results for different assumptions of kmax, 0.2 hMpc−1 (left
column) and knl (right column), and for different priors on both bHI
and ΩHI, 2% (top row), 5% (middle row) and 10% (bottom row).

have been held fixed when quoting constraints on RSD. Following the discussion
in Section 4.1.1, such a measurement in an IM survey is possible only with external
information on ΩHI and bHI, that we therefore include as priors in our Fisher forecasts.
We present results for 2% 5% and 10% priors in each redshift bin, but it should be
kept in mind that, in reality, these priors will be a function of redshift, worsening
at higher z. We show the outcome of the Fisher calculation for both a conservative
choice of kmax = 0.2hMpc−1 and for kmax = knl.

Results are summarized in figure 4.4. Starting from the continuous lines, which
show the no-wedge case for Ext-CHIME, Ext-HIRAX, and highzFAST, we see that in



4.2. Results from IM alone 69

2.5 3.0 3.5 4.0 4.5 5.0

z

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

σ
f
σ

8
/f
σ

8
kmax = 0.2hMpc−1, 5% priors− bHI&ΩHI

highzFAST

Ext−HIRAX

Ext− CHIME

wedge

mid− wedge

no− wedge

2.5 3.0 3.5 4.0 4.5 5.0

z

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

σ
f
σ

8
/f
σ

8

kmax = 0.2hMpc−1, 5% priors− bHI&ΩHI

highzFAST

Ext−HIRAX

Ext− CHIME

wedge

mid− wedge

no− wedge

Figure 4.5: Dependence of the constraints on fσ8 on the fiducial
value of the HI bias. The left and right panels show the results when
the value of Mmin, a parameter that controls the cut-off mass in the
MHI(M, z) function and therefore the amplitude of the HI bias, is set
to 2× 1010M�/h and 2× 1011M�/h, respectively. In both panels we
consider a 5% prior on the value of both ΩHI and bHI. Different colors
and line types represent the different instruments and assumptions

about the wedge (see legend), correspondingly.

the absence of foreground contamination 21cm surveys can measure RSD parameters
to exquisite precision. Interferometric experiments saturate the priors up to z =
3.5, and are still able to measure fσ8 with 4% precision at z = 5 in the case of
aggresive priors.. In our analysis Ext-HIRAX perfoms better that the other two
hypothetical facilities, mostly because of a better angular resolution. Single dish
experiments like highzFAST pay the price of low angular resolution, but they are
unaffected by the wedge, so the blue line in figure 4.4 can be considered the final
result for auto-correlation experiments. If we now turn our attention to the case
with partial wedge contamination, the mid-wedge case described in Section 4.1.2, we
see a degradation in the constraining power, with surveys with larger FOV yielding
larger error bars as expected. For instance we find similar results comparing Ext-
CHIME and highzFast. If the wedge extends up to the horizon the picture changes
dramatically and interferometer performs much worse than single dishes. As it can
be noticed in the right and lower panels, the inclusion of all the modes down to the
non-linear scale knl does not substantially change the results. This is a consequence
of the very low S/N ratio on scales smaller than k ' 0.2hMpc−1 (see figure 4.3).
Only in the case where we consider the full wedge, we find marginal improvement
from the inclusion of smaller scales.

As discussed in section 4.1.1, the value of the HI bias as a function of redshift is
quite uncertain, reflecting our poor knowledge of what halos host neutral hydrogen.
Figure 4.5 shows the dependence of our results on the HI bias. We do that by
assuming two different values for Mmin: Mmin = 2 × 1010M�/h (left panel) and
Mmin = 2×1011M�/h (right panel). The numbers we obtain are very similar in most
cases, with the exception of the full wedge scenario, indicating our forecasts should
be robust to different choices of fiducial astrophysical parameters. For completeness,
the numbers with the errors on fσ8 for Ext-HIRAX and various considerations using
5% priors on the values of both ΩHI and bHI are shown in table B.1.

To better illustrate the synergies of a 21cm IM probe with galaxy surveys, in
figure 4.6 we plot, as a function of redshift, the forecasted constraints on fσ8 from:
DESI (tables 2.3 and 2.5 from [160]), Euclid (table 1.4 from [193], reference case),
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Figure 4.7: 1σ constraints on the angular diameter distance (left)
and Hubble function (right) from the Ext-HIRAX setup. The forecasts
have been derived for two different values of kmax = 0.2 hMpc−1 (blue)
and knl (orange). The solid, dashed and dotted lines represent different
assumptions over the wedge (see legend). The fiducial value of the HI
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HETDEX (figure 6. from [194]), WFIRST (figure C.6 from [163]) and Ext-HIRAX
for the mid-wedge case (figure 4.4). We emphasise that the one should not directly
compare the precision a survey could possibly achieve in the figure 4.6, since different
analysis have different underlying assumptions, but the redshift coverage. 21 cm
surveys could be able to fill the gap almost to the end of reionization, in a redshift
range difficult to reach for conventional surveys. As a reference we used the case of
5% priors and partial cleaning of the wedge.

4.2.2 BAO distance scale parameters

We now turn our attention to the BAO distance scale parameters. This case is similar
to a real analysis if the modelling of the broadband power spectrum has introduced
enough nuisance parameters that only an amplitude can be measured with enough
precision. In this case any constraint on fσ8 makes sense only in combination with
CMB data.
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Figure 4.8: 1σ constraints on the angular diameter distance (left)
and Hubble function (right) from the Ext-HIRAX setup assuming dif-
ferent prior knowledge on both bHI and ΩHI: 2% (blue) and 10% (or-
ange). The forecasts have been derived for kmax=0.2 hMpc−1. The
solid, dashed and dotted lines represent different assumptions over the
wedge (see legend). The fiducial value of the HI bias is computed

assuming Mmin = 2× 1010M�/h.

Results are shown in figure 4.7. We find that 21cm surveys can provide very
accurate measurements of both the Hubble parameter and the angular diameter dis-
tance. For most cases, the geometry of the Universe can be constrained at the sub
% precision. Similar to the analysis of the growth of structure in the previous sec-
tion, the presence of the wedge suppresses the amount of information that can be
extracted. The Hubble parameter however can still be measured quite accurately.
This is expected since purely radial modes are the only ones surviving the wedge.

The precision at which we can measure the BAO distance scale parameters de-
pends weakly on the prior on astrophysical parameters in the cases of low wedge
coverage, while the effect is more pronounced in the full wedge case. We show the 1σ
constraints on H(z) and DA(z) dependance on the prior on astrophysical parameters
in figure 4.8 in the case of Ext-HIRAX.

Similar to figure 4.6, in figure 4.9 we plot the Hubble function H(z) and the
angular diameter distance DA(z) projected measurements from low to high-redshift
combining different probes. The forecasted constraints for DESI are taken from [160],
while the numbers for other galaxy surveys – Euclid, HETDEX and WFIRST, have
all been taken from the corresponding tables in [192]. We also show the forecasted
constraints from Ext-HIRAX for the mid-wedge case and assuming 5% priors on bHI
and ΩHI. Once again it is clear the contribution of a 21cm survey in filling up the
whole redshift range. In table B.2 we list the constraints for both H(z) and DA as a
function of redshift for different foreground configurations of Ext-HIRAX, fixing the
5% priors on bHI and ΩHI.

4.3 Extension to ΛCDM: Results from probe combina-
tion

Cosmological constraints from a single survey usually are limited by the presence
of degeneracies between parameters, which can be partially broken by combining
different datasets. The purpose of this section is to study the possible benefits of
combining data from CMB, galaxy surveys data at low-redshift and 21cm data at
high-redshift. Since the three probes we consider do not overlap in the redshift range,
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the Fisher forecasts become very simple as the covariance is diagonal and the different
Fisher matrices can be added up.

We include the current constraints on the cosmological parameters measured from
Planck 2015 [6] in combination with BAO measurements from BOSS at redshift z '
0.3 and z ' 0.5 [45]. In order to obtain the corresponding Fisher matrix we use the
publicly available MCMC chains2 which are based on Planck temperature (TT) +
low TEB polarisation + external BAO constraints. We then compute the covariance
matrix for the parameters we consider and invert it.

Additionally, we use the Fisher matrix calculated for a generic CMB Stage 4
experiment3. We refer the reader to the CMB S4 Science Book [195] for more de-
tails about next generation of CMB experiments. For consistency we remove Planck
information if CMB S-4 information is used.

We also separately perform Fisher forecasts for future spectroscopic galaxy red-
shift surveys such as Euclid [161] or DESI [192], rather than relying on existing re-
sults. This choice has been made in order to avoid the final constraints to be affected
by different modeling assumptions in different analysis. It is also motivated by the
need for the full Fisher matrix rather than the marginalized error on each individual
parameter.

To model the galaxy power spectrum, we employ a similar expression to equation
4.22, but without the brightness temperature factor and using the galaxy bias instead
of the HI bias. The effect of non-linearities on the galaxy power spectrum is larger
at lower redshifts and effectively damps the BAO oscillations in the galaxy power
spectrum. To include it in the model we use equation 1.44 where the term P lin

s (k, µ)
now contains the galaxy bias term – b(z)2. We compute the damping scales using
Σ⊥ = 9.4(σ8(z)/0.9)h−1Mpc and Σ‖ = (1 + f(z))Σ⊥[192]. This effect is particularly

2We use base_mnu_plikHM_TT_lowTEB_BAO chains for the study on the sum of neutrino masses
Σmν and base_nnu_plikHM_TT_lowTEB_BAO chains for the study of the number of relativistic species
Neff .

3We thank Anže Slosar for providing us the Fisher matrix of CMB S-4 made by Joel Meyers.
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important for the BAO measurements at low-redshifts since it deteriorates the con-
straints on DA(z) and H(z). In our forecasts for the massive neutrinos we will not
assume the BAO reconstruction (see Section 4.1.1) has been applied and we will use
the full values of Σ⊥ and Σ‖, while in our forecasts on the Neff we do assume BAO
reconstruction and half the damping scales accordingly. The exponential factor in
equation 1.44 is taken outside the logarithmic derivatives in the Fisher matrix since
we do not want to infer any distance information from these factors. In practice, the
exponential only degrades the effective volume.

For Euclid, we assume an area equal to 15000 deg2 covering the redshift range
0.65 < z < 2.05. We take the fiducial galaxy bias b(z) =

√
1 + z and treat it as a

free parameter that we marginalise over in each redshift bin, ∆z = 0.1. The only
noise term in the power spectrum we consider is the shot-noise coming from the
discreetness of galaxy sample and equal to the inverse number density of galaxies:
P shot

N = n̄−1 [h−3Mpc3]. We compute the n̄ using the data in table 1.3 (reference
case) of [193]. We will show the results for two different values of the maximum
wavenumber: Euclid02 for which we take kmax = 0.2hMpc−1 and Euclidnl for which
we take kmax = knl(z).

Of all possible extension of the standard cosmological model we focus on the sum
of the neutrino masses,

∑
mν , and on the effective number of relativistic degrees of

freedom, Neff , since, as we will see, these two have a clear target to be reached.

4.3.1 Massive neutrinos

The goal of this section is to study the improvements on the constraints on the
neutrino masses that can be achieved by adding information from 21cm IM surveys
in the redshift range 2.5 < z < 5. Improvements on the constraints coming from the
epoch of reionization have been presented in [196, 197, 198].

In the case of massive neutrinos we have to slightly modify our signal model.
In fact, as shown [199, 200, 201, 202], halos and galaxies are biased tracers of the
CDM+baryons field only, as opposed to the total matter field – CDM+baryons+neutrinos.
This means that we have to change the P (k) and f(k) in equation 2.1 to include only
the CDM+baryons component. This important physical effect has the consequence
of reducing the constraining power of a broadband analysis of P21(k, z), since the
total matter power spectrum is more suppressed by the presence of massive neutri-
nos than the CDM+baryons only. In our case, we find the difference being around
30% in terms of the forecasted σmν , an absolutely non-negligible effect. To the best
of our knowledge, existing forecasts on neutrino masses do not include this effect in
their analysis (with some notable exceptions as in [66]), suggesting some level of bias
in their final answers. Our forecast is therefore more realistic, but it yields worse
constraints.

Another important thing to notice is that the effect of neutrinos on the power
spectrum become smaller with redshift. This is due to the fact that neutrinos have
less time to delay the growth of CDM+baryons perturbations on small scales. This
means that the constraint on Σmν from two surveys, one at low-redshift and another
at high-redshift, covering the same volume and using the same amount of information
(kmin < k < kmax) will be different, the high-redshift one being worse. In contrast,
going to higher redshifts has two advantages: larger survey volume and larger knl up
to which one can hope to use perturbation theory. Figure 4.10 shows the ratio between
the linear CDM+baryons (dashed) and the total matter (solid) power spectrum in a
model with massive neutrinos (Σmν = 0.06 eV) to the same quantities in the standard
ΛCDMmodel (Σmν = 0 eV). Different colors represent different redshift, in blue z = 1
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both bHI and ΩHI.

and in red z = 4. We notice that the difference between CDM+baryons and total
matter remains constant with redshift, but the overall suppression compared to the
vanilla models decrease by almost a factor of two between low and high z.

We show the forecasted constraints on the neutrino masses and other cosmological
parameters coming from external datasets alone in table B.3. Constraints on the neu-
trino masses for various combinations of probes and different foreground assumptions
are shown in table B.6 and B.7 for Ext-CHIME and Ext-HIRAX, respectively. We see
that in the most pessimistic case, i.e. full wedge and kmax = 0.2 hMpc−1, Ext-HIRAX
plus Euclid and CMB-S4 is able to pin down neutrino masses to σmν = 0.028 eV,
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with IM bringing a 10% improvement on the errorbars. In the most optimistic case
this combination of probes yields σmν = 0.018 eV in which case the gain of adding IM
can reach 40%. It is important to stress again that the use of CDM+baryons to de-
scribe the clustering of galaxies and 21cm is worsening the error bars by roughly 30%.
In figure 4.11 we show the constraints and the degeneracies of the neutrino masses
with other cosmological parameters when Ext-HIRAX is combined with CMB-S4 and
CMB-S4+Euclid in the most optimistic case. Single-dish experiments do not help in
constraining neutrinos masses as well as interferometers, as one can see from results
presented in tables B.5 for highzFAST alone and table B.8 in which we show the
results when combining different probes together.

We notice that the effect of the wedge does not worsen the constraints too much.
In Section 4.2.1 we have shown that the presence of the wedge deteriorate significantly
the constraints on fσ8. Thus, we conclude that most of the improvement brought
in by the 21cm data in the combined analysis is due to the very accurate distance
measurements, which are less affected by foregrounds. A similar argument applies to
external priors on the density and the bias of the HI field, which do not change much
the final result on neutrino masses. On the other hand, an even more aggressive,
in terms of signal-to-noise, instrument could potentially improve on neutrino masses
constraints.

Another advantage of observing the high-redshift Universe is that dark energy is
a sub dominant fraction of the energy density. It is in fact well known that in the
extended parameter spaces the equation of state of dark energy w is very degenerate
with other parameters, e.g. massive neutrinos and curvature [203]. In figure 4.12
we show the degeneracy Σmν − w degeneracy in the case where only low redshift
measurements in combination with CMB are available (Euclid02+Planck) and when
the information from above z > 2.5 (Ext-HIRAX) is added on top. We find a factor
of 3 improvement on the error on w when adding Ext-HIRAX, constraining w to the
1% level even if neutrinos are allowed to vary. For Ext-HIRAX in this case we have
used kmax = 0.2 hMpc−1, 2% priors on both bHI and ΩHI, and mid-wedge case.

To conclude this Section we would like to emphasize that even adding high-redshift
information the constraint on neutrino masses is primarily limited by the uncertainty
in the amplitude of the primordial fluctuation spectra As and the optical depth of
reionization – τ – in CMB data. The parameter τ is weakly constrained by the current
Planck results [6], with an error bar almost a factor of two worse than the forecasted
value [204]. Improvement in the understanding of systematics in the Planck polar-
ization data will likely improve the constraint on τ , but to be more conservative we
decided to adopt the current estimate. This is not the case for pre-Planck forecasts,
e.g. DESI [192] or more recent ones [205, 160], who assume in their forecasts the
blue book value for στ . This fact, together with our correct choice of the modeling
at the beginning of this Section, explains why our constraint on neutrino masses is
in general worse than others in the literature. Concerning the future improvements
on constraining τ , aside from including all polarization measurements from Planck,
another hope is that future reionization epoch IM surveys, e.g. HERA, could bring
tight constraints on τ [206], thereby bringing substantial improvements on other cos-
mological parameters. Figure 4.12 shows how much a better measurement of τ in the
CMB could help in constraining the neutrino masses in the best case of Ext-HIRAX
with kmax = knl, 2% prior on both bHI and ΩHI, and no wedge.
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Beyond linear theory

So far we have considered a simple model for the 21cm power spectrum consisting of
linear theory and linear bias term. Going beyond linear theory requires new nuisance
parameters that need to be marginalised over [191, 190, 205, 207]. This can degrade
the constraints on the neutrino masses. In order to estimate the effect of these extra
terms we will consider a simple order-of-magnitude extension to our power spectrum
model and write the 21cm power spectrum as:

PHI(k, z) = T̄ 2
b (b2HI+fµ2)2Plin(k, z = 0)D(z)2

(
1 + 2k2R2 + αPlin(k, z = 0)D(z)2 k

3

2π2

)
.

(4.25)
The second term in the parentheses has the form of the most relevant counter-term
in the effective field theory approach to perturbation theory [208, 209]. The third
term is included in order to mimic the effects of 1-loop corrections to the power
spectrum and can be understood as the “theoretical error” [191] on the linear theory
model. This approximation for one-loop contributions is a good order-of-magnitude
estimate on scales relevant for constraining the sum of the neutrino masses. The
coefficients R and α are free parameters in each redshift bin and we take the fiducial
values R = α = 0. We marginalise over R and α in each redshift bin. We show
the resulting constraints on the cosmological parameters from Ext-HIRAX in table
B.4. Compared to the standard case of linear theory and bias, the constraints on the
neutrino masses become weaker by a factor of ∼ 25% and 31% in the no wedge case
of kmax = 0.2 hMpc−1 and kmax = knl(z), respectively. Adding other probes (Euclid,
CMB S-4) makes this difference smaller and the constraints are weaker by a factor
of 5 − 10% (see table B.6). This reinforces our previous argument that most of the
constraining power is coming from geometrical measurements of the BAO distances.

4.3.2 The effective numbers of relativistic degrees of freedom

Another extension of the standard ΛCDM model is represented by the presence of
extra radiation species. In the standard model, with 3 massive neutrinos, one has
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Neff = 3.046 [211], but any light species in thermal equilibrium during the history of
the Universe will increase this value. Theoretical estimates in [212, 213] set the min-
imum ∆Neff due to any light particles between z = 0 and the QCD phase transition
to ∆Neff = 0.027. This number is therefore the natural target of any analysis of Neff .

In CMB data, Neff is very degenerate with other parameters, and the 1σ forecasted
error of CMB S-4 is slightly above the theory benchmark. However, it has been
recently realized that a clean signature of Neff exists and can be detected in both
CMB and large scale structure [214, 215, 216], as the presence of extra relativistic
degrees of freedom introduce a phase shift in the acoustic peaks of the baryon-photon
fluid [214]. This effect has already been detected in Planck data [217, 215]. In
[218], the authors have shown that this phase shift survives non-linear evolution and
therefore could in principle be detected in BAO analysis of galaxy clustering.

Building and testing a template for the phase shift goes beyond the scope of this
thesis, but motivated by the above discussion we study the constraints on Neff from
various combination of probes. We fit the full broadband power spectrum, which by
definition contains also the phase shift, to constraint the number of relativistic degrees
of freedom. In a realistic data analysis one would use reconstructed data, which we
mimic by dividing by a factor of 2 the damping factor in equation 1.44 [192].

We show the forecasted constraints on Neff and other cosmological parameters
coming from external datasets alone in table B.9. Our results for various combinations
of probes and different foreground assumptions are presented in tables B.10, B.11,
B.12, B.13, B.14 and figure 4.13. Our forecasted error for Ext-HIRAX ranges from
σNeff = 0.015, for the very optimistic case of no wedge and kmax = knl, to σNeff = 0.021
for the full wedge and kmax = 0.2 hMpc−1 case. These numbers are interesting, but
on the other hand any deviation from the minimal value will be detected at less than
1σ. It is also important to point out that 21cm surveys will add very little to the
combination of CMB data and galaxy surveys. Our results are in broad agreement
with the analysis of [216].
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4.4 Summary and conclusions
In this chapter we have explored the possibility of studying cosmology through radio-
telescopes that operate in the redshift range 2.5 < z < 5. The reason behind this is
that, while this is a redshift-range not considered in current and upcoming setups,
the volume it encloses is much larger then the one probed by current and future
spectroscopic surveys. The question we try to answer is: how much cosmological
information is contained in this redshift window?

We focus our analysis on four key cosmological quantities: 1) the growth rate, fσ8,
the BAO distance scale parameters, DA and H, the sum of the neutrino masses, Σmν ,
and the number of relativistic degrees of freedom, Neff . We consider four extensions
of current or upcoming radio-telescopes like HIRAX, CHIME and FAST, and two
different observational strategies: interferometry (for Ext-HIRAX and Ext-CHIME)
and single-dish (highzFast).

We carry out our analysis using the Fisher matrix formalism. We model the ampli-
tude and shape of the 21cm signal using the model proposed in [76]. We also account
for cosmological and instrumental effects such as the presence of the wedge, the win-
dow function, the instrument thermal noise, the angular resolution, the presence of
shot-noise...etc.

We point out that measurements that are sensitive to the overall amplitude of
the 21cm power spectrum, like fσ8, will be completely degenerate with astrophysical
parameters like ΩHI and bHI. In order to break that degeneracy it is necessary that
we use independent datasets that constrain those quantities. We show how the value
of these parameters can be determined through either the Lyα-forest alone or via
cross-correlations between 21cm and the Lyα-forest or DLAs.

Under the assumption of the primary beam foreground wedge contamination (mid-
wedge case in the text), 5% priors on bHI and ΩHI and kmax = 0.2 hMpc−1, that we
term the fiducial setup, we find that Ext-HIRAX can constrain the value of fσ8 within
bins of ∆z = 0.1 at ' 4% in the redshift range 2.5 < z < 5. A modest improvement
is achieved by changing kmax from 0.2 hMpc−1 to knl. If data from the whole wedge
need to be discarded, these constraints degrade between a factor 2 (at z = 2.5) and
7 (at z = 5).

Under the fiducial setup, we find that Ext-HIRAX will place ' 1% constraints on
DA and H. As with the growth rate, our results point out that going to smaller scales
has only a very modest impact on the results. Being able to use a fraction of the
modes in the wedge has a huge impact on our results, as removing the information
in the whole wedge degrades the constraints between a factor of 10 (at z = 2.5) and
20 (at z = 5).

We have also studied the impact that the theory model has on the results. By
using a theory template that accounts for 1-loop corrections and incorporates 2 free
parameters that we marginalise over, we find that the constraints on the cosmological
parameters worsen between 10% and 500% when 2% priors on ΩHI and bHI are used.
In the case of the neutrino masses, the constraints worsen between 10% and 30%.

We find that data from Ext-HIRAX in the fiducial setup can constrain the neutrino
masses with an error of 0.10 eV. In combination with data from CMB S4 and galaxy
clustering from Euclid the errors shrink to' 20 meV. Our results are not very sensitive
to the wedge coverage, the minimum scale employed and the priors on bHI and ΩHI.

Finally, we find that data from Ext-HIRAX, in the fiducial setup, plus CMB S4
plus Euclid can constrain Neff with a very competitive error of 0.02. As with the
neutrino masses, our constraints do not depend much on the ΩHI and bHI priors, kmax
and the wedge coverage.
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Results for the Ext-CHIME and highzFAST instruments are similar to those of
Ext-HIRAX, with the exception of neutrino masses, where highzFAST performs worse
than Ext-CHIME or Ext-HIRAX.

We conclude that there is a large amount of cosmological information embedded
in the, poorly constrained, redshift range 2.5 < z < 5. Suitable extensions of existing
and upcoming radio-telescopes targeting at this redshift window can provide very
tight constraint on key cosmological parameters.
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Chapter 5

The HI content of dark matter
halos at z ≈ 0 from ALFALFA

Introduction
In this chapter we will use a self-consistent framework to constrain the MHI-Mh rela-
tion using the mass-weighed clustering of HI galaxies detected by the Arecibo Legacy
Fast ALFA survey (ALFALFA), as well as their abundance in halos extracted from
galaxy groups found in the SDSS galaxy survey. We will also explore the possibility
of constraining the shape of the HI profile and the impact of modeling assumptions
on our results.

This chapter is organized as follows. In section 5.1 we will summarize the theo-
retical framework already described in section 2.1.1 that we use to characterize the
abundance and clustering of HI. We outline the data employed in this work in section
5.2. The methods used to analyze the data and compare with the theory predictions
are illustrated in section 5.3. The main results of this work are shown in section 5.4.
We discuss the results and summarize the conclusions of this work in section 5.5.

5.1 HI halo model
The purpose of this chapter is to constrain the HI-mass-to-halo-mass relationMHI(Mh)
from direct measurements in selected galaxy groups, as well as from the clustering of
HI sources. In order to do that we will use the HI halo model described in section
2.1.1. As we saw there the clustering of HI is dominated by its distribution within the
halo (i.e. the so-called 1-halo term). Although our constraints will be based solely on
the shape of the correlation function on larger scales, we use two different models for
the HI density profile, in order to quantify the effect of this assumption on the final
results:

• Altered NFW profile: this is the model introduced and used in [113, 114,
103]. and assumes the radial profile of the form:

ρHI(r|Mh) ∝ (r + 3/4rs)−1(r + rs)−2 (5.1)

where rs is the scale radius of the HI cloud, and is related to the halo virial
radius Rv(Mh) by the concentration parameter – cHI(Mh, z) ≡ Rv(Mh)/rs. We
follow [219, 220] and use a mass-dependent concentration parameter given by:

cHI(Mh, z = 0) = 4 cHI,0

(
Mh

1011M�

)−0.109
. (5.2)
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. In section 2.1.2 we have found that a similar form of this profile describes the
average HI density profile found in numerical simulations very well. For sim-
plicity, we do not consider the exponential cutoff at small scales (see equations
2.8 and 2.8) in this chapter.

• Exponential profile: this is the model implemented in [103], and given by

ρHI(r|Mh) ∝ exp (−r/rs), (5.3)

In both cases the proportionality factors are automatically fixed by requiring that the
HI mass be given by the volume integral of the density profile up to the halo virial
radius Rv(M).

MHI(Mh) = 4π
∫ Rv

0
dr r2ρHI(r|Mh). (5.4)

Thus, both profiles are described by one additional free parameter, cHI,0. The nor-
malized HI density profile in Fourier space for the altered NFW profile is given in
[103] (see their equation A3), while the exponential profile is simply

uHI(k|Mh) = 1
(1 + k2r2

s )2 . (5.5)

.
As before, for the halo mass function and bias, we use the parametrizations of

[104], derived from numerical simulations, but in this chapter we adhere to halo
masses defined by a spherical overdensity parameter ∆ = 180

Mh = 4π
3 ρcΩm∆R3

v. (5.6)

Finally, our basic clustering data vector is the 2D projected correlation, given by
the projection of the 3D correlation function along the line of sight. This can be
computed directly from the power spectrum as:

Ξ(σ) =
∫ ∞
−∞

dπ ξ(π, σ)

=
∫ ∞

0

k dk

2π [PHI,1h(k) + PHI,2h(k)] J0(kσ), (5.7)

where J0(x) is the order-0 cylindrical Bessel function. To accelerate the computation
of Ξ(σ) we made use of FFTLog [221].

Our theoretical model therefore depends on four free parameters θ = {M0,Mmin, α, cHI,0}.
We fix all cosmological parameters to values compatible with the latest ΛCDM con-
straints measured by Planck [6] (H0 = 70 km s−1Mpc−1, Ωm = 0.3075, ns = 0.9667,
σ8 = 0.8159)1.
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Figure 5.1: Sky distribution of the HI selected galaxies from α.100
sample (gray dots). The black lines show the survey boundaries used
in our clustering analysis (in which all sources outside the boundaries
were omitted). The HI sources associated with groups in the SDSS
DR7 group catalog are highlighted in blue. The dotted red lines show
the jackknife regions used to estimate the cosmic variance uncertainties

of the HI mass function in groups (see section 5.3.2).
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5.2 Data

5.2.1 The α.100 dataset

The Arecibo Fast Legacy ALFA (Arecibo L-band Feed Array) survey, or ALFALFA2

[223], is a blind extragalactic HI survey performed using the Arecibo radio telescope.
The main goal of ALFALFA is to quantify and study the properties of the HI content
of the local Universe (z . 0.05). It represents a significant improvement over previous
HI surveys, with a beam FWHM of ∼ 3.5 arcmin, an rms noise of ∼ 2.4 mJy and a
spectral resolution of ∼ 10 km s−1.

Previous clustering analyses of the ALFALFA samples used the 40% [224, 78,
225], and 70% [96] data releases (labeled α.40 and α.70). Our analysis makes use of
the final data release [226], containing ∼31500 sources up to a redshift of z = 0.06
and covering approximately 7000 square degrees in two continuous regions at either
side of the Galactic plane. Sources with good detection significance (S/N > 6.5),
classified as “code-1”, represent the main sample (∼ 81% of the total 31502 sources).
Most of the remaining sources, classified as “code-2”, correspond to lower signal-to-
noise detections (S/N > 4.5) with known optical counterparts. The remaining ∼ 5%
of the catalog is mostly composed of high-velocity clouds of galactic provenance. We
use only code-1 sources in the clustering analysis described in section 5.3.1, and both
code-1 and code-2 objects in the direct measurement of the HI content of galaxy
groups (section 5.3.2). For each source, the catalog provides information about their
angular coordinates, heliocentric radial velocity, radial velocity in the CMB frame,
21cm flux, line width and HI mass. HI masses for all objects can also be obtained
from their distance and 21cm flux as

mHI = (2.356× 105M�)D2 S21 (5.8)

where D is the distance to the source in Mpc, S21 is the integrated flux in units of
Jy km s−1 and mHI is the source’s HI mass3.

In the clustering analysis, the radial velocities vcmb are used to assign radial
distances to sources through their redshift zcmb = vcmb/c, using the cosmological
parameters listed in section 5.1. Due to the radio frequency interference (RFI) we
make additional cuts and following [225] we remove the sources outside 700 km s−1 <
czcmb < 15000 km s−1. After performing these cuts in the raw data we are left with
24485 code-1 sources and 5365 code-2 sources. Figure 5.1 shows the angular distribu-
tion of all sources used in this work. The black lines delineate the survey boundaries
used for in the clustering analysis. These cuts further reduce the clustering sample
to 23438 objects.

5.2.2 The SDSS group catalog

To assign the HI detected sources to dark matter halos, we cross-match the SDSS
galaxies and the ALFALFA sources and determine the group membership of the cross-
matched galaxies using a galaxy group catalog, following the procedure described in
[227]. We use the SDSS DR7 group catalog4 updated from the DR4 group catalog

1We fix the expansion rate to h = 0.7 instead of its best-fit measurement h = 0.6774 to match
the choice in made in [222] to measure ΩHI. We will report our final results as a function of h70 ≡
H0/70 km s−1Mpc−1

2http://egg.astro.cornell.edu/alfalfa/
3To distinguish between the HI mass of ALFALFA sources and the total HI mass associated to a

given dark matter halo, we label the latter MHI and the former mHI
4http://gax.sjtu.edu.cn/data/Group.html

http://egg.astro.cornell.edu/alfalfa/
http://gax.sjtu.edu.cn/data/Group.html
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[228]. The catalog uses galaxies in the SDSS DR7 spectroscopic sample with 0.01 ≤
z ≤ 0.2 and redshift completeness C > 0.7. The group finding algorithm has been
extensively tested using mock galaxy redshift survey catalogs and has proven to be
successful in associating galaxies that reside in a common halo [229]. In particular,
this halo-based group finder works well for poor groups and identifies groups with
only one member (i.e. isolated galaxies). The group halo masses are determined
down to Mh = 1011.8h−1M� using two methods: ranking by luminosity and from the
stellar mass of member galaxies. Although we used the luminosity-ranked group halo
mass, the results do not change if the stellar-mass-ranked halo mass is used instead.
The group finder has been shown to correctly select more than 90% of the true halos
with Mh ≥ 1012h−1M� [228], which allows us to reliably study our galaxy samples
within groups and clusters with halo mass 1012.50h−1M� ≤Mh ≤ 1015.04h−1M�.

For the virial radius of groups with halo mass Mh, we adopt the radius R180 that
encloses an overdensity ∆ = 180 times larger than mean density [228]:

R180 = 1.26h−1Mpc
(

Mh

1014h−1M�

)1/3
(1 + zgroup)−1, (5.9)

which is based on the WMAP3 cosmological model parameters [230], Ωm = 0.238,
ΩΛ = 0.762 and H0 = 100h km s−1Mpc−1, where h = 0.73. While these parameters
differ slightly from those used in this study, this does not significantly impact the
results at the low redshifts of our sample (z < 0.055). We also note that the DR7
group catalog has significant overlap only with the 70% ALFALFA data release, and
therefore no new information is gained by using the complete ALFALFA sample
(α.100 dataset).

Figure 5.1 shows, in blue, the ALFALFA sources identified as members in the
group catalog, as well as the jackknife regions used to compute the cosmic variance
uncertainties for our estimate of the HI mass function in groups (dotted red lines, see
section 5.3.2).

5.3 Method
We derive constraints on the HI content of dark matter halos by using the clustering
properties of HI galaxies weighted by their HI content, as well as direct measurements
of the HI content of galaxy groups. We describe the procedures used to compile these
two data vectors and their associated covariances here.

As discussed in section 5, our main interest is to quantify the properties of the
total HI density inhomogeneities, since these are the relevant proxy of the density
fluctuations measured by 21cm IM. To do so, our main assumption will be that the
properties of the full HI density field can be inferred from the properties of HI-selected
sources as measured by ALFALFA when weighed by their HI mass. This simplifying
assumption should be a good approximation as long as the sources detected by AL-
FALFA account for a significant portion of the total HI mass. The validity of this
assumption can be quantified to some extent by examining the measurements of the
HI mass function measured by the ALFALFA collaboration in [222], extrapolating it
below the detection limit. This calculation shows that, for a conservative threshold
of mHI,lo = 108M�, less than 5% of the total HI would lie in sources not observed
by ALFALFA. Thus, assuming that the tilt of the HI mass function does not vary
sharply on smaller masses, the contribution from diffuse or undetected sources to the
observables considered here is negligible given the uncertainties in our measurements.
This is even more so for measurements of the HI clustering, given that the clustering
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bias of HI sources has been show to be only weakly dependent on HI mass [225]. Even
in the case of the measurement of the HI content in galaxy groups (see section 5.3.2),
where this contribution can rise to . 30% we will explicitly show that the impact of
the missing HI mass on our results is minimal.

5.3.1 The projected 2-point correlation function

Previous studies [78, 225, 96] have measured two-point correlation function (2PCF)
of HI-selected galaxies to determine their relation with the underlying dark matter
density field. These studies have found that this sample has a low value of the
clustering amplitude compared to the dark matter field (i.e. HI-selected galaxies have
a low bias - bHI,g). Under the assumption described above, the same measurement
can be performed on the 2PCF of HI-selected galaxies weighed by their HI mass to
obtain a measurement of the total HI bias bHI, which plays a key role on 21cm IM
studies (see section 2.1). We describe the procedure used to estimate the 2PCF and
its uncertainty here.

We begin by estimating the 2D 2PCF ξ(π, σ) as a function of the distance between
pairs of objects along the line of sight (π) and in the transverse direction (σ). For
this we use the Landy & Szalay estimator [231], given by

ξ(π, σ) = DD(π, σ)− 2DR(π, σ) + RR(π, σ)
RR(π, σ) , (5.10)

where DD is the normalized histogram of unique weighted pairs of sources separated
by a distance (π, σ) found in the data catalog:

DD(π, σ) =
∑N
i=1

∑
j>iwiwj Θ(πij ;π,∆π) Θ(σ′ij ;σ,∆σ)∑N

i=1
∑
j>iwiwj

.

Here πij is the distance between the i-th and j-th objects along the line of sight (and
similarly for the transverse distance σij), and Θ(x ∈ (x1, x2)) = 1 when x ∈ (x1, x2)
and 0 otherwise. RR is defined similarly for unique pairs of objects belonging to a
random catalog with statistical properties similar to those of the data (e.g. in terms
of spatial and weights distribution) but no intrinsic clustering. Finally, DR is given by
all pairs of data-random objects. The weights wi assigned to each object are described
below.

Random catalog

The random catalog needed to compute the correlation function should follow the
same redshift, angular and weights distribution observed in the data. We use the
area cuts reported in [222] to define the survey footprint These are shown in figure
5.1, as black lines, and we discard all sources outside these boundaries. The angular
positions of the random objects are then generated by drawing random coordinates
with a constant surface density within this area.

We assign redshifts to the random objects by accounting for both the radial selec-
tion function described in [225] (see their figure 4) and for RFI incompleteness, using
the completeness function presented in the same paper (see their figure 6). Including
these two effects is achieved by keeping a point with distance d in the random catalog
with a probability corresponding to the product of the selection and RFI complete-
ness functions at d. The final normalized redshift distribution in both the data and
the random catalog is shown in the left panel of figure 5.2.
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Figure 5.2: Left: normalized redshift distribution in the data (blue)
and the constructed random catalog (orange). Right: the HI mass
distribution in the data (solid line) and the constructed random catalog

(dashed line) in different redshift bins (see legend).

The points in the random catalog must also be assigned mass weights following
the same mHI distribution as the data. To achieve this, we split the random and
the data set in 10 redshift bins. In each redshift bin we give each random point an
HI mass randomly sampled from the data in the same bin. The resulting HI mass
distributions are shown in the right panel of figure 5.2.

Weights

The sample we use is not volume-limited, and the objects near the peak of the selection
function will dominate the measured correlation function. In order to avoid this, we
apply optimal pair-wise weights wi,j = wi × wj , where wi is given by [22, 232]

wi = mHI,i
1 + 4πn(di)J3(rij)

, (5.11)

where n(di) is the number density of the sample at the distance di to the i-th source,
rij is the comoving separation between both objects and J3 is an integral over the
real-space isotropic correlation function:

J3(r) =
∫ r

0
r′2 ξ(r′)dr′. (5.12)

Implementing these weights requires an assumption about the shape and amplitude
of ξ(r). For these we follow [78] and use ξ(r) = (r/r∗)−1.51, with r∗ = 3.3h−1 Mpc.
In fact, we find that fixing J3(r) to J3(r = 38h−1 Mpc) = 2962 Mpc3 is enough
to obtain a close-to-optimal correlation function (see figure 5.3). When implement-
ing these weights we approximated the number density as n(d) = n0 exp (−(d/d0)γ)
where n0 = 0.23(h−1 Mpc)−3, d0 = 31.18h−1 Mpc and γ = 0.99. These numbers
were obtained by fitting the distance distribution of objects in the random catalog.
Note also that equation 5.11 already includes the mHI weights needed to recover the
clustering properties of the total HI density.

Using this formalism, the measurement of the correlation function was carried out
using the code CUTE [233]. We adopted a logarithmic binning in σ in the range σ ∈
[0.11, 52)h−1 Mpc with ∆ log10 σ/(h−1 Mpc) = 0.12, and we used 59 linear bins of π
in the range π ∈ [0.5, 59.5) h−1 Mpc. In order to eliminate the effect of redshift-space
distortions and be able to compare our measurements with the real-space theoretical
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Figure 5.3: 2D projected correlation function. The points with error
bars show mHI-weighted correlation function computed for the α.100
data set, while the black solid line shows the HaloFit prediction for
the matter correlation function at z = 0. Orange points show the
measurements using pair-wise weights that depend explicitly on the
pair separation (equation 5.11), while the blue points correspond to
the case of fixing J3(r) to J3(38h−1 Mpc), independent of separation.
The impact of the choice of weighting scheme is found to be negligible.
The inset shows the scale-dependent HI bias bHI as a ratio of the
measurement with respect to the matter correlation function. Orange

points have been slightly shifted to the right.

prediction, we compute the projected correlation function Ξ(σ) by integrating ξ(π, σ)
along the line of sight:

Ξ(σ) =
∫ ∞
−∞

dπ ξ(σ, π) ' 2
πmax∑

0
ξ(σ, π)∆π, (5.13)

where, as in [78], we used πmax = 30h−1 Mpc.
Figure 5.3 shows the measured HI-mass-weighted, projected correlation function

(points with error bars) together with the prediction for the projected correlation
function of the total matter overdensity, obtained from the HaloFit model for the
matter power spectrum [234]. The scale-dependent HI bias is shown in the inset of
the same figure as the square root of the ratio of both quantities. The measured bHI is
in good agreement with the measurement of the bias of HI-selected galaxies presented
in [78]. This is to be expected, given the observation that the clustering of HI sources
shows little or no dependence on HI mass5.

Covariance matrix

We estimate the uncertainties on the measured projected correlation function using
the jackknife resampling method [235, 236]. We divide the survey footprint into
N = 156 contiguous patches covering ∼ 40 deg2 each. We remove one patch at a time

5Note that [96] observe a significant dependence on HI mass above 109 M�. This possible depen-
dence at high masses, however, does not alter our assumption that the ALFALFA sources can be
used to study the properties of the overall HI distribution, including all structures below ALFALFA’s
detection limit.
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and measure the projected correlation function in the remaining area. The jackknife
estimate of the covariance matrix is then given by:

Cij = Cov(Ξi,Ξj) = Ns − 1
Ns

Ns∑
p=0

(Ξpi − Ξ̄i)(Ξpj − Ξ̄j). (5.14)

Here Ξpi is the correlation function measured in the i-th bin after omitting the p-
th patch and Ξ̄i is the average of Ξpi over all patches. Figure 5.4 shows resulting
correlation matrix rij = Cij/

√
CiiCjj .

Ultimately we are interested in the inverse covariance matrix. The inverse of the
jackknife covariance is a biased estimate of the true inverse covariance, and we correct
for this bias with an overall normalization factor [158]:

C−1 → Ns −Nb − 2
Ns − 1 C−1, (5.15)

where Ns = 156 is the number of jackknife samples and Nb = 22 is the number of σ
bins used in the analysis.

5.3.2 HI content in groups

As described in section 5.2.2, we also include direct constraints on the MHI(Mh)
relation in our analysis, coming from the matching of ALFALFA sources to optical
members of galaxy groups with calibrated halo mass detected in the SDSS group
catalog. To minimize a potential bias due to the incomplete coverage of the sky-
projected area for each group, we estimate volume-correction factors for few large
groups near the ALFALFA survey boundary. An estimate of the HI mass of each
group is made by directly summing the masses of all ALFALFA member sources
and applying the corresponding area correction factor, which is almost negligible for
most of the groups. In general, this estimate of the group HI mass would be biased
low, since the estimator will miss all ALFALFA sources with no optical counterparts
lying in the comoving volume of each group, as well as any diffuse or unresolved
HI component. The first cause of this bias (the sources with no optical detections)
should have a negligible impact on this study, since it affects only ∼ 6% [224] of
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Figure 5.5: Left: the number of HI sources in the SDSS group catalog
lying in each halo mass bin after RFI and 50% completeness cuts.
Right: HI mass functions estimated from the SDSS group catalog using

2DSWML method in different halo mass bins (see legend).

all ALFALFA sources, and most of those are expected to be galactic high-velocity
clouds, and not extragalactic in nature. To quantify and minimize the impact of
contributions from undetected HI components, we estimate the HI mass function (i.e.
the mHI distribution of ALFALFA sources) in bins of group halo mass. The exact
procedure is as follows:

1. We separate the SDSS group catalog into 7 logarithmically spaced bins of halo
mass in the interval log10Mh/(h−1M�) ∈ [12.50, 15.04]. The top panel of figure
5.5 shows the number of HI sources lying in each of these mass bins.

2. In each bin we estimate the HI mass function φ(mHI) using all the member
sources found in the ALFALFA dataset. For this we use the 2D step-wise
maximum likelihood (2DSWML) estimator described below.

3. In order to extrapolate below the detection limit, we model the measured mass
function as a Schechter function with the form

φ(mHI) = ln(10)φ∗
(
mHI
M∗

)αs+1
exp

(
−mHI
M∗

)
. (5.16)

4. For each halo mass bin, we compute the corresponding HI mass (and its un-
certainty) by integrating over the reconstructed HI mass function, propagating
all uncertainties as described below. We also compute a second estimate of the
HI mass by integrating over the measured, model-independent 2DWSML mass
function. This can only be done within the range of HI masses covered by AL-
FALFA, and the comparison of these two estimates then allows us to quantify
the systematic uncertainty associated with undetected HI sources.

The list of reconstructed HI masses as a function of group halo mass is then appended
to the correlation function described in the previous section to form the total data
vector.

The 2DSWML mass function estimator

The idea of step-wise maximum-likelihood estimators has been applied in the past to
reconstruct the luminosity function from a magnitude-limited sample [237, 238, 239].
The method is non-parametric, modeling the luminosity function as sum of top-hat
functions, and finding their amplitudes by maximizing the likelihood of the observed
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sample. The latter is possible interpreting the luminosity function as a probability
distribution. The same logic was applied by [90, 222] to estimate the HI mass function
of ALFALFA sources, with the added complication that the completeness of the
sample depends on both the HI flux S21 and the 21cm line width W50. This gives rise
to the 2-dimensional step-wise maximum-likelihood estimator (2DSWML), which we
describe briefly here. To simplify the notation we will define here µ ≡ log10mHI/M�
and w ≡ log10W50/km s−1.

The probability that a source g is detected with mass µg and line width wg at
distance dg (within an interval ∆µ, ∆w) is given by

pg = φ(µg, wg) ∆µ∆w∫∞
−∞ dw

∫∞
µlim(dg ,w) dµφ(µ,w) , (5.17)

where φ(µ,w) is the joint distribution of HI masses and line widths. Let us now
model φ(µ,w) as a 2D step-wise function, taking constant values in intervals of µ and
w. Then, maximizing the log-likelihood L =

∏
g pg, we obtain an expression for the

best-fit amplitudes φi,j in the i-th interval of µ and the j-th interval of w:

φi,j = ni,j

[∑
g

Hg,ij∑
i′,j′ Hg,i′j′φi′,j′

]−1

, (5.18)

where g runs over all sources in the sample, ni,j is the number of galaxies in bin (i, j)
and Hg,ij is the mean completeness of the sample in that bin for sources at a distance
d = dg. The completeness function was determined as described in [90]. We imposed
a hard cut on m and w, using only bins with completeness > 50%. We verified that
our results did not vary significantly with more stringent completeness cuts.

Note that equation 5.18 gives φi,j recursively as a function of itself, and in practice
φi,j is found through an iterative process. Once a converged solution for φi,j has been
found, the HI mass function is obtained by marginalizing over W50:

φi =
∑
j

φi,j∆w. (5.19)

Finally, this method is able to determine φi,j up to an overall normalization con-
stant. We fix this by matching the integral of φ(mHI,W50) to the total number of
ALFALFA sources in each halo mass bin divided by the comoving volume covered by
the corresponding halos, as described in Appendix B of [90].

The bottom panel of figure 5.5 shows the estimated HI mass functions in each
halo mass bin used in this analysis, together with their best-fit Schechter models. For
this figure, the mass functions were normalized dividing by the total volume enclosed
within the virial radii of all groups in each halo mass bins. Note that, since we only
use φ(mHI) to estimate the MHI(Mh) relation, our results are independent of this
volume, and only depend on the total number of HI sources and galaxy groups in
each Mh bin.

Error propagation

The uncertainties in the MHI(Mh) relation inferred from the HI richness of groups,
as described above, are driven by the errors in our estimate of the mass function in
each Mh bin. Four main sources of uncertainty contribute to these errors [222], and
we account for them as follows:
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1. Poisson: with each measurement of φi we associate a Poisson-counting error
given by σ(φi) = φi/

√
Ni, where Ni is the number of sources contributing to

the i-th mHI bin.

2. Sample variance: the uncertainty associated with the stochastic variation in
φi induced by the particular density fluctuations covered by the survey volume
of ALFALFA was quantified through the jackknife resampling method described
in section 5.3.1. In this case we use the 10 jackknife regions shown as red dotted
lines in figure 5.1.

3. Mass measurement errors: the HI mass of each source is inferred from its
21cm flux and its radial comoving distance. Both quantities have associated
measurement uncertainties which propagate into mHI, shifting sources between
different HI mass bins. To account for this, we generated 100 random realiza-
tions of the α.70 catalog by adding a random Gaussian error to the distances
and fluxes of all sources (with a standard deviation given by their estimated
error). We re-computed the HI masses and corresponding φ(mHI) for each re-
alization (see equation 5.8), and estimate the uncertainty associated to these
errors from the scatter of all realizations.

4. Line width measurement errors: errors inW50 also affect our measurement
of the 2DSWML mass function, by shifting sources between different W50 bins.
The associated uncertainties were estimated from 100 random realizations, fol-
lowing the same procedure described above for mass measurement errors.

We assumed that the errors associated with these 4 sources are uncorrelated and
added them in quadrature to find the final uncertainties on φi.

Once φi and its uncertainties have been measured, we find the best-fit Schechter
models in each Mh bin. To avoid over-fitting, given the relatively small number of
points in which we estimate the mass function for each bin, we fix the tilt of the
Schechter function to its best-fit value for the overall HI mass function as reported
by [222], αs = −1.25. The best-fit Schechter functions in each Mh bin are shown as
solid lines in figure 5.5.

To estimate the uncertainties in the Schechter parameters (φ∗,M∗), we sam-
ple their likelihood running a Markov chain Monte Carlo (MCMC). For any point
(φ∗,M∗) in these chains, the corresponding HI mass for halos in the b-th Mh bin can
be estimated as:

M b
HI = Vb

N b
group

∫ ∞
0

φ(mHI)mHI d log10mHI

= Vbφ∗M∗
N b

group
Γ (2 + α) , (5.20)

where Vb is the uncorrected volume spanned by all groups in the b-th Mh bin and
N b

group is the corresponding number of groups. Our final estimate of the MHI(Mh)
relation (and its uncertainty) from the galaxy group data is then given by the mean
of MHI (and its scatter) across all points in the MCMC chain. Finally, we correct our
results for self-absorption by assuming it has a 10% effect on the measured flux. Note
that strictly speaking this is only suitable for the galaxies around the knee mass as
described in [222]. The results are shown as orange points with error bars in figure
5.6.

Since our measurement of M b
HI involves extrapolating the HI mass function to

very small masses, below the ALFALFA detection limit at the group’s redshift, it is
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worth quantifying the impact of this extrapolation on our results. We do so here by
comparing the fiducial measurement of M b

HI described above, with two alternative
estimates:

1. The first estimator is given by directly integrating the measured 2DSWML
mass function over the available range of HI masses in ALFALFA. Labeling the
2DSWML in the b-th halo mass bin as φbi , this alternative estimate is given by

M̃ b
HI = V b

N b
group

∑
i

φbi 10µi ∆µ. (5.21)

The uncertainty on M̃ b
HI can be estimated trivially from the uncertainties on

φbi . Since M̃ b
HI and φ̂bi are linearly related, the uncertainties on φbi , quantified as

described above, can be propagated into M̃ b
HI in quadrature.

2. The second estimator is produced by rescaling the best-fit HI mass function
found by [222] in each halo mass bin. The rescaling factor for each group in the
bin is estimated as the ratio of the observed number of sources found in that
group to the number expected given the 2DSWML estimate of [222] accounting
for sample completeness at the distance to the group. M b

HI is then estimated
by applying equation 5.20 to the Schechter function found in [222] rescaled by
the factor above.
Unlike our fiducial estimator, this alternative method has no free parameters,
and can therefore be used to explore the possible consequences of over-fitting the
per-bin mass functions based on a small number of objects. The main drawback
of this estimator is that, by constructions, it assumes that the mHI distribution
in groups is the same as in the field.

These alternative measurements of the MHI(Mh) relation are shown as blue squares
and pink diamonds with error bars in figure 5.6.

As could be expected, the measurements corresponding to the first alternative
estimator are consistently below our fiducial estimates generated from the integral of
the Schechter functions, with the missing mass corresponding to the contribution of
sources below the ALFALFA detection limit. However, the associated mass difference
is mostly below ∼25% of our fiducial mass measurements throughout the full mass
range. Since this offset is always smaller than the 1σ statistical uncertainties, we find
the impact of extrapolating the mass function to lower masses to be minimal. Note
also that the blue error bars are consistently smaller than the orange ones. This is
also to be expected, since the errors on M̃ b

HI estimated as described above, do not
account for the additional uncertainty associated with mass below the detection limit.

The second estimator, based on extrapolating the overall HI mass function, agrees
well with our fiducial measurements in general, although it is noticeably lower in the
two lowest Mh bins. This is caused by the larger value of M∗ preferred by our
Schechter fits in the low-Mh bins. This result is consistent with previous measure-
ments of the HI mass function around the region of the Virgo cluster, which suggest
that massive (∼ 1015M�) halos have a smallerM∗ than the field. Although this could
be caused by ram pressure or tidal stripping, a better understanding of this result will
require a more detailed study of the HI content in low-mass halos in both data and
simulations [57]. In any case, both estimates of M b

HI are compatible within present
uncertainties, and therefore we conclude that our measurements of this quantity are
robust with respect to the method used to estimate it.
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5.4 Results

5.4.1 Fiducial results

We produce constraints on the three parameters of the MHI(Mh) relation (equation
2.3), θ ≡ {log10M0, log10Mmin, α}, from a joint data vector composed of three parts:

1. Measurements of the projected correlation function Ξ(σ) (see section 5.3.1) in
NΞ = 17 logarithmic bins of σ between 0.43h−1Mpc and 30.8h−1Mpc. We use
the altered NFW HI density profile described in section 5 as our fiducial model
for the small-scale correlation function. We study the impact of this choice, as
well as the choice of scale cuts in section 5.4.2.

2. Direct measurements of theMHI(Mh) relation (see section 5.3.2) in the NM = 7
logarithmic bins of halo mass shown in figure 5.6. Our fiducial measurements
consist of the MHI estimates derived from the integral of the best-fit Schechter
HI mass functions in each Mh bin. We show the impact of extrapolating the HI
mass function below ALFALFA’s detection limit on our results in section 5.4.3.

3. One measurement of the cosmic HI abundance ΩHI = (3.9±0.1 (stat.)±0.6 (syst))×
10−4 from ALFALFA’s α.100 sample, as reported by [222]. In terms of the halo
model, the cosmic abundance receives contributions from the HI content of halos
with arbitrarily small masses. Since our direct measurements of the MHI(Mh)
relation do not go below log10Mh/(h−1Mpc) ' 12.5, this additional data point
allows us to break the degeneracy between the overall amplitude M0 and the
minimum halo mass Mmin of the MHI(Mh) relation.

Our fiducial data vector d therefore contains NΞ +NM + 1 = 25 elements, which
we use to constrain the three-parameter model of the MHI(Mh) relation (in addition
to the profile concentration parameter cHI,0, which we marginalize over). Assuming
Gaussian statistics for d, and in the absence of priors, the posterior distribution of
the model parameters θ is given by:

χ2 ≡ −2 log p(θ|d) = [d− t(θ)]T Ĉ−1[d− t(θ)], (5.22)

where t(θ) is the theoretical prediction for d, described in section 5.1, and Ĉ is the
covariance matrix of our measurements.

We build the covariance matrix Ĉ as a block-diagonal matrix, where the first
NΞ×NΞ block is given by the covariance matrix of the correlation function measure-
ments (see figure 5.4). We assume the remaining NM + 1 elements (corresponding
to the HI abundance in groups and the cosmic HI abundance) to be uncorrelated
with the correlation function measurements, and that their statistical uncertainties
are also uncorrelated among themselves. These measurements are, however, corre-
lated through some of their systematic uncertainties. In particular, the calibration
of the absolute flux scale in ALFALFA dominates the systematic error budget in the
measurement of ΩHI and M b

HI, and should affect all of these quantities in the same
manner, rescaling them by an overall factor. In order to incorporate this correlation
in our analysis we add, to the statistical covariance matrix described above, a sys-
tematic component that is fully correlated across the last NM + 1 measurements and
with an amplitude 0.6×10−4 in the ΩHI-ΩHI component. Note that the measurement
of the projected correlation function is immune to the effects of an overall rescaling
factor, and therefore the corresponding part of the systematic contribution to the
covariance matrix is fixed to 0.
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the cosmic HI abundance ΩHI in [222]. For comparison we show the re-
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Finally, given the residual degeneracy between Mmin and M0 in our parametriza-
tion, we choose to show all our results in terms of (α, log10Mmin,ΩHI) instead,
but will also provide the corresponding best-fit value and uncertainty on log10M0.
We use broad top-hat priors for all parameters, with cHI,0 ∈ [0, 100], α ∈ [0, 2],
log10Mmin/h

−1M� ∈ [8, 13] and ΩHI × 104 ∈ [0, 20]. In all cases we show constraints
on log10M0, log10Mmin and α marginalized over the concentration parameter cHI,0.

We sample the likelihood in equation 5.22 using the publicly available imple-
mentation of the Markov chain Monte Carlo algorithm emcee [157]. The resulting
constraints on theMHI(Mh) parameters are shown in figure 5.7 for different data com-
binations. We find compatible constraints from the clustering and groups data sepa-
rately. Our marginalized constraints on theMHI(Mh) parameters are α = 0.44±0.08,
log10Mmin/h

−1M� = 11.27+0.24
−0.30, log10M0/h

−1M� = 9.52+0.27
−0.33. The maximum-

likelihood values are a good fit to the data in all cases, with a χ2 = 13.7 for 21
degrees of freedom for the full data vector. Although the clustering data is not able
to jointly measure α and log10Mmin, and the groups data dominates the final un-
certainties, clustering is still important in tightening the constraints (see e.g. the
α-log10Mmin plane). In particular, we find that, within this model, the clustering
measurements allow us to reduce the uncertainty on ΩHI with respect to the mass-
function measurement of [222], obtaining ΩHI = 4.07+0.29

−0.26 × 10−4.
Figure 5.8 shows our best-fit MHI(Mh) relation (red solid line), together with its

1σ uncertainty (shaded area) as well as our fiducial measurements of this relation on
galaxy groups (blue points with error bars). The measurements from the DR7 group
catalog are shown in blue. In order to jointly reproduce the measured HI content
in high-mass halos as well as the measured total HI abundance, the model predicts
a sharp drop in HI content below a halo mass logMh/h

−1M� ∼ 11.5. The figure
also shows, as black points, the MHI(Mh) relation measured in the IllustrisTNG-100
magneto-hydrodynamic simulation [57] from a cosmological volume of (75 h−1Mpc)3.
The errorbars represent the 1σ halo-to-halo variation on MHI(Mh). Although, over-
all, we find good agreement between our results and the simulation, for very small
halo masses, the amplitude of MHI(Mh) differs significantly between our results and
IllustrisTNG. This is however expected, given that the value of ΩHI in IllustrisTNG
is ' 7.5 × 10−4, i.e. roughly a factor of 2 larger than the ALFALFA measurement
used here. Although our model predicts a larger low-mass cutoff than is found in
simulations, existing data on halo masses below the range probed by the SDSS group
catalog are not incompatible with this prediction. To illustrate this, figure 5.8 also
shows the HI and halo masses measured for the Milky Way and M31 [54, 240].

Finally, figure 5.9 shows our measurement of the projected correlation function
(blue points) together with the best-fit prediction and associated uncertainties (red
line and shaded area) and the dark matter correlation function from HaloFit (black
solid line) scaled by our our best-fit b2HI (see section 5.5). We also note that in
contrast to [96], we are able to reproduce the measured HI clustering without involving
assembly bias effects.

5.4.2 Impact of small scales

On small scales, the halo-model prediction of the 2-point correlation function is dom-
inated by the shape of the HI density profile. It is therefore important to evaluate
whether our assumptions regarding the distribution of HI within each halo impacts
our results on their overall HI content.
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Figure 5.10: Left: constraints on theMHI(Mh) relation derived from
the clustering analysis under different scale cuts and choices of HI
density profile. We derive our final scale cuts by demanding final
constraints that do not depend on the choice of profile. Right: con-
straints on theMHI(Mh) relation for different estimates of the HI mass
in galaxy groups. Our fiducial measurements are shown in blue, while
the red and light-orange contours show the results from the two alter-

native estimates described in section 5.3.2 (see also figure 5.6).

The blue and light-orange contours in the top panel of figure 5.10 show the
constraints on the MHI(Mh) relation derived from the measurements of the pro-
jected correlation function for the exponential and altered NFW profiles described
in section 5.1 respectively. Constraints are shown for the full range of scales (σ ∈
(0.11, 30.8)h−1Mpc) and combined with the ALFALFA measurement of ΩHI. The
figure shows that the constraints on the MHI(Mh) parameters (particularly in terms
of uncertainty) depend significantly on the model used to describe the distribution
of HI within each halo. This is an undesirable feature, since we aim to constrain the
global parameters of the MHI-Mh relation, given the large uncertainties in the actual
shape of the HI density profile. On sufficiently large scales, in the 2-halo regime, this
dependence should become negligible. We have verified this by removing all data
points with σ > 0.43h−1Mpc. These results are shown in figure 5.10 in green and red
for the exponential and altered NFW profiles respectively. The dependence on the
choice of profile, in terms of constraining power, vanishes in this regime. We thus use
this restricted range of scales and the altered NFW profile for our fiducial analysis.
Although the choice of profile in this regime is not relevant, we note that [57] find
that the altered NFW profile with an exponential cut-off on small scales is better able
to fit measurements from hydrodynamical simulations.

5.4.3 Low-mass extrapolation

As described in section 5.3.2, our measurement of the HI content of galaxy groups is
based on extrapolating the HI mass functions measured in bins of halo mass beyond
the detection threshold of ALFALFA. This is a legitimate approach as long as the
range of masses covered by our sample constitute the main contribution to the total HI
budget, in which case we only incurr in a small systematic effect when extrapolating
the abundance of low-HI sources. We have shown that the mass deficit is generally
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Figure 5.11: Posterior distributions for the large-scale HI bias (left)
and shot-noise power spectrum (right) predicted from different combi-
nations of our fiducial data vector: clustering+ΩHI (red), groups+ΩHI
(light orange) and all data (blue). The vertical dashed line shows the

result found in the IllustrisTNG simulation [57].

below ∼ 20% of each individual HI mass measurement, and is always within the 1σ
uncertainties. The right panel of figure 5.10 shows the impact of this systematic on
our final constraints on the parameters of the MHI(Mh) relation. The figure shows
the constraints derived from our fiducial MHI measurements in red, as well as the
contours corresponding to our two alternative estimates: summing over the 2DSWML
mass function (blue) and re-scaling the global HI mass function (light orange). The
constraints derived from both estimates are compatible, with a negligible shift in
the best-fit log10Mmin. We therefore conclude that any residual systematics in the
method used to measure the HI content as a function of halo mass in the group
catalog is subdominant.

5.5 Discussion
We have placed constraints on the distribution of neutral hydrogen in dark matter
halos as a function of halo mass. To do so we have used the HI-weighed clustering
of 21cm sources detected by ALFALFA, as well as the abundance of those sources in
halos identified in the galaxy group catalog compiled from the SDSS DR7 data. Our
results show a power-law relation between MHI and Mh at large halo masses with
an exponent α = 0.44 ± 0.08. This relation is exponentially suppressed on masses
below log10Mmin/h

−1M� = 11.27+0.24
−0.30. Although this suppression is not directly

measurable in the data, given the mass range of the group catalog, it can be inferred
indirectly by combining the group data with the total HI abundance measured by
ALFALFA and our measurement of the 2-point correlation function.

The constraints derived individually from our two datasets are compatible between
themselves and with the combined constraints, and in all cases we find the model in
equation 2.3 to be a good fit to the data. It is worth emphasizing the fact that,
although the clustering data is not able to break the degeneracy between α and
Mmin, even when combined with the measurement of ΩHI, it is vital to improve the
constraints derived from the combination of the HI abundance in groups and ΩHI.
In fact we find that, within our model, clustering information is able to significantly
reduce the final uncertainties on ΩHI compared with direct measurements of this
quantity from the HI mass function. Furthermore, the clustering properties of the
HI are arguably the most relevant piece of information for future 21cm IM studies,
and this information is potentially better summarized by the projected correlation
function data used here.
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Recently [57] have aimed at characterizing the MHI(Mh) relation from state-of-
the-art magneto-hydrodynamic simulations, and it is therefore relevant to explore the
level of agreement between these simulated results and our data-driven constraints. In
terms of the overall MHI(Mh) relation, this comparison is best summarized in figure
5.6. We find that our results agree well with those of [57] at z = 0 for large halo masses
(Mh & 1012.5M�/h), and that our best-fit model as well, as the simulated data, are
in good agreement with individual HI mass measurements. However, we observe
that the MHI(Mh) relation derived from simulations departs significantly from our
best-fit model on the low-mass end, predicting significantly higher HI masses. This
disagreement is correlated with the higher value of ΩHI ∼ 7 × 10−4 measured in
IllustrisTNG, which is also the measurement that allows us to place constraints on
the cutoff mass scale. The fact that the radiation from the sources is not accounted
for in IllustrisTNG may explain the differences in the value of ΩHI and on the average
HI mass inside small halos.

For the purposes of predicting the clustering properties of HI in future 21cm
experiments, two quantities are needed beyond ΩHI: the large-scale HI bias bHI
and the shot-noise level PSN. Given our model for the MHI(Mh) relation, we can
make predictions for these two quantities within the halo model (bHI = F 1

1 (k = 0),
PSN = F 0

2 (k = 0), see equation 2.7), which we can then directly compare with the
values found by [57]. The results of this comparison are shown in figure 5.11: our
constraints on both quantities (bHI = 0.875 ± 0.022, PSN = 92+20

−18 [h−1Mpc]3) are in
good agreement with the values predicted by IllustrisTNG at z = 0. Although this
result may seem at odds with the disagreement between data and simulation in terms
of the total ΩHI, this can be understood as due to the relatively higher contribution
from larger-mass objects to these two quantities, for which our results agree with
those of IllustrisTNG. It is also interesting to note that, even though the clustering
data alone is not able to break the degeneracies between the MHI(Mh) parameters,
they drive the constraints on both bHI and PSN.

Our measurement of the MHI(Mh) relation can be translated into a limiting cir-
cular velocity to host HI. Defining this as the circular velocity associated with a
minimum halo mass such that 98% of the cosmic HI is contained within heavier ob-
jects (see [57]), we find Vcirc = 53+9

−11 km/s. This is in tension with the value found in
[57] (Vcirc = 34 km/s), which is correlated with the higher cutoff halo mass measured
in the data and shown in figure 5.6.

The results presented here are also interesting beyond future cosmological 21cm
studies, as they provide insight into the distribution of neutral hydrogen across struc-
tures of different masses. Furthermore, our direct measurement of the MHI(Mh) rela-
tion is based on the characterization of the HI mass function for sources within galaxy
groups, and have revealed hints about the relative dependence of the HI mass distribu-
tion on halo mass, with higher HI knee masses found on lower-mass halos. In general,
the behaviour of the MHI(Mh) relation in the low-mass end (Mh . 1012M�/h) is
still somewhat uncertain, and its study will benefit in the future from higher-quality
data and improved analysis methods.

We must also emphasize that the MHI(Mh) relation contains a huge amount of
astrophysical information. In the high-mass end, the strength of processes such as
AGN feedback, ram pressure and tidal stripping will leave its signature on the value
of α [128], while on the low-mass end the presence of the UV background and the
minimum mass to trigger self-shielding will determine the shape and amplitude of
MHI(Mh). Our results can be used in combination with hydrodyanmic simulations
or semi-analytic models [241, 242] to improve our knowledge on the role of different
astrophysical processes.
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Chapter 6

Summary

The main goal of current cosmology is to understand the content, geometry, dy-
namics and evolution of our Universe. There has been many different approaches in
order to achieve that goal. They include studying the early Universe through CMB
anisotropies and mapping the spatial distribution of galaxies and other structures
and objects in the late Universe. Based on these studies and observations we now
have a well-established standard ΛCDM model that has only six free parameters.
This model describes various observations very well and all of the different observ-
ables agree rather well in terms of the inferred values of the cosmological parameters.
There are however tensions between different observables, especially in the case of H0
parameter value obtained from direct local measurements and the value inferred from
the CMB measurements [243, 244]. These tensions could give us insight into the new
physics or could be due to the unaccounted systematical errors in our measurements.
Even though ΛCDM is fairly simple and has only 6 free parameters, there are at least
two major components for which we still do not understand the nature of – DM and
DE.

In order to learn more, we are at the stage at which we simply need more experi-
mental data. The good news is that there are plenty of experiments taking or planned
to be taking data in the near future and that we are starting to use most of the EM
spectrum and recently also the gravitational waves [245], to observe objects across
the Universe. Galaxy surveys (both spectroscopic and photometric) have proven to
be extremely useful and have provided us with a wealth cosmological information at
low redshifts in recent years [7, 8]. In the next decade we will witness even better
surveys with the hope of learning much more about our Universe [160, 161, 162, 163].
With galaxy surveys we are using galaxies as tracers of the underlying DM density
field. However, there are other tracers that could in principle supplement the galaxy
surveys and provide additional information on the DM density field. One such tracer
is the HI and the 21cm emission from it in the post-reionization Universe.

With the 21cm IM we could in principle map much larger volumes compared to any
other approach and short time. Thus the field of 21cm is rather promising as a new
LSS probe. However, the field is also rather young still and there are many technical
issues that need to be resolved before we can see the promises delivered. The main
issue is the relative weakness of the 21cm signal compared to the bright foregrounds.
The hope is that we will be able to use the fact that most of the foregrounds have
smooth spectral dependance and can in principle be removed and the 21cm signal
distinguished and analysed. Until this is achieved with current or upcoming surveys,
the theoretical modelling of the HI is also rather important to better understand the
signal we are after. Additionally, methods to extract most of the information once
the signal is detected need to be developed beforehand.

In this thesis, we have focussed on using the HI as the LSS probe. For that
purpose we have:
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• developed a method to reconstruct the BAO peak in the 21cm IM surveys.

• studied the gains in performing 21cm IM surveys at redshifts which is currently
vastly unobserved

• used already existing data and numerical simulation in order to constrain and
improve the HI halo model needed to make accurate and precise predictions on
the 21cm signal and the noise.

Chapter 1 is a general introduction into the basic and well known concepts in
cosmology. This introduction was intended to give a clearer understanding of the
following chapters. We briefly describe homogeneous Universe, its evolution and the
evolution of its components. Then we move on to describe how small inhomogeneities,
seeded in the very early Universe, grow to form structure that we observe later on in
our Universe. We describe the linear theory of perturbations needed in order to model
and predict the observations and the structure on linear scales. We then proceed to
discuss the origin and application of BAO as a standard ruler as a way to constrain
the cosmological parameters by measuring the BAO scale at different epochs of the
Universe. We explain the effect of non-linearities on the BAO and engage the BAO
reconstruction method which we will discus further in chapter 3.

Chapter 2 is a brief and general introduction into the 21cm cosmology. We explain
the advantages of using the IM method to map the spatial distribution of HI across
the Universe. We describe the expected signal of the 21cm power spectrum that
depends on the total amount of HI in the Universe and the HI bias. We explain
the HI halo model we use in order to make prediction of the Hi bias and the shot-
noise. We further explain the main issues with observing the 21cm signal, i.e. the
foregrounds.

Additionally, in chapter 2 we have also presented the results of determining the
HI density profile from numerical simulations IllustrisTNG. We have found that the
HI density profiles inside halos exhibit a large halo-to-halo variation, but that the
average HI density profiles are universal and can be reproduced by an altered NFW
profile with an exponential cutoff on small scales. This result is very useful as it is
one of the main ingredients used to describe the HI clustering in the HI halo model.

In chapter 3 we have tested a method in detail that is able to perform BAO
reconstruction in both galaxy surveys and pixelated maps as those from 21cm IM
surveys. It consists in moving pixels rather than galaxies and it is equivalent to
standard reconstruction in the limit of a very fine grid. We have tested this method
by using a large set of numerical simulations and find an excellent agreement with
theoretical expectations. We find that this method is able to decrease the uncertainty
in the BAO peak position by 30-50% over the typical angular resolution scales of 21
cm IM experiments. We believe this method can be particularly useful to tighten the
constraints on the value of the cosmological parameters from IM observations in the
post-reionization era from surveys such as CHIME and SKA.

In chapter 4 we have performed a detailed study of the advantages of performing
cosmological studies with 21cm IM surveys in the redshift range 2.5 < z < 5. We
consider suitable extensions of current or upcoming single-dish radio telescopes and
interferometers. By using the Fisher matrix formalism we have obtained forecasted
bounds that those instruments could put on several cosmological parameters. We
focus our results on the growth rate and the BAO distance scale parameters, but also
on two parameters of ΛCDM extension – the sum of the neutrino masses and the
number of relativistic degrees of freedom at decoupling, Neff . We have also proposed
several strategies to independently constrain ΩHI and bHI through cross-correlations
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with other probes, in order to be able to measure any other quantity that depends
on the amplitude of the 21cm power spectrum. We study in detail how our results
depend on the instrument, HI bias, the foreground wedge coverage, the nonlinear
scale used in the analysis, uncertainties in the theoretical modeling and the priors
on bHI and ΩHI. We find that an instrument performing 21cm IM observations in
this redshift range can provide very tight constraints on the considered cosmological
parameters.

In chapter 5 we have used the HI-weighed clustering of 21cm sources detected
by ALFALFA, as well as the abundance of those sources in halos identified in the
galaxy group catalog compiled from the SDSS DR7 data to place constraints on the
distribution of neutral hydrogen in dark matter halos as a function of halo mass. We
used a halo-model-based approach to model the abundance and clustering of HI by
parametrizing the MHI(Mh) relation as a power law with an exponential mass cutoff.
We also include a recent measurement of the cosmic HI abundance from the α.100
sample. We find datasets to be consistent in derived parameters and also in agree-
ment with the state-of-the-art magneto-hydrodynamical simulations. Based on these
results we make a prediction for the HI bias and the HI shot-noise. These clustering
properties of the HI derived in this work are a very relevant piece of information for
future 21cm IM studies.

Future perspectives
There are still many interesting and open questions to be addressed. Here we give an
outlook on few questions we believe will be useful to study in the future work.

Future galaxy surveys (Euclid, DESI, LSST etc.) will provide extremely precise
measurements of the galaxy power spectrum and consequently give tight constraints
on the BAO scale, growth rate, neutrino masses etc. This push towards higher pre-
cision measurements will at some point require the uncertainty in our theoretical
modelling to be better than the experimental precision. In order to extract unbiased
and accurate cosmological information from these measurements we will need to be
very careful about the systematic uncertainties in our theoretical model [246].

For example, the effect of massive neutrinos is only a few percent at the scales
where the theoretical uncertainties of the power spectrum coming from perturbation
theory are comparable [191]. Going beyond perturbation theory, it will be interesting
to quantify the uncertainties of the HOD models and answer how accurately we must
know the HOD parameters in order to be able to detect the minimal sum of the
neutrino masses.

In chapter 3 we discussed several BAO reconstruction methods. However, none of
these methods take into account the presence of massive neutrinos. As we discussed
in 4.3.1, halos and galaxies are biased tracers of the CDM+baryons field only. Thus
it is important to take into account the effect of neutrinos on the displacement fields
needed to move of galaxies or other tracers when performing BAO reconstruction.
Future surveys will measure the BAO peak position at sub-percent level. While the
effect of massive neutrinos on the BAO is in principle small, at this level of precision
it will be important to quantitatively study and include the effect of neutrinos when
performing BAO reconstruction. We would like to investigate such a BAO recon-
struction method should be performed in cosmologies with massive neutrinos using
state-of-the-art numerical simulations.

Another interesting question to address is the effect of streaming velocities [247]
on the BAO peak position of the 21cm IM in the post-reionization era. This effect
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is small at low-redshift and has been constrained recently using galaxy surveys [248,
7]. However, at higher redshifts this effect should be stronger and future surveys will
probe the gas distribution which may be different from the cold dark matter or the
total matter one. This can cause an apparent shift of the BAO peak position and we
want to investigate this effect using high resolution hydrodynamical simulations.
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Appendix A

HI density profiles table

In this appendix we show a table with results from chapter 2 concerning the HI
profiles from the numerical simulations.

Model 1 — power law + exponential cutoff: α?, log10 r0 [h−1Mpc]

z Mh = 109 [h−1M�] Mh = 1010 [h−1M�] Mh = 1011 [h−1M�] Mh = 1012 [h−1M�] Mh = 1013 [h−1M�] Mh = 1014 [h−1M�]

0 — — 3.04+0.04
−0.03, −3.59+0.85

−0.92 3.03+0.03
−0.02, −2.8+0.5

−1.2 3.02+0.03
−0.03, −2.32+0.33

−1.15 3.00+0.04
−0.04, −1.71+0.09

−0.12 2.92+0.03
−0.03, −1.91+0.11

−0.14

1 3.3+1.3
−0.7, −2.5+1.1

−1.6 3.05+0.02
−0.02, −3.72+0.77

−0.84 3.02+0.02
−0.02, −3.3+0.7

−1.1 3.00+0.03
−0.02, −2.32+0.16

−0.28 2.99+0.03
−0.03, −1.77+0.09

−0.11 — —

2 3.07+0.10
−0.08, −3.2+0.9

−1.2 3.03+0.01
−0.02, −3.64+0.78

−0.89 3.01+0.01
−0.01, −2.75+0.26

−0.68 3.00+0.02
−0.02, −2.18+0.09

−0.12 2.98+0.02
−0.01, −1.74+0.04

−0.05 — —

3 3.05+0.02
−0.02, −3.63+0.85

−0.93 3.02+0.02
−0.02, −3.1+0.5

−1.1 3.00+0.01
−0.01, −2.52+0.13

−0.20 3.00+0.02
−0.02, −2.09+0.06

−0.07 — — — —

4 3.04+0.02
−0.02, −3.3+0.7

−1.0 3.00+0.01
−0.01, −2.46+0.15

−0.24 3.00+0.01
−0.01, −2.32+0.07

−0.08 2.99+0.01
−0.01, −2.04+0.03

−0.04 — — — —

5 3.03+0.02
−0.02, −2.9+0.5

−1.2 3.00+0.01
−0.01, −2.28+0.09

−0.12 3.00+0.01
−0.01, −2.18+0.04

−0.05 3.00+0.01
−0.01, −2.02+0.03

−0.03 — — — —

Model 2 — altered NFW + exponential cutoff: log10 rs [h−1Mpc], log10 r0 [h−1Mpc]

0 — — −4.0+0.7
−0.7, −3.8+0.8

−0.8 −3.7+0.6
−0.9, −3.4+0.7

−1.0 −3.2+0.7
−1.1, −3.1+0.8

−1.3 −3.0+1.0
−1.3, −1.8+0.1

−1.0 −2.3+0.5
−1.7, −2.6+0.7

−1.6

1 −2.8+1.8
−1.5, −3.3+1.2

−1.1 −4.0+0.5
−0.6, −3.7+0.6

−0.8 −3.9+0.6
−0.7, −3.6+0.7

−0.9 −3.0+0.4
−1.2, −2.9+0.6

−1.4 −2.2+0.3
−1.6, −2.4+0.6

−1.7 — —

2 −3.7+0.9
−0.8, −3.7+0.9

−0.9 −3.8+0.5
−0.7, −3.5+0.5

−0.9 −3.6+0.5
−0.9, −3.3+0.6

−1.1 −2.8+0.3
−1.3, −2.6+0.4

−1.5 −1.8+0.1
−0.2, −3.0+0.8

−1.3 — —

3 −3.8+0.6
−0.8, −3.5+0.6

−0.9 −3.6+0.5
−0.8, −3.3+0.5

−1.1 −3.3+0.4
−1.0, −3.0+0.5

−1.3 −2.8+0.4
−1.3, −2.4+0.3

−1.4 — — — —

4 −3.6+0.5
−0.9, −3.2+0.5

−1.1 −3.2+0.4
−1.1, −3.0+0.5

−1.3 −2.9+0.3
−1.3, −2.7+0.4

−1.4 −2.6+0.3
−1.4, −2.4+0.3

−1.2 — — — —

5 −3.4+0.5
−1.0, −3.1+0.5

−1.1 −2.7+0.2
−1.1, −3.1+0.7

−1.3 −2.5+0.1
−1.1, −3.3+1.0

−1.2 −2.2+0.1
−0.4, −3.1+0.8

−1.2 — — — —

Table A.1: Best-fit values of the parameters determining the HI
density profiles. We show the resulting parameters for the two dif-
ferent models considered (see text): an altered NFW profile with an
exponential cutoff on small scales (top) and a simple power law with
an exponential cutoff on small scales (bottom), as a dependence on

the halo mass (columns) and redshift (rows).





109

Appendix B

Tables from chapter 4

In this appendix we show the tables with results from chapter 4. The tables show
the constraints on RSD, BAO distance scale parameters and cosmological parameters
coming from various configurations of the proposed 21cm IM surveys or in combina-
tion with current and foreseen galaxy surveys and CMB experiments.

Ext-HIRAX σfσ8/(fσ8), 5% bHI & ΩHI
kmax = 0.2hMpc−1 kmax = knl(z)

z No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2.5 0.036 0.036 0.075 0.035 0.035 0.043
2.6 0.036 0.036 0.080 0.035 0.036 0.044
2.7 0.036 0.036 0.085 0.035 0.036 0.046
2.8 0.036 0.036 0.091 0.035 0.036 0.048
2.9 0.036 0.037 0.097 0.036 0.036 0.050
3.0 0.036 0.037 0.104 0.036 0.036 0.053
3.1 0.036 0.037 0.111 0.036 0.036 0.056
3.2 0.036 0.037 0.119 0.036 0.036 0.060
3.3 0.037 0.037 0.127 0.036 0.036 0.065
3.4 0.037 0.037 0.135 0.036 0.036 0.070
3.5 0.037 0.037 0.144 0.036 0.036 0.075
3.6 0.037 0.038 0.153 0.036 0.036 0.082
3.7 0.037 0.038 0.162 0.036 0.036 0.089
3.8 0.037 0.038 0.171 0.036 0.036 0.097
3.9 0.037 0.038 0.181 0.036 0.036 0.105
4.0 0.038 0.039 0.190 0.036 0.036 0.114
4.1 0.038 0.039 0.200 0.036 0.036 0.124
4.2 0.038 0.040 0.209 0.036 0.037 0.135
4.3 0.038 0.040 0.218 0.036 0.037 0.146
4.4 0.039 0.041 0.228 0.036 0.037 0.158
4.5 0.039 0.041 0.237 0.036 0.037 0.170
4.6 0.039 0.042 0.246 0.037 0.038 0.182
4.7 0.040 0.043 0.254 0.037 0.038 0.194
4.8 0.040 0.044 0.263 0.037 0.038 0.206
4.9 0.040 0.045 0.271 0.037 0.039 0.219
5.0 0.041 0.046 0.279 0.037 0.040 0.231

Table B.1: Forecasted 1σ constraints on fσ8 for Ext-HIRAX as a
function of redshift for different wedge configurations and different
kmax. The numbers correspond to 5% priors on the values of both ΩHI

and bHI.
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Ext-HIRAX, kmax = 0.2hMpc−1, 5% bHI & ΩHI,
σDA/DA σH/H

z No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2.5 0.004 0.005 0.053 0.006 0.006 0.014
2.6 0.004 0.005 0.057 0.006 0.006 0.014
2.7 0.004 0.005 0.060 0.006 0.006 0.014
2.8 0.004 0.005 0.064 0.006 0.006 0.014
2.9 0.004 0.005 0.067 0.006 0.006 0.014
3.0 0.005 0.005 0.071 0.006 0.007 0.014
3.1 0.005 0.006 0.075 0.006 0.007 0.015
3.2 0.005 0.006 0.080 0.007 0.007 0.015
3.3 0.005 0.006 0.084 0.007 0.007 0.015
3.4 0.005 0.006 0.089 0.007 0.007 0.016
3.5 0.005 0.007 0.095 0.007 0.008 0.016
3.6 0.005 0.007 0.10 0.007 0.008 0.016
3.7 0.006 0.007 0.11 0.008 0.008 0.017
3.8 0.006 0.008 0.11 0.008 0.009 0.017
3.9 0.006 0.008 0.12 0.008 0.009 0.018
4.0 0.006 0.008 0.13 0.008 0.009 0.019
4.1 0.006 0.009 0.14 0.009 0.010 0.019
4.2 0.007 0.009 0.15 0.009 0.010 0.020
4.3 0.007 0.010 0.16 0.009 0.010 0.021
4.4 0.007 0.010 0.17 0.010 0.011 0.022
4.5 0.007 0.011 0.18 0.010 0.011 0.023
4.6 0.008 0.011 0.20 0.010 0.012 0.024
4.7 0.008 0.012 0.21 0.011 0.012 0.025
4.8 0.008 0.013 0.23 0.011 0.013 0.026
4.9 0.009 0.014 0.25 0.011 0.013 0.027
5.0 0.009 0.014 0.27 0.012 0.014 0.029

Table B.2: Forecasted 1σ constraints on the expansion rateH(z) and
the angular diameter distance DA(z) for Ext-HIRAX as a function of
redshift for different wedge configurations. The numbers correspond to
5% priors on the values of both ΩHI and bHI and kmax = 0.2hMpc−1.

External datasets – Σmν

ΩM h Σmν [eV] ln(1010As) ns

Fiducial values 0.3075 0.6774 0.060 3.064 0.9667
PlanckBAO 0.0082 0.0065 0.067 0.037 0.0048
Euclid02 No Rec. 0.0055 0.0025 0.20 0.091 0.0086
Euclidnl No Rec. 0.0050 0.0021 0.17 0.077 0.0065
CMB-S4 0.0038 0.0004 0.10 0.018 0.0019

Table B.3: Forecasted 1σ constraints on cosmological parameters
and the Σmν considering each external dataset alone. These con-
straints are obtained using the Fisher matrices explained in Section
4.3. PlanckBAO represents Planck CMB combined with BOSS BAO
measurements. We show the projected constraints for Euclid for two
different kmax used and the constraints coming from CMB-S4 experi-

ment.
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Ext-HIRAX Σmν

ΩM h Σmν [eV] ln(1010As) ns
Fiducial values 0.3075 0.6774 0.060 3.064 0.9667

No wedge kmax = 0.2hMpc−1

2% bHI & ΩHI 0.0016 0.0010 0.059 0.026 0.0036
2% bHI & ΩHI, diff Mmin 0.0015 0.0009 0.056 0.025 0.0033
2% bHI & ΩHI, 1-loop 0.0020 0.0010 0.081 0.038 0.014
5% bHI & ΩHI 0.0024 0.0015 0.093 0.047 0.0038
10% bHI & ΩHI 0.0029 0.0018 0.11 0.065 0.0040

No wedge kmax = knl(z)
2% bHI & ΩHI 0.0010 0.0007 0.040 0.020 0.0016
2% bHI & ΩHI, diff Mmin 0.0009 0.0006 0.037 0.019 0.0014
2% bHI & ΩHI, 1-loop 0.0011 0.0007 0.058 0.027 0.0060
5% bHI & ΩHI 0.0014 0.0009 0.054 0.032 0.0016
10% bHI & ΩHI 0.0014 0.0009 0.054 0.032 0.0016

Mid wedge kmax = 0.2hMpc−1

2% bHI & ΩHI 0.0017 0.0010 0.062 0.027 0.0039
2% bHI & ΩHI, diff Mmin 0.0016 0.0010 0.060 0.027 0.0037
2% bHI & ΩHI, 1-loop 0.0021 0.0011 0.088 0.041 0.016
5% bHI & ΩHI 0.0025 0.0016 0.098 0.049 0.0042
10% bHI & ΩHI 0.0032 0.0020 0.12 0.071 0.0044

Mid wedge kmax = knl(z)
2% bHI & ΩHI 0.0011 0.0007 0.042 0.021 0.0017
2% bHI & ΩHI, diff Mmin 0.0010 0.0006 0.039 0.020 0.0015
2% bHI & ΩHI, 1-loop 0.0011 0.0008 0.061 0.028 0.0066
5% bHI & ΩHI 0.0015 0.0010 0.058 0.035 0.0017
10% bHI & ΩHI 0.0017 0.0011 0.065 0.051 0.0018

Wedge kmax = 0.2hMpc−1

2% bHI & ΩHI 0.0066 0.0048 0.24 0.091 0.010
2% bHI & ΩHI, diff Mmin 0.0068 0.0050 0.25 0.092 0.010
2% bHI & ΩHI, 1-loop 0.0076 0.0050 0.34 0.138 0.054
5% bHI & ΩHI 0.0072 0.0053 0.27 0.107 0.011
10% bHI & ΩHI 0.0084 0.0062 0.31 0.136 0.011

Wedge kmax = knl(z)
2% bHI & ΩHI 0.0027 0.0019 0.11 0.042 0.0044
2% bHI & ΩHI, diff Mmin 0.0026 0.0019 0.10 0.041 0.0040
2% bHI & ΩHI, 1-loop 0.0029 0.0021 0.16 0.060 0.018
5% bHI & ΩHI 0.0034 0.0025 0.13 0.059 0.0044
10% bHI & ΩHI 0.0048 0.0034 0.17 0.092 0.0045

Table B.4: Fiducial values and 68% confidence intervals on cosmo-
logical parameters and the Σmν using Ext-HIRAX alone for various
considerations. Going from top to bottom, we show the constraints
considering different priors on both bHI & ΩHI, different kmax we use
and different level of foreground wedge contamination. Alongside, fo-
cusing only on the case of 2% priors on bHI & ΩHI, we show the results
obtained when we use a different value of Mmin = 2× 1011 M�/h (la-
beled diffMmin.) and when we go beyond linear theory and marginalise
over 1-loop and counter-terms parameters (labeled 1-loop, see Section

4.3.1).
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highzFAST Σmν

ΩM h Σmν [eV] ln(1010As) ns
Fiducial values 0.3075 0.6774 0.060 3.064 0.9667

kmax = 0.2hMpc−1

2% bHI & ΩHI 0.0045 0.0026 0.14 0.054 0.013
5% bHI & ΩHI 0.0054 0.0032 0.18 0.076 0.013
10% bHI & ΩHI 0.0069 0.0041 0.24 0.112 0.013

kmax = knl(z)
2% bHI & ΩHI 0.0031 0.0021 0.11 0.044 0.0076
5% bHI & ΩHI 0.0041 0.0026 0.15 0.064 0.0078
10% bHI & ΩHI 0.0054 0.0034 0.19 0.095 0.0079

Table B.5: Fiducial values and 68% confidence intervals on cosmo-
logical parameters and the Σmν using highzFAST alone for various
considerations. We show the constraints considering different astro-
physical priors on both bHI & ΩHI, as well as the dependence of the

constraints on the kmax used.

Ext-HIRAX Σmν [eV]
kmax = 0.2hMpc−1 kmax = knl(z)

Euclid No Rec.+PlanckBAO 0.050 0.049
+21cm No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2% bHI & ΩHI 0.037 0.038 0.045 0.030 0.031 0.040
2% bHI & ΩHI, diff Mmin 0.037 0.038 0.044 0.028 0.029 0.039
2% bHI & ΩHI, 1-loop 0.038 0.039 0.046 0.035 0.035 0.042
5% bHI & ΩHI 0.042 0.043 0.048 0.034 0.035 0.043
10% bHI & ΩHI 0.044 0.045 0.049 0.035 0.036 0.044
Euclid No Rec.+CMB-S4 0.031 0.030
+21cm No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2% bHI & ΩHI 0.022 0.022 0.028 0.018 0.018 0.025
2% bHI & ΩHI, diff Mmin 0.021 0.021 0.028 0.017 0.017 0.024
2% bHI & ΩHI, 1-loop 0.023 0.023 0.028 0.020 0.020 0.025
5% bHI & ΩHI 0.023 0.023 0.028 0.018 0.019 0.025
10% bHI & ΩHI 0.023 0.023 0.028 0.019 0.019 0.025

Table B.6: Forecasted 1σ constraints on Σmν considering Ext-
HIRAX instrument combined with CMB+galaxy probes. We show
the constraints considering different priors on both bHI & ΩHI, different
level of wedge contamination and different kmax used. In the top half
of the table we show what are the gains of adding Ext-HIRAX mea-
surements on top of combined Fisher matrix for Euclid galaxy survey
and PlanckBAO. In the bottom half we do the same only using CMBS-
4 Fisher matrix instead of the PlanckBAO one. Additionally, focusing
only on the case of 2% priors on bHI & ΩHI, we also show the results
obtained when we use a different value of Mmin = 2× 1011 M�/h (la-
beled diffMmin.) and when we go beyond linear theory and marginalise
over 1-loop and counter-terms parameters (labeled 1-loop, see Section

4.3.1).
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Ext-CHIME Σmν [eV]
kmax = 0.2hMpc−1 kmax = knl(z)

Euclid No Rec.+PlanckBAO 0.050 0.049
+21cm No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2% bHI & ΩHI 0.038 0.041 0.044 0.033 0.035 0.040
5% bHI & ΩHI 0.043 0.045 0.048 0.037 0.040 0.043
10% bHI & ΩHI 0.044 0.047 0.049 0.037 0.041 0.044
Euclid No Rec.+CMB-S4 0.031 0.030
+21cm No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2% bHI & ΩHI 0.023 0.026 0.029 0.020 0.022 0.026
5% bHI & ΩHI 0.024 0.026 0.029 0.021 0.023 0.026
10% bHI & ΩHI 0.025 0.026 0.029 0.021 0.023 0.027

Table B.7: Forecasted 1σ constraints on Σmν considering Ext-
CHIME instrument combined with CMB+galaxy probes. We show
the constraints considering different priors on both bHI & ΩHI, differ-
ent level of wedge contamination and different kmax used. In the top
half of the table we show what are the gains of adding Ext-CHIME
measurements on top of combined Fisher matrix for Euclid galaxy sur-
vey and PlanckBAO. In the bottom half we do the same only using

CMBS-4 Fisher matrix instead of the PlanckBAO one.

highzFAST Σmν [eV]
kmax = 0.2hMpc−1 kmax = knl(z)

Euclid No Rec.+PlanckBAO 0.050 0.049
+21cm
2% bHI & ΩHI 0.043 0.041
5% bHI & ΩHI 0.048 0.045
10% bHI & ΩHI 0.049 0.047
Euclid No Rec.+CMB-S4 0.031 0.030
+21cm
2% bHI & ΩHI 0.029 0.028
5% bHI & ΩHI 0.030 0.028
10% bHI & ΩHI 0.030 0.029

Table B.8: Forecasted 1σ constraints on Σmν considering highz-
FAST instrument combined with CMB+galaxy probes. We show the
constraints considering different priors on both bHI & ΩHI and different
kmax used. In the top half of the table we show what are the gains of
adding highzFAST measurements on top of combined Fisher matrix
for Euclid galaxy survey and PlanckBAO. In the bottom half we do
the same only using CMBS-4 Fisher matrix instead of the PlanckBAO

one.
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External datasets – Neff
ΩM h ln(1010As) ns Neff

Fiducial values 0.3075 0.6774 3.064 0.9667 3.04
PlanckBAO 0.0088 0.015 0.038 0.0088 0.23
Euclid02 0.0031 0.0064 0.0136 0.0106 0.37
Euclidnl 0.0027 0.0041 0.0096 0.0056 0.23
CMB-S4 0.0012 0.00061 0.0094 0.0028 0.029

Table B.9: Forecasted 1σ constraints on cosmological parameters
and the Neff considering each external dataset alone. These con-
straints are obtained using the Fisher matrices explained in Section
4.3. PlanckBAO represents Planck CMB combined with BOSS BAO
measurements. We show the projected constraints for Euclid for two
different kmax used and the constraints coming from CMB-S4 experi-

ment.

Ext-HIRAX Neff
ΩM h ln(1010As) ns Neff

Fiducial values 0.3075 0.6774 3.064 0.9667 3.04
No wedge kmax = 0.2hMpc−1

2% bHI & ΩHI 0.0017 0.0036 0.013 0.0061 0.22
5% bHI & ΩHI 0.0019 0.0037 0.023 0.0061 0.23
10% bHI & ΩHI 0.0020 0.0037 0.041 0.0061 0.23

No wedge kmax = knl(z)
2% bHI & ΩHI 0.0010 0.0013 0.009 0.0014 0.075
5% bHI & ΩHI 0.0011 0.0013 0.020 0.0015 0.077
10% bHI & ΩHI 0.0011 0.0013 0.040 0.0015 0.077

Mid wedge kmax = 0.2hMpc−1

2% bHI & ΩHI 0.0018 0.0039 0.013 0.0067 0.24
5% bHI & ΩHI 0.0021 0.0041 0.023 0.0067 0.25
10% bHI & ΩHI 0.0022 0.0041 0.042 0.0067 0.25

Mid wedge kmax = knl(z)
2% bHI & ΩHI 0.0011 0.0014 0.010 0.0016 0.081
5% bHI & ΩHI 0.0012 0.0014 0.021 0.0016 0.084
10% bHI & ΩHI 0.0013 0.0014 0.040 0.0016 0.085

Wedge kmax = 0.2hMpc−1

2% bHI & ΩHI 0.0057 0.0117 0.03 0.0192 0.73
5% bHI & ΩHI 0.0058 0.0118 0.04 0.0192 0.74
10% bHI & ΩHI 0.0060 0.0119 0.06 0.0193 0.75

Wedge kmax = knl(z)
2% bHI & ΩHI 0.0027 0.0035 0.01 0.0040 0.21
5% bHI & ΩHI 0.0031 0.0035 0.03 0.0041 0.21
10% bHI & ΩHI 0.0035 0.0035 0.05 0.0042 0.22

Table B.10: Fiducial values and 68% confidence intervals on cosmo-
logical parameters and the Neff using Ext-HIRAX alone for various
considerations. Going from top to bottom, we show the constraints
considering different priors on both bHI & ΩHI, different kmax we use

and different level of foreground wedge contamination.
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highzFAST Neff
ΩM h ln(1010As) ns Neff

Fiducial values 0.3075 0.6774 3.064 0.9667 3.04
kmax = 0.2hMpc−1

2% bHI & ΩHI 0.0053 0.011 0.027 0.021 0.67
5% bHI & ΩHI 0.0061 0.012 0.036 0.021 0.70
10% bHI & ΩHI 0.0067 0.012 0.053 0.021 0.72

kmax = knl(z)
2% bHI & ΩHI 0.0038 0.0058 0.018 0.0078 0.34
5% bHI & ΩHI 0.0046 0.0059 0.028 0.0079 0.36
10% bHI & ΩHI 0.0052 0.0060 0.047 0.0079 0.37

Table B.11: Fiducial values and 68% confidence intervals on cos-
mological parameters and the Neff using highzFAST alone for various
considerations. We show the constraints considering different astro-
physical priors on both bHI & ΩHI, as well as the dependence of the

constraints on the kmax used.

Ext-HIRAX Neff
kmax = 0.2hMpc−1 kmax = knl(z)

Euclid Rec.+PlanckBAO 0.067 0.064
+21cm No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2% bHI & ΩHI 0.046 0.047 0.057 0.038 0.039 0.049
5% bHI & ΩHI 0.047 0.048 0.057 0.039 0.040 0.049
10% bHI & ΩHI 0.047 0.048 0.057 0.039 0.041 0.050
Euclid Rec.+CMB-S4 0.022 0.020
+21cm No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2% bHI & ΩHI 0.019 0.019 0.021 0.015 0.015 0.017
5% bHI & ΩHI 0.020 0.020 0.022 0.015 0.016 0.018
10% bHI & ΩHI 0.020 0.020 0.022 0.015 0.016 0.018

Table B.12: Forecasted 1σ constraints on Neff considering Ext-
HIRAX instrument combined with CMB+galaxy probes. We show
the constraints considering different priors on both bHI & ΩHI, differ-
ent level of wedge contamination and different kmax used. In the top
half of the table we show what are the gains of adding Ext-HIRAX
measurements on top of combined Fisher matrix for Euclid galaxy sur-
vey and PlanckBAO. In the bottom half we do the same only using

CMBS-4 Fisher matrix instead of the PlanckBAO one.



116 Appendix B. Tables from chapter 4

Ext-CHIME Neff
kmax = 0.2hMpc−1 kmax = knl(z)

Euclid Rec.+PlanckBAO 0.067 0.064
+21cm No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2% bHI & ΩHI 0.049 0.052 0.058 0.043 0.045 0.052
5% bHI & ΩHI 0.050 0.053 0.058 0.044 0.047 0.052
10% bHI & ΩHI 0.050 0.053 0.058 0.044 0.047 0.052
Euclid Rec.+CMB-S4 0.022 0.020
+21cm No wedge Mid wedge Wedge No wedge Mid wedge Wedge
2% bHI & ΩHI 0.020 0.021 0.021 0.016 0.017 0.018
5% bHI & ΩHI 0.020 0.021 0.022 0.016 0.017 0.018
10% bHI & ΩHI 0.020 0.021 0.022 0.016 0.017 0.018

Table B.13: Forecasted 1σ constraints on Neff considering Ext-
CHIME instrument combined with CMB+galaxy probes. We show
the constraints considering different priors on both bHI & ΩHI, differ-
ent level of wedge contamination and different kmax used. In the top
half of the table we show what are the gains of adding Ext-CHIME
measurements on top of combined Fisher matrix for Euclid galaxy sur-
vey and PlanckBAO. In the bottom half we do the same only using

CMBS-4 Fisher matrix instead of the PlanckBAO one.
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highzFAST Neff
kmax = 0.2hMpc−1 kmax = knl(z)

Euclid Rec.+PlanckBAO 0.067 0.064
+21cm
2% bHI & ΩHI 0.062 0.057
5% bHI & ΩHI 0.062 0.058
10% bHI & ΩHI 0.062 0.058
Euclid Rec.+CMB-S4 0.022 0.020
+21cm
2% bHI & ΩHI 0.022 0.019
5% bHI & ΩHI 0.022 0.019
10% bHI & ΩHI 0.022 0.019

Table B.14: Forecasted 1σ constraints on Neff considering highz-
FAST instrument combined with CMB+galaxy probes. We show the
constraints considering different priors on both bHI & ΩHI, different
level of wedge contamination and different kmax used. In the top half
of the table we show what are the gains of adding Ext-CHIME mea-
surements on top of combined Fisher matrix for Euclid galaxy survey
and PlanckBAO. In the bottom half we do the same only using CMBS-

4 Fisher matrix instead of the PlanckBAO one.
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