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Abstract—This paper is devoted to study the use of 

‘gedanken’1 experiments with Finite State Machines (FSMs) for 
protocol passive testing optimization. We discuss how the 
knowledge obtained from the state identification of an 
implementation under test (IUT) can be utilized for effective IUT 
monitoring. Differently from active testing techniques, such 
identification is performed by only observing the IUT behavior. 
If the state identification is possible (at least partially), then this 
fact allows to reduce the number of properties (test purposes) to 
be checked at certain execution point(s). Correspondingly, this 
allows to simplify and/or accelerate, i.e. improve the monitoring 
process by verifying the system behavior only at critical states 
against the appropriate set of properties associated with a given 
state. The paper discusses which ‘gedanken’ experiments can be 
considered for this purpose and how they can be derived for 
various specifications of communication protocols. The results 
presented in the paper are followed by an illustrative protocol 
example that demonstrates the efficiency of the proposed 
approach.  

Keywords—passive testing, Finite State Machines, 
communication protocols, optimization 

I.  INTRODUCTION  
As information technologies rapidly progress, novel 

methods and techniques are needed for careful testing and 
verification of communication systems’ components. Such 
components can be implemented both, as software and/or 
hardware, and thus, at the first sight require different testing 
approaches. However, nowadays the boundary between 
hardware and software becomes thinner, and the same 
approaches can be applied when testing hardware and software 
components. Usually, under a testing process one understands 
the generation of specific (test/checking) sequences, their 
application and observation of the output responses with 
further conclusion about the correctness of the component of 
interest. However, this type of testing, which is also called 
active testing (see, for example [1]) is not always possible due 
to the restrictions upon the testing environment. It can occur 
that no control point is available under the given network 
topology to apply the corresponding sequences and the 

                                                             
1‘Gedanken’ is a German word meaning ‘a thought’. The term ‘gedanken’ is 
traditionally used to describe an experiment that allows to identify/recognize a 
state of a system. 

checking of a component under test cannot be performed off-
line. Therefore, under given restrictions, one needs to guarantee 
the correctness of communicating components without any 
intervention or intrusion to their operation. Moreover, the 
checking of the correctness often needs to be performed in real-
time, while the corresponding component keeps functioning. 
For these reasons, passive testing or monitoring techniques are 
widely used for guaranteeing the correct behavior (see, for 
example [2, 3]).  

Given an implementation under test (an IUT), the classical 
passive testing problem is stated as follows: by observing the 
traces (the behavior of the IUT), one needs to draw a 
conclusion about their properties. These properties can be 
considered as test purposes and can be described, for example, 
as permissible and/or prohibited invariants [4], or a set of traces 
of an appropriate automaton (Finite State Machine or FSM) [5] 
or a set of security/safety conditions [2], etc. Therefore, a 
monitor is used to capture the traces and verify those against 
the test purposes; whenever, an incorrect behavior is observed 
the monitor provides the corresponding verdict.  

That is the reason why monitors usually ‘consider’ only the 
external behavior of an IUT, without taking into account some 
internal information, for example, the current state of the IUT 
remains unknown even when the IUT specification is 
(partially) available. This information can be also extracted 
from the trace analysis and thus, at the next step only invariants 
related to the current state can be verified. Therefore, the 
knowledge of the current state, possibly up to a subset of the 
IUT states, can optimize the testing process, as not every 
invariant needs to be checked at all IUT states. For example, 
the quality of service or data size have to be thoroughly 
checked when data are transmitted while it is not so important 
to check the data size at other protocol states, such as an 
authentication state.  

In other words, the monitoring efficiency can be increased 
when checking appropriate properties at given IUT states and 
the latter can be reduced to the IUT state identification [6] 
when the IUT specification is (partially) available. This 
problem is well studied in the active testing techniques when a 
formal specification of an IUT is provided. Moreover, the 
problem can be effectively solved when such specification is 
represented as an FSM with appropriate restrictions.  
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An FSM has finite non-empty sets of states, inputs and 
outputs; when an input is applied, the FSM moves to the next 
state producing an output [7]. In other words, FSMs have a 
‘natural reactivity’ and that is the reason why they are widely 
used for analyzing the behavior of communication system 
components and in particular, telecommunication protocols [8]. 
The FSM state identification problem is well studied only for 
proper FSM classes, namely, for complete and deterministic 
FSMs, i.e., for FSMs where at each state for each input 
sequence, there is a single output response. However, it is not 
the case for communicating protocols where the FSM 
specification can be partial and nondeterministic. Moreover, 
such specifications can have continuous variables for 
describing data transmission. When the state identification 
problem is solved for a given specification FSM of a given 
system component, typically the solution is to derive an input 
sequence that after its application the initial/current state of an 
IUT becomes known. Meanwhile in the passive testing, the 
derivation of a single input sequence does not seem to be 
sufficient. The reason is that the corresponding inputs not 
necessary can be stimulated at the component input and thus, 
the input sequence of interest might never be observed. 
Therefore, one solution is to derive all possible (or at least 
several) input sequences of given length that hold the property 
of unique identification of the current IUT state. Once any of 
these sequences is observed, the set of properties that should be 
verified at a given IUT state can be dramatically reduced.  

In this paper, we study the state identification problem for 
protocol passive testing, as for protocol implementations that 
are embedded into communication systems the problem of 
‘non-intrusive’ (passive) testing remains crucial. In particular, 
we propose to use finite state models to (partially) simulate the 
behavior of the IUT components. As these specifications can 
be extended FSMs (EFSMs) which are partial and 
nondeterministic, we discuss various heuristics of how the state 
identification problem can be solved for the corresponding 
machines. As mentioned above, checking against ‘state 
targeted’ properties forms a heuristic testing approach and in 
some cases, it allows to reduce the amount of properties to be 
checked at a given point of the testing process and thus, it 
allows improving the monitoring process. Therefore, the main 
contribution of this paper is the proposal of using homing and 
synchronizing sequences and its relevant model based solutions 
for passive testing techniques. The efficiency of the proposed 
approach is illustrated on the partial extended specification of 
the Simple Connection Protocol (SCP) which is taken from [9] 
with slight modifications.   

The structure of the paper is as follows. Section 2 
introduces the preliminary concepts, while Section 3 discusses 
the state of the art of the problem. Section 4 presents an 
approach for protocol passive testing based on the IUT state 
identification when the protocol specification is represented as 
an Extended FSM. Section 5 illustrates the proposed technique 
for the example of the SCP protocol. Finally, Section 6 
concludes the paper. 

 

 

II. PRELIMINARIES 
Finite State Models 
A Finite State Machine (FSM) S is a 4-tuple (S, I, O, hS), 

where S is a finite non-empty set of states; I and O are finite 
non-empty disjoint sets of inputs and outputs, respectively; hS 
⊆ S × I × O × S is a transition (behavior) relation and a 4-tuple 
(s, i, o, s′ ) ∈  hS is a transition. An FSM is complete if for each 
pair (s, i) ∈  S  ×  I  there exists (o, s′ ) ∈  O  ×  S  such that (s, i, 
o, s′ ) ∈  hS. Otherwise, the FSM is partially specified, or 
simply partial. If for some pair (s, i) ∈  S  ×  I , there exist two 
transitions (s, i, o1, s1), (s, i, o2, s2) ∈  hS, such that o1 ≠  o2 or s1 
≠  s2 then S is nondeterministic. For a nondeterministic FSM, 
the nondeterminism is observable if given an FSM state and an 
input/output pair i/o that can be observed at the state, the i/o 
uniquely identifies the successor of each FSM state. Given a 
possibly partial and non-observable FSM, state s and an input i 
defined at state s, the i-successor of s contains each state that 
can be reached from s when i is applied. For a subset S′ of FSM 
states, the i-successor of S′ is defined if i is a defined input at 
each state of S′. In this case, the i-successor of S′ is the union of 
i-successors over all states of S′. In the same way, given an 
input sequence α, the α-successors are defined. 

An extended FSM E [10, 11] is a pair (S, T) of a set S of 
states and a set T of transitions between states, such that each 
transition t ∈ T is a tuple (s, i, o, P, vp, op, s´), where s, s´∈ S 
are the initial and final states of the transition; i ∈ I is an input 
with the set Dinp-i of possible vectors of corresponding input 
parameter values, o ∈ O is an output with the set Dout-o of 
possible vectors of output parameter values; P, vp, and op are 
functions defined over input parameters and context variables, 
namely: P: Dinp-i × DV → {True, False} is a predicate where DV 
is the set of context vectors; op: Dinp-i × DV → Dout-o is an output 
parameter update function; vp: Dinp-i × DV → DV is a context 
update function. 

According to [11], we use the following definitions. Given 
an input i and a vector ρρ  ∈ Dinp-i, the pair (i, ρ) is called a 
parameterized input; if there are no parameters for the input i 
then i is a non-parameterized input. A sequence of 
parameterized (possibly some of them are non-parameterized) 
inputs is called a parameterized input sequence. A context 
vector v ∈ DV is called a context of A. A configuration of A is a 
pair (s, v). Usually, the initial state and the initial configuration 
of the EFSM are given; thus, given a parameterized input 
sequence of the EFSM, we can calculate a corresponding 
parameterized output sequence by simulating the behavior of 
the EFSM under the input sequence starting from the initial 
configuration. 

When the EFSM model is used for active testing the 
purpose is to assure that an Implementation Under test (IUT) 
that is also described by an EFSM and the specification EFSM 
have the same behavior (equivalence relation) or the IUT 
behavior is contained in that of the specification (reduction 
relation). This can be done, for example, by simulating the 
specification EFSM under parameterized input sequences for 
obtaining a corresponding FSM (possibly, with limited number 
of states and/or transitions), and applying FSM based test 
derivation methods for deriving a complete test suite w.r.t. an 
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appropriate fault model [12]. The specification FSM can be 
huge for real protocols and there are various techniques for 
optimizing the test derivation process [13].   

FSM based test derivation methods widely use the solutions 
of a so-called state identification problem while this problem is 
usually reduced to deriving so-called ‘gedanken’ experiments 
[14] that are based on distinguishing, homing and 
synchronizing sequences. A distinguishing sequence is used to 
identify the initial state of the FSM under investigation, while 
homing and synchronizing sequences allow to identify the final 
state after a corresponding input sequence has been applied. In 
the case of a homing sequence, the conclusion about the 
current FSM state is made based on the observed output 
response, whereas for a synchronizing sequence, the final state 
is unique independently of the initial state of the FSM and the 
observed output sequence. In other words, a sequence α is a 
distinguishing (homing) sequence (DS/HS) for the FSM S if 
after applying α and observing output response β, one can 
uniquely conclude about the initial (final/current) state of S. A 
distinguishing / homing sequence is non-redundant if its proper 
prefix does not possess a corresponding property, the prefix is 
not a distinguishing / homing sequence by itself. For 
synchronizing sequences the observation of the output response 
β can be omitted as the final state s′  achieved after the 
application of α is unique for any output response.  

Correspondingly, we adapt the notion of homing / 
synchronizing sequences for EFSM states. A parameterized 
input sequence α is a homing sequence (HS) for the EFSM E if 
α is defined at any state with any values of input parameters 
and context variables and after applying α at any state with any 
values of input parameters and context variables and observing 
output response β (in fact, with any values of output 
parameters), one can uniquely conclude about the final 
(current) state of E. As usual, for synchronizing sequences, 
there is no necessity for observing the output response.  

As an example of an EFSM, consider the specification of 
the Simple Connection Protocol [9] (Fig. 1) that will be used as 
a running example throughout this paper. By direct inspection 
one can conclude that the non-parameterized sequence α = 
req.conn is a homing sequence for this EFSM. Indeed, when 
the output (nonsupport.err) or (support.abort) is produced, the 
EFSM is at state s1 while if there is a response (support.refuse) 

or (err.refuse) then the machine is at state s2. If the machine 
replies with the sequences (support.accept), (err.accept) or 
(err.err) when a sequence α is applied, then the EFSM is at 
state s3. In this paper, we discuss how a set of homing and/or 
synchronizing sequences for a given specification (extended) 
FSM can be used for effective monitoring of its 
implementations.  

The Simple Connection Protocol (SCP) 

The SCP is a protocol designed to ‘connect’ two entities, 
negotiating the quality of service at the connection 
establishment. The SCP is originally specified in [9]. The SCP 
seems to be small but it can be easily seen that methods that 
work on this specification can be extended for working on 
larger communication protocol specifications, when using the 
same model. The SCP allows connecting an entity called the 
upper layer to an entity called the lower layer. The upper layer 
dialogues with SCP to fix the quality of service (QoS) desirable 
for the future connection. Once this negotiation is finished, the 
upper layer comes to the lower layer requesting the 
establishment of a connection satisfying the quality of service 
previously agreed on. The lower layer accepts or refuses this 
connection request. If the lower layer accepts the request, then 
it informs the upper layer that the connection was established 
and the upper layer can start transmitting data. Once the 
transmission of data is finished, the upper layer sends a 
message to close the connection. On the other hand, if the 
lower layer refuses the connection, the system allows the upper 
layer to make three requests before informing the upper layer 
that all the connection attempts failed. If the upper layer would 
like to be connected to the lower layer, it is necessary to restart 
the QoS negotiation from the beginning. After the connection 
gets established (accepted), the upper layer can send data to the 
lower layer with a guaranteed QoS. Each time the upper layer 
sends any data, the lower layer acknowledges the total amount 
of received data.  Correspondingly, we use the following inputs 
and outputs. The upper layer can request the desired QoS level 
with the message req(QoS) with QoS in the range [0,3]. The 
lower layer replies whether it can support the desired QoS level 
or not with the messages nosupport(QoS) or support(QoS). 
The upper layer then can issue the message conn (an output) to 
try to establish the connection. The replies can be accept(QoS) 
if the connection guarantees QoS, refuse if the lower layer is 

 
Fig. 1. EFSM Specification for the Simple Connection Protocol  

317



busy, or abort if more than two refused attempts have occurred. 
The upper layer then can issue the data(size, value) message to 
transmit the data. Each data message is acknowledged with the 
message ack(DataCountOut). At any point, if the upper layer 
decides to end the connection, the message reset can be sent. 
The reset message should be replied with an abort message by 
the lower layer. Finally, any input at a wrong state should be 
replied with an error message, err.  

On-line Passive Testing using Network Traces 

A network packet (packet for short) is the abstraction of the 
transmitted bit-streams in a communication network; this 
abstraction allows to interpret a packet as a formatted data unit. 
A packet is interpreted as a ‘message’ for a communication 
protocol. Analyzing a packet is to inspect the data inside the 
packet, seeking for particular values; these values have 
appropriate semantics depending on the network protocol. The 
sequence of packets observed for a given IUT is called a 
network trace [3]. A network trace (trace for short) is 
potentially infinite but at each step, only sequences of an 
appropriate length are analyzed and for the sake of time, 
usually those are sequences of length one, i.e., a single packet 
is analyzed at each step. An invariant is a sequence of actions 
that must hold together with actions of a packet under analysis. 
An invariant can be generally described in the form of the IUT 
input and output messages [4]. In addition to sequences of 
input and output symbols we allow the character �, referring 
any input/output sequence. For example, the invariant 
������ �� ����� indicates that after the observed input-output 
pair ���, the first occurrence of the input symbol �� is followed 
by an output belonging to the set �. Below, there are some 
invariants derived based on the SCP description. 

Receipt confirmation. When data is sent to the lower layer, 
an acknowledgement (ack) should be sent to the upper layer: 

���� � ��������. 

Connection attempt management. At least two refused 
attempts should be allowed before definitely rejecting the 
upper layer connection: 

���� � ������������ ������������ ��������������� 

Client communication termination. Any successful 
connection must be properly terminated. The upper layer sends 
a reset after the connection was established, and before 
requesting a new QoS or connection, the abort message has to 
be produced: 

���� � ����������� ������ ��� ������������� 

The invariants are usually defined with a target, e.g., to 
guarantee the validity of an implementation with respect to 
some properties. On-line passive testing using network traces is 
a passive testing technique (based on the usage of network 
traces) that analyzes the data as soon as they are produced / 
received by an IUT. It is known that on-line passive testing is 
time and resource demanding, since the test verdicts are 
expected as soon as possible [15]. A test engineer has to verify 
a packet at hand with respect to a given set of invariants. 
Another check can be done for the parameter values within a 
packet at hand or analyzing non-functional properties of a short 

packet sequence. For example, a packet can have parameters, 
which are responsible for non-functional requirements such as 
power consumption, bandwidth, data size, etc. The quality of 
service can be also checked by measuring the time between the 
arrivals of two consecutive packets. Such checking is not 
necessary at every step. For example, it is not necessary to 
check the data size or QoS at the authentication step, however, 
it is mandatory to check this when data are transmitted.  

III. RELATED WORK 
Passive testing and monitoring techniques for 

communication networks have been proposed during the last 
10-15 years. The first works that have been performed in this 
area were devoted to protocol testing [see, for example, 4, 16, 
17]. In fact, passive testing is very natural for protocol testing 
since many communication components such as servers, for 
example, cannot be switched off to perform a testing process 
but can be only observed ‘from outside’. Given a trace of an 
IUT, the passive ‘tester’ should verify whether this trace can be 
produced by the valid IUT. If there is the IUT specification 
such as a finite automaton, for example, then the problem can 
be reduced to the well-known problem to check whether an 
observed trace is a trace of a given automaton [5]. There have 
been proposed state model based techniques for the passive 
testing, to check whether the IUT conforms to its specification 
(see, for example [18]).  

However, the problem is that for real protocols the 
automata descriptions are rather big; one of the ways to 
minimize the automata descriptions is to use extended 
automata or FSMs but in this case, there still is a lack of 
methods for determining whether a given parameterized trace 
is a trace of a given extended automaton or FSM. For this 
reason, researchers started to use sets of invariants rather than 
automata descriptions to speed up the passive testing process. 
Those invariants are derived on target and the check is 
performed not against the extended automaton or FSM but 
against the set of regular expressions which are given by an 
expert. As it has been proven by a number of experiments, such 
regular invariant representations are very practical and this 
approach is now applied for many networks (see, for example 
[2]). As the checking speed significantly depends on the 
number of invariants that should be verified at a current step 
and those invariants are somehow related to protocol modes, 
the process can be accelerated if the IUT specification (as an 
EFSM, for example) is at least partially known. In this case, 
homing / synchronizing sequences can help to determine the 
current IUT state. For active testing, the researchers usually 
derive a single homing / synchronizing sequence but for 
passive testing when inputs cannot be stimulated the tester has 
to have a list of such sequences. Once at least one homing 
sequence is observed through the passive testing, the tester 
knows the current state of an IUT and thus, knows which 
invariants have to be checked at the corresponding state, i.e.,  
the set of invariants which have to be verified at a current state 
can be dramatically decreased. 

The methods for deriving homing and synchronizing 
sequences are well elaborated for complete and deterministic 
FSMs [19-21]. Even though the length of most of these 
sequences is polynomial with respect to the number of FSM 
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states, the current complexity of protocol implementations 
makes it almost impossible to have a complete deterministic 
protocol specification. Moreover, current specifications of 
telecommunication protocols can include various options for 
output responses under the same query. In addition, sometimes 
the behavior of a protocol cannot be specified under some 
inputs at a given state. That is the reason why researchers turn 
their attention towards other FSM types, and in particular, 
towards nondeterministic and partial FSMs.  

A method for deriving a homing sequence for a 
nondeterministic FSM has been proposed in [22]. 
Synchronizing sequences for partial and nondeterministic 
FSMs have been studied in [23, 24] and methods for their 
deriving have been also proposed. However, the complexity of 
checking the existence of such sequences is rather high 
(PSPACE-completeness of the problems [6, 25]) and the length 
of these sequences can be exponential [24, 26]. However, it has 
been experimentally shown that for ‘real’ protocol 
specifications the worst complexity case is usually not reached 
[12]. The latter gives a hope that the state identification 
problem can be effectively solved when a protocol 
specification is described by a corresponding FSM.  

The authors are not aware of any results of an application 
of state identification problems and their solutions to 
monitoring techniques. We propose to combine the advantages 
of state identification techniques for active testing together 
with the passive testing that has been proven to be effective 
when checking properties of protocol implementations. 

 

IV. FSM BASED STATE IDENTIFICATION FOR PROTOCOL 
PASSIVE TESTING 

In this paper, we propose to study the application of FSM 
(EFSM) state identification problems to the (on-line) passive 
testing domain to reduce the complexity of the runtime 
evaluation. In the passive testing domain, the IUT cannot be 
interrupted. Therefore, the trace is usually analyzed at an 
unknown state. Since the trace is analyzed at an unknown state, 
all the properties of a trace under verification need to be 
verified. If this is on-line passive testing, the ‘checks’ need to 
be performed every time when a new network packet arrives. 
Let � be a set of properties to be checked. At a current moment 
of the execution, there is a specific execution state for the 
network protocol. We denote the subset �� � �� as the 
properties that are ‘checkable’ (or relevant) for state ��. In other 
words, it can well happen that only some properties are 

relevant to a current state of the IUT. The knowledge of the 
current state of a given IUT allows to verify only pertinent 
invariants at that given moment (state). Understanding the fact 
that passive testing techniques usually ‘try to avoid’ having a 
complete formal specification of the system under test, we 
suggest to use (partial) extended protocol specification in order 
to effectively apply state identification techniques. The latter 
can simplify the monitoring activity by concluding at the first 
stage about the current state of the implementation under test 
and then checking only properties which are critical at this 
state. In other words, we propose to reduce the number of 
properties to be checked or the number of these checks by 
verifying only those that are really important at a given state. 

The current state of a protocol implementation can be 
determined by extracting from the observed behavior (traces) 
of an IUT, homing and synchronizing sequences for an 
(Extended) FSM that (partially) specifies the protocol behavior. 
In order to derive such sequences beforehand, we propose to 
use methods developed for classical FSMs and adapt those to 
the corresponding extended specification machines. 

V. DERIVING HOMING/SYNCHRONIZING SEQUENCES FOR 
EFSMS 

Suppose that we have the EFSM specification E of a 
network component that is monitored. Since properties to be 
verified are linked to states of the IUT, it is sufficient to 
identify not configurations but only states of the EFSM. For 
this reason, we could consider a so-called FSM slice of a given 
EFSM [27] and derive a set of homing / synchronizing 
sequences based on this FSM slice FSME.  

The FSM slice FSME is obtained after deleting from a given 
EFSM all the predicates, parameters and update functions [27]. 
However, the main problem is that the obtained FSM usually is 
partial and nondeterministic and also can be non-observable 
while all the methods for deriving homing sequences are 
elaborated for complete observable FSMs. Moreover, we 
would like to derive not a single homing (synchronizing) 
sequence but a set of all such sequences which are non-
redundant and have limited length. Given an EFSM E, after 
deleting all context variables, input and output parameters, 
predicates, and update functions, each transition becomes a 
classical FSM transition containing starting and final states and 
an input/output pair i/o. By construction, the FSME can be 
nondeterministic, partial and non-observable, since the initial 
EFSM from the same state could move to two different states 
being inspired by the same input. In the initial EFSM, 

 
Fig. 2. FSM Slice of SCP 
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corresponding inputs were distinguished due to corresponding 
predicates where input parameters are involved while the 
inputs become indistinguishable after deleting input parameters 
and predicates. The FSM slice for the running SCP example is 
shown in Fig. 2. By direct inspection one can assure that the 
obtained FSM is nondeterministic but still is observable.  

As discussed in Section 3, there are methods for deriving 
homing and synchronizing sequences for complete observable, 
possibly nondeterministic FSMs. Since FSME can be partial 
and non-observable, we adapt those methods to such FSMs. 
For this purpose, as usual, we use a truncated successor tree 
[19] of length l that allows to check the existence of homing / 
synchronizing sequence of length up to l and to derive such 

non-redundant sequences if they exist.  

Procedure 1 for deriving a set of non-redundant homing 
sequences for a subset S' ⊆ S, |S'| > 1, of a given FSM that can 
be partial and non-observable 

Input: FSM S that can be partial and non-observable and a 
subset S' ⊆ S, |S'| > 1 

Output: A set of all non-redundant homing sequences of 
length l or less or the message “There is no homing sequence 
of length l or less for the subset S” 

Derive a truncated successor tree for the FSM S. The root 
of the tree is labeled with the set S'; the nodes of the tree are 
labeled by state subsets such that none of them is a proper 
subset of another. Edges of the tree are labeled by inputs and 
there exists an edge labeled by i from a node labeled by P at 
level j, j ≥ 0, to a node labeled by Q if Q is the set of i-
successors of all subsets of P. The set Q contains a singleton if 
non-empty i/o-successors of some subset of P coincide for 
some o ∈ O or if corresponding non-empty i/o-successors of 
some subset of P do not intersect. Sets which are proper 
subsets of other items are deleted from the set Q.  

Given a node labeled with the set P at the level k, k > 0, the 
node is terminal if one of the following conditions holds. 

Rule-1: P contains only singletons.  

Rule-2: The depth of the node P is greater than l. 

If the successor tree has no nodes labeled with the 
singletons only, i.e., is not truncated using Rule-1 then           
Return the message “There is no homing sequence of length l 
or less for the subset S'”. 

Otherwise,  

For each path to a node labeled with the set of singletons 
Add the input sequence that labels the selected path to the set 
H of homing sequences. 

Return H.  

In order to illustrate Procedure 1, we apply it to the SCP 
slice (Fig. 2) to find a set of non-redundant homing sequences 
of length up to 2. The resulting set of (non-redundant) homing 
sequences is the following: 

 
���� ����� � ���� ���� � �������� � ����� � ����� ��� �

����� ���� � ����� ����� � ����� ��� � ��������� �

����� �����

�  

The corresponding truncated successor tree the SCP slice 
is shown in Fig. 3. As an example, consider one homing 
sequence, for instance the sequence ����� �����. If the output 
response of the IUT when observing the input sequence 
mentioned before is contained in the set 
���� ��� � ���� ������ � ��������� ������� , then one can 

conclude that the current state of the IUT is ��. If the output 
response is in the set �������� ������ � ���� ������ , the 
current state of the IUT must be ��. Any other output not listed 
in the previous two sets guarantees that the current state of the 
IUT is ��. The conclusion about the current IUT state could be 
used as an heuristic to further reduce the number of IUT 
checks. We also notice that despite the fact that the reset input 
is a synchronizing sequence, this input cannot be of a great 
help, as it usually occurs only at the end of the protocol 
interaction (flow). If not all homing / synchronizing sequences 
can be derived according to the size of the protocol 
specification, we can look only for those which occur during 
the IUT functioning with high probability. 

After determining the current state of the IUT the only 
properties that are related to that state can be checked. For 
example, if the IUT is at state �� the invariant ���� can be 
checked. However, if the IUT is at state ��, there is no need to 
check the invariant ����� Furthermore, there exist many non-
functional requirements that can be checked at state ��. An 
example of such non-functional property, it can be checked 
that the length of transferred data does not exceed the 
available disk space, or that the QoS provided is indeed the 
one guaranteed at the QoS negotiation phase. Note that 
checking such non-functional properties while the IUT is not 
at state �� puts an unnecessary load on the system. 

Following the SCP example, 10 homing sequences were 
obtained to determine the current state of the IUT. The 
question arises: which of those homing sequences should be 
used? Given the fact that network protocols are typically 
designed with a specific flow, some input sequences can be 
rare to observe. Furthermore, such sequences could be the 
result of a potential attack or a faulty implementation. 
Therefore, homing sequences that follow the natural network 
protocol flow should be chosen. As an example, the input 
sequence ������ ���� should not be observed. Observing the 
above input sequence potentially means that either the lower 
layer is receiving a request to negotiate the QoS while data is 
being transmitted which is not allowed by the SCP protocol, or 
that the upper layer is trying to start a new communication 
without properly finishing the current one. For our example, 
the homing sequence ����� ����� is well suited given the 
protocol constraints. The sequence ������� is a synchronizing 
sequence, but under the normal operation of the IUT, the 
����� input should have a low frequency, and that is the 
reason why a longer homing / synchronizing sequence is 
usually preferred. 
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Remarks and discussion initiated by Procedure 1 

1. Procedure 1 can be optimized using only inputs which can 
often occur. For example, a reset is a synchronizing 
sequence but it is usually observed only at the end of the 
protocol operation.  

2. Procedure 1 can be easily adapted to checking the existence 
and derivation of all non-redundant synchronizing 
sequences for an FSM S of length l or less. In this case, the 
truncating Rule-1 is changed correspondingly. All the 
singletons should be the same, i.e. the corresponding set P 
contains a subset of cardinality one, namely, P is a 
singleton. The derivation of such synchronizing sequences 
is somehow harder than the derivation of homing ones, 
however the nature of synchronizing sequences allows to 
‘forget’ about the outputs of an IUT. Therefore, on the 
other hand, it somehow further simplifies the monitoring 
process as for a given input packet that was accepted by an 
IUT there is no need to observe an output and thus, wait for 
its corresponding output. Experiments are needed to 
estimate the frequency of appearance of homing and 
synchronizing sequences for partial (non-observable) 
specifications of communication protocols, probably 
obtained through appropriate extended machines.  

3. Procedure 1 can return the output that there is no homing 
sequence of length l or less. However, in this case, the 
information preserved in the truncated successor tree can be 
still useful for the monitoring process optimization. If there 
is a node P that was truncated by an application of Rule-2 
and meanwhile it contains, for example, a single pair of 
states, the sequence that labels the path to this node can also 
provide some significant monitoring information. Indeed, if 
P = {si, sj} then the observation of the corresponding trace 
allows to conclude that an IUT can only be at state si or 
state sj. Therefore, a test engineer (or a monitor by itself) at 
the current step can only check the properties associated to 
these two states, namely si and sj. One can expect that the 
greater is the set S' of initial states the more a test engineer 
can gain using such monitoring optimization. Similar to the 
previous remark, an experimental evaluation is needed to 
estimate how often the successor tree can be truncated with 
the state pairs, triples, etc. and therefore, what is the optimal 
length l to truncate it with the Rule-2.    
If there are no input sequences with good properties for the 

slice FSME then the abstraction level can be reduced and 

another slice, for example, a slice SliceE,context-free of an EFSM E 
that does not have context variables can be considered [27]. 
The idea behind this approach is to delete transitions from the 
initial EFSM which have predicates that significantly depend 
on context variables. However, some of such transitions can be 
preserved when the transition predicate P is the disjunction of 
predicates P1 and P2, and P1 does not significantly depend on 
context variables. In this case, a transition with the predicate P 
can be replaced by the same transition with the predicate P1. At 
the next step, all the context variables and functions for 
updating these variables are deleted from the obtained EFSM.  

By construction, the Slicecontext-free(A) has no context 
variables, i.e., has an FSM behavior. Nevertheless, this slice 
has input parameters, i.e., parameterized inputs should be 
considered when deriving homing / synchronizing sequences. 
The SliceE,context-free can have predicates which depend on input 
parameters and this should be taken into account when deriving 
homing / synchronizing sequences. As usual, for deriving such 
sequences we consider a corresponding observable l-equivalent 
but this construction is augmented with checking conditions for 
predicate satisfiability and determining a corresponding 
satisfying assignment. To the best of our knowledge, there is 
no general method of how to solve the problem for an arbitrary 
predicate but for most protocols such predicates are described 
using Boolean functions or systems of linear comparisons over 
integers or rational. If all the predicates are Boolean functions 
then the satisfiability problem is reduced to the well known 
SAT problem and there are efficient algorithms for its solving, 
see, for example [28, 29]. If predicates are represented as linear 
expressions then there are methods to solve a corresponding 
system of linear inequalities [30]. We mention that in this case, 
differently from Procedure 1, the input labels become rather 
symbolic describing the same input with many values of input 
parameters. Meanwhile, checking the efficiency of using both, 
FSM and context-free slices of the corresponding EFSM 
protocol specifications seems a promising approach that we 
leave for future work.  

VI. CONCLUSION 
In this paper, we have proposed an approach for improving 

the process of passive testing when a partial specification of a 
component under test is available. The optimization is 
performed using the state identification problem solutions but 
for possibly partial and non-observable FSM / EFSM. 
Consequently, well-known methods for deriving 
homing / synchronizing sequences for complete 
nondeterministic FSMs are adapted for deriving such 

 

 
Fig. 3. SCP Truncated Successor Tree 
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sequences for an arbitrary machine. Once one of such 
sequences occurs during the passive testing, only properties 
associated with a corresponding current state have to be 
verified. As the number of verified properties decreases, the 
passive testing process becomes faster and more efficient. As 
for future work, we are going to perform experiments for 
estimating the frequency of appearance of homing and 
synchronizing sequences for partial (non-observable) 
specifications of telecommunication protocols, probably 
obtained through appropriate extended machines and evaluate 
the efficiency of a proposed approach for real communication 
systems.  
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