
Improving Protocol Passive Testing through ‘Gedanken’ Experiments with Finite State
Machines

Natalia Kushik
SAMOVAR, RS2M,

Computer Science Laboratory
CNRS, Télécom SudParis,

Université Paris-Saclay,
Tomsk State University

Évry, France, Tomsk, Russia
natalia.kushik@telecom-sudparis.eu

Jorge López, Ana Cavalli
SAMOVAR, RS2M

CNRS, Télécom SudParis,
Université Paris-Saclay

Évry, France
{jorge.lopez, ana.cavalli}@telecom-

sudparis.eu

Nina Yevtushenko
Computer Science Laboratory

Tomsk State University
Tomsk, Russia

nyevtush@gmail.com

Abstract—This paper is devoted to study the use of

‘gedanken’1 experiments with Finite State Machines (FSMs) for
protocol passive testing optimization. We discuss how the
knowledge obtained from the state identification of an
implementation under test (IUT) can be utilized for effective IUT
monitoring. Differently from active testing techniques, such
identification is performed by only observing the IUT behavior.
If the state identification is possible (at least partially), then this
fact allows to reduce the number of properties (test purposes) to
be checked at certain execution point(s). Correspondingly, this
allows to simplify and/or accelerate, i.e. improve the monitoring
process by verifying the system behavior only at critical states
against the appropriate set of properties associated with a given
state. The paper discusses which ‘gedanken’ experiments can be
considered for this purpose and how they can be derived for
various specifications of communication protocols. The results
presented in the paper are followed by an illustrative protocol
example that demonstrates the efficiency of the proposed
approach.

Keywords—passive testing, Finite State Machines,
communication protocols, optimization

I. INTRODUCTION
As information technologies rapidly progress, novel

methods and techniques are needed for careful testing and
verification of communication systems’ components. Such
components can be implemented both, as software and/or
hardware, and thus, at the first sight require different testing
approaches. However, nowadays the boundary between
hardware and software becomes thinner, and the same
approaches can be applied when testing hardware and software
components. Usually, under a testing process one understands
the generation of specific (test/checking) sequences, their
application and observation of the output responses with
further conclusion about the correctness of the component of
interest. However, this type of testing, which is also called
active testing (see, for example [1]) is not always possible due
to the restrictions upon the testing environment. It can occur
that no control point is available under the given network
topology to apply the corresponding sequences and the

1‘Gedanken’ is a German word meaning ‘a thought’. The term ‘gedanken’ is
traditionally used to describe an experiment that allows to identify/recognize a
state of a system.

checking of a component under test cannot be performed off-
line. Therefore, under given restrictions, one needs to guarantee
the correctness of communicating components without any
intervention or intrusion to their operation. Moreover, the
checking of the correctness often needs to be performed in real-
time, while the corresponding component keeps functioning.
For these reasons, passive testing or monitoring techniques are
widely used for guaranteeing the correct behavior (see, for
example [2, 3]).

Given an implementation under test (an IUT), the classical
passive testing problem is stated as follows: by observing the
traces (the behavior of the IUT), one needs to draw a
conclusion about their properties. These properties can be
considered as test purposes and can be described, for example,
as permissible and/or prohibited invariants [4], or a set of traces
of an appropriate automaton (Finite State Machine or FSM) [5]
or a set of security/safety conditions [2], etc. Therefore, a
monitor is used to capture the traces and verify those against
the test purposes; whenever, an incorrect behavior is observed
the monitor provides the corresponding verdict.

That is the reason why monitors usually ‘consider’ only the
external behavior of an IUT, without taking into account some
internal information, for example, the current state of the IUT
remains unknown even when the IUT specification is
(partially) available. This information can be also extracted
from the trace analysis and thus, at the next step only invariants
related to the current state can be verified. Therefore, the
knowledge of the current state, possibly up to a subset of the
IUT states, can optimize the testing process, as not every
invariant needs to be checked at all IUT states. For example,
the quality of service or data size have to be thoroughly
checked when data are transmitted while it is not so important
to check the data size at other protocol states, such as an
authentication state.

In other words, the monitoring efficiency can be increased
when checking appropriate properties at given IUT states and
the latter can be reduced to the IUT state identification [6]
when the IUT specification is (partially) available. This
problem is well studied in the active testing techniques when a
formal specification of an IUT is provided. Moreover, the
problem can be effectively solved when such specification is
represented as an FSM with appropriate restrictions.

2016 IEEE International Conference on Software Quality, Reliability and Security

978-1-5090-4127-5/16 $31.00 © 2016 IEEE

DOI 10.1109/QRS.2016.43

315

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287447224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An FSM has finite non-empty sets of states, inputs and
outputs; when an input is applied, the FSM moves to the next
state producing an output [7]. In other words, FSMs have a
‘natural reactivity’ and that is the reason why they are widely
used for analyzing the behavior of communication system
components and in particular, telecommunication protocols [8].
The FSM state identification problem is well studied only for
proper FSM classes, namely, for complete and deterministic
FSMs, i.e., for FSMs where at each state for each input
sequence, there is a single output response. However, it is not
the case for communicating protocols where the FSM
specification can be partial and nondeterministic. Moreover,
such specifications can have continuous variables for
describing data transmission. When the state identification
problem is solved for a given specification FSM of a given
system component, typically the solution is to derive an input
sequence that after its application the initial/current state of an
IUT becomes known. Meanwhile in the passive testing, the
derivation of a single input sequence does not seem to be
sufficient. The reason is that the corresponding inputs not
necessary can be stimulated at the component input and thus,
the input sequence of interest might never be observed.
Therefore, one solution is to derive all possible (or at least
several) input sequences of given length that hold the property
of unique identification of the current IUT state. Once any of
these sequences is observed, the set of properties that should be
verified at a given IUT state can be dramatically reduced.

In this paper, we study the state identification problem for
protocol passive testing, as for protocol implementations that
are embedded into communication systems the problem of
‘non-intrusive’ (passive) testing remains crucial. In particular,
we propose to use finite state models to (partially) simulate the
behavior of the IUT components. As these specifications can
be extended FSMs (EFSMs) which are partial and
nondeterministic, we discuss various heuristics of how the state
identification problem can be solved for the corresponding
machines. As mentioned above, checking against ‘state
targeted’ properties forms a heuristic testing approach and in
some cases, it allows to reduce the amount of properties to be
checked at a given point of the testing process and thus, it
allows improving the monitoring process. Therefore, the main
contribution of this paper is the proposal of using homing and
synchronizing sequences and its relevant model based solutions
for passive testing techniques. The efficiency of the proposed
approach is illustrated on the partial extended specification of
the Simple Connection Protocol (SCP) which is taken from [9]
with slight modifications.

The structure of the paper is as follows. Section 2
introduces the preliminary concepts, while Section 3 discusses
the state of the art of the problem. Section 4 presents an
approach for protocol passive testing based on the IUT state
identification when the protocol specification is represented as
an Extended FSM. Section 5 illustrates the proposed technique
for the example of the SCP protocol. Finally, Section 6
concludes the paper.

II. PRELIMINARIES
Finite State Models
A Finite State Machine (FSM) S is a 4-tuple (S, I, O, hS),

where S is a finite non-empty set of states; I and O are finite
non-empty disjoint sets of inputs and outputs, respectively; hS
⊆ S × I × O × S is a transition (behavior) relation and a 4-tuple
(s, i, o, s′) ∈ hS is a transition. An FSM is complete if for each
pair (s, i) ∈ S × I there exists (o, s′) ∈ O × S such that (s, i,
o, s′) ∈ hS. Otherwise, the FSM is partially specified, or
simply partial. If for some pair (s, i) ∈ S × I , there exist two
transitions (s, i, o1, s1), (s, i, o2, s2) ∈ hS, such that o1 ≠ o2 or s1
≠ s2 then S is nondeterministic. For a nondeterministic FSM,
the nondeterminism is observable if given an FSM state and an
input/output pair i/o that can be observed at the state, the i/o
uniquely identifies the successor of each FSM state. Given a
possibly partial and non-observable FSM, state s and an input i
defined at state s, the i-successor of s contains each state that
can be reached from s when i is applied. For a subset S′ of FSM
states, the i-successor of S′ is defined if i is a defined input at
each state of S′. In this case, the i-successor of S′ is the union of
i-successors over all states of S′. In the same way, given an
input sequence α, the α-successors are defined.

An extended FSM E [10, 11] is a pair (S, T) of a set S of
states and a set T of transitions between states, such that each
transition t ∈ T is a tuple (s, i, o, P, vp, op, s´), where s, s´∈ S
are the initial and final states of the transition; i ∈ I is an input
with the set Dinp-i of possible vectors of corresponding input
parameter values, o ∈ O is an output with the set Dout-o of
possible vectors of output parameter values; P, vp, and op are
functions defined over input parameters and context variables,
namely: P: Dinp-i × DV → {True, False} is a predicate where DV
is the set of context vectors; op: Dinp-i × DV → Dout-o is an output
parameter update function; vp: Dinp-i × DV → DV is a context
update function.

According to [11], we use the following definitions. Given
an input i and a vector ρρ ∈ Dinp-i, the pair (i, ρ) is called a
parameterized input; if there are no parameters for the input i
then i is a non-parameterized input. A sequence of
parameterized (possibly some of them are non-parameterized)
inputs is called a parameterized input sequence. A context
vector v ∈ DV is called a context of A. A configuration of A is a
pair (s, v). Usually, the initial state and the initial configuration
of the EFSM are given; thus, given a parameterized input
sequence of the EFSM, we can calculate a corresponding
parameterized output sequence by simulating the behavior of
the EFSM under the input sequence starting from the initial
configuration.

When the EFSM model is used for active testing the
purpose is to assure that an Implementation Under test (IUT)
that is also described by an EFSM and the specification EFSM
have the same behavior (equivalence relation) or the IUT
behavior is contained in that of the specification (reduction
relation). This can be done, for example, by simulating the
specification EFSM under parameterized input sequences for
obtaining a corresponding FSM (possibly, with limited number
of states and/or transitions), and applying FSM based test
derivation methods for deriving a complete test suite w.r.t. an

316

appropriate fault model [12]. The specification FSM can be
huge for real protocols and there are various techniques for
optimizing the test derivation process [13].

FSM based test derivation methods widely use the solutions
of a so-called state identification problem while this problem is
usually reduced to deriving so-called ‘gedanken’ experiments
[14] that are based on distinguishing, homing and
synchronizing sequences. A distinguishing sequence is used to
identify the initial state of the FSM under investigation, while
homing and synchronizing sequences allow to identify the final
state after a corresponding input sequence has been applied. In
the case of a homing sequence, the conclusion about the
current FSM state is made based on the observed output
response, whereas for a synchronizing sequence, the final state
is unique independently of the initial state of the FSM and the
observed output sequence. In other words, a sequence α is a
distinguishing (homing) sequence (DS/HS) for the FSM S if
after applying α and observing output response β, one can
uniquely conclude about the initial (final/current) state of S. A
distinguishing / homing sequence is non-redundant if its proper
prefix does not possess a corresponding property, the prefix is
not a distinguishing / homing sequence by itself. For
synchronizing sequences the observation of the output response
β can be omitted as the final state s′ achieved after the
application of α is unique for any output response.

Correspondingly, we adapt the notion of homing /
synchronizing sequences for EFSM states. A parameterized
input sequence α is a homing sequence (HS) for the EFSM E if
α is defined at any state with any values of input parameters
and context variables and after applying α at any state with any
values of input parameters and context variables and observing
output response β (in fact, with any values of output
parameters), one can uniquely conclude about the final
(current) state of E. As usual, for synchronizing sequences,
there is no necessity for observing the output response.

As an example of an EFSM, consider the specification of
the Simple Connection Protocol [9] (Fig. 1) that will be used as
a running example throughout this paper. By direct inspection
one can conclude that the non-parameterized sequence α =
req.conn is a homing sequence for this EFSM. Indeed, when
the output (nonsupport.err) or (support.abort) is produced, the
EFSM is at state s1 while if there is a response (support.refuse)

or (err.refuse) then the machine is at state s2. If the machine
replies with the sequences (support.accept), (err.accept) or
(err.err) when a sequence α is applied, then the EFSM is at
state s3. In this paper, we discuss how a set of homing and/or
synchronizing sequences for a given specification (extended)
FSM can be used for effective monitoring of its
implementations.

The Simple Connection Protocol (SCP)

The SCP is a protocol designed to ‘connect’ two entities,
negotiating the quality of service at the connection
establishment. The SCP is originally specified in [9]. The SCP
seems to be small but it can be easily seen that methods that
work on this specification can be extended for working on
larger communication protocol specifications, when using the
same model. The SCP allows connecting an entity called the
upper layer to an entity called the lower layer. The upper layer
dialogues with SCP to fix the quality of service (QoS) desirable
for the future connection. Once this negotiation is finished, the
upper layer comes to the lower layer requesting the
establishment of a connection satisfying the quality of service
previously agreed on. The lower layer accepts or refuses this
connection request. If the lower layer accepts the request, then
it informs the upper layer that the connection was established
and the upper layer can start transmitting data. Once the
transmission of data is finished, the upper layer sends a
message to close the connection. On the other hand, if the
lower layer refuses the connection, the system allows the upper
layer to make three requests before informing the upper layer
that all the connection attempts failed. If the upper layer would
like to be connected to the lower layer, it is necessary to restart
the QoS negotiation from the beginning. After the connection
gets established (accepted), the upper layer can send data to the
lower layer with a guaranteed QoS. Each time the upper layer
sends any data, the lower layer acknowledges the total amount
of received data. Correspondingly, we use the following inputs
and outputs. The upper layer can request the desired QoS level
with the message req(QoS) with QoS in the range [0,3]. The
lower layer replies whether it can support the desired QoS level
or not with the messages nosupport(QoS) or support(QoS).
The upper layer then can issue the message conn (an output) to
try to establish the connection. The replies can be accept(QoS)
if the connection guarantees QoS, refuse if the lower layer is

Fig. 1. EFSM Specification for the Simple Connection Protocol

317

busy, or abort if more than two refused attempts have occurred.
The upper layer then can issue the data(size, value) message to
transmit the data. Each data message is acknowledged with the
message ack(DataCountOut). At any point, if the upper layer
decides to end the connection, the message reset can be sent.
The reset message should be replied with an abort message by
the lower layer. Finally, any input at a wrong state should be
replied with an error message, err.

On-line Passive Testing using Network Traces

A network packet (packet for short) is the abstraction of the
transmitted bit-streams in a communication network; this
abstraction allows to interpret a packet as a formatted data unit.
A packet is interpreted as a ‘message’ for a communication
protocol. Analyzing a packet is to inspect the data inside the
packet, seeking for particular values; these values have
appropriate semantics depending on the network protocol. The
sequence of packets observed for a given IUT is called a
network trace [3]. A network trace (trace for short) is
potentially infinite but at each step, only sequences of an
appropriate length are analyzed and for the sake of time,
usually those are sequences of length one, i.e., a single packet
is analyzed at each step. An invariant is a sequence of actions
that must hold together with actions of a packet under analysis.
An invariant can be generally described in the form of the IUT
input and output messages [4]. In addition to sequences of
input and output symbols we allow the character �, referring
any input/output sequence. For example, the invariant
������ �� ����� indicates that after the observed input-output
pair ���, the first occurrence of the input symbol �� is followed
by an output belonging to the set �. Below, there are some
invariants derived based on the SCP description.

Receipt confirmation. When data is sent to the lower layer,
an acknowledgement (ack) should be sent to the upper layer:

���� � ��������.

Connection attempt management. At least two refused
attempts should be allowed before definitely rejecting the
upper layer connection:

���� � ������������ ������������ ���������������

Client communication termination. Any successful
connection must be properly terminated. The upper layer sends
a reset after the connection was established, and before
requesting a new QoS or connection, the abort message has to
be produced:

���� � ����������� ������ ��� �������������

The invariants are usually defined with a target, e.g., to
guarantee the validity of an implementation with respect to
some properties. On-line passive testing using network traces is
a passive testing technique (based on the usage of network
traces) that analyzes the data as soon as they are produced /
received by an IUT. It is known that on-line passive testing is
time and resource demanding, since the test verdicts are
expected as soon as possible [15]. A test engineer has to verify
a packet at hand with respect to a given set of invariants.
Another check can be done for the parameter values within a
packet at hand or analyzing non-functional properties of a short

packet sequence. For example, a packet can have parameters,
which are responsible for non-functional requirements such as
power consumption, bandwidth, data size, etc. The quality of
service can be also checked by measuring the time between the
arrivals of two consecutive packets. Such checking is not
necessary at every step. For example, it is not necessary to
check the data size or QoS at the authentication step, however,
it is mandatory to check this when data are transmitted.

III. RELATED WORK
Passive testing and monitoring techniques for

communication networks have been proposed during the last
10-15 years. The first works that have been performed in this
area were devoted to protocol testing [see, for example, 4, 16,
17]. In fact, passive testing is very natural for protocol testing
since many communication components such as servers, for
example, cannot be switched off to perform a testing process
but can be only observed ‘from outside’. Given a trace of an
IUT, the passive ‘tester’ should verify whether this trace can be
produced by the valid IUT. If there is the IUT specification
such as a finite automaton, for example, then the problem can
be reduced to the well-known problem to check whether an
observed trace is a trace of a given automaton [5]. There have
been proposed state model based techniques for the passive
testing, to check whether the IUT conforms to its specification
(see, for example [18]).

However, the problem is that for real protocols the
automata descriptions are rather big; one of the ways to
minimize the automata descriptions is to use extended
automata or FSMs but in this case, there still is a lack of
methods for determining whether a given parameterized trace
is a trace of a given extended automaton or FSM. For this
reason, researchers started to use sets of invariants rather than
automata descriptions to speed up the passive testing process.
Those invariants are derived on target and the check is
performed not against the extended automaton or FSM but
against the set of regular expressions which are given by an
expert. As it has been proven by a number of experiments, such
regular invariant representations are very practical and this
approach is now applied for many networks (see, for example
[2]). As the checking speed significantly depends on the
number of invariants that should be verified at a current step
and those invariants are somehow related to protocol modes,
the process can be accelerated if the IUT specification (as an
EFSM, for example) is at least partially known. In this case,
homing / synchronizing sequences can help to determine the
current IUT state. For active testing, the researchers usually
derive a single homing / synchronizing sequence but for
passive testing when inputs cannot be stimulated the tester has
to have a list of such sequences. Once at least one homing
sequence is observed through the passive testing, the tester
knows the current state of an IUT and thus, knows which
invariants have to be checked at the corresponding state, i.e.,
the set of invariants which have to be verified at a current state
can be dramatically decreased.

The methods for deriving homing and synchronizing
sequences are well elaborated for complete and deterministic
FSMs [19-21]. Even though the length of most of these
sequences is polynomial with respect to the number of FSM

318

states, the current complexity of protocol implementations
makes it almost impossible to have a complete deterministic
protocol specification. Moreover, current specifications of
telecommunication protocols can include various options for
output responses under the same query. In addition, sometimes
the behavior of a protocol cannot be specified under some
inputs at a given state. That is the reason why researchers turn
their attention towards other FSM types, and in particular,
towards nondeterministic and partial FSMs.

A method for deriving a homing sequence for a
nondeterministic FSM has been proposed in [22].
Synchronizing sequences for partial and nondeterministic
FSMs have been studied in [23, 24] and methods for their
deriving have been also proposed. However, the complexity of
checking the existence of such sequences is rather high
(PSPACE-completeness of the problems [6, 25]) and the length
of these sequences can be exponential [24, 26]. However, it has
been experimentally shown that for ‘real’ protocol
specifications the worst complexity case is usually not reached
[12]. The latter gives a hope that the state identification
problem can be effectively solved when a protocol
specification is described by a corresponding FSM.

The authors are not aware of any results of an application
of state identification problems and their solutions to
monitoring techniques. We propose to combine the advantages
of state identification techniques for active testing together
with the passive testing that has been proven to be effective
when checking properties of protocol implementations.

IV. FSM BASED STATE IDENTIFICATION FOR PROTOCOL
PASSIVE TESTING

In this paper, we propose to study the application of FSM
(EFSM) state identification problems to the (on-line) passive
testing domain to reduce the complexity of the runtime
evaluation. In the passive testing domain, the IUT cannot be
interrupted. Therefore, the trace is usually analyzed at an
unknown state. Since the trace is analyzed at an unknown state,
all the properties of a trace under verification need to be
verified. If this is on-line passive testing, the ‘checks’ need to
be performed every time when a new network packet arrives.
Let � be a set of properties to be checked. At a current moment
of the execution, there is a specific execution state for the
network protocol. We denote the subset �� � �� as the
properties that are ‘checkable’ (or relevant) for state ��. In other
words, it can well happen that only some properties are

relevant to a current state of the IUT. The knowledge of the
current state of a given IUT allows to verify only pertinent
invariants at that given moment (state). Understanding the fact
that passive testing techniques usually ‘try to avoid’ having a
complete formal specification of the system under test, we
suggest to use (partial) extended protocol specification in order
to effectively apply state identification techniques. The latter
can simplify the monitoring activity by concluding at the first
stage about the current state of the implementation under test
and then checking only properties which are critical at this
state. In other words, we propose to reduce the number of
properties to be checked or the number of these checks by
verifying only those that are really important at a given state.

The current state of a protocol implementation can be
determined by extracting from the observed behavior (traces)
of an IUT, homing and synchronizing sequences for an
(Extended) FSM that (partially) specifies the protocol behavior.
In order to derive such sequences beforehand, we propose to
use methods developed for classical FSMs and adapt those to
the corresponding extended specification machines.

V. DERIVING HOMING/SYNCHRONIZING SEQUENCES FOR
EFSMS

Suppose that we have the EFSM specification E of a
network component that is monitored. Since properties to be
verified are linked to states of the IUT, it is sufficient to
identify not configurations but only states of the EFSM. For
this reason, we could consider a so-called FSM slice of a given
EFSM [27] and derive a set of homing / synchronizing
sequences based on this FSM slice FSME.

The FSM slice FSME is obtained after deleting from a given
EFSM all the predicates, parameters and update functions [27].
However, the main problem is that the obtained FSM usually is
partial and nondeterministic and also can be non-observable
while all the methods for deriving homing sequences are
elaborated for complete observable FSMs. Moreover, we
would like to derive not a single homing (synchronizing)
sequence but a set of all such sequences which are non-
redundant and have limited length. Given an EFSM E, after
deleting all context variables, input and output parameters,
predicates, and update functions, each transition becomes a
classical FSM transition containing starting and final states and
an input/output pair i/o. By construction, the FSME can be
nondeterministic, partial and non-observable, since the initial
EFSM from the same state could move to two different states
being inspired by the same input. In the initial EFSM,

Fig. 2. FSM Slice of SCP

319

corresponding inputs were distinguished due to corresponding
predicates where input parameters are involved while the
inputs become indistinguishable after deleting input parameters
and predicates. The FSM slice for the running SCP example is
shown in Fig. 2. By direct inspection one can assure that the
obtained FSM is nondeterministic but still is observable.

As discussed in Section 3, there are methods for deriving
homing and synchronizing sequences for complete observable,
possibly nondeterministic FSMs. Since FSME can be partial
and non-observable, we adapt those methods to such FSMs.
For this purpose, as usual, we use a truncated successor tree
[19] of length l that allows to check the existence of homing /
synchronizing sequence of length up to l and to derive such

non-redundant sequences if they exist.

Procedure 1 for deriving a set of non-redundant homing
sequences for a subset S' ⊆ S, |S'| > 1, of a given FSM that can
be partial and non-observable

Input: FSM S that can be partial and non-observable and a
subset S' ⊆ S, |S'| > 1

Output: A set of all non-redundant homing sequences of
length l or less or the message “There is no homing sequence
of length l or less for the subset S”

Derive a truncated successor tree for the FSM S. The root
of the tree is labeled with the set S'; the nodes of the tree are
labeled by state subsets such that none of them is a proper
subset of another. Edges of the tree are labeled by inputs and
there exists an edge labeled by i from a node labeled by P at
level j, j ≥ 0, to a node labeled by Q if Q is the set of i-
successors of all subsets of P. The set Q contains a singleton if
non-empty i/o-successors of some subset of P coincide for
some o ∈ O or if corresponding non-empty i/o-successors of
some subset of P do not intersect. Sets which are proper
subsets of other items are deleted from the set Q.

Given a node labeled with the set P at the level k, k > 0, the
node is terminal if one of the following conditions holds.

Rule-1: P contains only singletons.

Rule-2: The depth of the node P is greater than l.

If the successor tree has no nodes labeled with the
singletons only, i.e., is not truncated using Rule-1 then
Return the message “There is no homing sequence of length l
or less for the subset S'”.

Otherwise,

For each path to a node labeled with the set of singletons
Add the input sequence that labels the selected path to the set
H of homing sequences.

Return H.

In order to illustrate Procedure 1, we apply it to the SCP
slice (Fig. 2) to find a set of non-redundant homing sequences
of length up to 2. The resulting set of (non-redundant) homing
sequences is the following:

���� ����� � ���� ���� � �������� � ����� � ����� ��� �

����� ���� � ����� ����� � ����� ��� � ��������� �

����� �����

�

The corresponding truncated successor tree the SCP slice
is shown in Fig. 3. As an example, consider one homing
sequence, for instance the sequence ����� �����. If the output
response of the IUT when observing the input sequence
mentioned before is contained in the set
���� ��� � ���� ������ � ��������� ������� , then one can

conclude that the current state of the IUT is ��. If the output
response is in the set �������� ������ � ���� ������ , the
current state of the IUT must be ��. Any other output not listed
in the previous two sets guarantees that the current state of the
IUT is ��. The conclusion about the current IUT state could be
used as an heuristic to further reduce the number of IUT
checks. We also notice that despite the fact that the reset input
is a synchronizing sequence, this input cannot be of a great
help, as it usually occurs only at the end of the protocol
interaction (flow). If not all homing / synchronizing sequences
can be derived according to the size of the protocol
specification, we can look only for those which occur during
the IUT functioning with high probability.

After determining the current state of the IUT the only
properties that are related to that state can be checked. For
example, if the IUT is at state �� the invariant ���� can be
checked. However, if the IUT is at state ��, there is no need to
check the invariant ����� Furthermore, there exist many non-
functional requirements that can be checked at state ��. An
example of such non-functional property, it can be checked
that the length of transferred data does not exceed the
available disk space, or that the QoS provided is indeed the
one guaranteed at the QoS negotiation phase. Note that
checking such non-functional properties while the IUT is not
at state �� puts an unnecessary load on the system.

Following the SCP example, 10 homing sequences were
obtained to determine the current state of the IUT. The
question arises: which of those homing sequences should be
used? Given the fact that network protocols are typically
designed with a specific flow, some input sequences can be
rare to observe. Furthermore, such sequences could be the
result of a potential attack or a faulty implementation.
Therefore, homing sequences that follow the natural network
protocol flow should be chosen. As an example, the input
sequence ������ ���� should not be observed. Observing the
above input sequence potentially means that either the lower
layer is receiving a request to negotiate the QoS while data is
being transmitted which is not allowed by the SCP protocol, or
that the upper layer is trying to start a new communication
without properly finishing the current one. For our example,
the homing sequence ����� ����� is well suited given the
protocol constraints. The sequence ������� is a synchronizing
sequence, but under the normal operation of the IUT, the
����� input should have a low frequency, and that is the
reason why a longer homing / synchronizing sequence is
usually preferred.

320

Remarks and discussion initiated by Procedure 1

1. Procedure 1 can be optimized using only inputs which can
often occur. For example, a reset is a synchronizing
sequence but it is usually observed only at the end of the
protocol operation.

2. Procedure 1 can be easily adapted to checking the existence
and derivation of all non-redundant synchronizing
sequences for an FSM S of length l or less. In this case, the
truncating Rule-1 is changed correspondingly. All the
singletons should be the same, i.e. the corresponding set P
contains a subset of cardinality one, namely, P is a
singleton. The derivation of such synchronizing sequences
is somehow harder than the derivation of homing ones,
however the nature of synchronizing sequences allows to
‘forget’ about the outputs of an IUT. Therefore, on the
other hand, it somehow further simplifies the monitoring
process as for a given input packet that was accepted by an
IUT there is no need to observe an output and thus, wait for
its corresponding output. Experiments are needed to
estimate the frequency of appearance of homing and
synchronizing sequences for partial (non-observable)
specifications of communication protocols, probably
obtained through appropriate extended machines.

3. Procedure 1 can return the output that there is no homing
sequence of length l or less. However, in this case, the
information preserved in the truncated successor tree can be
still useful for the monitoring process optimization. If there
is a node P that was truncated by an application of Rule-2
and meanwhile it contains, for example, a single pair of
states, the sequence that labels the path to this node can also
provide some significant monitoring information. Indeed, if
P = {si, sj} then the observation of the corresponding trace
allows to conclude that an IUT can only be at state si or
state sj. Therefore, a test engineer (or a monitor by itself) at
the current step can only check the properties associated to
these two states, namely si and sj. One can expect that the
greater is the set S' of initial states the more a test engineer
can gain using such monitoring optimization. Similar to the
previous remark, an experimental evaluation is needed to
estimate how often the successor tree can be truncated with
the state pairs, triples, etc. and therefore, what is the optimal
length l to truncate it with the Rule-2.
If there are no input sequences with good properties for the

slice FSME then the abstraction level can be reduced and

another slice, for example, a slice SliceE,context-free of an EFSM E
that does not have context variables can be considered [27].
The idea behind this approach is to delete transitions from the
initial EFSM which have predicates that significantly depend
on context variables. However, some of such transitions can be
preserved when the transition predicate P is the disjunction of
predicates P1 and P2, and P1 does not significantly depend on
context variables. In this case, a transition with the predicate P
can be replaced by the same transition with the predicate P1. At
the next step, all the context variables and functions for
updating these variables are deleted from the obtained EFSM.

By construction, the Slicecontext-free(A) has no context
variables, i.e., has an FSM behavior. Nevertheless, this slice
has input parameters, i.e., parameterized inputs should be
considered when deriving homing / synchronizing sequences.
The SliceE,context-free can have predicates which depend on input
parameters and this should be taken into account when deriving
homing / synchronizing sequences. As usual, for deriving such
sequences we consider a corresponding observable l-equivalent
but this construction is augmented with checking conditions for
predicate satisfiability and determining a corresponding
satisfying assignment. To the best of our knowledge, there is
no general method of how to solve the problem for an arbitrary
predicate but for most protocols such predicates are described
using Boolean functions or systems of linear comparisons over
integers or rational. If all the predicates are Boolean functions
then the satisfiability problem is reduced to the well known
SAT problem and there are efficient algorithms for its solving,
see, for example [28, 29]. If predicates are represented as linear
expressions then there are methods to solve a corresponding
system of linear inequalities [30]. We mention that in this case,
differently from Procedure 1, the input labels become rather
symbolic describing the same input with many values of input
parameters. Meanwhile, checking the efficiency of using both,
FSM and context-free slices of the corresponding EFSM
protocol specifications seems a promising approach that we
leave for future work.

VI. CONCLUSION
In this paper, we have proposed an approach for improving

the process of passive testing when a partial specification of a
component under test is available. The optimization is
performed using the state identification problem solutions but
for possibly partial and non-observable FSM / EFSM.
Consequently, well-known methods for deriving
homing / synchronizing sequences for complete
nondeterministic FSMs are adapted for deriving such

Fig. 3. SCP Truncated Successor Tree

321

sequences for an arbitrary machine. Once one of such
sequences occurs during the passive testing, only properties
associated with a corresponding current state have to be
verified. As the number of verified properties decreases, the
passive testing process becomes faster and more efficient. As
for future work, we are going to perform experiments for
estimating the frequency of appearance of homing and
synchronizing sequences for partial (non-observable)
specifications of telecommunication protocols, probably
obtained through appropriate extended machines and evaluate
the efficiency of a proposed approach for real communication
systems.

ACKNOWLEDGMENT
The work that has led to the results presented in this paper

was partially funded by the ITEA3 project 14009, MEASURE
(http://measure.softeam-rd.eu, https://itea3.org/project/measure.html)
as well as by the Competitiveness Improvement Program of
Tomsk State University.

REFERENCES
[1] A. R. Cavalli, E. M. D. Oca, W. Mallouli, and M. Lallali, “Two

Complementary Tools for the Formal Testing of Distributed Systems
with Time Constraints,” Proceedings of the IEEE/ACM DS-RT, pp.
315-118, 2008.

[2] Bachar Wehbi, Edgardo Montes de Oca, and Michel Bourdellès,
“Events-Based Security Monitoring Using MMT Tool,” Proceedings of
the IEEE 5th ICST, pp. 860-863, Montreal, Canada, 2012.

[3] J. López, S. Maag, and G. Morales, “Behavior Evaluation for Trust
Management based on Formal Distributed Network Monitoring,” World
Wide Web, vol. 19, pp 20-39, 2016.

[4] E. Bayse, A. Cavalli, M. Núñez, and F. Zaïdi, “A passive testing
approach based on invariants: application to the WAP,” Computer
Networks, vol. 48, pp. 235-245, 2005.

[5] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, 2nd ed., 2000.

[6] D. Lee and M. Yannakakis, “Testing finite-state machines: state
identification and verification,” IEEE Transactions on Computers, vol.
43, pp. 306-320, 2005.

[7] A. Gill, “State-identification experiments in finite automata,”
Information and Control, vol. 4, pp. 132-154, 1961.

[8] G. von Bochmann and A. Petrenko, “Protocol Testing: Review of
Methods and Relevance for Software Testing,” Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), pp. 109-124, Seattle, USA, 1994.

[9] B. Alcalde, A. Cavalli, D. Chen, D. Khuu, and D. Lee, “Network
Protocol System Passive Testing for Fault Management: A Backward
Checking Approach,” Proceedings of the 24th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and Distributed
Systems (FORTE), pp. 150-166, Madrid, Spain, 2004.

[10] A. Petrenko, S. Boroday, and R. Groz, “Confirming Configurations in
EFSM Testing,” IEEE Transactions on Software Engineering, vol. 30,
pp. 29-42, 2004.

[11] A. Faro and A. Petrenko, “Sequence Generation from EFSMs for
Protocol Testing,” Proceedings of the IFIP TC 6 Conference on
Computer Networking, COMNET, Budapest, Hungary, 1990.

[12] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko,
“FSM-based conformance testing methods: A survey annotated with
experimental evaluation,” Information & Software Technology, vol. 52,
pp. 1286-1297, 2010.

[13] P. Mouttappa, S. Maag, and A. R. Cavalli, “Using passive testing based
on symbolic execution and slicing techniques: Application to the
validation of communication protocols,” Computer Networks, vol. 57,
pp. 2992-3008, 2013.

[14] E. F. Moore, “Gedanken-experiments on sequential machines,”
Automata Studies (Annals of Mathematical Studies no.1), Princeton
University Press, pp. 129-153, 1956.

[15] J. López, S. Maag, and G. Morales, “Scalable Evaluation of Distributed
On-line Network Monitoring for Behavioral Feedback in Trust
Management,” Proceedings of the Institute for System Programming of
the Russian Academy of Sciences, v. 26, I. 6, pp. 125 -140, 2014.

[16] A. R. Cavalli, C. Gervy, and S. Prokopenko, “New approaches for
passive testing using an Extended Finite State Machine specification,”
Information & Software Technology, 45(12), pp. 837-852, 2003.

[17] C. Andrés, M. G. Merayo, and M. Núñez, “Applying Formal Passive
Testing to Study Temporal Properties of the Stream Control
Transmission Protocol,” Proceedings of the SEFM, pp. 73-82, 2009.

[18] D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin, “Network
protocol system monitoring: a formal approach with passive testing,”
IEEE/ACM Trans. Netw. 14(2), pp. 424-437, 2006.

[19] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New
York, 1978.

[20] T.N. Hibbard, “Least upper bounds on minimal terminal state
experiments of two classes of sequential machines,” Journal of the
ACM, 8(4), pp. 601-612, 1961.

[21] S. Sandberg, “Homing and Synchronization Sequences”, Proceedings of
the Model based testing of reactive systems, pp. 5-33, 2004.

[22] N. Kushik, K. El-Fakih, and N. Yevtushenko, “Preset and Adaptive
Homing Experiments for Nondeterministic Finite State Machines”,
Proceedings of the CIAA, pp. 215-224, 2011.

[23] P. V. Martugin, “Lower bounds for the length of the shortest carefully
synchronizing words for two- and three-letter partial automata,” Journal
of Applied and Industrial Mathematics, 4(15), pp. 44-56, 2008 (in
Russian).

[24] M. Ito and K. Shikishima-Tsuji, “Some results on directable automata,”
Lecture Notes in Computer Science, vol. 3113, pp. 125-133, 2004.

[25] N. G. Kushik, V. V. Kulyamin, and N. Yevtushenko, “On the
complexity of existence of homing sequences for nondeterministic finite
state machines,” Programming and Computer Software, pp. 333-336,
2014.

[26] N. Kushik and N. Yevtushenko, “On the length of homing sequences for
nondeterministic finite state machines,” Proceedings of the CIAA, pp.
220-231, 2013.

[27] N. Kushik, A. Kolomeez, A. R. Cavalli, and N. Yevtushenko,
“Extended Finite State Machine based Test Derivation Strategies for
Telecommunication Protocols,” Proceedings of the 8th SYRCoSE, pp.
108-113, 2014.

[28] J.-H. R. Jiang, C.-C. Lee, A. Mishchenko, and C.-Y. R. Huang, “To SAT
or not to SAT: Scalable exploration of functional dependency”, IEEE
Trans. Computers, vol. 54, no. 9, pp. 457-467, 2010.

[29] K. L. McMillan, “Interpolation and SAT-based model checking,”
Proceedings of the CAV, pp. 1-13, 2003.

[30] A. Solodovnikov, Systems of Linear Inequalities. Popular Lectures in
Mathematics, 1980.

322

