
UDC 004.4
Asymptotic analysis of M/GI/1 retrial system with

conflicts and afterservice

A. A. Nazarov, N. A. Pomortseva

Tomsk State University
Lenina ave. 36, Tomsk, 634050, Russia

Abstract. M/GI/1 retrial queueing system with conflicts and afterservice is
investigated. The distribution of the request’s number in the blocks of the orbit is
studied. Throughput value and characteristic function of the number of requests
in the blocks of the orbit are obtained for this system.
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1. Introduction

A large number of important practical problems arising in connection
with the rapid development of information, computer, telecommunication
systems can be solved by queuing theory.

In this paper we consider a single-server retrial queueing system with
conflicts. A conflict situation suggests that a request, which comes in the
system and finds the server busy, and a request under service enter into a
conflict, and the both are sent to the orbit. Such models are widely used in
real life systems, for example, in computer networks managed by random
multiple access protocols.

Falin and Sukharev [1] have analyzed the retrial queueing system with
collision,called the queue with double connections. Choi et al. [2] have
considered retrial queues with constant retrial rate and collision arising
from unslotted CSMA/CD protocol. Krishna Kumar B., Vijayalakshmi
G., Krishnamoorthy A., Sadiq Basha S.[3] have analyzed a Markovian
single server feedback retrial queue with linear retrial rate and collisions
of customers. For this system the joint steady-state probability generating
functions of the server state and the orbit length are obtained and some
important performance measures of this system are calculated.

In this paper we consider the M/GI/1 retrial system with conflicts of
requests and afterservice. For a probability distribution of the system
states, we obtain Kolmogorov system of equations, we get the throughput
of this queueing system and the characteristic function of the number of
requests in the blocks of the orbit.

2. System description and problem statement

Let us consider a single-server retrial queueing system (Figure 1) with
a stationary Poisson arrival process of requests with parameter λ. The
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service time of the request is a random variable, which has a two-phase
distribution with parameters µ1 for the first phase and µ2 for the second
one. If an arriving request finds the server free, the request occupies the
server and gets a service. If the server is busy, the arriving request and
the request under service enter into a conflict, and the both are sent to
the orbit, which consists of two blocks. In the first block of the orbit, a
random delay is performed by the requests, service of which has not been
completed at the first phase. In the second block of the orbit, a random
delay is performed by the requests, service of which was interrupted by
the conflict at the second phase. After a random delay, which has an
exponential distribution with parameters σ1 for the first block and σ2
for the second block, each request from the k-th block of the orbit turns
to the k-th phase of the service, that represents a procedure of requests
afterservice.
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Figure 1. A single-server retrial system

Let i1(t) be a requests number in the first block of the orbit, i2(t) be a
requests number in the second block of the orbit, and process k(t) defines
the state of the server. Our goal is to investigate a three-dimensional
random process {k(t), i1(t), i2(t)}.

3. The system of Kolmogorov equations

Denoting

Pk(i1, i2, t) = P{k(t) = k, i1(t) = i1, i2(t) = i2},

Hk(u1, u2) =

∞∑
i1,i2=0

exp {ju1i1 + ju2i2}Pk(i1, i2),
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it is possible to write down the system of Kolmogorov equations for the
partial characteristic functions in the steady state regime:

−λH0(u1, u2) + λe2ju1H1(u1, u2) +H2(u1, u2)[µ2 + λeju1eju2 ]+

+ jσ1
∂H0(u1, u2)

∂u1
+ jσ2

∂H0(u1, u2)

∂u2
−

− jσ1eju1
∂H1(u1, u2)

∂u1
− jσ2eju1

∂H1(u1, u2)

∂u2
−

− jσ2eju2
∂H2(u1, u2)

∂u2
− jσ1eju2

∂H2(u1, u2)

∂u1
= 0,

λH0(u1, u2)− (λ+ µ1)H1(u1, u2)− jσ1e−ju1
∂H0(u1, u2)

∂u1
+

+ jσ1
∂H1(u1, u2)

∂u1
+ jσ2

∂H1(u1, u2)

∂u2
= 0,

−(λ+ µ2)H2(u1, u2)− jσ2e−ju2
∂H0(u1, u2)

∂u2
+

+ jσ2
∂H2(u1, u2)

∂u2
+ jσ1

∂H2(u1, u2)

∂u1
+ µ1H1(u1, u2) = 0.

(1)

4. Asymptotic analysis under the long delay condition

Denote
σk = γSk.

System (1) will be solved by applying the method of asymptotic analysis
under the long delay condition γ → 0.

4.1. Asymptotic of the first order

Substituting

σk = εSk, uk = εwk, Hk(u1, u2) = Fk(w1, w2, ε)
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into the system (1) we obtain:

−λF0(w1, w2, ε) + λe2jεw1F1(w1, w2, ε) + jS1
∂F0(w1, w2, ε)

∂w1
+

+ (µ2 + λejεw1ejεw2)F2(w1, w2, ε) + jS2
∂F0(w1, w2, ε)

∂w2
−

− jS1e
jεw1

∂F1(w1, w2, ε)

∂w1
− jS2e

jεw1
∂F1(w1, w2, ε)

∂w2
−

− jS2e
jεw2

∂F2(w1, w2, ε)

∂w2
− jS1e

jεw2
∂F2(w1, w2, ε)

∂w1
= 0,

λF0(w1, w2, ε)− (λ+ µ1)F1(w1, w2, ε) + jS1
∂F1(w1, w2, ε)

∂w1
−

− jS1e
−jεw1

∂F0(w1, w2, ε)

∂w1
+ jS2

∂F1(w1, w2, ε)

∂w2
= 0,

−(λ+ µ2)F2(w1, w2, ε)− jS2e
−jεw2

∂F0(w1, w2, ε)

∂w2
+

+ jS2
∂F2(w1, w2, ε)

∂w2
+ jS1

∂F2(w1, w2, ε)

∂w1
+

+ µ1F1(w1, w2, ε) = 0.

(2)

Theorem 1 The limit value Fk(w1, w2) of the solution Fk(w1, w2, ε) of
the system (2) has the form:

Fk(w1, w2) = Rkexp {jw1a1 + jw2a2} ,

where the parameters a1, a2 and Rk are defined as follows:

R1 =
λ

µ1
, R2 =

λ

µ2
, R0 = 1− λ

µ1
− λ

µ2
,

a1 =
λ(2R1 +R2)(R0 −R2) +R2R1

S1(R0 −R1)(R0 −R2)−R2R1
,

a2 =
λR2(2R1 +R2) + (R0 −R1)

S2(R0 −R1)(R0 −R2)−R2R1
.

Parameters R1, R2, R0 represent the stationary probabilities of the states
of the device, a1, a2 are the average numbers of requests in the first and
the second blocks of the orbit correspondingly.
Theorem 2 The throughput value of M/GI/1 retrial system with conflicts
and afterservice is defined by

S =
1

2
.
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4.2. Asymptotic of the second order

In the system (1) let us denote

Hk(u1, u2) = H
(2)
k (u1, u2) exp

{
ju1

a1
γ

+ ju2
a2
γ

}
.

Substituting

γ = ε2, σk = ε2Sk, uk = εwk, H
(2)
k (u1, u2) = Fk(w1, w2, ε)

into the system (1) we get:



−λF0(w1, w2, ε) + λe2jεw1F1(w1, w2, ε) + jεS1
∂F0(w1, w2, ε)

∂w1
+

+ (µ2 + λejεw1ejεw2)F2(w1, w2, ε) + jεS2
∂F0(w1, w2, ε)

∂w2
−

− jεS1e
jεw1

∂F1(w1, w2, ε)

∂w1
− jεS2e

jεw1
∂F1(w1, w2, ε)

∂w2
−

− jεS2e
jεw2

∂F2(w1, w2, ε)

∂w2
− jεS1e

jεw2
∂F2(w1, w2, ε)

∂w1
−

− S1a1F0(w1, w2, ε)− S2a2F0(w1, w2, ε)+

+ S1a1e
jεw1F1(w1, w2, ε) + S2a2e

jεw1F1(w1, w2, ε)+

+ S2a2e
jεw2F2(w1, w2, ε) + S1a1e

jεw2F2(w1, w2, ε) = 0,

λF0(w1, w2, ε)− (λ+ µ1)F1(w1, w2, ε) + jεS1
∂F1(w1, w2, ε)

∂w1
−

− jεS1e
−jεw1

∂F0(w1, w2, ε)

∂w1
+ S1a1e

−jεw1F0(w1, w2, ε)+

+ jεS2
∂F1(w1, w2, ε)

∂w2
− S1a1F1(w1, w2, ε)−

− S2a2F1(w1, w2, ε) = 0,

−(λ+ µ2)F2(w1, w2, ε)− jεS2e
−jεw2

∂F0(w1, w2, ε)

∂w2
+

+ jεS2
∂F2(w1, w2, ε)

∂w2
+ jεS1

∂F2(w1, w2, ε)

∂w1
+

+ µ1F1(w1, w2, ε) + S2a2e
−jεw2F0(w1, w2, ε)−

− S1a1F2(w1, w2, ε)− S2a2F2(w1, w2, ε) = 0.
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Theorem 3 The limit value Fk(w1, w2) of the solution Fk(w1, w2, ε) of
the system (12) has the form:

Fk(w1, w2) = Rkexp

{
(jw1)

2

2
κ11 + jw1jw2κ12 +

(jw2)
2

2
κ22

}
,

where parameters Rk are defined by expression 7 and parameters κii are
the solution of the following system:

B

µ2

{
S1a1 − λ−

(2λ+ S2a2)(λ+ S1a1)

µ1 + S2a2

}
+A

2λ+ S2a2
µ1 + S2a2

−

−R1(2λ+
1

2
)(S1a1 + S2a2) + S1κ11(R0 −R1)−

− 1

2
λR2 − S2R1κ12 = 0,

C

µ2

{
S2a2

λ+ S1a1
µ1 + S2a2

− (λ+ S1a1)

}
−D S2a2

µ1 + S2a2
− 1

2
S2a2R0−

− 1

2
R2(λ+ S1a1 + S2a2) + S2(R0 −R2)κ22 − S1R2κ12 = 0,

B

µ2

{
−S1a1 − λ+

S2a2(λ+ S1a1)

µ1 + S2a2

}
−A (λ+ S1a1)S2a2

µ1 + S2a2
+

+
C

µ2

{
S1a1 − (2λ+ S2a2)

λ+ S1a1
µ1 + S2a2

− λ
}
− λR2+

+D
(λ+ S1a1)(2λ+ S2a2)

µ1 + S2a2
+ [(S1 + S2)R0 − S1R1 − S2R2]κ12−

− S2R1κ22 − S1R2κ11 = 0.

where A,B,C,D are defined as follows:

A = S1a1R0 + S1(R1 −R0)κ11 + S2R1κ12,

B = −R1(2λ+S1a1+S2a2)−λR2+S1(R0−R1−R2)κ11+S2(R0−R1−R2)κ12,

C = −R2(λ+S1a1+S2a2)+S1(R0−R1−R2)κ12+S2(R0−R1−R2)κ22,

D = S1(R1 −R0)κ12 + S2R1κ22.

5. Conclusions

Thus, in this paper we considered M/GI/1 retrial system with conflicts
and afterservice. We found the throughput value, the stationary probabili-
ties of the states of the device, the average number of requests in the blocks
of the orbit and the characteristic function of the number of requests in
the blocks of the orbit for this system.
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