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Abstract
We used optical tweezers, video imaging, immunocytochemistry and a variety of inhibitors

to analyze the role of Rac1 in the motility and force generation of lamellipodia and filopodia

from developing growth cones of isolated Dorsal Root Ganglia neurons. When the activity

of Rac1 was inhibited by the drug EHop-016, the period of lamellipodia protrusion/retraction

cycles increased and the lamellipodia retrograde flow rate decreased; moreover, the axial

force exerted by lamellipodia was reduced dramatically. Inhibition of Arp2/3 by a moderate

amount of the drug CK-548 caused a transient retraction of lamellipodia followed by a com-

plete recovery of their usual motility. This recovery was abolished by the concomitant inhibi-

tion of Rac1. The filopodia length increased upon inhibition of both Rac1 and Arp2/3, but the

speed of filopodia protrusion increased when Rac1 was inhibited and decreased instead

when Arp2/3 was inhibited. These results suggest that Rac1 acts as a switch that activates

upon inhibition of Arp2/3. Rac1 also controls the filopodia dynamics necessary to explore

the environment.

Introduction
Neurons are specialized cells responsible for exchanging information with other neurons or
cells through synapses [1]. During development, differentiating neurons explore the surround-
ing environment in order to form the correct contacts and they use highly motile structures
called growth cones (GCs) located at the tip of their neurites [2,3]. GCs consist of a flat exten-
sion, named ‘lamellipodium’ with varying width from which finger-like submicron diameter
structures called filopodia emerge [4]. The process of polymerization of actin filaments is the
main source of GC protrusion, which is regulated and controlled by several proteins such as
Arp2/3, cofilin, formin and molecular motors, such as myosin, dynein, controlling different
features of cellular motility [5].

Actin related protein 2/3 complex (Arp2/3) is widely studied for its involvement in lamelli-
podia formation and protrusion [6,7]. Arp2/3 consists of seven subunits and promotes the for-
mation of branched actin filament networks [8,9]. Arp2/3 not only regulates the branching of
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actin filaments but it is also involved in the formation and dynamics of filopodia [10,11]. Inhi-
bition of Arp2/3 causes lamellipodia retraction and an increase of the actin retrograde flow rate
[10]. Arp2/3 is inactive in its native state and the members of the Wiskott-Aldrich syndrome
protein (WASP) family, downstream of Rac and Cdc42 pathways activate the Arp2/3 complex
to nucleate new filaments [12,13]. Rac binds the WAVE (WASP family Verprolin Homology
Domain-containing protein) complex to release active WAVE, which promotes actin polymer-
ization through activation of Arp2/3. WASP and WIP (WASP-interacting protein), down-
stream effectors of Cdc42 interact directly with Arp 2/3 complex to promote filopodia
formation. Recently a new protein called Arpin has been shown to be part of the Rac-Arpin-
Arp2/3 inhibitory circuit playing a major role in steering during cell migration [14]. Rac can
both activate and inhibit Arp2/3-driven actin branching and polymerization to regulate speed,
directionality and persistence of membrane protrusions.

Rho family GTPase has distinct and specific roles in the regulation of growth, maintenance
and retraction of GCs [15]. The mammalian Rho GTPase family currently consists of three
subfamilies, Rho (RhoA, RhoB and RhoC), Rac (Rac1, Rac2 and Rac3) and Cdc42 (Cell Divi-
sion Cycle-42) (Cdc42Hs and G25K). RhoA, Rac1 and Cdc42 are well-studied members of Rho
family GTPase controlling distinct cytoskeletal elements. Activation of Rac1 stimulates actin
polymerization to form lamellipodia, Cdc42 induces the polymerization of actin to form filopo-
dia or microspikes which are parallel actin bundles within the lamellipodium and Rho regulates
the bundling of actin filaments into stress fibers and the formation of focal adhesion com-
plexes. The Rho family of GTP-binding proteins are activated by a variety of growth factors,
cytokines, adhesion molecules, hormones, integrins, G-proteins and other biologically active
substances [15,16]. Biochemical approaches or analyses of the morphology of fixed cells have
shown that Rho GTPase also involves crosstalk. This may occur through the Rac/Cdc42 effec-
ter PAK, which can negatively regulate Rho GEFs [17] or other mechanisms including, via
reactive oxygen species [18], phosphorylation and competitive binding of RhoGDI [19] or
binding of GEFs to actomyosin[20]. Depending upon the concentration and localization of
these Rho GTPase, mammalian cells show different morphology, movement and behavior
[21].

When the rate of actin polymerization overtakes the actin retrograde flow, the GC protrudes
[22]. Retrograde flow refers to the backward flow of the actin filament network away from the
growth cone leading edge into the C-domain. This allows the addition of actin monomers/olig-
omers to actin filaments in close contact with the membrane, pushing the cellular membrane
forward, leading to the protrusion. Mitchison and Kirschner proposed the ‘Molecular Clutch
Hypothesis’, which postulates that an intracellular molecular clutch, formed by interactions
between GC membrane adhesive receptors and the extracellular environment, couple to the
overlying flow of actin filaments to slow down their retrograde rate[23]. Formation of these
‘clutches’ together with myosin II contractile activity, provides a traction to pull and move the
central region of the GC closer to the peripheral region, leading to axonal lengthening. There-
fore, substrate adhesion decreases the actin retrograde flow. The decrease in the actin retro-
grade flow together with actin polymerization, results in the leading edge protrusion[24,25].

The traction force is essential for cell migration, cell shape maintenance, mechanical signal
generation and other cellular functions. There are different methods to quantify the cellular
traction forces. Traction force microscopy measures the stress of a cell on an elastic gel sub-
strate by detecting the movement of fluorescent beads embedded at the surface of the gel [24].
With Optical Tweezers the bead is attached to the cell membrane either to apply the tensile
force [25,26] or to measure the retrograde flow rate [27]. We have independently developed a
method to estimate the force exerted by the lamellipodia and filopodia by measuring the dis-
placement of the bead using quadrant photo detector (QPD) [28–33]. In our case, the bead is
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not initially attached to the cell membrane and it is kept in the vicinity of the lamellipodia or
filopodia, so that their spontaneous motion can displace the bead.

We observed that the lamellipodia transiently retract and recover back after 5–8 min of
Arp2/3 inhibition. In this study we have investigated the role of Rac1, in the recovery of lamel-
lipodia in Arp2/3 depleted condition and also in GC motility, by using Optical Tweezers and
specific inhibitors of Arp2/3 (CK-548) and Rac1 (EHop-016 and F56). Motility of lamellipodia
and of filopodia was also followed and characterized by video imaging. By combining these
techniques together with immunofluorescence we have explored the interaction between Rac1
and Arp2/3 complex and their role in the formation of lamellipodia and filopodia of Dorsal
root Ganglion (DRG) GCs. Here we show that Rac1 acts as a switch and activates upon inhibi-
tion of Arp2/3.

Results
After 6–8 hours of culture, differentiating DRG neurons have neurites emerging from their
soma. At the tip of the protruding neurites, GCs lamellipodia and filopodia explore the envi-
ronment and their motion continues for 1–3 days. The motility of lamellipodia and filopodia
slows down when appropriate connections are established and the neuronal network is formed;
the leading edge of these lamellipodia can move with a speed 30–100 nm/s exerting a force
exceeding 20 pN [32]. The effect of the inhibitors of specific proteins involved in the regulation
of GC motility was analyzed after 24–48 hours of culture, when the motility of filopodia and
lamellipodia was more pronounced. We focused on the analysis of inhibitors of small GTPases
and of the Arp2/3 complex.

We used the small molecules CK-636, CK-548, CK-666 and CK-869 as inhibitors of the
Arp2/3 complex. All these compounds at a high concentration, i.e. above 100 μM, abolished
GC motility completely and in the experiments here described we used extensively CK548
(CK) as the Arp2/3 inhibitor, since CK decreases the affinity of rhodamine-N-WASP-VCA for
BtArp2/3 complex approximately twofold [34]. Furthermore, we tested two inhibitors of Rac1
namely, EHop-016 (EH) [35] and F56 [36] and the Cdc42 inhibitor ZCL-278 (ZCL) [37]. In
addition to these drugs, CT04 (CT) [38] and GSK 269962 (GSK) [39] were also used as inhibi-
tors of the RhoA and Rock pathways respectively. In order to check if the effect of the inhibi-
tors was a side effect of toxicity we also checked their reversibility after washout (WO), as
shown in Fig 1.

The effect of partial inhibition of Rac1 and Arp2/3 in lamellipodia motility
The involvement of Rac1 and Arp2/3 in lamellipodia motility of DRG GCs was studied by ana-
lyzing the effect of their inhibitors EHop-016 (EH) and CK-548 (CK) respectively and by quan-
tifying lamellipodia motility using the two algorithms as described in the Materials and
Methods section, based on the analysis of Z-stack phase contrast video imaging. From the
image sequences, kymographs were obtained by using algorithm I. The ability of lamellipodia
to lift up vertically was quantified by computing the fraction of pixels in focus at 5 μm above
the coverslip obtained by using algorithm II (Fig 1A and 1B).

When Rac1 activity was inhibited by 20 μM EH lamellipodia still exhibited protrusion
retraction cycles (Fig 1A, upper panel) and could lift up in the axial direction (Fig 1A, lower
panel). EH effects were reversible and period, persistence length, retrograde flow rate of lamel-
lipodia returned to control level after washout (Fig 1C–1E). Interestingly, lamellipodia of DRG
GCs, treated with 50 μMCK showed a transient retraction and were not able to lift up vertically
in a significant manner. However, treated lamellipodia recovered their usual motility in 5–8
min (Fig 1B, upper panel) and were able to lift up in the axial direction as in control conditions
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(Fig 1B, lower panel). Following 50 μMCK treatment, period, persistence length and retro-
grade flow rate of lamellipodia were quantified during lamellipodia recovery period. The aver-
age period of protrusion/retraction cycles of lamellipodia increased significantly, both in the
presence of 20 μM EH (129.6±5.2 s) and of 50 μMCK (115.1±4.2 s) respectively compared to
control conditions (86.5±3.2 s) and after washout of 20 μM EH (90.3±4.1 s) (Fig 1C). The per-
sistence length of lamellipodia i.e the maximum extension reached by the lamellipodia after
which they start to retract, increased when Arp 2/3 was inhibited by 50 μMCK (1.90±0.09 μm)

Fig 1. The effect of Rac 1 and Arp2/3 Inhibitor on the motility of lamellipodia. (a) Kymograph (upper panel) showing the protrusion/retraction cycles of
lamellipodia in control conditions (before the blue vertical line), 20 μMEH (after the blue vertical line), followed by washout (after the grey vertical line).
Fractional height (lower panel) reached by lamellipodia before and after 20 μMEH, followed by washout. (b) Same as in (a) but in the presence of 50μMCK
(after the green vertical line) without washout. White dots show the leading edge of lamellipodia. Descending white lines label retrograde flow of lamellipodia
and ascending black lines indicate lamellipodia protrusion. (c) Period of protrusion/Retraction cycles of lamellipodia in control conditions, with 20 μMEH (20
min), after washout of 20 μMEH (10 min) and 50μMCK (15 min, after recovery). (d) Persistence length of lamellipodia in control conditions, with 20 μMEH
(20 min), after washout of 20 μMEH (10 min) and 50μMCK (15 min, after recovery). (e)Retrograde flow rate of lamellipodia in control conditions, with 20 μM
EH (20 min), after washout of 20 μMEH (10 min) and 50μMCK (15 min, after recovery). Student t-test showed that the data significantly differ from the control
conditions, *P<0.05. Data represent mean ± SEM.

doi:10.1371/journal.pone.0146842.g001
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compared to control conditions (1.48±0.07 μm) and after washout of 20 μM EH (1.42±0.1)
(Fig 1D). However, there was no significant change in the persistence length of lamellipodia
when Rac1 was inhibited (1.56±0.09 μm), but the lamellipodia retrograde flow rate decreased
when Rac1 was inhibited (0.05±0.007 μm/s) compared to what observed in control conditions
(0.08±0.005 μm/s), after washout of 20 μM EH (0.07±0.008 μm/s) and in the presence of Arp2/
3 inhibitors (0.09±0.009 μm/s) (Fig 1E).

Rac1 activates when Arp2/3 is inhibited
When the activity of Arp2/3 was inhibited by 100 μM of CK lamellipodia shrank and their
motility was completely and permanently suppressed (Fig 2A). The growth cone also lost the
adhesion to the substrate and retracted towards the soma (data not shown). Remarkably, when
DRG neurons were treated with 50 μMCK, lamellipodia showed a transient retraction that
continued for 5–8 minutes, but then lamellipodia recovered their usual motility restoring pro-
trusion and retraction cycles and were also able to lift up vertically almost as under control con-
ditions (Fig 1B). The results of these experiments suggest that following a partial inhibition of
Arp2/3 another pathway is activated rescuing—to some extent—the usual GC motility. To test
this possibility and to identify the origin of the recovery of motility in treated lamellipodia, we
considered the Rho GTPase pathways, known to regulate many aspects of intracellular actin
dynamics and GC metabolism [40]. The most extensively studied members of Rho GTPase
family are Rho A, Rac1 and Cdc42. Rac can not only regulate actin polymerization but it can
also increase the availability of free actin-barbed ends by the removal of capping proteins and it
can also increase the availability of actin monomers by regulating cofilin [41]. These roles of
Rac1 could help in the formation and protrusion of lamellipodia by polymerizing the pre-exist-
ing branched actin filaments at the leading edge of the lamellipodia, in Arp2/3 depleted condi-
tion. In addition, the newly formed actin branches generated by the remaining Arp2/3 can
contribute to the lamellipodia protrusion. Therefore, we hypothesized that Rac1 could mediate
the recovery of motility observed in Fig 1B. Lamellipodia that were first treated with 20 μM EH
exhibited an increase in the period of protrusion/retraction cycles and could move up in the
axial direction (Fig 1A and 1C). Then, the same lamellipodia were treated also with 50 μMCK:
in this case, as expected, lamellipodia shrank but could not recover their motility even after 10–
20 minutes of exposure to these inhibitors (Fig 2B). We tested also the simultaneous applica-
tion of 20 μM EH and of 50 μMCK, which were mixed and added to the medium bathing of
the neuronal culture at the same time. Lamellipodia exposed simultaneously to the two inhibi-
tors retracted and did not show any sign of motility even after 10–20 minutes (Fig 2C).

The above results indicate that Rac1 could be behind the recovery of lamellipodia which
were transiently retracted after Arp2/3 inhibition. However, the Rac1 inhibitor EHop-016
inhibits both Rac3 as well as Cdc42 above the concentration of 3μM[35]. Therefore, in order to
examine the possible role of the Cdc42 pathway, we used ZCL as a selective inhibitor which is
known to target the binding site of the Cdc42 guanine nucleotide exchange factor, intersectin
(ITSN) and to hinder Cdc42 activation[37]. When 50μMZCL was added lamellipodia did not
show significant changes in their motility. Subsequent exposure of 50 μMCK to the same
lamellipodia shrank the lamellipodia as usual, but then lamellipodia did recover after approxi-
mately 8 minutes of exposure (Fig 2D).

To dispose the possibility of Rac3, in the recovery of lamellipodia, in Arp2/3 inhibited con-
dition, we used F56 as another specific Rac1 inhibitor. It is a control peptide version of Rac1
Inhibitor W56; comprises residues 45–60 of Rac1 with Trp56 replaced by Phe, which does not
affect GEF-Rac1 interaction[36]. When lamellipodia were treated with 100μM F56, lamellipo-
dia did not show significant changes in their motility. The same lamellipodia were then
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exposed to 50 μMCK, the lamellipodia shrank as usual, but then lamellipodia did not recover
even after 10–20 minutes of exposure. We tested also the simultaneous application of 100 μM
F56 and of 50 μMCK, which were mixed and added to the medium bathing of the neuronal
culture at the same time. Lamellipodia exposed simultaneously to the two inhibitors retracted
and did not show any sign of motility after 10–20 minutes (data not shown).

In the Arp2/3 depleted situation, in order to see the role of RhoA and Rock in the lamellipo-
dia recovery, lamellipodia were exposed to CT (Rho A inhibitor)[38] (Fig 2E) and GSK (ROCK
inhibitor) [39] (data not shown) independently, before the treatment with CK. In both situa-
tions lamellipodia recovered after 8 minutes of exposure and, at the end of their retraction,
they were also able to reach the same height as in control conditions. We analyzed in detail the
growth cone dynamics in the presence of the inhibitors of CDC42, RhoA and ROCK signaling
pathways. The period of lamellipodia protrusion/retraction cycles in the presence of ZCL
(101.7±2.6 s), CT (113.6±2.9 s) and GSK (107.8±2.9 s) increased when compared with the con-
trol conditions (86.5±3.2 s) (Fig 2F). The lamellipodia persistence length also increased in the
presence of CT (1.92±0.13 μm) and GSK (1.8±0.11 μm) but remained constant in the presence
of ZCL (1.35±0.07 μm) when compared to control conditions (1.48±0.07 μm) (Fig 2G). The
retrograde flow rate decreased in the presence of ZCL (0.05±0.006 μm/s) but remained con-
stant in CT (0.08±0.01 μm/s) and GSK (0.09±0.01 μm/s) when compared to control conditions
(0.08±0.005 μm/s) (Fig 2H).

These results discard the involvement of the Rac3, Cdc42, RhoA and Rock pathways in the
recovery of lamellipodia which were transiently retracted after the inhibition of Arp2/3. It also
indicates that Rac1 is crucial for the recovery of the transient retraction of lamellipodia due to
inhibition of Arp2/3.

To confirm the role of Rac1 during the recovery of the transient lamellipodia retraction due
to 50 μMCK, we examined the Rac1-GTP level (the activated form of Rac1) in cultured DRG
neurons with different exposure conditions of CK (Fig 2I) by using the G-LISA Rac 1 activation
assay kit (Cytoskeleton, Inc., Denver, Colo.) (see Materials and Methods). The Rac1-GTP level,
in the presence of 25 and 50 μMCK for 2 minutes did not show any significant change com-
pared to the control conditions. However, the Rac1-GTP level significantly increased in the
presence of 50 μMCK for 8 minutes (P<0.005) i.e. the time during which lamellipodia recov-
ered motility after the transient retraction (Fig 2I). These results confirm that Rac1 activates
upon inhibition of Arp2/3.

Effect of Arp2/3 and Rac1 inhibitors on the force exerted by lamellipodia
Optical Tweezers was used to investigate the effect of the partial inhibition of Rac1 and Arp2/3
on the force exerted by lamellipodia. Lamellipodia in control conditions pushed the trapped
beads with a force up to 10–20 pN as previously described [31] and often beads could be dis-
placed out of the optical trap. The forces were measured from the same lamellipodia in control

Fig 2. Rac1 restores lamellipodia’s motion after transient retraction when Arp2/3 is inhibited. (a) Kymograph (upper panel) and fractional height
reached by lamellipodia (lower panel) in control conditions (before the black vertical line) and in the presence of 100 μMCK (after the vertical black line). (b)
As in (a) but in the presence of 50 μMCK (green line) and of 20 μMEH (blue line). (c) As in (a) but in the presence of 50 μMCK and of 20 μMEH together
(yellow vertical line). (d) As in (a) but in the presence of 50 μM ZCL (purple vertical line) and of 50 μMCK (green vertical line). (e) As in (a) but in the presence
of 1μg/ml CT04 (brown vertical line) and 50 μMCK (green vertical line). Vertical lines show time at which the inhibitors were added. We observed the same
behavior in each case for n� 8 experiments. (f) Period of protrusion/Retraction cycles of lamellipodia in control conditions, with 50 μMZCL (13 min), with
1μg/ml CT (13 min) and 500nmGSK (13 min). (g) Persistence length of lamellipodia in control conditions, with 50 μM ZCL (13 min), with 1μg/ml CT (13 min)
and 500nmGSK (13 min). (h) Retrograde flow rate of lamellipodia in control conditions, with 50 μM ZCL (13 min), with 1μg/ml CT (13 min) and 500nmGSK
(13 min). Student t-test showed that the data significantly differ from the control conditions, *P<0.05. Data represent mean ± SEM. (i)Quantification of
Rac1-GTP level in DRG neurons in control, 25 μMCK (after 2 min), 50 μMCK (after 2 min) and 50 μMCK (after 8 min) conditions. Student t-test showed that
the data significantly differ from the control conditions, n = 8,**P<0.005. Data represent mean ± SEM.

doi:10.1371/journal.pone.0146842.g002
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conditions and in the presence of the inhibitors. Exerted forces were analyzed according to
four different stereotyped behaviors previously described [32,33], depending on the direction
in which the lamellipodia were exerting the force on the bead: vertical push (VP), vertical
retraction (VR), lateral push (LP) and lateral retraction (LR) (Fig 3).

Lamellipodia of DRG treated with a moderate concentration of Rac1 and Arp2/3 inhibitors
were able to pull and push a trapped bead, but with a lower force compared to the force
observed in control conditions (Table 1). In the lateral direction: in case of LP the lamellipodia
force decreased by 30–40% with an increase in the inhibition of Rac1, however it decreased by
50–65% when Arp2/3 was inhibited compared to control conditions. The retractile force LR
decreased by 40% when Rac1 was inhibited by 10μM EH, inhibition of Rac1 by 20 μM EH
decreased the LR force more than 70% probably due to a decrease in the lamellipodia retro-
grade flow rate. The retractile force LR decreased by 65% when Arp2/3 was inhibited. In the
axial direction: when Rac1 was inhibited by 10 μM EH, the lamellipodia force in VP and VR
decreased more than 60%. Besides, it decreased more than 75% in all the other VP and VR
cases (Table 1).

Fig 3. The effect of CK and EH on the force generated by lamellipodia. (a) Low-resolution image of a bead trapped in front of a lamellipodium emerging
from the soma of a DRG neuron in the presence of 25 μMCK (25 μMCK). Scale bar, 5μm. (b-c) High-resolution images during a push. At t1 the bead is in the
optical trap (b) and when the lamellipodium grows, at t2, it pushes the bead (c). The red cross indicates the centre of the optical trap. Scale bar, 2μm. (d) The
three components Fx, Fy, and Fz of the force exerted when the lamellipodium pushes the bead. (e) As in (d) but in the presence of 50 μMCK (CK 50 μM). (f)
As in (d) but in the presence of 10 μMEH (EH 10 μM). (g) As in (d) but in the presence of 20 μMEH (EH 20 μM). The trap stiffness is kx,y = 0.10, kz = 0.08
pN/nm. (h) Comparison of the force exerted by lamellipodia in control conditions (red), with 25 μMCK (green), with 50 μMCK (dark green), with 10 μMEH
(cyan) and with 20 μMEH (blue) and in all the four different stereotyped behaviours: LP, LR, VP and VR. In each case, by using the student t-test, the force
measured in the presence of each inhibitor was lower than that measured in control conditions with a significance *P<0.005. Data represent mean ± SEM.

doi:10.1371/journal.pone.0146842.g003
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These results suggest that lamellipodia were not able to explore the surrounding environ-
ment with an equal force when Rac1 and Arp2/3 were inhibited when compared to control
conditions. In addition, lamellipodia were not able to exert a larger force in the axial direction
than in the lateral direction, when compared with the control conditions state.

The effect of Rac1 inhibitors on the rate of lamellipodia protrusion
Lamellipodia in the presence of 10–20 μM EH exerted a lower force but were still able to
extend. In order to measure their rate of protrusion, we used the Nanopositioner feedback (see
Materials and Methods section) which allows a precise and continuous measurement of the
bead position by employing Optical Tweezers.

All the measurements obtained using the nanopositioner feedback mechanism were com-
pensated as explained in the Materials and Methods section. In each case, the total displace-
ment of the bead in the lateral direction was computed. In each case—control conditions,
10 μM EH and 20 μM EH- 5–6 of such traces were averaged and plotted against time (Fig 4).

Table 1. The effect of different inhibitors on the force exerted by lamellipodia.

Force (pN) N � 15 Control EH 10 μM EH 20 μM CK 25 μM CK 50 μM

LP 14.0±1.5 9.9±0.8 8.5±0.7 6.9±0.9 5.0±0.6

VP 10.4±1.2 4.0±0.2 2.3±0.3 2.3±0.2 2.2±0.3

LR 15.5±1.6 8.7±0.8 4.1±0.8 6.0±0.7 5.2±0.7

VR 10.1±1.0 3.4±0.3 2.0±0.5 2.1±0.2 1.9±0.3

Average maximum force exerted by lamellipodia in control conditions (second column), in the presence of 10 μM EH (third column), of 20 μM EH (fourth

column), of 25 μM CK (fifth column) and of 50 μM CK (sixth column) for lateral push (second row), vertical push (third row), lateral retraction (fourth row)

and vertical retraction (fifth row) respectively. The student t-test has shown that in all the cases, the data significantly differ with respect to control

conditions, P<0.05. Data represent mean ± SEM.

doi:10.1371/journal.pone.0146842.t001

Fig 4. The rate of lamellipodia protrusion. To track the protrusion of lamellipodia, the position of the bead, displaced by the protruding lamellipodia, was
followed using the feedback mechanism of the nanopositioner (See Results and Materials and Methods sections). The figure shows the total displacement of
the bead in control conditions (black), with 10μMEH (blue) and with 20μMEH (magenta).

doi:10.1371/journal.pone.0146842.g004
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Before averaging, traces were aligned so that their rising phase matched each other. The slopes
of these traces were calculated to determine the lamellipodia protrusion rate. In control condi-
tions, the speed of protrusion of lamellipodia could reach 100 nm/s (see black trace in Fig 4)
and was reduced to 30–50 nm/s in the presence of 10 μM EH (blue trace in Fig 4) and to 10–20
nm/s in the presence of 20 μM EH (magenta trace in Fig 4).

These results indicate that inhibition of Rac1 has a similar effect on the amplitude of the
force exerted by lamellipodia and on their protrusion rate.

Effect of Arp2/3 and Rac1 inhibitors on the force exerted by filopodia and
their motility
The filopodia motility and the force exerted by them were quantified by video imaging, immu-
nocytochemistry and Optical Tweezers (Table 2). The protruding filopodia tips were followed
in different frames to calculate the filopodia protrusion rate, and the maximum length of the
filopodia was measured as described in the Materials and Methods section.

In DRG GC the length of the filopodia increased by 60 to 80% when Arp2/3 was inhibited
by 25 and 50 μMCK respectively. When Rac1 was inhibited by 10 μMEH the length of the filo-
podia increased by 20%. Remarkably, the filopodia length increased more than the double
when Rac1 was inhibited by 20 μM EH compared to control conditions (Fig 5A, 5B and 5E).
The GCs were then fixed and stained with Alexa 488 phalloidin and imaged to observe the
actin localization. The longer filopodia protruded from the GCs after the inhibition of Rac1
with 20 μM EH and showed an increase in the total F-actin compared to the controlled filopo-
dia (Fig 5C and 5D).

The protrusion rate of filopodia did not change when Rac1 and Arp2/3 were suppressed by
their respective inhibitors with a lower concentration. However, it increased by 30% when
Rac1 was inhibited by 20 μM EH. In this case, the extension of the filopodia length could be the
effect of this increase in the filopodia protrusion rate together with the decrease of the lamelli-
podia retrograde flow rate. Surprisingly, the filopodia protrusion rate decreased by 30% when
Arp2/3 was inhibited by 50 μMCK (Fig 5F).

Inhibition of Rac1 and Arp2/3 significantly decreased the force exerted by lamellipodia;
however, the force exerted by filopodia did not change when Rac1 was inhibited and, with a
lower concentration of its inhibitor, Arp2/3 was suppressed, compared to control conditions.
Very rarely filopodia emerged from lamellipodia exerted a force that is larger than 4 pN in con-
trol conditions. The forces exerted by filopodia were measured in the same neuron before and
after the addition of inhibitors of Rac1 or Arp2/3. In each case collected data from 10 neurons
showed that the filopodia force did not changed when Rac1 was inhibited by 10–20 μM EH

Table 2. Filopodia motility and force exerted by them.

Filopodia Control CK 25 μM CK 50 μM EH 10 μM EH 20 μM

Length (μm) 3.36±0.2 5.67±0.25* 6.33±0.3** 4.14±0.18** 8.04±0.39**

Growth rate (μm/s) 0.10±0.001 0.09±0.004 0.07±0.003** 0.09±0.005 0.13±0.004**

Force (pN) 3.08±0.15 2.74±0.31 2.48±0.18* 3.04±0.35 3.14±0.29

Maximum length (second row), protrusion rate (third row) and force exerted by filopodia (fourth row) in control conditions (second column), in the presence

of 10 μM EH (third column),of 20 μM EH (fourth column), of 25 μM CK (fifth column) and of 50 μM CK (sixth column). The student t-test has shown that

data significantly differ with respect to control conditions

*P<0.05 and

**P<0.005. Data represent mean ± SEM.

doi:10.1371/journal.pone.0146842.t002
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and when the Arp2/3 was inhibited by 25 μMCK. Inhibition of Arp2/3 with 50 μMCK
decreased the filopodia force by 20% when compared to control conditions (Fig 5L).

Discussion
In this study we have characterized the role of Rac1 and Arp2/3 in the motility and force
exerted by lamellipodia and filopodia of DRG GCs. Our results suggest that in neuronal growth
cones, Rac1 acts as a switch that activates following the inhibition of Arp2/3. Moreover, Arp2/3
and Rac1 not only control the force exerted by lamellipodia but also the dynamics of filopodia.

The effect of the inhibition of Rac1 and Arp2/3 on lamellipodia motility
We followed and quantified the protrusion/retraction cycles of DRG lamellipodia by measur-
ing their period, persistence length and retrograde flow rate using kymographs (see Fig 6 in the
Materials and Methods section).

Lamellipodia treated with a small amount of Rac1 and Arp2/3 inhibitors increased the
period of their protrusion/retraction cycles (Fig 1C). When Rac1 was inhibited, the lamellipo-
dia retrograde flow rate decreased, leading to a longer retraction time and overall cycle period.
These effects were then returned to the control level after the washout of the Rac1 inhibitor,
20 μM EH indicating that the inhibitor was not toxic to the neuronal growth cone. When
Arp2/3 was inhibited, the lamellipodia retrograde flow rate remained constant but the persis-
tence length increased. The combination of these two effects increased the period of protru-
sion/retraction cycle (Fig 1C–1E).

The actin retrograde flow level decreased after the Arp2/3 complex was knocked down with
siRNA in primary cultured hippocampal neurons and neuroblastoma cells [11] but increased
when the Arp2/3 complex was inhibited by CK666 and CK869[10]. We found that partial inhi-
bition of Arp2/3 with 50 μMCK548 (Fig 1B), did not affect the lamellipodia retrograde flow
rate after the recovery of lamellipodium motility.

Recovery of motility following partial inhibition of Arp2/3
When Arp2/3 was inhibited by 100 μMCK548 the growth cone dynamics was completely abol-
ished presumably because of the loss of adhesion. However, when Arp2/3 was partially inhib-
ited by 50 μMCK548, lamellipodia transiently shrank for 5–8 minutes but then recovered their
usual motility. The Rho family of GTPase signaling proteins plays a pivotal role in regulating
actin cytoskeleton [15] and could be involved in the observed recovery of lamellipodia motility.
The best characterized small GTPases of the Rho family are Rac1, Cdc42 and RhoA which act
as molecular switches, cycling between an active GTP-bound state and an inactive GDP-bound
state [40]. To determine the possible role of Rho GTPase signaling pathways, in the transient
retraction and recovery of lamellipodia when Arp2/3 was inhibited, we used selective inhibitors
of Rac1, Cdc42 and RhoA.

Fig 5. The effect of the CK and EH on the motility and force exerted by filopodia. (a-b) Phase contrast images of GC before and after treatment with
20 μMEH. Note the length of filopodia in each case. Scale bar 5 μm. (c-d) Staining of F-actin by phalloidin in GC before and after treatment with 20 μMEH.
(e) Rate of filopodia protrusion in control conditions (red), with 25 μMCK (green), with 50 μMCK (dark green), with 10 μMEH (cyan) and with 20 μMEH
(blue). (f)Maximum length of filopodia in control conditions (red), with 25 μMCK(green), with 50 μMCK(dark green), with 10 μMEH (cyan) and with 20 μM
EH (blue). (g) Images of a bead trapped in front of a filopodium emerging from a GC of DRG neuron in the presence of 25 μMCK. At t1 the bead is in the
optical trap and at t2 the filopodium pushes the bead. The cross indicates the centre of the optical trap. (h) The three components Fx, Fy and Fz of the force
exerted by the filopodium in the presence of 25 μMCK. (i-k) As in (h) but in the presence of 50 μMCK (i), in the presence of 10 μMEH (j) and in the presence
of 20 μMEH (k) respectively. (l) Filopodia force in control conditions (red), in the presence of 25 μMCK (green), of 50 μMCK (dark green), of 10 μMEH
(cyne) and of 20 μMEH (blue). The trap stiffness was kx,y = 0.10 pN/nm, kz = 0.08 pN/nm. By using the student t-test, the data differs with respect to the
control conditions with a significance of *P<0.05 and **P<0.005. Data represent mean ± SEM. All the data were checked with chi-square test for Normal
distribution before applying the student’s t test.

doi:10.1371/journal.pone.0146842.g005
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Lamellipodia treated with the inhibitor of Rac1, EH showed an increase in their period of
protrusion/retraction cycle and could move in the axial direction. The lamellipodia regained
their motility after the washout of the EH, which show that the inhibitor effect on the neuronal
growth cone was not due by its toxicity. When the same lamellipodia were later treated also
with 50 μMCK548, lamellipodia showed the usual retraction but did not recover even after
10–20 minutes (Fig 2B). Moreover, when treated with both Rac1 and Arp2/3 inhibitors
together, lamellipodia shrank as usual but again they did not recover after 10–20 minutes of
exposure (Fig 2C). The higher concentration of EH not only inhibit Rac1 but also Rac3 and
Cdc42 in the MDA-MB-435 metastatic cancer cells[35]. To rule out the possibility that the
Rac3 and Cdc42 could be behind the recovery of transiently retracted lamellipodia in the Arp2/
3 inhibited condition we tested the effect of the specific inhibitor of Cdc42, ZCL and of another
specific inhibitor of Rac1, F56. Transiently retracted lamellipodia following partial Arp2/3

Fig 6. Characterization of lamellipodial protrusion/retraction cycles and of vertical motion. (a-c) From top to bottom: images of the lamellipodium
undergoing cyclic waves of protrusion (t2) and retraction (t1 and t3) in control conditions; the white dotted line represents the leading edge of the
lamellipodium. Scale bar, 5 μm. (d) The profile diagram of the positions of the lamellipodium edge during the time course. Increase in the color intensity
shows increase in the frequency of the lamellipodia edge to be present at particular location. White lines used to plot the kymographs. (e) Kymograph
showing the protrusion/retraction cycles of lamellipodia. White dots show the leading edge of lamellipodia. The characteristic values of period of protrusion/
retraction cycles of lamellipodia motion (black dotted line), the retrograde flow rate (black line) and persistence length of lamellipodia (white line) i.e. (T), (dx/
dt) and (dl) respectively were calculated along the label lines. (f) Fractional number of pixels in focus at 5μm height above the coverslip. The protrusion/
retraction cycles of lamellipodia is also observed in terms of fractional reached height by lamellipodia. The black line shows the peak position of the fractional
height where lamellipodia reach the maximum in axial direction at the end of the retraction.

doi:10.1371/journal.pone.0146842.g006
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inhibition condition did recover also in the presence of the Cdc42 inhibitor, ZCL (Fig 2D).
Transiently retracted lamellipodia following Arp2/3 inhibition did not recover when treated
also with 100 μM F56.

The level of activated Rac1 following an exposure to 50 μMCK for 8 minutes significantly
increased compared to what observed in control conditions, 25 μMCK(2 min) and 50 μMCK
(2 min) (Fig 2I). These results indicate the specific role of Rac1 in the observed recovery of
motility following partial inhibition of Arp2/3.

A possible mechanism could be mediated by the Integrin pathways. Jacquemet, G. et al. sug-
gested that the engagement of integrin followed by filamin-A, IQGAP1 and RacGAP1 enroll-
ment, deactivates Rac1[42]. Ilić, D. et al. and Saunders, R. M. et al. reported that Arp2/3 is
recruited to nascent integrin adhesions through interaction with FAK and vinculin, where it
reinforces the link between integrin and the cytoskeleton [43,44]. Furthermore, Beckham et al.
reported that Arp2/3 inhibition impairs integrin, an extracellular membrane attachment result-
ing in either a translocation or treadmilling of mature adhesions [45]. Therefore, it is possible
that inhibition of Arp2/3 could reduce the ligation and clustering of integrins and further sup-
press filamin-A, IQGAP1 and RacGAP1 recruitment, leading to an enhancement of Rac1 activ-
ity. Rac1 not only regulates actin polymerization but also increases the free actin-barbed ends
and actin monomers. Therefore, the enhanced Rac1 activity could promote the formation and
protrusion of lamellipodia, stimulating Arp2/3 by activating the WASP/WAVE family proteins
[12,13].To study the role of other Rho GTPase pathways in the transient retraction and recov-
ery of lamellipodia upon Arp2/3 inactivation, inhibitors of the respective pathways were used.
Detailed quantification showed that the lamellipodia persistence length significantly increased
after CT and GSK treatment but it remained constant after ZCL treatment, which is also con-
sistent with what previously reported [46]. The increase in the lamellipodia persistence length
upon CT and GSK treatment is probably due to the crosstalk between RhoA and Rac1 [47].
The lamellipodia retrograde flow rate significantly decreased after ZCL treatment; however, it
remained constant when treated with CT and GSK. As previously shown, CDC42 promotes
retrograde flow rate [48] thus the observed significant decrease in the lamellipodia retrograde
flow rate is the direct result of CDC42 inhibition. Lamellipodia treated with CDC42 inhibitor
increased the period of their protrusion/retraction cycles (Fig 2F). When CDC42 was inhibited,
the lamellipodia retrograde flow rate decreased, leading to a longer retraction time and overall
cycle period. When RhoA and ROCK were inhibited, the lamellipodia retrograde flow rate
remained constant but the persistence length increased. The combination of these two effects
increased the period of protrusion/retraction cycle (Fig 2F). These results show that inhibitors
of CDC42, RhoA and ROCK were functioning appropriately. In addition to that, in all these
cases lamellipodia showed recovery when treated with Cdc42, RhoA and ROCK inhibitors
before treatment with Arp 2/3 inhibitor. Therefore, the involvement of these pathways in the
recovery of lamellipodia motility can be discarded.

Arp2/3 controls the formation and dynamics of filopodia
In the active states Rac1, Cdc42 and RhoA interact not only with their specific downstream tar-
gets but also cross talk [15]. Specifically, activation of Cdc42 triggers a localized activation of
Rac1, initiating the filopodia formation [49]. In our experiments the presence of actin was con-
firmed in the filopodia before and after the inhibition of Rac1 by using immunocytochemistry
(Fig 5). Inhibition of Rac1 remarkably increased the protrusion speed as well as the maximum
length of the filopodia (Fig 5E and 5F). Since Rac1 inhibition reduces the activation of Arp2/3,
it is possible that Rac1 inhibition decreases the formation and protrusion of lamellipodia, leav-
ing filopodia behind. In addition, a decrease in the lamellipodia retrograde flow rate and a
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stable persistence length due to Rac1 inhibition (Fig 1D and 1E) are expected to cause an accu-
mulation of actin at the peripheral region of the GC, from where the filopodia emerge. A higher
concentration of actin at the base of the filopodia enables the growth of substantially longer
filopodia[50,51].

Korobova et al. found that inhibition of Arp2/3 reduced the lamellipodia protrusion as well
as filopodia formation and dynamics [11]. In our case we found that Arp 2/3 inhibition
decreased the protrusion speed of filopodia but it increased their maximum length (Fig 5E and
5F). Inhibition of Arp2/3, increased the lamellipodia persistence length and the retrograde flow
rate (Fig 1D and 1E), which will accumulate less actin at the periphery of the GC. This may
possibly lead to a decrease in the protrusion speed of filopodia. Moreover, Arp2/3 is required
for the formation of filopodia and inhibition of Arp2/3 could decrease the formation of new
filopodia. The actin accumulated at the periphery of the growth cone upon Arp2/3 inhibition
can be utilized by the remaining filopodia to form longer filopodia. We also found that when
Arp2/3 was inhibited, the force exerted by filopodia decreased compared to control conditions.
The above results indicate the direct involvement of the Arp2/3 in the formation and dynamics
of filopodia. On the other hand, Rac1 inhibition increased the length of filopodia but it did not
change the force they exerted. This indicates that, like Arp2/3, Rac1 may not directly take part
in the formation and dynamics of filopodia (Fig 5E–5I).

In conclusion, we show here that Rac1 activates when Arp2/3 is inhibited possibly through
the Integrin pathways acting as a feedback. Besides its role in lamellipodia formation, Arp2/3 is
directly involved in the formation and dynamics of filopodia, while Rac1 is not involved in the
activity of the force generation of filopodia.

Materials and Methods

Neuron preparation
Wistar rats at postnatal days 10–12 (P10-P12) were sacrificed by decapitation after anesthesia
with CO2 in accordance with the Italian Animal Welfare Act. The Ethics Committee of the Inter-
national School for Advanced Studies (SISSA-ISAS) has approved the protocol (Prot.n. 289-II/7).
After dissection, Dorsal Root Ganglia (DRG) were incubated with trypsin (0.5 mg/ml; Sigma-
Aldrich, Milan, Italy), collagenase (1mg/ml; Sigma-Aldrich) and DNase (0.1 mg/ml; Sigma-
Aldrich) in 5 ml Neurobasal medium (Gibco, Invitrogen, Milan, Italy) in a shaking bath (37°C,
35–40 min). After mechanical dissociation, they were centrifuged at 300 rpm, resuspended in the
culture medium and plated on poly-L-lysine-coated (0.5 μg/ml; Sigma-Aldrich) coverslips. Neu-
rons were incubated for 24–48 h and nerve growth factor (50 ng/ml; Alomone Labs, Jerusalem,
Israel) was added before performing the measurements.

Quantification of lamellipodia and filopodia motility
Neurons were maintained at 37°C in the sample holder of the microscope stage capable of
moving in X and Y directions with nanometer precision and imaged through 100 X oil
immersed, 1.4 NA objective lens mounted on an inverted microscope (IX80, Olympus). Stacks
of phase contrast images of neurons from DRG ganglia were obtained by Charge couple device
(CCD) camera (Olympus Megaview) and by moving the objective lens vertically. Each stack
contains images obtained in the focal plane of the objective, focused on the coverslip where
neurons were cultured i.e. at height 0 and at 1, 2, 3, 4, 5 and 6 micron above the coverslip.
Stacks of images were acquired with 0.1–1 Hz frequency to quantify the 3D motion of lamelli-
podia. Then, for a further analysis, the time lapse image sequence for each height was extracted
by using Xcellence software (Olympus) to create videos of different height. Two algorithms
were developed to quantify the dynamics of lamellipodia. Algorithm I was designed to quantify
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in a semi-automatic way the time course of protrusion/retraction cycles by using an improved
version of the Kymograph [52,53]. Algorithm II was designed to quantify the vertical motion
of lamellipodia during these cycles.

Algorithm I
The images at height ‘0’ i.e. the cover slip where neurons were cultured- were focused and were
used to analyze the protrusion/retraction cycles of lamellipodia (Fig 6). The lamellipodia edges
were extracted from each image of the video by using the difference of Gaussian filter [54].
Lamellipodia edges were tracked and followed during the entire duration of the video (Fig 6A).
A profile of the temporal movement of the lamellipodium edge was obtained. These profiles
allowed to follow and quantify lamellipodia cycles of protrusion and retraction (Fig 6D). Then
the regions of interest of each line were cut and lined up with the time course, to obtain sepa-
rate kymographs corresponding to each line (Fig 6E).

The white dotted line in the kymograph shows the lamellipodia leading edge. The changes
in the grey values show lamellipodia movements. Mainly the ascending white dotted parts of
the dotted line show the protrusion of lamellipodia (white line showing single protrusion)
while the descending white dotted parts of the line represent the retraction of lamellipodia. The
time to complete one protrusion and retraction by the lamellipodia was considered as a period
(T) of protrusion/retraction cycle of lamellipodia. The maximum protrusion length after which
lamellipodia starts retracting (white line, dl; micrometers) was defined as the persistence length
of lamellipodia. The dark appearances in the kymograph during each retraction of lamellipodia
represent the retrogradely moving lamellipodia features (black line showing single lamellipo-
dium retrograde flow). The slope of the lines drawn on these dark appearances was calculated
to find out the lamellipodium retrograde flow rate (dx/dt; micrometer per second) [52,53] (Fig
6E). Each parameter, the lamellipodia period of the protrusion/retraction cycles, the persis-
tence length and the retrograde flow rate, were calculated by extracting these features from
many kymographs and averaged over for statistical significance.

Algorithm II
Lamellipodia not only show periodic motion of protrusion and retraction (Fig 6C) but, during
retraction, they also lift up and ruffle. To study the axial motion of GC lamellipodia, image
sequences taken at different heights i.e. 0, 1, 2. . .6 were acquired and analysed. Algorithm II
was based on the theory of defocusing, in which a pixel is assumed to be in focus at a specific
height when its intensity equalises with the background intensity of the image of that height
[55]. The background intensity of the image for each height was computed as the median of
pixel intensities of the image for that height. The number of pixels in focus at a specific height
was obtained and normalized by dividing it by the total number of pixels in focus at all the
given heights. In this way, the fraction of pixels of the lamellipodium in focus at different
heights, was extracted and plotted against time (Fig 6F). In this manner it was possible to study
the maximal height reached by the lamellipodia edge during retraction in different conditions.
Usually lamellipodia lift up high around the maximal retraction, so, in our experiments, their
cyclic motility could be characterized both by the kymograph and by the fractional height that
was reached (Figs 2 and 6).

In order to quantify the motility of filopodia, phase contrast time lapse image sequences
acquired at height ‘0’ were analyzed. An Imagej (Image processing and analysis in Java) soft-
ware was used to measure the maximum length of the filopodia and plug-in, ‘manual tracking’
was used to identify the protrusion rate of the filopodia.
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Force Measurements
The force exerted by lamellipodia and filopodia was calculated by measuring the displacement
of the optically trapped bead and the known trap stiffness[32]. Unlike traction force micros-
copy or other similar measurement methods, initially, the bead was not in contact with the cell
membrane [24,27,56,57] but was kept in the vicinity of the motile lamellipodia and filopodia.
In this way the lamellipodia and filopodia can displace the bead in a spontaneous manner.

The Optical Tweezers (OT) set-up used for force measurements was as previously described
[29,32]. The optical tweezers set-up was built as described in Ref. 31.

Nanopositioner feedback
In the OT setup, the detection of the position of the bead was based on the interference signal
in the back focal plane, monitored with Quadrant Photo Detector (QPD) [58]. Often lamellipo-
dia were able to push the bead out of the linear range–typically 200 nm—in which the QPD
could provide a reliable measurement. To overcome this situation, a feedback mechanism,
based on a nanopositioner stage-Nanodrive (Mad City Labs, USA) was used (Fig 7).

To summarize, from the detected x and y coordinates of the bead the displacement ‘r’ of the
bead position from the centre of the trap was computed as sqrt (x^2+y^2). The nanodrive

Fig 7. The feedback and nanopositioner system. (a-c) High-resolution images of a bead trapped in front of a lamellipodium emerging from the soma of a
DRG neuron in control conditions and during a push. At t1 the bead is in the optical trap (a) Scale bar, 2μm.The lamellipodium grows, at t2, tries to push the
bead out of the trap (b). At t3 the feedback mechanism of the Nano-drive redirects the bead back into the centre of the trap (c). The red cross indicates the
center of the optical trap. (d) The X, Y components of the trace. The position of the bead (blue and green curve respectively, upper panel), compensated the
X, Y position of the bead (magenta and light green curve, upper panel), corresponding to X, Y position of the Nanodrive (Blue and green respectively, lower
panel).

doi:10.1371/journal.pone.0146842.g007
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stage brings back the bead into the centre of the optical trap when r is larger than the threshold
(which is usually set to be equal to 200 nm). By using the information of the displacement of
the nanodrive stage (Fig 7D, lower panel) and the bead position determined by the QPD (X, Y
axis original in Fig 7D) we recovered the x-y axis of the compensated displacement.

Immunostaining
Cells were fixed in 4% paraformaldehyde containing 0.15% picric acid in phosphate-buffered
saline (PBS), saturated with 0.1 M glycine, permeabilized with 0.1% Triton X-100, saturated
with 0.5% BSA in PBS (all from Sigma-Aldrich, St.Louis, MO) and then incubated for 1h with
primary antibodies. The secondary antibodies were goat anti-rabbit 594 Alexa (Invitrogen, Life
Technologies, Gaithersburg, MD, USA) and anti-mouse IgG2a biotynilated (Santa Cruz Bio-
technology, Santa Cruz, CA) and the incubation time was 30 min. F-actin was marked with
Alexa Fluor 488 phalloidin, whereas biotin was identified by Marina Blue-Streptavidin (Invi-
trogen, Life Technologies, Gaithersburg, MD, USA) and incubated for 30 min. All the incuba-
tions were performed at room temperature (20–22°C). Cells were examined using a Leica
DMIRE2 confocal microscope (Leica Microsystems GmbH, Germany) equipped with DIC and
fluorescence optics, diode laser 405nm, Ar/ArKr 488nm and He/Ne 543/594nm lasers. The
fluorescence images (1024x1024 pixels) were collected with a 63X magnification and 1.3 NA
oil-immersion objective. Leica LCS Lite and Image J by W. Rasband (developed at the U.S.
National Institutes of Health and available at http://rsbweb.nih.gov/ij/) were used for image
processing.

Rac1 activity assay
The Rac1-GTP level (the activated form of Rac1) was determined in DRG neurons in control
conditions, 25 μMCK (2 min), 50 μMCK (2 min) and 50 μMCK (8 min) using the G-LISA
Rac 1 activation assay kit (Cytoskeleton, Inc., Denver, CO, catalog number BK128) according
to the manufacturer’s instructions.

After experimental treatment, neurons were washed with ice-cold (4°C) PBS and then lysed
in ice-cold lysis buffer. The lysate was clarified at 10000 x g at 4°C for 1 min, a 20 μl aliquot was
taken for a protein assay, and the remaining lysate was separated into at least two aliquots,
snap frozen in liquid nitrogen, and stored at −70°C until the start of the ELISA portion of the
assay. Protein concentrations were determined using the Precision Red Advanced Protein
Assay that came with the kit. Absorption of the ELISA wells was determined with a Multiskan™
GOMicroplate Spectrophotometer (Thermoscientific, USA).
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