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Abstract—Algorithm for inventory control with incomplete 
information about the model of demand is proposed. Algorithm 
is synthesized taking into account time delay. Inventory control 
algorithm based on local criterion with using Kalman filtering 
for systems with unknown input is constructed. Examples are 
given to illustrate the usefulness of the proposed approach. 
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I. INTRODUCTION 
Locally optimal discrete control systems are a special case 

of the discrete model predictive control [1, 2] (MPC) with one 
step forecast. The main advantage of the method of locally 
optimal control is a significant simplification of the synthesis 
procedure. Last years, the field of the MPC application and, 
accordingly, the method of locally optimal control have been 
applied to technical systems, chemical processes, inventory 
control, production-inventory system, and portfolio 
optimization [3–9].  

In this paper, we consider a control algorithm for the 
discrete model of the warehouse with time delay. It is assumed 
that the demand model contains unknown supplements.  

II. INVENTORY CONTROL WITH EXACT INFORMATION ON 
DEMAND 

We consider the model of a warehouse, which is described 
by the discrete equation 

 ( 1) ( ) ( ) ( )x k Ax k Bu k h s k+ = + − − ,  

 0(0) ,x x= ( ) ( ),u j j= ψ , 1,..., 1,j h h= − − + −  (1) 

where ( ) nx k R∈  is a vector of product volumes, ( )ix k  is a 
product volume for the i-th nomenclature, ( ) mu k h R− ∈  is a 
vector of deliveries, iu  is a volume of deliveries of the i-th 
nomenclature, h  is a value of time delay, ( ) ns k R∈  is a vector 
of demand at the k-th step, ( )is k  is a demand for the product of 
the i-th nomenclature, 0x  and ( )jψ  ( , 1,..., 1,j h h= − − + − ) are 
the known vectors. Matrices A  and B  define of 
characteristics and the structure of a warehouse. 

The local criterion has the form 

( ) ( ( 1) ) ( ( 1) ) ( ) ( ),I k x k z C x k z u k h Du k hΤ Τ= + − + − + − −  (2) 

where 0, 0C D> ≥  are weight matrices, z  is a vector which 
is selected by additional criterion (see Section V). In this 
section, we assume that all the components of the vector x(k) 
and s(k) are measured exactly. 

Transform criterion (2):  

 ( ) ( )( ) ( ) ( ) ( ( )Τ Τ Τ Τ= − + − + −I k u k h B CB D u k h u k h B C Ax k   

 ( ) ) ( ( ) ( ) ) ( ).s k z Ax k s k z CBu k hΤ− − + − − −   

Now, obtain the optimal control from the equation 

 ( ) 0
( )

dI k
du k h

=
−

.   (3) 

From (3), we have 

 ( ) ( ) ( ( ) ( ) ) 0B CB D u k h B C Ax k s k zΤ Τ+ − + − − = .  (4) 

Then, from (4) 

 1( ) ( ) ( ( ) ( ) ),u k h B CB D B C Ax k s k zΤ − Τ− = − + − −   (5) 

according to (1), we get the following equalities: 

 ( ) ( 1) ( 1) ( 1)x k Ax k Bu k h s k= − + − − − − ,  

 ( 1) ( 2) ( 2) ( 2)x k Ax k Bu k h s k− = − + − − − − ,  

�  

 ( 1) ( ) ( 2 ) ( )x k h Ax k h Bu k h s k h− + = − + − − − .    (6) 

Now, using (6), the locally optimal control (5) is 
represented as follows: 

 1 1( ) ( ) ( ( )Τ − Τ +− = − + −hu k h B CB D B C A x k h   

 
1 0

( ) ( ) )
h h

i i

i i
A Bu k h i A s k i z

= =

+ − − − − −� � .      (7) 

Note that the control (7), formed at the time ( ),k h−  
demands the knowledge ( )x k h− , ( )s k h− , past values of 
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controls ( )u k h i− − , and forecasts for a vector of demand at 
the moments k, 1k −  ,..., 1k h− + . 

III. INVENTORY CONTROL WITH INDIRECT OBSERVATIONS 

In this case, we introduce the model of demand 
 (  1)  ( )  ( ) ,+ = + +s k Rs k f q k  0(0)  ,s s=  (8) 

where R  is ( n n× )-matrix, f  is a vector, ( )q k  is a random 
vector. There is an indirect observation m1-vector of demand 
 ( ) ( ) ( ),w k Hs k k= + τ  (9) 

where H is ( 1m n× )-matrix, ( )kτ  is a random vector of 
errors, ( ), ( )q k kτ  are sequences of the Gaussian random 
vectors with such characteristics: 
 { ( )} 0, { ( )} 0,M q k M k= τ =   

 { ( ) ( )} ,δ=T
kjM q k q j Q { ( ) ( )} ,T

kjM k j Tτ τ = δ   

 { ( ) ( )} 0,TM q k jτ =  (10) 

where M{} is the mathematical expectation, kjδ  is Kronecker 
symbol. 

In this case, the control will be calculated according to (7) 
with making use of the filtering estimates ˆ ( )fs k h−  and the 
forecasts for demand ˆ ( )ps k i− , 1,..., 1i h= −  

 1 1( ) ( ) ( ( )hu k h B CB D B C A x k h∗ Τ − Τ +− = − + −   

 
1

1 0

ˆ ˆ( ) ( ) ( ) ),
h h

i h i
f p

i i
A Bu k h i A s k h A s k i z

−

= =

+ − − − − − − −� � (11) 

where ˆ ( )fs k h−  is determined with using the algorithm of the 
optimal Kalman filtering: 
 ˆ ˆ( ) ( 1) ( )[ ( )− = − − + + − −f f fs k h Rs k h f K k h w k h ,  

 ˆ( ( 1) ]fH Rs k h f− − − + , 0ˆ (0) ,fs s=  (12) 

 ( ) ( / 1)− = − − − T
fK k h P k h k h H   

 1( ( / 1) )−× − − − +THP k h k h H T , (13) 

 ( / 1) ( 1) TP k h k h RP k h R Q− − − = − − + , (14) 

( ) ( ( ) ) ( / 1),fP k h E K k h H P k h k h− = − − − − − 0(0)P P= . (15) 

In (15), E is the identity matrix of the appropriate dimension. 
The filter (12) uses the information at the (k – h)-th step. In 
(11), it is required to estimate the forecast demand in the 
greater steps, than (k – h). So, here it is necessary to use 
extrapolator, which will calculate the estimate of the forecast 
demand for on the 1-st step: 

 ˆ ˆ( 1) ( ) ( )( ( )− + = − + + − −p p ps k h Rs k h f K k h w k h   

 0ˆ ˆ( )), (0)p pHs k h s s− − = , (16) 

 1( ) ( ) ( ( ) ) ,T T
p p pK k h RP k h H HP k h H T −− = − − +  (17) 

( 1) ( ( ) ) ( )( ( ) )− + = − − − − − T
p p p pP k h R K k h H P k h R K k h H   

( ) ( ),T
p pQ K k h TK k h+ + − − 0(0)pP P= .              (18) 

The forecasts for next steps 2,..., 1j h= −  are determined by 
the formula 

 ˆ ˆ( ) ( 1) .p ps k h j Rs k h j f− + = − + − +  (19) 

IV. INVENTORY CONTROL FOR MODEL OF DEMAND WITH 
INCOMPLETE INFORMATION 

Here, we assume that the demand model with incomplete 
information contains unknown supplements: 

 ( 1) ( ) ( ) ( )s k R R s k f f q k+ = + Δ + + Δ + , 0(0)s s= , (20) 

where R  is the known matrix, f is the known vector, RΔ  and 
fΔ  are some addition unknown matrix and vector, which can 

be interpreted as errors in the model parameters (8). Model (8) 
may be interpreted as a dynamic model with an unknown 
input 

 ( 1) ( ) ( ) ( )s k Rs k f r k q k+ = + + + , 0(0)s s= , (21) 

where ( ) ( )r k Rs k f= Δ + Δ  is an unknown input. 
Obtain the filtering estimate on the base of the algorithm of 

the optimal Kalman filtering with unknown input: 

 ˆ ˆ ˆ( ) ( 1) ( 1)− = − − + + − −f fs k h Rs k h f r k h   

 + ˆ ˆ( )[ ( ) ( ( 1) ( 1))]f fK k h w k h H Rs k h f r k h− − − − − + + − − ,  

 0ˆ (0)fs s= , (22) 

 ( ) ( / 1) Τ− = − − −fK k h P k h k h H   

 1( ( / 1) )Τ −× − − − + ΤHP k h k h H , (23) 

 ( / 1) ( 1)P k h k h RP k h R QΤ− − − = − − + , (24) 

1
( ) ( ( ) ) ( / 1)n fP k h E K k h H P k h k h− = − − − − − , 

P(0) = P0,                                 (25) 

where ˆ( )r ⋅ is given bellow in (31).  

The extrapolator, which will estimate the forecast for the 
1-st step ˆ ( 1)ps k h− + , is defined as follows: 

 ˆ ˆ ˆ( 1) ( ) ( )− + = − + + −p ps k h Rs k h f r k h   
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 ˆ( )( ( ) ( ))p pK k h w k h Hs k h− − − − − , 0ˆ (0)ps s= , (26) 

 1( ) ( ) ( ( ) )p pr prK k h RP k h H HP k h TΤ Τ −− = − − Φ + , (27) 

 ( 1) ( ( ) ) ( )(− + = − − −pr p prP k h R K k h H P k h R   

( ) ) ( ) ( )p p pK k h H Q K k h TK k hΤ Τ− − + + − − , 0(0)prP P= . (28) 

According to (8), the estimates of forecasts ˆ ( )ps k h j− +  
for 2j ≥  are given as  

 ˆ ˆ ˆ( ) ( 1) ( 1)p ps k h j Rs k h j f r k h j− + = − + − + + − + − .  (29) 

Note that in (29) ˆ( 1)r k h j− + −  for 2j ≥  can be 
calculated using the analysis methods of time series [10–12]. 

The estimate r̂  is calculated by the least mean square 
method by criterion [13] 

 { }2 2

1

( ) ( 1)
k

V W
i

J i r i
=

= χ + −� , (30) 

where ( ) ( ) ( )i w i Hs iχ = − �  ( ˆ( ) ( 1)s i Rs i f= − +� ); V > 0, W � 0 
are weight matrices of the appropriate dimensions, 

2( ) ( ) ( )
V

i i V iΤχ = χ χ . Then, minimizing (30), we obtain 

 1ˆ ˆ( ) [ ] { ( 1) [ ( ) ]}.r k H VH W H V w k H Rs k fΤ − Τ= + + − +  (31) 

The estimates (22), (26), and (31) are used by synthesis of 
control (11) for system with incomplete information (1), (20). 

Also, the filtering problems for systems with unknown 
input can be solved with making use of the compensation 
approach [14] or non-parametric technique [15–17]. 

 

V. COST MINIMIZATION OF PRODUCTS STORAGE 
 
Let the cost of storage of products in the sliding time 

interval [k, k + T] is defined as the additional criterion 
 

 1
1

( , ) ( , ),
n k T

i i
i t k

J k z c x t z
+

= =

=��  (32) 

 
and the following restrictions hold:  
 

 ( ) ,i ix k X≥  [ , ],k k k T∀ ∈ +  1,..., ,i n=  (33) 

where ic  is a storage cost of product unit for the i-th 
nomenclature and in the unit time interval, iX  is a safety 
stock for the i-th nomenclature. In (32), the dependence 

( , )ix t z  on z is due control (11) for system with incomplete 
information (1), (20).  

Minimization of the criterion (32) under the restrictions 
(33) is carried over the vector z  by numerical method, and at 
every step the control ( )u k  is recalculated. The obtained value 
of the optimal vector z∗  provides the minimum cost in the 
interval [k, k + T]. Vector z∗  determines the volume of 
deliveries (control (11)), and then, by analogy, we solve the 
problem of minimizing the new criterion 1( 1, )J k z+  under the 
constraints (33) ( [ 1, 1]k k k T∀ ∈ + + + ). Such procedure is 
realized recursively. 

VI. SIMULATION RESULTS 
 
Consider the application of control algorithm (11), (22), 

(26), (31) to model warehouse (1), (20), 21 === mnm , and 
observations (9) with 

 
0.98 0

0 0.96
A � �

= � �
� �

, 
0 1

0.1 0.5
R � �

= � �
� �

, diag{0.1 0.05},Q =   

T diag{0.05 0.04}= , ( )2.7 2.3f Τ= ,  

0 diag{1 1}B H F C V P= = = = = = , 0D W= = . 
 

The addition unknown matrix and vector RΔ  and fΔ  we 
define as 
 

0 0.02
,

0.05 0.06
R � �

Δ = � �
� �

 1

0.1, if 0 10,
( ) 1.3, if 10 20,

1.2, if 20 30,

k
f k k

k

− ≤ <	

Δ = − ≤ <�

 ≤ ≤�

  

 

2

0.2, if 0 10,
( ) 0.8, if 10 20,

0.7, if 20 30.

k
f k k

k

≤ <	

Δ = − ≤ <�

 ≤ ≤�

 

 
Simulation is done for two vehicles under the following 

restrictions: 

 

*

* *

*

0, if  ( ) min ,

( ) ( ),  if  min ( ) max ,

max ,  if  ( ) max ,

i i

i i i i i

i i i

u k U
u k u k U u k U

U u k U

	 ≤



= ≤ ≤�

 ≥�

 (34) 

where max iU  is a vehicle capacity ( 1, 2i = ). The value of 
min iU  is usually defined by the condition  

 

 0.8 max min max .i i iU U U≤ ≤  (35) 
 

The condition (35) provides a high efficient using of the 
vehicles.  

The results of simulation are presented in Figs. 1–8. 
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Figure 1.  The volume of the stored products x1 for the first nomenclature, X1 

is their safety stock  

 
Figure 2.  The volume of the stored products x2 for the second nomenclature, 

X2 is their safety stock 

 
Figure 3.  Estimates of filtering and prediction for the first component of 

demand 

 
Figure 4.  Estimates of filtering and prediction for the second component of 

demand 

On Fig. 3 and Fig. 4 the components of demand ( is  is the 
demand of the i-th product, ,ˆ f is  is the estimate of filtration, 

,ˆp is  is the estimate of extrapolation, 1, 2i = ). On Fig. 5 and 
Fig. 6 the diagrams of product deliveries are given  

 
 

 
 

Figure 5.  Diagram of product deliveries for the first nomenclature 

 
 

 
 

Figure 6.  Diagram of product deliveries for the second nomenclature 

 
The unknown inputs r1 and their estimates are presented on 

Fig. 7 and Fig. 8 
 
 

 
Figure 7.  Unknown inputs r1 and their estimates 
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Figure 8.  Unknown inputs r2 and their estimates 

VII. CONCLUSION 
The algorithm of inventory control with delays and with 

incomplete information on model of demand is synthesized. 
The proposed method has been verified by simulations. The 
figures show that the algorithm inventory control can be used 
to calculate the supply of products in the conditions of 
incomplete information on the model of demand. 
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