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Ultrafast evolution and transient phases
of a prototype out-of-equilibrium Mott–Hubbard
material
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L. Perfetti5, V.L.R. Jacques1, D. Le Bolloc’h1, C. Laulhé6,7, S. Ravy1,6, J.-P. Rueff6,8, T.E. Glover9, M.P. Hertlein9,

Z. Hussain9, S. Song10, M. Chollet10, M. Fabrizio3 & M. Marsi1

The study of photoexcited strongly correlated materials is attracting growing interest since

their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour.

With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently

decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic

pathways. Here we show that the prototype Mott–Hubbard material V2O3 presents

a transient non-thermal phase developing immediately after ultrafast photoexcitation and

lasting few picoseconds. For both the insulating and the metallic phase, the formation of the

transient configuration is triggered by the excitation of electrons into the bonding a1g orbital,

and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent

phonon, in stark contrast with the softening observed upon heating. Our results show

the importance of selective electron–lattice interplay for the ultrafast control of material

parameters, and are relevant for the optical manipulation of strongly correlated systems.
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T
he Mott metal-to-insulator transition (MIT)1 is the perfect
example of how thermodynamic parameters can affect
the electronic structure of a material and its conducting

properties. At equilibrium, temperature, doping and pressure act
as driving forces for such transitions2, that invariably involve also
a lattice modification—either with a change of symmetry, like for
instance in VO2 (ref. 3) or with a lattice parameter jump like in
V2O3 (ref. 4). It is actually often unclear whether the lattice or the
electronic structure is the trigger for the MIT since at equilibrium
both change together. This question can be answered by driving
one far from equilibrium and observing the reaction of the other.
Thus, time-resolved pump–probe techniques5–11 can provide this
answer, as long as the response of the electrons and of the lattice
can be separately analysed.

We adopted a combined experimental and theoretical approach
to study the ultrafast evolution of the Mott–Hubbard prototype
(V1� xCrx)2O3 (ref. 12). The phase diagram of V2O3 contains three
phases: a paramagnetic metallic (PM) phase, a paramagnetic
insulating (PI) phase and an antiferromagnetic insulator phase. The
isostructural Mott transition is between the PI and the PM
phases13. This archetypal material gives the opportunity of
comparatively observing the ultrafast evolution of a Mott system
starting both from the insulating and the metallic phase, whereas
previous studies have generally focused only on the Mott insulator
as ground state5,6,8–10 or, for other systems, on the interplay
between spin density wave states14 and coherent optical lattice
oscillations15. In all our experiments, the energy of the pump pulses
(1.55 eV) corresponds to the transition from epg to a1g orbitals.
Thus, optical pumping directly increases the a1g population while
decreasing the epg one. Using time-resolved photoelectron
spectroscopy (trPES) we directly probe the electronic structure,
while time-resolved X-ray diffraction (trXRD) and time-resolved
reflectivity (TRR) give access to the lattice evolution16–19.

Here we show that with this multitechnique approach one can
unambiguously disentangle the contribution of electrons and
lattice to the non-equilibrium dynamics of the system, and we find
that in the PI phase the gap is instantaneously filled and a
non-thermal transient state that lasts 2 ps is created. In the PM
phase, the quasiparticle (QP) signal shows an immediate
appreciable spectral redistribution across EF, which also lasts
2 ps, once again not compatible with thermal heating. In both
phases we find that the lattice conspires to stabilize the non-
thermal transient electronic state. Ab initio density functional
theory with generalized gradient approximations (DFT-GGA)
results supplemented by simple Hartree–Fock (HF) calculations
suggest that the gap filling is driven by the non-equilibrium
population imbalance between the epg and a1g orbitals, which
effectively weakens the correlation strength.

Results
Time-resolved photoelectron spectroscopy. In vanadium sesqui-
oxide the octahedral crystal field leads to the d-orbital splitting
into a lower t2g and an upper esg . Since the octahedron has a
trigonal distortion, the t2g are split into a lower twofold degen-
erate epg orbital and an upper non-degenerate a1g (Fig. 1). The
hybridization between the two nearest vanadium atoms, which
are lined up along the c axis, causes a large splitting between
bonding a1g(s) and antibonding a1g(s*) states. In spite of that, the
a1g orbital remains mostly unoccupied in the PI phase, whereas
the epg orbitals are occupied by almost one electron each20,21.
V2O3 PI can thus be viewed as a half-filled two-band Mott
insulator stabilized by the correlation-enhanced trigonal field that
pushes above the Fermi energy (EF) the a1g orbitals21,22, whose
occupancy indeed jumps across the doping- or temperature-
driven Mott transition23 causing the opening of a gap24,25, while

is smoother across the pressure-driven one13,26. The nature and
indicative energy position of the relevant orbitals for each phase
can be found in Fig. 2c,f, where we show the calculated density of
states (DOS) from ref. 22. This inequivalent behaviour in
temperature versus pressure of the MIT, and the related deep
intertwining between strong correlations and lattice structure
suggest that a major issue in time-resolved experiments is to
distinguish a temperature increase from a transient non-thermal
phase, such as hidden phases27,28.

Before exploring the behaviour of the system after photo-
excitation, we present in Fig. 1 the photoemission responses of
the PI and PM phases at different temperatures, which give us
reference energy distribution curves (EDCs) for the system at
equilibrium. In the PM phase the weight near EF increases with
decreasing temperatures, which is consistent with the expected
behaviour of the QP25,29. In the PI phase, the temperature
increase fills the gap, which is consistent with the results from Mo
et al.30. The temperature difference between 200 and 220 K,
DT¼ 20 K, matches the estimated temperature rise brought by
the pump laser pulse for the fluence used in our pump–probe
photoemission experiments (see Supplementary Notes 1 and 2
and Supplementary Figs 1–3). Therefore, the difference curves
between high and low-temperature spectra at fixed doping may
serve to compare the non-equilibrium spectra with reference to
the thermal ones.

The non-equilibrium electron dynamics has been studied
with pump–probe photoemission. The differences between
positive and negative time delays are shown in Fig. 2a–c for
the PI phase. As representative of the time evolution, we
consider the timescan at � 0.1 eV below EF (Fig. 2a), whose
decay can be fitted with two exponentials. The details on the
fitting procedure can be found in the Supplementary Note 3 and
Supplementary Fig. 4. The first exponential with a 76±6 fs
decay time is limited by our time resolution, corresponds to the
hot electron relaxation after photoexcitation and clearly
indicates a strong electron-phonon coupling. We associate the
second longer timescale of 1.7±0.3 ps with the lifetime of a
transient state, as suggested by comparing the EDCs at 50 fs,
400 fs and 2 ps with the thermal differences at equilibrium
(black). At 50 fs delay (red curve) an increase in spectral weight
is clearly visible both below and above EF, an evidence of
creation of in-gap states. The EDC cannot be fitted with a
Fermi-Dirac distribution, since the system is still strongly out-
of-equilibrium. The 400 fs delay spectrum has instead no weight
above EF: the excess electrons have cooled down. Nevertheless,
the spectrum still deviates from the equilibrium one, in
particular at � 0.1 eV binding energy, indicating that, even
though the electrons have relaxed, the state is different from the
thermal configuration. A spectral difference equivalent to the
thermal state at equilibrium can instead be found after 2 ps,
when the transient state has fully relaxed.

Figure 2d–f reports the photoexcited behaviour of pure V2O3

(PM) at the same fluence of 1.8 mJ cm� 2. The timescan at 0.1 eV
above EF (Fig. 2d) shows a fast decay with a characteristic time of
70±6 fs (limited by the time resolution) and a slower one of
1.8±0.4 ps, similar to the time constants found in the PI phase.
Indeed, the EDC differences at 50 and 400 fs delays are
compatible with the hot electrons not being thermalized at 50 fs
and almost thermalized at 400 fs.

The observed spectral changes obtained around EF by keeping
the sample at T and photoexciting with a pump pulse cannot be
ascribed to heating, but rather to a genuine non-thermal transient
state31,32. In particular, both spectra at 50 and 400 fs (Fig. 2e)
suggest that there is more weight both below and above EF in the
photoexcited state at temperature T than in the equilibrium state
at TþDT. Therefore, the reduction of density of states around EF
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is not compatible with a thermally excited configuration. This
non-thermal state relaxes in 2 ps, similarly to the PI phase.

Time-resolved reflectivity. Further evidence in support of a
transient non-thermal phase comes from the lattice. In Fig. 3 we
present TRR measurements that provide information on the
transient response of the fully symmetric A1g optical phonon,
which corresponds to the breathing of one entity of V2O3 as
shown in Fig. 1. Consistently with previous studies33,34, we
observe an electronic excitation peak lasting about 200 fs, similar
to the trPES response observed in Fig. 2. The succeeding coherent
oscillations can be analysed by Fourier transform, which is
compared in Fig. 3b,c with the A1g mode measured with Raman
spectroscopy at equilibrium. Surprisingly, the mode displays a
blue-shift of up to 14% compared with the equilibrium frequency
for both PI and PM phases. Such a blue-shift, that is, a phonon
hardening, is certainly non-thermal in nature. Indeed a tempera-
ture increase causes instead softening and consequently a
red-shift35. Hardening of the A1g phonon actually corresponds
to a decrease of the average distance between the two closest
vanadium atoms, d(V1�V4)20. It should be underlined that this
coherent phonon hardening is present for both the PM and PI
phases, and that its decoherence time is about 2 ps: these features

are in full agreement with the behaviour observed for the
electronic degrees of freedom with trPES (Fig. 2). There is
consequently a strong evidence of a transient phase that does not
correspond to any equilibrium phase of the system, involving
both the electronic and lattice structure and present in both PM
and PI phases.

Time-resolved X-ray diffraction. In order to verify our
interpretation on the nature of this transient phonon blue-
shift, we performed a trXRD study on the same crystals used
for the trPES and TRR measurements. The effective fluence
was only slightly higher than in trPES because the probing
depth of XRD is much higher than PES: since the behaviour of

the trPES signal is linear versus fluence (see Supplementary
Fig. 5) the results among the different experimental methods can
be safely compared because we are in the same excitation
regime.

In Fig. 3d,e we present the time-dependent intensity of the
Bragg reflections (116) and (204) for the PI phase. The peak
positions do not change until 4 ps, when the lattice parameters
start being modified by the onset of the acoustic wave
(as discussed in Supplementary Note 4 and Supplementary
Fig. 6). Here we focus on the behaviour during the first few
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picoseconds, when the intensities of both Bragg reflections vary,
while the lattice parameters are constant. Supposing that the
symmetry of the crystal stays the same, the diffracted intensity
can be simulated by a change of the vanadium Wyckoff position,
ZV, and a Debye–Waller factor18, while keeping the V1—O1

distance constant. The change of the oxygen Wyckoff position
affect the peak intensity of less than 0.02% for the (116) and about
1% for the (024) peak. The distance of the nearest vanadium
atoms is given by the relation d(V1�V4)¼ (2ZV� 0.5)c, where c
is the lattice constant. The (116) and (024) structure factors
vary in opposite directions with ZV. We find that, d(V1�V4)
goes from 2.744 Å to a minimum value of 2.71 Å before 1 ps
(d(V1�V4)PM¼ 2.69 Å). The Debye–Waller factor is responsible
for only 0.1% of the intensity change before 4 ps. After 4 ps, due
to the lattice expansion, the changes in structure factor are no
longer sufficient to explain the experimental curves because the
peak position also starts changing (see Supplementary Fig. 6). The
trXRD response was not able to resolve the coherent lattice
oscillations, due to limits in the signal-to-noise levels attainable
during the measurements, but it does confirm that the blue-
shift in the coherent phonon frequency is related to a transient
reduction of the average distance d(V1�V4). By comparing the
temporal evolution of the different experimental results, the
TRPES measurements show that the electronic structure is
modified faster, and that the lattice deformation follows—which
is expected for a prototype Mott system. The resulting non-
thermal state is visibly more metallic in the PI phase, and seems
most likely more delocalized in the PM one as well. In both cases,
this state is stabilized by a transient lattice deformation that
shortens the distance between the two nearest vanadium atoms
and consequently increases the covalent bonding between the a1g

orbitals. The fact that trXRD gives a slightly longer relaxation
time with respect to trPES can be explained by the different
probing depths of the two techniques6,36.

Discussion
In V2O3 the es orbital lie around 3 eV above EF (ref 20,22; see
Supplementary Fig. 7). Therefore, the most favourable transition
with a 1.5 eV optical excitation is the transition from epg to a1g,
which is dipole-active. Figure 2c,f shows the orbital nature of the
bands near EF, which are affected by the pump pulse. We
considered a three-band Hubbard model at one-third filling for
the t2g orbitals with the tight-binding hopping parameters of
ref. 20, and analysed this model by means of the HF approxi-
mation22 using as control parameter, after a Legendre transform,
the occupancy difference between epg and a1g orbitals. In order to
describe an insulator within an independent particle scheme as
HF we had to allow for magnetism; our insulator is thus closer
to the antiferromagnetic insulator phase low-temperature
phase rather than to the high-temperature PI22. Within HF, the
total energy, shown in Fig. 4a, has two minima, a stable one at
na1g ’ 0:5 describes the insulator and a metastable minimum at
na1g ’ 0:625 that instead represents a metal. In Fig. 4b we plot
the density of states for three different values of n, two in the
insulating phase and one in the metal. We modelled the
experiment in the PI phase starting from a Slater determinant
that describes the HF insulator with a number of electrons
transferred from the valence band of mostly epg character to the
conduction one, with a1g character, and studied its time evolution
within time-dependent HF.

We find it is enough to transfer B0.13 electrons to the
conduction band to drive the system into the metastable metallic
phase, as pictorially drawn in Fig. 4a, which is consistent with the
experimental excitation that are 8% for a fluence of 8 mJ cm� 2 in
the trXRD and TRR experiments and 3.1% for the trPES. In other
words, the non-thermal phase appears in this theoretical scenario
as a metastable state that pre-exists in equilibrium and can be
nucleated within the stable insulator through the photoexcitation.
Since time-dependent HF does not account for dissipation, we
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cannot describe the subsequent break-up of the metastable metal
nuclei back into the stable insulator, which experimentally occurs
after few ps. The a1g orbitals being bonding, an overpopulation
would bring the nearest vanadium atoms together. A LDAþU
calculation with such an overpopulation of the a1g orbitals is able
to capture the observed phonon hardening (see Supplementary
Note 5 and Supplementary Figs 8–10).

With a combined experimental and theoretical approach, we
show that the ultrafast response of the prototype Mott–Hubbard
compound (V1� xCrx)2O3 is characterized by a non-thermal
transient phase in which the system remains trapped before
relaxing to the final thermal state. The formation of this non-
thermal phase is very fast for both PM and PI—faster than our
experimental time resolution—and it is eminently electronic in
nature, being driven by a transient overpopulation of a bonding
a1g orbital. A selective lattice deformation, strikingly highlighted
by the A1g phonon hardening, further stabilizes this non-thermal
transient phase, whose lifetime grows up to few ps: this
direct comparative analysis of the evolution of the metallic and
insulating phases is relevant for all the efforts aiming at
photoinducing phase transitions in correlated materials, including
possible technological applications like ultrafast switches. Our

results thus show that a selective electron–lattice coupling can
play an important role in out-of-equilibrium Mott systems, even
though the main actor remains the strong correlation, and appear
to be of very general validity, suggesting that similar non adiabatic
pathways can be found in other multiband Mott compounds
following excitation with ultrafast light pulses.

Methods
Samples. All the (V1� xCrx)2O3 samples used in our experiments are high-quality
single crystals from Purdue University. They were oriented using Laue and X-ray
diffraction, and cut along the (001) plane. For both the X-ray diffraction and the
TRR measurements the samples were mechanically polished in order to have a flat
surface. For all this specimens we could consistently observe nice coherent phonon
oscillations, in agreement with previous studies33, which indicates a good crystal
quality and rules out spurious effects in comparison with photoemission results.
For the photoemission experiments the samples were cleaved along the (001) plane,
where the QP photoelectron yield is most pronounced for the metallic phase25.
All time-resolved measurements were performed at 200 K.

Time-resolved photoelectron spectroscopy. trPES measurements were
performed on the FemtoARPES set-up37. A Ti:sapphire laser delivers 35 fs, 1.58 eV
pulses that are split in two: one part is used to generate the fourth harmonic for the
ultraviolet photoemission probe the rest serves for the pump pulses to excite the
material. The original repetition rate is 250 kHz but it was reduced by a factor four
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by using a chopper in order to avoid residual heat. The energy resolution is better
than 70 meV and the time resolution is better than 80 fs. The photoemission
spectra were taken around GZ25. The (V1� xCrx)2O3 samples were oriented to have
the [001] direction in the hexagonal notation perpendicular to the surface, and
along the analyser axis. The samples were cleaved in situ in order to obtain a clean
surface.

Time-resolved reflectivity. The TRR experiments were performed with a 1 kHz
Ti:sapphire laser, which delivers 45 fs, 1.55 eV pulses. A near-normal incidence
geometry was used and the pump and probe beams were cross-polarized. The
background was subtracted before performing the Fast Fourier transform (FFT).
The experiments were performed at 200 K.

Time-resolved X-ray diffraction. trXRD measurements were performed with sub-
ps time resolution at the x-ray pump probe (XPP) end-station of the Linac
coherent light source38. The incidence angle for the 8 keV X-ray beam was 0.6�,
while for the optical laser beam it was 12�: this geometry allowed us to match the
penetration depths and retain a temporal resolution of the order of 200 fs. The
estimated penetration depth for the X-rays is 120 nm, whereas it is 88 nm for the
optical laser. The sample was cooled down to 200 K with a cryo-jet. The different
Bragg reflections were observed using a two-dimensional detector.

The Bragg peak intensity was measured by integrating over a 20� 20 pixels
wide region centred around the peak. Due to monochromatization of the X-ray
beam, any energy jitter from the self amplified spontaneous emission (SASE)
process results in an X-ray intensity fluctuation on the sample. The flux and the
position of the incident photons were measured by intensity-position monitors. A
key point in analysing the data was choosing an intensity and position range, which
optimizes the signal-to-noise ratio: this was done by analysing the Bragg reflection
behaviour for negative time delays. The best results were obtained by cutting off the
20% lowest shots and the 5% highest, as well as filtering on the positions that
deviate more than one s.d. in x and y. The data were then corrected for the delay-
time jitter using the LCLS timing-tool. We chose a time bin of 50 fs, which gives an
average of B106 photons per delay.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request
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