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SUMMARY

To better understand how a stream of sensory data is
transformed into a percept, we examined neuronal
activity in vibrissal sensory cortex, vS1, together
with vibrissal motor cortex, vM1 (a frontal cortex
target of vS1), while rats compared the intensity of
two vibrations separated by an interstimulus delay.
Vibrations were ‘‘noisy,’’ constructed by stringing
together over time a sequence of velocity values
sampled from a normal distribution; each vibration’s
mean speed was proportional to the width of the
normal distribution. Durations of both stimulus 1
and stimulus 2 could vary from 100 to 600 ms. Psy-
chometric curves reveal that rats overestimated the
longer-duration stimulus—thus, perceived intensity
of a vibration grew over the course of hundreds of
milliseconds even while the sensory input remained,
on average, stationary. Human subjects demon-
strated the identical perceptual phenomenon, indi-
cating that the underlying mechanisms of temporal
integration generalize across species. The time
dependence of the percept allowed us to ask to
what extent neurons encoded the ongoing stimulus
stream versus the animal’s percept. We demonstrate
that vS1 firing correlatedwith the local features of the
vibration, whereas vM1 firing correlated with the
percept: the final vM1 population state varied, as
did the rat’s behavior, according to both stimulus
speed and stimulus duration. Moreover, vM1 popula-
tions appeared to participate in the trace of the
percept of stimulus 1 as the rat awaited stimulus 2.
In conclusion, the transformation of sensory data
into the percept appears to involve the integration
and storage of vS1 signals by vM1.

INTRODUCTION

In 1979, Whitfield [1] surveyed the first century of neuroscience

and pointed to clear evidence that, after ablation of sensory

and association regions of cerebral cortex, animals can still

perform many forms of sensory discrimination. The conserved
Current Biology 27, 1–
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capacities must reflect the ability to access and act upon sen-

sory information in the ascending, subcortical pathways. By

contrast, cortical ablation causes a permanent deficit whenever

the behavioral task requires the elemental sensory signals to be

integrated, distributed, and stored, so as to connect with the

traces of previous experience. In sum, intracortical processing

serves to transform a representation of mere physical character-

istics into the perception of things that are ‘‘out there’’ ([1], p. 146)

in the world. In the intervening years, investigators have ex-

ploited ever-improving techniques to reinforce the notion that in-

tracortical processing is critical to perceptual functions [2]. For

instance, when rats [3] or monkeys [4] were required to report

the presence of a tactile stimulus around the detection threshold,

sensory cortical activity varied little across trials, whereas the

triggering of all-or-none activity cascades in frontal cortex corre-

lated with awareness of the stimulus [5].

In the present study, we examined the mechanisms and func-

tions of intracortical processing by employing a perceptual task

where the subject’s choice depended not on stimulus detection

but on the statistical content of the stimulus. We trained rats to

compare the intensities of pairs of ‘‘noisy’’ (stochastic) vibrations

presented to the whiskers. Varying the durations of the two stim-

uli, we found that a longer-duration vibration was perceived as

more intense. The divergence between the magnitude of the

stream of incoming sensory data (which remained, on average,

stationary) and the rat’s percept of stimulus intensity (which

grew with stimulus duration) allowed us to explore the transfor-

mation of neuronal representations. In vibrissal primary somato-

sensory cortex (vS1)—also known as barrel cortex, the entry

stage of whisker signals to cerebral cortex—neurons encoded

the instantaneous speed of the whisker vibration; at this stage,

we found a ‘‘local’’ representation of the stimulus. In primary

vibrissal motor cortex (vM1)—the main frontal cortex target of

vS1—neurons encoded the nonlinear temporal integral of stim-

ulus speed. This second, ‘‘global’’ representation matched the

rat’s percept.

RESULTS

Perceived Intensity of a Vibration Depends on Duration
To gain insight into the neuronal processing that transforms a

stream of sensory events into a percept, we measured rats’

judgements of tactile vibrations delivered to their whiskers (Fig-

ure 1A, left). To assess whether the perceptual phenomena

generalize to humans, we carried out the same studies with
12, June 5, 2017 ª 2017 The Authors. Published by Elsevier Ltd. 1
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Figure 1. Delayed Comparison Task: Stimuli and Performance

(A) The rat held the tip of its snout in the nose poke with whiskers resting on themotor-actuated plate. The human subject rested his/her arm on a cushion with left

index fingertip in contact with the motor-actuated rod.

(B) Example easy (upper) and difficult (lower) stimulus pairs. Subjects compared stimulus 1 (mean speed sp1 and duration T1) to stimulus 2 (sp2 and T2), with

intervening interstimulus delay. Vibrations were generated by stringing together velocity values sampled from a Gaussian distribution. On the right side of the

panel, speed distributions (the folded, half-Gaussian of velocity) are illustrated for stimulus 1 (dashed) and stimulus 2 (solid). Horizontal lines indicate sp1 (dashed)

and sp2 (solid). In these examples, the easy and difficult trials differ only in stimulus 2.

(C) Stimulus set for rats and humans. Dashed diagonal line is decision boundary, where sp1 = sp2. The sp1, sp2 pair for each trial was drawn from one

box; arrows indicate the stimulus pairs from which the difficult and easy stimuli of (B) were drawn. Inside each box is the percent correct for that stimulus

pair, averaged across all subjects. For pairs distant from the diagonal, accuracy was good except for (25, 47) in rats and (14, 21) in humans, where sp1

assumed its lowest value, most likely explained by ‘‘contraction bias’’ [6–8]. Green rectangles enclose the stimulus set used to generate psychometric

curves.

(D) Average psychometric curves of rats and humans (black) and the ideal observer (gray). Error bars represent SEM across subjects.
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stimuli delivered to the fingertip (Figure 1A, right). Subjects were

required to compare the intensities of two vibrations—stimulus 1

of duration T1 and stimulus 2 of duration T2—separated by a

delay of 2 s (Figure 1B) [6]. Vibrations were constructed by string-

ing together over time a sequence of velocity values, spt,

sampled from a Gaussian distribution. We consider the stimuli

as speed rather than velocity, so the distribution took the form

of a folded half-Gaussian (right side of Figure 1B). A single vibra-

tion was thus defined by its nominal mean speed, denoted sp

(equivalent to the SD of the Gaussian multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffið2=pÞp

),

and its actual, observed mean speed (sum of spt over entire
2 Current Biology 27, 1–12, June 5, 2017
stimulus, divided by T). Because the stimulus was stochastic,

judgement of overall intensity required some form of integration

over time.

The subject’s response was logged as correct according to

the relative values of nominal mean speed: sp2 > sp1 or else

sp1 > sp2. For a given value of sp1, a trial could be easy or diffi-

cult according to the value of sp2 (Figure 1B, upper and lower

examples). Moreover, across trials, different combinations of

sp1 and sp2 were presented such that neither stimulus 1 nor

stimulus 2, taken alone, contained sufficient information to

solve the task; the subject was required to execute a direct
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Figure 2. Experimental Evidence for Temporal Integration

(A) Psychometric curves averaged across 11 rats (left) and 6 humans (right) in the balanced condition (T1 = T2). Colors indicate stimulus duration: 100 ms (dark

blue); 200 ms (blue); 400 ms (teal); and 600 ms (cyan). Error bars in this and all panels indicate SD across single subjects.

(B) Left: changes in performance (percent correct and maximum psychometric curve slope) for 200, 400, and 600 ms duration stimulus pairs in relation to the

average value across all durations. Average among rats represented by circles, humans by squares. Colors indicate stimulus duration using the key of (A). Right:

change in percent of trials judged stimulus 2 > stimulus 1 and change in the inflection point.

(C) Psychometric curves averaged across 11 rats (left) and 10 humans (right) in the unbalanced condition, where T1 = 400 ms and T2 ranged between 200 (blue),

400 (teal), and 600 (cyan) ms. Curves are shifted rightward for shorter T2 and leftward for longer T2.

(D) The same as (B) but for unbalanced condition where T1 was fixed to 400 ms.

(E) Psychometric curves averaged across ten rats (left) and three humans (right) in the unbalanced condition, where T2 = 400 ms and T1 ranged between 200

(blue), 400 (teal), and 600 (cyan) ms. Curves are shifted leftward for shorter T1 and rightward for longer T1.

(F) The same as (B) but for unbalanced condition where T2 was fixed to 400 ms.
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comparison on every trial [6, 9]. In Figure 1C, the coordinates of

each box represent joint values of sp1 and sp2. Here, T1 and T2

both were 400 ms. The percent correct averaged across all ses-

sions for 16 rats (left panel) and 12 humans (right panel) is given

inside each box.

Trial difficulty—the difference between stimulus 1 and 2—was

defined as the normalized speed difference (NSD), (sp2 � sp1) /

(sp2 + sp1). NSD ranged from �0.3 to 0.3 for rats and from �0.2

to 0.2 for humans. As a measure of perceptual acuity, for the

closely spaced stimulus pairs (inside the green rectangles, Fig-

ure 1C) we computed the percent of trials in which the subject

judged stimulus 2 > stimulus 1 as a function of NSD and fit the

data with a logistic function to generate psychometric curves.

The average curves across all rats and humans are given in

Figure 1D (black curves). These may be compared to the perfor-

mance of an imaginary ‘‘ideal observer’’ (gray curve) who mea-
sures actual mean speed with no error. The ideal curve is not a

perfect step function because vibrations were built stochasti-

cally; the nominal mean speed of a vibration, sp, and the actual,

observed mean speed (sum of spt over entire stimulus, divided

by T), could disagree, causing even the ideal observer to make

errors.

We manipulated stimulus durations to determine whether

perceived intensity was constant or time dependent. In the first

experiment, stimulus 1 and stimulus 2 were of equal duration

within a trial but duration varied randomly across trials (T1 =

T2; balanced condition). Figure 2A shows the average psycho-

metric curves of rats (left panel) with T1 and T2 set to 100, 200,

400, or 600 ms (progressively brighter shades of blue; same

color code used in all panels) and humans (right panel) under

the same conditions. Rats’ overall performance was inferior to

that of humans, but both species yielded markedly steeper
Current Biology 27, 1–12, June 5, 2017 3
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psychometric curves as durations of the stimulus pair increased

from 100/100 up to 600/600 ms.

To quantify the effect of duration on acuity, for each subject,

we calculated the percent correct across the full psychometric

curve aswell as the psychometric curvemaximum slope (a proxy

for perceptual acuity). Then, we computed the change in both

values for stimuli of 200, 400, and 600 ms duration in relation

to the average values across all durations. The left panel in Fig-

ure 2B illustrates the average values across subjects. Both in

rats and in humans, greater stimulus duration led to greater slope

and accuracy. Besides undergoing a change in slope, psycho-

metric curves may also shift laterally. To test for this, for each

subject, we projected the psychometric curve inflection point

down to its corresponding value of NSD. We also computed

the percent of trials across the entire psychometric curve for

which the subject judged stimulus 2 > stimulus 1, a second mea-

sure of the left/right shift, for if the percentage is decreased/

increased then that curve is most likely shifted to the right/left,

respectively. Then, we computed the change in both measures

in the T1/T2 = 200/200 ms and 600/600 ms conditions, with

respect to the 400/400ms condition. The right panel in Figure 2B

illustrates the average values across subjects. The plot reveals

no systematic duration-dependent lateral shift.

We also conducted sessions where T1 was of 400 ms dura-

tion and T2 could be (randomly across trials) either 200, 400,

or 600 ms. With ‘‘unbalanced’’ durations, rats (Figure 2C,

left panel) exhibited clear shifts in the psychometric curves.

The rightward shift of the T1/T2 = 400/200 ms curve means

that truncating T2 decreased the likelihood of the choice stim-

ulus 2 > stimulus 1; by the same token, the leftward shift of the

400/600 ms curve means that lengthening T2 increased the

likelihood of the choice stimulus 2 > stimulus 1. The results

for humans (Figure 2C, right panel) reveal similar effects. In

sum, longer-duration stimuli were judged as more intense,

shorter-duration stimuli as less intense. As before, we quanti-

fied the effect of duration on acuity for all subjects (Figure 2D,

left panel). Neither in rats nor in humans did variation in T2

lead to systematic changes in slope or accuracy. By contrast,

variation in T2 did lead to systematic shifts in psychometric

curve position (Figure 2D, right panel).

We conducted sessions where T2was of 400 ms duration and

T1 could be (randomly across trials) of either 200, 400, or 600 ms

duration. The effects of varying T1 (Figure 2E) were symmetric

with those of varying T2 (Figure 2C), meaning that the effect of

unbalanced durations on perception did not depend on stimulus

order and was thus a perceptual bias rather than a choice bias.

Again, we quantified the effect of duration on acuity for all sub-

jects (Figure 2F, left panel) and found that variation in T1 did

not lead to systematic changes in slope or accuracy. Variation

in T1 led to systematic shifts in psychometric curve position (Fig-

ure 2F, right panel).

In summary, rats and humans can accumulate events from a

stochastic tactile vibration to form an increasingly reliable esti-

mate of magnitude as stimulus duration grows, provided the

stimuli to be compared are of equal duration. In the case of

unequal stimulus durations, the briefer stimulus is felt as less

intense and the longer stimulus as more intense. The shift in

perceived intensity in relation to duration will be the main focus

of the study.
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Perceived Intensity Is Accounted for by Nonlinear
Summation of Instantaneous Speed
What form of integration leads to the perceptual judgements re-

ported above? Because earlier work argued for a greater contri-

bution of the early response in primary somatosensory cortex

[10], we hypothesize that spt values are weighted by a function

that decays exponentially after stimulus onset, a model we refer

to as ‘‘summation by exponentially weighted primacy’’ (SEWP).

SEWP is illustrated schematically in Figure 3A. The instanta-

neous speed of stimulus 1 at time t, spt (upper panel, black

traces), is multiplied by the weighting function e�t=t (middle

panel), where t is an individual subject’s intrinsic integration

time constant. The final perceived intensity of stimulus 1 (lower

panel) is proportional to the sum of the weighted values of speed

from stimulus onset until vibration termination at time T. The

perceived intensity of stimulus 2 is derived in the same manner

and is compared to the memory of stimulus 1 (dashed gray

line). In this example, sp2 is slightly greater than sp1; T2 is of

600 ms (cyan) or else 200 ms (blue). Because sp1 and sp2 are

close, the subject’s choice would be affected by the relative

durations, T1 and T2.

TheSEWPmodel canbe implemented for individual rat andhu-

man subjects by obtaining the following five parameters: the

exponential decay constant (t), overall acuity ð1=nÞ, the bias (m),

and the upper and lower asymptotes.We fit the data by nonlinear

least squares (see STAR Methods). Half of all trials served as

the training dataset to estimate these parameters; then, for the

other half, the model predicted the percent judged stimulus 2 >

stimulus 1 for every stimulus difference (NSD) according to T1

and T2. The train/test cycle was repeated 200 times. Parameter

values for all rats and humans are given in Figure S1.

Figure 3B shows psychometric curves fit to the model predic-

tion (solid lines) and experimental data (dashed lines) for a single

rat (left panel) and human (right panel) for different stimulus dura-

tions in the balanced condition. The close fit between the model

and experiment attests to the model’s accuracy in predicting the

improved acuity with increased stimulus duration. Comparison

between model and experimental data for all subjects is given

in Figure S2A.

In the balanced condition, we collected data from six rats and

four humans with stimulus duration varying from 100 to 600 ms.

Figure 3C shows the experimental results (points) and model

prediction (curves) plotted simply as percent correct. Absolute

value of NSD ranged from 0.1 (dark red) to 0.2 for humans and

0.3 for rats (both yellow). Model predictions closely fit the exper-

imental data.

Next, we consider the unbalanced conditions. Following the

same format as Figure 3B, Figure 3D shows the psychometric

curves fit to experimental data and the model prediction for a

rat (left panel) and a human (right panel) with T1 fixed at

400 ms and T2 of variable duration. Model and experimental

data both indicate a duration-dependent bias—greater T2 led

to an increase in the likelihood of the choice stimulus 2 > stim-

ulus 1. Themodel also accurately predicted the unbalanced con-

dition in which T2 was fixed at 400 ms and T1 was of variable

duration (Figure 3E). Results from all subjects with variable T2

and variable T1 are shown in Figures S2B and S2C, respectively.

The SEWP model posits that the weighting function acting on

spt is maximum at stimulus onset and then diminishes over time.
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Figure 3. Model of Summation by Exponentially Weighted Primacy:
Predictions and Tests

(A) Upper plot: two example trials to schematically illustrate the model. In both

cases, T1 = 400 ms (black trace), but T2 = 600 (cyan) or 200 ms (blue). Middle

plot: SEWP posits the existence of aweighting function that acts from t = 0 until

T (solid black trace for stimulus 1 and cyan and blue traces for stimulus 2).

Lower plot: summation from t = 0 until T of the product of instantaneous speed,

spt, and the weighting function yields the final perceived intensity of the

stimulus. The perceived intensity of stimulus 2 is derived in the same manner

and is compared to the memory of stimulus 1 (dashed gray line).

(B) Dashed lines show the psychometric curve fit (as Figure 2) on experimental

data of one rat and one human. For the same subjects, the psychometric curve

fit on output of the SEWP model, averaged over 200 train/test cycles, is given

by the solid lines. Stimulus durations are indicated by the color key.

(C) Investigation of the accuracy of the SEWPmodel in predicting experimental

data. A set of rats and humans was tested using a larger set of stimulus

durations. Predictions of the SEWP model closely fit the observed experi-

mental data.
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However, a ‘‘recency’’ function, anchored to stimulus offset (as

opposed to onset), would give on average the same quantity of

weighted, summated speed. We carried out experiments in

rats and humans to test which type of temporal integration is

at play, and the observed psychometric curves (Figure S3)match

the predictions of the primacy model, consistent with SEWP as

the form of temporal integration in both species.

Cortical Encoding of the Whisker Vibration
In the remainder of this article, we examine neuronal activity in

behaving rats from two regions (Figure S4)—vS1, the main

entryway of sensory signals to the cerebral cortex [11, 12], and

vM1, the target of projections from sensory cortical regions

and a source of dense projections to major motor output sys-

tems [13, 14]. To elucidate the overall profile of firing, Figures

4A and 4B show the peristimulus time histograms (PSTHs) con-

structed from the pooled activity of single and multiunits from

vS1 and vM1, respectively. The plots show trials with duration

of stimulus 1 (green traces) set to 600 ms and stimulus 2 (red

traces) set to 400 ms; trials with different values of sp were

merged. Firing rate in vS1 was characterized by a sharp peak

at stimulus onset, followed by a steady-state level 300–600 ms

after stimulus onset, and a reduction during the interstimulus

delay. vM1 also showed increased firing during stimulus presen-

tation; unlike vS1, activity was maintained across the 600-ms in-

terval between the end of stimulus 2 and the go cue.

Both cortical regions encoded the vibration mean speed. The

PSTH of a vS1 multiunit cluster in response to stimulus 1 (Fig-

ure 4C, left) reveals a higher firing rate for higher sp (dark red

to yellow), with Pearson correlation coefficient r (computed be-

tween sp and firing rate from stimulus onset to offset) of 0.62

(p < 0.01; t test). We refer to a significant variation in overall firing

rate in relation to sp as ‘‘global coding’’. The distribution of cor-

relation coefficients among vS1 single and multiunits (Figure 4C,

right) demonstrates a high proportion of units characterized by

‘‘positive’’ global coding (r > 0). Responses to stimulus 1 are

above the abscissa; significant correlations (p < 0.01; t test)

are green (94 out of 208 units; 45%). Responses to stimulus 2

are below the abscissa; significant correlations are red (114

out of 208 units; 55%). Less than 3% of units showed significant

‘‘negative’’ coding (decreasing firing rate with increasing sp;

r < 0; p < 0.01; t test).

The PSTH of a vM1 multiunit cluster in response to stimulus 2

(Figure 4D, left) also reveals a higher firing rate for higher sp

(r = 0.75; p < 0.01; t test). The distribution of correlation coef-

ficients among vM1 single and multiunits (Figure 4D, right)

demonstrates a high proportion of units characterized by pos-

itive global coding (r > 0). As before, responses to stimulus 1

are above the abscissa; significant correlations are green (82

out of 348 units; 24%). Responses to stimulus 2 are below

the abscissa; significant correlations are red (94 out of

348 units; 27%). Less than 6% of units showed significant
(D) Same analysis as in (B) but for the unbalanced condition with T1 fixed at

400 ms and T2 of variable duration.

(E) Same analysis, with T2 fixed at 400 ms and T1 of variable duration.

See Figure S1 for SEWP model parameters, Figure S2 for accuracy of the

SEWPmodel, and Figure S3 for the experiments in rats and humans to test the

type of temporal integration.

Current Biology 27, 1–12, June 5, 2017 5
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Figure 4. Neuronal Coding of Vibration Speed

(A) Averaged peristimulus time histogram (PSTH) of 139 single and multiunits from vS1. The PSTH was generated with 1-ms bins and then convolved with a

Gaussian kernel (s = 30 ms).

(B) PSTH generated from 319 vM1 single and multiunits.

(C) Left: PSTH depicting a vS1 multiunit response to stimulus 1 with trials separated according to sp1 (color bar). Only trials with T1 set to 400 ms are illustrated.

Right: histogram of Pearson correlation coefficients between firing rate and vibration sp among all vS1 single and multiunits.

(D) Same as (C) but for vM1. In the left panel, an example response to stimulus 2 is shown.

See Figure S5 for comparison between stimulus 1 and stimulus 2 in vS1 and vM1
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negative coding. Individual neurons in vS1 and vM1 showed

consistent strength of global coding for stimulus 1 and stim-

ulus 2 (Figure S5).

Whereas neurons in both cortical regions encoded vibration

speed, they differed in their integration timescales. The high de-

gree of temporal precision characteristic of many vS1 neurons is

evident in the upper raster plot of Figure 5A, which illustrates a

single unit response to a vibration waveform presented in

many different trials (‘‘frozen noise’’). The temporal alignment

of spikes across trials reflects heightened firing probability in

response to specific local stimulus features. The lower raster

plot shows the same unit’s response for a different frozen noise

waveform: with rearranged vibration waveform, the temporal

configuration of the spike train was likewise rearranged. The

lack of temporal precision characteristic of most vM1 single units

is evident in Figure 5B. Presented with the same two instances of

frozen noise, no temporal patterns emerged.

We quantified the strength of local coding by measuring the

cross-correlation between the spike train, convolved with a

Gaussian kernel, and the spt vibration waveform (Figure S6;

STAR Methods). A neuron that fired reliably after the occurrence

of specific vibration features, like that of Figure 5A, will show a

marked peak in the cross-correlogram (Figure 5C, green trace);
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as a control, we computed the cross-correlation with temporally

reversed stimuli (Figure 5C, gray trace) where, by definition, local

coding must be absent. Whereas the vS1 unit showed a large

forward versus reversed cross-correlation difference, the vM1

unit showed no such difference (Figure 5D, green versus gray

traces). We take cross-correlation difference as an index for

the magnitude of local coding. In Figure 5E, the distribution of

significant local coding index values for vS1 (above the abscissa)

and vM1 (below the abscissa) is plotted. In vS1, 99 out of 208

(48%) showed significant local coding, and the index values

were large. In vM1, 14 out of 336 (4%) showed significant local

coding, and the index values were smaller.

With what temporal precision were vS1 and vM1 spike trains

correlated with the vibration? Figure 5F shows, across the full

dataset, the distribution of widths of the Gaussian kernel that

maximized the forward versus reversed cross-correlation differ-

ence. Only instances where the forward versus reversed differ-

ence was significant (p < 0.01; permutation test) are illustrated.

Whereas vS1 spike trains (represented by bars above the

abscissa) tended to be correlated with the stimulus at a temporal

precision of better than 10 ms, most vM1 spike trains (repre-

sented by bars below the abscissa) were correlated at a preci-

sion of 10–50 ms.
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Figure 5. Comparison of Local Coding in vS1 and vM1

(A) A fixed stimulus waveform (‘‘frozen noise,’’ upper trace) was presented in

40 trials, with different sp intermixed. The raster plot illustrates the spikes of a

vS1 single unit. Below, a second example of frozen noise and the corre-

sponding raster plot for the same vS1 single unit is shown.

(B) Same as (A) but for a vM1 single unit.

(C) Cross-correlogram (green) between the spike trains of the vS1 single unit

(convolved with a Gaussian kernel of SD 2 ms) and the vibration waveform.

Gray trace shows the cross-correlogram between the spike trains of the same

vS1 single unit and the temporally reversed stimulus.

(D) Same as (C) for the vM1 single unit.

(E) Distribution of local coding index values—the difference between the peak

of the spike train cross-correlogram with the actual and the reversed stimulus

waveform. Open bars represent vS1 neurons, and filled bars represent vM1

neurons. Only neurons with significant index (p < 0.01; permutation test;

bootstrapped 200 times) are illustrated.

(F) Distribution of Gaussian kernel widths that maximize the forward/reversed

cross-correlation difference. Open bars represent vS1 neurons, and filled bars

represent vM1 neurons.

See Figure S6 for detail explanation of cross-correlation analysis used.
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vM1, but Not vS1, Exhibits Temporal Integration
Matching the Percept
The behavioral studies (Figures 1, 2, and 3) revealed that rats and

humans have a robust capacity to judge stimulus intensity, but

the intensity percept is modulated by stimulus duration. There-

fore, the neuronal substrate for perception must entail not only

a representation of sp but also of duration, T. In this section,

we compare the vS1 and vM1 representations of both stimulus

properties. First, we fit neuronal activity by a linear model in order

to quantify the relations between firing rate and the following

variables: sp1, sp2, and T1. The linear model (STAR Methods)

reveals the extent to which variation in neuronal firing could be

accounted for by variation in a selected variable. For this anal-

ysis, the dataset included trials with T1 of 200 or 600 ms; T2

was 400 ms. For sliding 300-ms time windows, we computed

the percent of neurons (single and multiunits) whose firing

encoded each variable of interest; Figures 6A and 6B show the

results from vS1 and vM1. To allow depiction of 200- and

600-ms trials together, we split stimulus 1 into two sections:

the left section is aligned to stimulus onset (denoted 0 ms) and

the right section is aligned to stimulus offset (again denoted

0 ms). The percent of neurons expected to code stimulus fea-

tures by chance (see STAR Methods) is subtracted so that

even small values of percent are meaningful.

In vS1, 30%–40% of neurons significantly (p < 0.01; permuta-

tion test) encoded sp1 and sp2 during presentation of stimulus 1

and 2. A small number of vS1 neurons (under 10%) continued to

encode sp1 up to 800 ms after its termination. During the inter-

stimulus delay, neurons in vS1 did not encode the duration of

the just-completed stimulus, T1. Coding of the difference

between sp1 and sp2 is shown by the black trace. Stimulus-dif-

ference-coding neurons, which may have a role in comparing

stimulus 1 and stimulus 2 in order to reach a decision [4], are

identified by virtue of significantly encoding both sp1 and

sp2 but with opposite sign. A very small set of vS1 neurons

showed this property, perhaps reflecting frontal cortex feedback

to vS1 [15].

In vM1, about 30% of neurons encoded sp1 during presenta-

tion of stimulus 1 and about 20% encoded sp2 during presenta-

tion of stimulus 2. In contrast to vS1, many neurons continued to

show sp1-dependent firing throughout the interstimulus interval,

signifying the participation of vM1 in working memory. Also, in

contrast to vS1, T1 coding remained robust during the interstim-

ulus delay. Finally, a much larger set of vM1 neurons encoded

the difference between sp1 and sp2 (black trace) and thus may

participate in decision making.

A correlated response variation between stimulus speed and

stimulus duration—that is, increased firing rate both for

increased sp and also for increased T—could contribute to a

longer stimulus being perceived as stronger. Such correlated

speed/duration effects were not common in vS1. An example

neuron from vS1 is given in Figure 7A. Neuronal firing in a

300-ms window centered on the end of stimulus 1 is sorted ac-

cording to T1. Higher values of sp1 evoked greater firing rate, but

stimulus 1 of 600 ms duration (cyan) evoked a lower firing rate

than did stimulus 1 of 200 ms (blue). This might be an outcome

of adaptation, whereby neurons’ firing rates decrease as vibra-

tions are extended in time [16]. Of the 41 neurons in vS1 that ex-

hibited a statistically significant dependence of firing rate on sp
Current Biology 27, 1–12, June 5, 2017 7
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(B) The same as (A) for vM1 single units.
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as well as on T1, only 19% exhibited increased firing rate for the

600- versus the 200-ms stimulus (Figure 7A, pie chart inset).

A vM1 single unit expressing the correlated speed/duration ef-

fect is illustrated in Figure 7B. To uncover the effect of stimulus

duration, we sorted neuronal firing in a window 400–700ms after

stimulus offset according to T1 (the same effect was seen in

other windows). Higher values of sp1 evoked greater firing

rate, but, in contrast to the vS1 neuron, stimulus 1 of 600 ms

duration (cyan) evoked a greater firing rate than did stimulus 1

of 200 ms (blue). In general, it is this dependence of firing rate

on duration that leads to a significant value of the T1 term in

the linear model of Figure 6B. Following from this neuron’s tem-

poral integration, a firing rate of 10 spikes/s could signify the

occurrence of a sp1 of 80 mm/s for 600 ms or else 100 mm/s

for 200 ms. Of the 38 neurons in vM1 that exhibited a statistically

significant dependence of firing rate on sp1 as well as on T1,

79% exhibited increased firing rate for the 600- versus the

200-ms stimulus (Figure 7B, pie chart inset).

Having found vM1 single-neuron properties consistent with

temporal integration, we extended the analysis to the population

level. The data in Figure 7C were derived from 50 single units re-

corded in four rats. We represented population dynamics as

high-dimensional trajectories in neuronal activity space [17]

and identified the angle that maximizes variation in projection

length as a function of sp1; projection length is then an estimate

of population mean speed signal. Because the analysis method

does not consider within-trial correlations among neurons, it was

possible to pool data across 16 sessions. The left plot shows

projection length, with trials grouped according to sp1 (dark

red to yellow). T1 was either 200 or 600 ms; to combine all trials,

the plot is aligned (set to 0ms) at stimulus onset on the left and at

stimulus offset on the right. The angle was optimized for each

sliding 300-mswindow. Themain finding is that projection length

increased as sp1 increased, and this population code was re-

tained across the interstimulus delay.

To discern the role of temporal integration in the same cortical

population, the right plot of Figure 7C illustrates projection length

measured 100–400 ms after stimulus offset as a function of sp1

but now with 200- and 600-ms trials separated (blue and cyan,

respectively). For both durations, projection length still increased

with sp1 but was greater after the 600-ms stimulus than after the

200-ms stimulus. Thus, if the neuronal population were decoded

according to projection length, a stimulus of a given spwould be
8 Current Biology 27, 1–12, June 5, 2017
perceived as more intense as duration

increased. Figure 7D plots the difference

in projection length between 200- and

600-ms stimuli for vM1 (green) and vS1
(gray; 52 units in five sessions) populations, over time. Stimulus

offset is aligned to 0 ms. A projection difference of 0 is denoted

by the red dashed line. In both vM1 and vS1, 600-ms projections

were smaller than 200-ms projections in the final window of the

stimulus presentation period, reflecting adaptation. During the

interstimulus interval, the vS1 population showed equal projec-

tion length for 200- and 600-ms stimuli (projection difference =

0), indicating that the preceding T1 no longer affected the state

of the population. By contrast, the vM1 population (even more

so than vM1 single units; Figure 6B) showed greater projection

length after 600-ms stimuli andmaintained this difference across

the entire interstimulus delay, providing a mechanistic account

for the duration-dependent behavioral bias illustrated in Figures

2C–2F.

Figure 7E summarizes the relation of vS1 to the intensity

percept. The points with error bars (identical across the four

plots) indicate the choices made by two rats across five ses-

sions. T2 was of either 200- or 600-ms (blue and cyan), whereas

T1 was fixed at 400 ms. The activity of a population of 115 vS1

neurons is read out according to four posited integration

schemes, each scheme providing predicted choices for the

same set of trials (see STAR Methods). Predicted choices, in

the form of neurometric curves, are shown by the solid lines.

The first candidate readout mechanism, mean firing rate,

applies a uniform weighting function to vS1 firing. If rats’ choices

are fit, temporal integration might already take place within vS1.

Whereas the population neurometric curves replicate the rats’

capacity to judge the relative values of sp1 and sp2, the curves

do not reflect their tendency to judge the longer stimulus 2 as

more intense.

The next candidate readout mechanism, spike count, applies

a uniform weighting function to vS1 firing but summates the

spikes without division by duration. If rats’ choices are fit, then

the primacy of the SEWP model might simply arise from the

greater number of spikes at stimulus onset. But whereas the neu-

rometric curves do predict the rats’ judgement of the longer-

lasting stimulus 2 as more intense (because more spikes

accumulate over 600 ms), they fail to replicate the comparison

between sp1 and sp2.

The final two candidate readout mechanisms accumulate the

spikes emitted by vS1 neurons after applying exponential

weighting functions, either giving most weight to the response

adjacent to the stimulus offset (labeled ‘‘recency spike count’’)
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or adjacent to stimulus onset (‘‘primacy spike count’’). The neu-

rometric curves based on recency capture both the rats’ ten-

dency to judge the longer-lasting stimulus 2 as more intense

as well as their capacity to compare the relative values of sp1

and sp2. The primacy-based neurometric functions even more

closely fit the rats’ choices, capturing the duration dependence

while conserving their sp dependence. These analyses, taken

together, suggest that the behavioral phenomenon of SEWP

does not originate in vS1, for the firing of this cortical region

must be further weighted by primacy in order to match the

observed behavior.

If vM1 contributes to the duration-dependent intensity

percept, two properties would be expected: for some fixed

duration, the neuronal population should encode sp in a linear

manner, and that line should shift upward or downward in rela-

tion to stimulus duration. Whereas Figure 7B shows just such

properties for a single neuron, we now ask whether the size of

the shift in vM1 matches the prediction of the SEWP model.

In Figure 7F, the response of vM1 is plotted as a population

projection in sessions where stimulus 1 was of either 200

or 600 ms duration (same dataset as in Figures 7C and 7D).

The color of the points represents sp, increasing from dark

red to yellow. The vM1 firing is fit according to a function

based on SEWP to give a predicted population projection

length (abscissa). This is compared to the observed projection

length of the population (ordinate). The model-experiment

comparison is carried out across four intervals of the trial,

denoted on each plot. The diagonal line corresponds to per-

fect alignment between the model and the observed data. In

all plots, greater sp leads to a greater population projection,

reflecting the predicted and observed stimulus coding in

vM1 during the stimulus 1 and throughout the interval pre-

ceding stimulus 2. During the final 200 ms of stimulus 1, the

observed vM1 population projection differs from the model

prediction due to pronounced adaptation during the longer

stimulus; no adaptation mechanism is incorporated in the

model. At each of the other trial intervals, the observed vM1

data closely track the model prediction. These findings indi-

cate that vM1 neuronal populations, but not vS1 populations,

are aligned with the behavioral SEWP model and thus could

be a component of the neuronal substrate for the vibration

intensity percept.
Figure 7. Effect of Stimulus Duration on vS1 and vM1 Neurons

(A) vS1 single-unit response as a function of sp1 in the 300-ms window centered o

200ms (blue). The pie chart shows the proportion of neurons, among thosewith sig

filled) together with negative (600 < 200; unfilled) firing rate correlation with T1. The

(B) vM1 single-unit response 400–700 ms into the interstimulus delay, using the

when T1 was longer. The pie chart shows the proportion of neurons, among thos

(600 > 200; filled) and negative (600 < 200; unfilled) firing rate correlation with T1

(C) Left: the projection of the vM1 population over time, optimized in each time wi

length of population projections for the time window 100–400 ms into the delay, w

Greater T1 led to longer projection, mimicking the effect of higher sp1. Solid line

(D) Difference in population projection length for trials with T1 = 600 ms versus T1

area represents one SD over 500 training/test repetitions.

(E) Four proposed models for weighting vS1 activity, from upper left to lower right

single spikes with a uniform weighting function (‘‘spike count’’); by summation of s

(‘‘recency spike count’’); and by summation of single spikes with an exponential we

are the neurometric curves that would result from decoding the vS1 population a

(F) SEWP prediction of vM1 population projection length (abscissa) versus the

the trial.
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DISCUSSION

Stimulus Integration Causes a Non-stationary Intensity
Percept
Psychophysical experiments revealed a fundamental mecha-

nism for the integration of noisy sensory information over time,

a mechanism that led to a distinction between the ongoing

values of speed—which were, on average, stationary—and

the final perceived intensity—which grew as a function of stim-

ulus duration. In sum, longer stimuli were felt as stronger. The

integration function was not a product of learning, for it did

not depend on the training protocol. Time dependence has

been reported in monkeys in loudness judgement [18] and

tactile flutter frequency discrimination [10] and in humans for

luminance and loudness judgment [19, 20]. To this previous

work, we have added a simple model, SEWP, which accounted

for psychophysical results across widely ranging stimulus con-

ditions. A further novel finding is that humans and rats share this

basic integrative mechanism: they differ in the overall acuity

parameter (humans are more accurate) but are similar in t, the

time constant for integration.

When a judgement must be made about a single noisy stim-

ulus, evidence can be accumulated over time [21, 22]. But with

such single-stimulus judgements, the processes of sensory inte-

gration and decision making overlap in time as the brain moves

toward a choice concurrent with stimulus presentation. In the

present work, by virtue of uncoupling sensory integration from

decision making and motor execution (i.e., no decision making

operation can be initiated or executed during stimulus 1), it be-

comes clear that temporal integration occurs in the sensory-

perceptual phase of cognition (Figure 7C).

The Neuronal Correlate of Perceived Intensity Resides
in vM1 and Not in vS1
In tasks where rodents discriminate sequences of discrete

whisker deflections, vS1 neurons fail to show substantial tempo-

ral integration [23, 24]. Similarly, in the present work, vS1 re-

sponses were characterized by a local timescale (Figures 5E

and 5F). In vM1, a principal vS1 target in frontal cortex [13, 14],

neuronal responses failed to show robust local coding; instead,

they varied in relation to stimulus mean speed as well as in rela-

tion to stimulus duration. Firing rates in vM1 population did not
n stimulus offset. Responses are separated according to T1: 600ms (cyan) and

nificant variation in firing as a function of sp, with significant positive (600> 200;

measurement window for the pie chart includes the entire interstimulus interval.

same conventions as (A). Contrary to the neuron in vS1, firing rate was higher

e with significant variation in firing as a function of sp, with significant positive

.

ndow to represent differences in sp1 (see color bar above the panel). Right: the

ith projections separated according to T1: 200 ms (blue) or else 600 ms (cyan).

s are the SEWP model fit on population response.

= 200 ms. vS1 projection difference is gray; vM1 difference is green. Shaded

: by firing rate with a uniform weighting function (‘‘firing rate’’); by summation of

ingle spikes with an exponential weighting function anchored to stimulus offset

ighting function anchored to stimulus onset (‘‘primacy spike count’’). Solid lines

ccording to the corresponding model.

observed projection length of the population (ordinate) in different epochs of
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‘‘ramp up’’ along the course of stimulus 1 (Figure 4B), yet the

population assumed a duration-dependent state immediately

after termination of the vibration and maintained this state

throughout the interstimulus delay (Figures 7C and 7D). During

stimulus 2, vM1 neurons encoded the difference between sp1

and sp2, suggesting involvement in the operation of comparison

(Figure 6B). Thus, vM1 participates in multiple steps of the task,

similar to ventral premotor cortex and dorsolateral prefrontal

cortex in monkeys [4, 25] and consistent with a prominent role

in action selection [26, 27]. Brain regions we have not studied

here, such as secondary vibrissal sensory cortex (vS2), posterior

parietal cortex, and other frontal cortical areas may also play

important roles, as in monkeys [4].

By what mechanism is the intensity judgment of humans and

rats confounded by stimulus duration? The properties of vM1

single units and populations provide, for the first time, a possible

answer: the effects of increasing stimulus speed and increasing

stimulus duration were of the same sign. Due to the embedded,

correlated coding of both properties, any given state of the pop-

ulation could be decoded as one of a (theoretically) infinite num-

ber of conjunctions of speed/duration. Thus, the representation

of stimulus speed in vM1 (approximated by projection length in

Figure 7) cannot exclude the influence of duration, even if the

behavioral rule excluded duration as a factor.

The present work is consistent with the notion that the poste-

rior-to-anterior transformation of information in the cerebral cor-

tex is accompanied by a broadening of the timescale by which

neurons encode sensory events [28, 29]. In behavioral tasks

that require identification of instantaneous events, the critical

stimulus features may be decoded from early sensory process-

ing areas. In behavioral tasks that require extraction of longer-

timescale stimulus properties, like the intensity of a stochastic

vibration in the current work, the critical stimulus features may

be decoded from higher-order, mixed-function processing

areas, such as vM1.
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25. Hernández, A., Nácher, V., Luna, R., Zainos, A., Lemus, L., Alvarez, M.,

Vázquez, Y., Camarillo, L., and Romo, R. (2010). Decoding a perceptual

decision process across cortex. Neuron 66, 300–314.

26. Sul, J.H., Jo, S., Lee, D., and Jung, M.W. (2011). Role of rodent secondary

motor cortex in value-based action selection. Nat. Neurosci. 14, 1202–

1208.

27. Murakami, M., Vicente, M.I., Costa, G.M., and Mainen, Z.F. (2014). Neural

antecedents of self-initiated actions in secondary motor cortex. Nat.

Neurosci. 17, 1574–1582.

28. Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai,

X., Padoa-Schioppa, C., Pasternak, T., Seo, H., Lee, D., and Wang, X.J.

(2014). A hierarchy of intrinsic timescales across primate cortex. Nat.

Neurosci. 17, 1661–1663.

29. Hasson, U., Yang, E., Vallines, I., Heeger, D.J., and Rubin, N. (2008). A hi-

erarchy of temporal receptive windows in human cortex. J. Neurosci. 28,

2539–2550.

30. Hill, D.N., Mehta, S.B., and Kleinfeld, D. (2011). Quality metrics to accom-

pany spike sorting of extracellular signals. J. Neurosci. 31, 8699–8705.

http://refhub.elsevier.com/S0960-9822(17)30547-X/sref15
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref15
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref15
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref16
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref16
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref16
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref17
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref17
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref17
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref18
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref18
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref18
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref19
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref19
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref20
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref20
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref20
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref21
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref21
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref21
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref22
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref22
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref22
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref23
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref23
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref23
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref23
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref24
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref24
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref24
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref25
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref25
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref25
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref26
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref26
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref26
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref27
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref27
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref27
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref28
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref28
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref28
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref28
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref29
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref29
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref29
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref30
http://refhub.elsevier.com/S0960-9822(17)30547-X/sref30


Please cite this article in press as: Fassihi et al., Transformation of Perception from Sensory to Motor Cortex, Current Biology (2017), http://dx.doi.org/
10.1016/j.cub.2017.05.011
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Isoflurane Merial AP/DRUGS/220/96

Epigel Ceva N/A

Atropine ATI AIC no. 101948014

Antibiotic (Baytril) Bayer AIC no. 100155062

Analgesic (Rimadyl) Zoetis AIC no. 102191119

Topic antibiotic Dechra AIC no. 102881012

Local anesthetic (lidocaine) Molteni Farmaceutici AIC no. 005638010

Paraformaldehyde Sigma-Aldrich 158127

Cresyl Violet Sigma-Aldrich C5042

Experimental Models: Organisms/Strains

Wistar rats Harlan - Envigo 16808M

Software and Algorithms

LabView 2014 National Instruments http://www.ni.com/download/

labview-development-system-2014/4735/en/

MATLAB v 2015b MathWorks https://www.mathworks.com/products/matlab/

UltraMegaSort 2000 for spike sorting By DN Hill, David Kleinfeld http://neurophysics.ucsd.edu/software.php

Other

Digital TDT recording system Tucker-Davis Technologies (TDT) model: RZ2 BioAmp Processor

Hyperdrive Custom built; Designed by SISSA

Mechatronics Lab and Tucker-Davis

Technologies

http://www.tdt.com/tdt-microdrive.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mathew

E. Diamond (diamond@sissa.it).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty male Wistar rats (Harlan, San Pietro al Natisone, Italy) were housed individually or with one cage mate and maintained on a

14/10 light/dark cycle. Daily access to water was restricted to promote motivation in the behavioral task, yet weight gain followed a

standardWistar-specific curve, indicating that the quantity of water obtained during training and testing was comparable to the ad lib

quantity. After each session, rats were placed for several hours in a large, multistory enriched environment with other rats. Twenty

healthy human subjects (6 males and 14 females, ages 22–35) were tested after giving their informed consent. Protocols conformed

to international norms and were approved by the Ethics Committee of SISSA and, for rat procedures, by the Italian Health Ministry

(license numbers 569/2015-PR and 570/2015-PR).

METHOD DETAILS

Behavioral task
Each trial began when the rat positioned its nose in the nose-poke (equipped with optic sensor) and placed its whiskers on the plate

(Figure 1A). After a short delay (800 ms), stimulus 1 was presented, characterized by nominal mean speed, sp1, and duration, T1.

After the interstimulus delay of 2 s, stimulus 2 (sp2 and T2) was presented (Figure 1B). The rat remained in the nose-poke throughout

both stimuli and couldwithdraw only when the ‘‘go’’ cue sounded to terminate the poststimulus delay of 600ms. Early withdrawal was

considered an aborted trial and went unrewarded. At the go cue, the rat selected the left or right spout; reward location depended on

the relative values of sp1 and sp2. Incorrect choices went unrewarded. Trials with sp1 = sp2 were rewarded randomly.
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Rats learned the delayed comparison task by generalizing the comparison rule across the entire stimulus range. If sp1 were fixed

across all trials and only sp2 shifted, rats might solve the task by ignoring stimulus 1and applying a constant threshold to stimulus 2.

Likewise, if sp2were fixed across all trials, rats might apply a constant threshold to the stimulus 1. To avoid such shortcut strategies,

we used the stimulus generalization matrix (SGM; Figure 1C), whereby neither stimulus alone provided the information necessary for

a correct choice [6].

Test sessions began after rats reached an overall performance of more than 75% correct on 10 successive training sessions of at

least 200 trials each. During test sessions, the SGM included stimulus pairs with normalized speed difference of 0.3 and�0.3, slightly

larger than themaximumNSD of 0.2 and�0.2 used in testing human subjects. This was done in order to provide easier trials to main-

tain the motivation of rats on the difficult psychometric stimulus pairs (green rectangles, Figure 1D).

During training, both T1 and T2were 400ms (‘‘balanced’’ durations) in all except 3 rats; these receivedmultiple combinations of T1

and T2 (‘‘unbalanced’’ durations) from the earliest stage of training. In test sessions, the increase in steepness of the psychometric

curves with longer duration in the balanced condition was quantitatively indistinguishable in 8 rats trained with T1 and T2 fixed at

400 ms versus 3 rats trained with variable T1 and T2 (comparison of change in maximum curve slope between the two groups,

t test: from 100/100 to 600/600 ms, p = 0.59, permutation test). Likewise, the leftward and rightward curve shifts in the unbalanced

duration were indistinguishable in the balanced-trained and unbalanced-trained rats (comparison of change in inflection point be-

tween the two groups, t test: from 200/400 to 400/400, p = 0.67; from 400/400 to 400/600, p = 0.91, permutation test). In sum, neither

the improved performancewith increasing duration nor the tendency to judge longer stimuli as stronger depended on training regime.

Both human and rat experiments were controlled using LabVIEW software (National Instruments, Austin, Texas). Vibrations were

generated by stringing together sequential velocity values (vt) at 10,000 samples/s, taken from a normal distribution. In all analyseswe

treat the stimuli as a sequence of discrete samples, although the motor moved through space continuously. The velocity time series

for a given trial was taken randomly from among 50 unique sequences of pseudo-random values except in recording sessions where

we wished to measure neuronal response to repeated, ‘‘frozen’’ noise (Figures 5A and 5B). Because stimuli were built by sampling a

normal distribution, the statistical properties of an individual vibration did not perfectly replicate those of the distribution fromwhich it

was constructed. Converting vt to its absolute value, spt, the distribution takes the form of a folded, half-Gaussian (see Figure 1B, to

the right of vibration traces). Stimuli delivered to human subjects on the fingertip were the same as those used in rats except that the

velocity values were halved. Human subjects received feedback (correct/incorrect) on each trial through a computer monitor.

Analysis of behavioral data
To characterize the behavior, we computed the proportion of trials in which subjects judged stimulus 2 > stimulus 1 on closely spaced

pairs (Figure 1C, pairs within green rectangles). We fit the data with a four-parameter logistic function using the nonlinear least-

squares fit in MATLAB (MathWorks, Natick, MA):

percent judged stimulus 2 > stimulus 1=g+ ð1� g� lÞ 1

1+ expð � ðNSD� mÞ=nÞ;

where NSD is normalized speed difference, (sp2 � sp1) / (sp2 + sp1), g is the lower asymptote, l is the upper asymptote, 1/ n is the

maximum slope of the curve and m is the NSD at the curve’s inflection point.

Behavioral model for temporal integration of speed
To characterize working memory performance, we computed the proportion of trials in which subjects judged stimulus 2 > stimulus 1

as a function of sp2 and sp1 [6]. We fit the data with a generalized linear model in MATLAB, as follows:

percent judged stimulus 2 > stimulus 1=g+ ð1� g� lÞ 1

1+ expðw1ðsp1Þ+w2ðsp2Þ+wcÞ:

Wherew1 is the sp1 regressor,w2 is the sp2 regressor, andwc is the baseline regressor that captures the overall (stimulus-indepen-

dent) bias of the subject in judging stimulus 2 > stimulus 1. g and l are the lower and upper asymptotes, respectively. These regres-

sors were then used to normalize the relative impact of each stimulus on individual subject’s choice.

Starting with the simple idea that the subject integrates both stimuli and then compares them, choice can be modeled as

follows. For the general case when the degrees of noise (variability) of two signals are not necessarily equal, discriminability can

be quantified as:

d
0
=

m2 � m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
2 + s2

1

2

r :

At this stage, we substitute parameters of the standard d
0
by our model of the subject’s percept (Figure 3A). Given a half-Gaussian

distribution of speed values in each trial, we hypothesize that subjects accumulated instantaneous speed spt over time, after applying

a weighting function:

wt = e
�t
t

e2 Current Biology 27, 1–12.e1–e6, June 5, 2017
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and

perceived intensity =
XT
t =1

wtspt;

wherewt is the weight at time t (in ms after stimulus onset) and T is the total stimulus duration. Next, we calculate the expected value

and variance of the perceived stimulus, as follows:

Eðperceived intensityÞ=E

"XT
t = 1

wtspt

#
:

The expected value of a sum is equal to the sum of the expected values. Therefore,

Eðperceived intensityÞ=E

"XT
t = 1

wtspt

#
=E½w1sp1�+E½w2sp2�+ ::::E½wTspT �=w1E½sp1�+w2E½sp2�+ ::::wTE½spT �:

Since E½sp1� = E½sp2� = sp, then:

Eðperceived intensityÞ=
 XT

t = 1

wt

!
sp:

The solution of the sum is:

XT
t = 1

wt = e�1=t + e�2=t + :::e�T=t:

Multiplying both sides by 1� e�1=t we get:

�
1� e�1

t

�XT
t = 1

wt =
�
1� e�1

t

��
e�1

t + e�2
t +.e�T

t

�

=
�
e�1

t + e�2
t +.e�T

t

�
�
�
e�2

t + e�3
t +.e�T + 1

t

�
=
�
e�1

t � e�T + 1
t

�
and

XT
t = 1

wt =
1� e�T=t

e1=t � 1
:

Therefore, we can rewrite the expected value of perceived intensity as:

Eðperceived intensityÞ= 1� e�T=t

e1=t � 1
sp:

Next, we calculated the variance of perceived intensity:

Varðperceived intensityÞ=Var

 XT
t = 1

wtspt

!
:

One property of variance is that

VarðaX +bYÞ= a2VarðXÞ+b2VarðYÞ+ 2abCovðXYÞ:
As covariance between speed samples is zero (due to the fact that samples are randomly taken from a half-normal distribution), we

can express the variance as:

Varðperceived intensityÞ=
 XT

t = 1

w2
t

!
VarðspÞ:

We then rewrite the variance as follows:

Varðperceived intensityÞ= 1� e�2T=t

e2=t � 1
VarðspÞ:
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As variance of speed is equal to sp2ðp=2� 1Þ we can again rewrite it as:

Varðperceived intensityÞ= 1� e�2T=t

e2=t � 1
sp2ðp=2� 1Þ:

Finally we can rewrite d
0
as:

d
0
=

perceived intensity 2� perceived intensity 1

1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðperceived intensity 2Þ+Varðperceived intensity 1Þp ;
d
0
=

1� e�T2=t

e1=t � 1
sp2 � 1� e�T1=t

e1=t � 1
sp1

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� e�2T2=t

e2=t � 1
sp2

2ðp=2� 1Þ
�
+

�
1� e�2T1=t

e2=t � 1
sp2

1ðp=2� 1Þ
�s :

d
0
is converted to choice by a sigmoid function similar to that used in behavioral analysis,

percent judged stimulus 2 > stimulus 1=g+ ð1� g� lÞ 1

1+ exp

�
�d

0 � m

n

�;

where d
0
is taken as a mathematical expression of the stimulus sensitivity carried by brain signals, g is the lower asymptote, l is the

upper asymptote, 1/ n is themaximum slope of the curve and m is overall bias. We then split the data for each subject into training and

testing set (50/50 percent).

The training trials were used to estimate (nonlinear least-squares, MATLAB) the values of the parameters of the model for each

individual subject. The percent of test trials judged stimulus 2 > stimulus 1 was then predicted by the model and compared to the

observed choice. This procedure was repeated 200 times.

Electrode implantation and data acquisition
Rats (n = 6) were anesthetized with 2%–2.5% Isoflurane delivered with oxygen under controlled pressure through a plastic snout

mask. They received an implant either in vS1 (n = 1), in vM1 (n = 4), or in both (n = 1). The two target regions (Figure S4) were accessed

by craniotomy, using standard stereotaxic technique (vS1: centered 2.8 mm posterior to bregma and 5.8 mm lateral to the midline,

vM1: centered 2.5 mm anterior to bregma and 1 mm lateral to the midline). Dura mater was removed over the entire craniotomy of

both areas with a small syringe needle. The remaining pia mater, even if usually not considered to be resistant to penetration, never-

theless presents a barrier to the entry of the microelectrode arrays. This resistance leads to dimpling of the brain at the moment of

penetration. To minimize such dimpling, after applying the petroleum based antibiotic (Bimixin, Sanofi-Aventis) to the center of crani-

otomy, we applied cyanoacrylate adhesive directly to the pial surface bordering the edge of the cranial opening. This procedure fas-

tens the pia mater to the overlying bone and the resulting surface tension prevents the brain from compressing under the advancing

electrodes. The electrode arrays (Tucker-Davis Technologies (TDT), Alachua FL) were configured as 16 electrodes (2 rows of 8, with

250 mm within-row spacing and 375 mm between-row spacing) or 32 electrodes (4 rows of 8, equivalent spacing). Electrodes were

sharply tapered and shaft diameter was 50 mm. The electrode array was inserted by slowly advancing a Narashigemicromanipulator.

After inserting the array(s), the remaining exposed cortex was covered with biocompatible silicon (KwikSil; World Precision Instru-

ments). Two rats were implanted with a novel movable electrode array (SISSAmicrodrive, TDT) only in vM1. In all rats, 5 small screws

were fixed in the skull as support for dental cement. One of the screws served as a ground electrode.

One hour after the beginning of the anesthesia, atropine (2 mg/kg) was injected (s.c.) to avoid secretions in the respiratory tract and

maintain a stable heart rate. They were given the antibiotic (Baytril; 5 mg/kg; i.p.) and analgesic (Rimadyl; 2.5 mg/kg; i.m.) one hour

before conclusion of the operation. After surgery, a local antibiotic (Isaderm) was applied around the wound to help the healing. In

addition, both the antibiotic and the analgesic were delivered through the water bottle for 24 hr after completion of surgery. During

this recovery time, rats had unlimited access to water and food. Recording sessions in the apparatus began thereafter.

Extracellular activity of both vS1 and vM1 was sorted into single units and multiunits, as verified through the spike waveform and

the refractory period observed in interspike interval histogram using a MATLAB-based software, UltraMegaSort 2000 [30]. In total 90

single- and 300 multiunits were recorded in vS1 of 2 rats and 217 single- and 398 multiunits were recorded in vM1 of 5 rats. Two

criteria had to bemet for a neuron to be included in the analyses. First, overall firing rate within the session was at least 2 Hz. Second,

overall firing rate per trial for the entire session, with many different stimulus conditions intermixed across trials, did not show a sig-

nificant non-zero linear correlation (p < 0.05) over time. The second criterion was aimed at excluding unstable recordings. In the

analyses, we were able to pool the data from vS1 single- and multiunits whenever appropriate, due to the similar coding properties

indentified among single units. We did not pool vM1 single- and multiunits because of coding heterogeneity.
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Measure of local coding
Tomeasure to what extent the neuronal response varied according to the local speed events in the stimulus waveform, we computed

the cross-correlation between the vibration waveform, spt, and the spike train (Figure S6). The complete speed waveform for one

vibration is denoted SPW. When the spike train temporal resolution is sufficiently fine (in this analysis 0.1 ms), each bin can contain

a single spike (assigned the value 1) or else no spikes (assigned the value 0). The spike train during the first stimulus of the first trial can

be depicted as a vector of 0’s and 1’s, RV1, with size s of T1 (ms)3 10. The spike train accompanying stimulus 1 of trials 1 to n was

concatenated to produce a long response vector,RVstimulus 1 = (RV1,RV2,RV3,.,RVn). The size of the vectorRVstimulus 1 is the sum of

all T1s. After carrying out the same procedure for all presentations of stimulus 2, RVstimulus 1 and RVstimulus 2 were combined to

produce a long vector of spikes trains, RVtotal. RVtotal was convolved with a Gaussian Kernel, K(t,s) to generate a spike density func-

tion SDF. The vibration waveform for the first trial and stimulus, SPW1 was concatenated with the vibration waveforms of other trials

(replicating the spike train procedure) to produce a long vector SPWstimulus 1 = (SPW1, SPW2, SPW3, ., SPWn). SPWstimulus 1 and

SPWstimulus 2 were then combined, preserving the stimulus sequence corresponding to the concatenated spike train.

The cross-correlation between SPWtotal and RVtotal indicates by how many ms RVtotal must be shifted to make it identical to

SPWtotal. When the two signals match, then the quantity of cross-correlation is maximum. The corresponding shift can be considered

the time lag between the two signals. As SPWtotal contains different trials (therefore different global sp values), the peak of the cor-

relation might be related to trial to trial changes in sp and not to local spt. As a control, we computed the same analysis for temporally

reversed waveforms (each individual stimulus waveform reversed before concatenation), where the local correlation must be negli-

gible, by definition. The width of the Gaussian kernel, K(t,s) was varied and, for a given Gaussian kernel width, forward and reversed

cross-correlograms were compared and standardized by subtracting the mean and dividing by the standard deviation of the whole

vector. When the Gaussian kernel width produced maximal cross-correlogram difference, then the size of the difference as well as

the kernel width were defined as measures of local coding.

Linear model and neuronal correlates of task events
All analyses and statistical tests were done with custom codes written inMATLAB. To specify how the neuronal populations encoded

relevant aspects of the behavioral task, we quantified the relations between neurons’ (single- and multi-units) firing rate and the vari-

ables of interest – mean speed of both stimuli (sp1 and sp2) and durations of both stimuli (T1 and T2) by using a multi-variable, linear

regression,

rateðtÞ=wsp1ðtÞsp1+wsp2ðtÞsp2+wT1ðtÞT1 +wT2ðtÞT2 +wcðtÞ;
where rate(t) is the firing rate of each neuron measured in a 300-ms time bin, sliding in 5-ms steps, expressed as a z-score with

respect to whole-session mean firing rate at each time bin, wsp1ðtÞ and wsp2ðtÞ are the sp1 and sp2 regressors, wT1ðtÞ and wT2ðtÞ
are the T1 and T2; all regressors are fit as a function of time t. wcðtÞ is a constant set according to the neuron’s overall excitability

at each time time t, independently of task variables. Values of the regressors indicate how strongly, at any given moment, the

neuron’s response varied in relation to the associated variable. In some sessions, T2was fixed (400ms) and not treated as a variable;

we can therefore takewT2ðtÞ to be 0while in other sesssionswT1ðtÞwas set to 0 as T1was kept fixed. The test for considering a neuron

to express significant sp1, sp2, T1 or T2 coding was to have significant linear coefficients (t test, p < 0.05) in 6 out of 10 sequential

windows. The number of neurons with significant coding was then normalized by subtracting the number of neurons expected by

chance to show significant linear coefficient (criterion of chance level: 4 standard deviations from the mean of a shuffled distribution

for each bin).

Neurons that encoded both sp1 and sp2with opposite sign but similar absolute magnitude, would pro-duce a differential signal, a

signal that could reflect a comparison process [9]. Similar criteria to those described above were used to define the significance of

each neuron’s involvement in the stimulus com-parison process (Figure 6).

Analysis of cortical population response
The analysis of population response focused on stimulus 1 so that coding of sp1 and T1 could be examined without mixed signals

related to the stimulus comparison, choice, and action. Following the methods for demixed dimension reduction [17], the normalized

firing rate per time bin was averaged over each condition (i.e., sp1 and T1) and expressed as a z-score with respect to the average

rate in that time bin. The time bin was 300 ms and was shifted in steps of 5 ms.

The size of the population averaged matrix, PopM, is the numberofneurons 3 conditions 3 timebins. We performed a principal

components analysis (PCA) to the PopM to find the dimensions that best explained the variability of neuronal responses. We

used the first n principal components that yielded at least 75% of the explained variability as a ‘‘de-noising’’ matrix, D. We then

used linear regression to define the stimulus- and task-relevant axes of sp1 and T1 and obtained the de-mixed population trajectory

by projecting the population activity onto these task-related dimensions. It is important to take into account that the linear regression

matrix used to obtain the task-related dimension is different for each time bin, so that the optimal population projection is likely to be

different for each time bin. The dataset was divided into the training set and test set. The population trajectories obtained from the test

data -set are depicted in Figure 7. Similar linear regression as Equation 16 was used to define stimulus- and task-relevant axes of sp1

and T1. The de-noising matrix was obtained by combining the first n principal components [17],
Current Biology 27, 1–12.e1–e6, June 5, 2017 e5



Please cite this article in press as: Fassihi et al., Transformation of Perception from Sensory to Motor Cortex, Current Biology (2017), http://dx.doi.org/
10.1016/j.cub.2017.05.011
Dðdenoising�MatrixÞ=
XNpca

z= 1

PczPc
T
z :

We then obtained the de-mixed population trajectory by projecting the population activity onto the task related dimensions. The

de-noised population activity was obtained by multiplying the population averaged response to the de-noised linear coefficients,

Wdenoised.

Wdenoisedsp1ðtÞ=DWsp1ðtÞ;
where Wdenoised (t) is the denoised regression weights matrix (size of N neurons 3 timebins) and D is the ‘‘de-noising’’ matrix and

Wsp1 (t).

The final step was to apply the de-noised linear coefficient matrix (Wdenoised) to the population averaged matrix PopM to obtain

the task-relevant dimension:

Population responsesp1ðtÞ=Wdesp1ðtÞPopM:
Prediction of population activity by SEWP model

Population responseðtÞ=aðtÞ1� e�T=t

e1=t � 1
sp+ bðtÞ:
Analysis of vS1 readout
The analysis of vS1 population coding was restricted to neurons defined as responsive to stimulus presentation compared to the

control period (200 ms before the stimulus onset, t test, p < 0.05). On each trial, the response of each neuron during the presentation

of stimulus 1 and stimulus 2 was computed based on 4 different readout mechanisms (Figure 7E). According to the relative magni-

tudes of these responses, the neuron was considered to have reported stimulus 2 > stimulus 1 or else stimulus 1 > stimulus 2. For the

full population, the decoded choice on that trial corresponded to the choice of the majority of neurons weighted by their Pearson

correlating coefficient. To generate neurometric curves, trials were combined according to the two vibrations’ relative mean speeds

and the percent of trials classified as stimulus 2 > stimulus 1 was fit with a sigmoid function to generate neurometric curves

(Figure 7E):

percent classified stimulus 2 > stimulus 1=g+ ð1� g� lÞ 1

1+ expð � ðNSD� mÞ=nÞ
where NSD is normalized speed difference, (sp2 � sp1) / (sp2 + sp1), g is the lower asymptote, l is the upper asymptote, 1/n is the

maximum slope of the curve and m is the NSD at the curve’s inflection point.
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Figure S1. Distributions of values of SEWP model parameters for all
humans and rats, related to Figure 3.
The box plots show the mean (red), the 25th and 75th percentiles (blue rectangle) and the 99% confi-
dence interval (whiskers). From left to right: Integration time constant, τ , slope factor of psychometric
curve, bias of psychometric curve, measured as distance of the inflection point from the value of NSD
= 0, lower asymptote, upper asymptote.
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Figure S2. Further investigation of the accuracy of the SEWP model in
predicting experimental data, related to Figure 3.
(A) Change in percent of correct trials observed in the data and predicted by the model for all rat and
human subjects in the balanced condition. Each point represents one duration (T1 = T2). Error bars
indicate the standard deviation of the mean over 200 test sets. Closeness of points to the diagonal
line attests to the accuracy of the model. (B) Change in percent of trials judged stimulus 2 > stimulus
1 observed in the data and predicted by the model for all rat and human subjects in the unbalanced
condition. T1/T2 = 400/200ms (blue) and 400/600ms conditions (cyan) trials are computed with respect
to their values in T1/T2 = 400/400 ms. Data and model output for T1/T2 = 400/400 ms is 0 by definition
and not illustrated. (C) Same as (B) but for unbalanced condition where T1/T2 = 200/400 ms (blue) and
600/400 ms conditions (cyan). Data and model output for T1/T2 = 400/400 ms is 0 by definition and not
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Figure S3. Experiments in rats and humans to test which type of tempo-
ral integration is at play – primacy or recency, related to Figure 3.
(A) We introduced ramped stimuli, where the sequence of spt values that form the vibration was mul-
tiplied by an envelope that gradually and linearly rose or else fell along the course of the presentation;
overall sp was unaltered by the multiplication. In control experiments with human subjects, direction
of the ramp could not be systematically detected (64% accuracy; chance = 50%), indicating that such
gradual slopes could not induce any purposeful change in strategy. Sequence of spt was multiplied by
a linear envelope (shading) that gradually increased or decreased stimulus amplitude. For the purpose
of illustration, the slope of the ramp is shown as much steeper than the actual slope (8% change per
100 ms). Ramped stimulus pairs were delivered in 4 combinations. For a given value of sp, an upward-
ramped vibration should be felt as lower in intensity if primacy is at play but higher if recency is at play. A
downward-ramped vibration should be felt as higher in intensity if primacy is at play but lower if recency
is at play. Thus, the primacy model posits that for an up/down sequence (light gray), stimulus 2 should
be overestimated; for a down-up sequence, stimulus 1 should be overestimated (black). The up-up and
down-down sequences (dark gray) should lead to equivalent effects on both stimuli of the pair. The
middle two ramp pairs (dark gray) lead to the same predicted perceptual effect and their results are
combined in the next plot. (B) Results from 4 rats (left) and 5 humans (right). The shading of the curve
corresponds to the ramp condition in (A).
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Figure S4. Cortical regions examined, related to STARMethods on Elec-
trode implantation and data acquisition.
(A) Example of an electrode tracks (dark tissue) in a histologically processed section after the conclusion
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Figure S5. Consistency of coding of stimulus 1 and stimulus 2 in vS1
and vM1, related to Figure 4.
(A) Upper panel: Pearson correlation coefficient between sp and mean firing rate for stimulus 1 versus
stimulus 2 in vS1. Each dot shows an individual vS1 single- or multiunit. Lower panel: mean firing rate,
in log scale, in response to stimulus 1 versus stimulus 2. (B) the same as (A) but for vM1 single units.
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Figure S6. Method for measuring cross-correlation, related to Figure 5.
(A) Upper plot: the stimuli of many trials were concatenated. A chain of 6 vibrations is illustrated. Be-
low, the spike trains recorded simultaneously with each vibration are kept in temporal register. The
spike trains are convolved with a Gaussian waveform to convert the point process spike train into a
continuous function. Lowest plot: each individual vibration is temporally-reversed and then concate-
nated. (B) Left: magnified view of one vibration, spike train, and Gaussian-convolved spike train. Right:
the same vibration is now temporally-reversed. The spike train and Gaussian-convolved spike train are
maintained in the forward direction, so that stimulus/response temporal contingencies are disordered
but firing rate is conserved. (C) Upper plot: by computing the correlation between the vibration and
the Gaussian-convolved spike train, a cross-correlogram (green trace) emerges. The delay is varied in
order to produce the maximum peak of cross-correlation. Likewise, the width of the Gaussian kernel is
varied in order to maximize the peak. Then the cross-correlogram with the temporally-reversed vibration
is computed (gray trace) to yield a forward/reversed difference. A statistically significant difference is
the criterion for neuronal “local coding”. Lower plot: the forward/reversed difference varies according to
the width of the Gaussian kernel. The width yielding the largest difference indicates the time scale of
local coding.
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