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Abstract

We study quantum quenches to the one-dimensional Bose gas with attractive interactions
in the case when the initial state is an ideal one-dimensional Bose condensate. We focus
on properties of the stationary state reached at late times after the quench. This displays
a finite density of multi-particle bound states, whose rapidity distribution is determined
exactly by means of the quench action method. We discuss the relevance of the multi-
particle bound states for the physical properties of the system, computing in particular
the stationary value of the local pair correlation function g2.
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1 Introduction

Strongly correlated many-body quantum systems are often outside the range of applicability
of standard perturbative methods. While being at the root of many interesting and some-
times surprising physical effects, this results in huge computational challenges, which are most
prominent in the study of the non-equilibrium dynamics of many-body quantum systems. This
active field of research has attracted increasing attention over the last decade, also due to
the enormous experimental advances in cold atomic physics [1–3]. Indeed, highly isolated
many-body quantum systems can now be realised in cold atomic laboratories, where the high
experimental control allows to directly probe their unitary time evolution [4–13].

A simple paradigm to study the non-equilibrium dynamics of closed many-body quantum
systems is that of a quantum quench [14]: a system is prepared in an initial state (usually
the ground state of some Hamiltonian H0) and it is subsequently time evolved with a local
Hamiltonian H. In the past years, as a result of a huge theoretical effort (see the reviews [2,
15–21] and references therein), a robust picture has emerged: at long times after the quench,
and in the thermodynamic limit, expectation values of local observables become stationary.
For a generic system, these stationary values are those of a thermal Gibbs ensemble with the
effective temperature being fixed by the energy density in the initial state [22].

A different behaviour is observed for integrable quantum systems, where an infinite set
of local conserved charges constrains the non-equilibrium dynamics. In this case, long times
after the quench, local properties of the systems are captured by a generalised Gibbs ensemble
(GGE) [23], which is a natural extension of the Gibbs density matrix taking into account a
complete set of local or quasi-local conserved charges.

The initial focus was on the role played by (ultra-)local conservation laws in integrable
quantum spin chains [24–30], while more recent works have clarified the role by sets of novel,
quasi-local charges [31–41]. It has been shown recently that they have to be taken into account
in the GGE construction in order to obtain a correct description of local properties of the steady
state [44,45]. Quasi-local conservation laws and their relevance for the GGE have also recently
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been discussed in the framework of integrable quantum field theories [48, 49]. These works
have demonstrated that the problem of determining a complete set of local or quasi-local
conserved charges is generally non-trivial.

A different approach to calculating expectation values of local correlators in the stationary
state was introduced in Ref. [50]. It is the so called quench action method (QAM), a.k.a.
representative eigenstate approach and it does not rely on the knowledge of the conserved
charges of the system. Within this method, the local properties at large times are effectively
described by a single eigenstate of the post-quench Hamiltonian. The QAM has now been
applied to a variety of quantum quenches, from one dimensional Bose gases [51–56] to spin
chains [57–61] and integrable quantum field theories [62,63], see Ref. [20] for a recent review.

One of the most interesting aspects of non-equilibrium dynamics in integrable systems is
the possibility of realising non-thermal, stable states of matter by following the unitary time
evolution after a quantum quench. Indeed, the steady state often exhibits properties that are
qualitatively different from those of thermal states of the post-quench Hamiltonian. The QAM
provides a powerful tool to theoretically investigate these properties in experimentally relevant
settings.

In this paper we study the quantum quench from an ideal Bose condensate to the Lieb-
Liniger model with arbitrary attractive interactions. A brief account of our results was previ-
ously given in Ref. [56]. The interest in this quench lies in its experimental feasibility as well
as in the intriguing features of the stationary state, which features finite densities of multi-
particle bound states. Our treatment, based on the quench action method, allows us to study
their dependence on the final interaction strength and discuss their relevance for the physical
properties of the system. In particular, as a meaningful example, we consider the local pair
correlation function g2, which we compute exactly.

The structure of the stationary state is very different from the super Tonks-Girardeau gas,
which is obtained by quenching the one-dimensional Bose gas from infinitely repulsive to
infinitely attractive interaction [64–70]. The super Tonks-Girardeau gas features no bound
states, even though it is more strongly correlated than the infinitely repulsive Tonks-Girardeau
gas, as has been observed experimentally [66]. As we argued in [56], the physical prop-
erties of the post-quench stationary state reached in our quench protocol could be probed
in ultracold atoms experiments, and the multi-particle bound states observed by the pres-
ence of different“light-cones” in the spreading of local correlations following a local quantum
quench [71].

In this work we present a detailed derivation of the results previously announced in Ref. [56].
The remainder of this manuscript is organised as follows. In section 2 we introduce the Lieb-
Liniger model and the quench protocol that we consider. The quench action method is re-
viewed in section 3, and its application to our quench problem is detailed. In section 4 the
equations describing the post-quench stationary state are derived. Their solution is then ob-
tained in section 5, and a discussion of its properties is presented. In section 6 we address the
calculation of expectation values of certain local operators on the post-quench stationary state,
and we explicitly compute the local pair correlation function g2. Finally, our conclusions are
presented in section 7. For the sake of clarity, some technical aspects of our work are consigned
to several appendices.
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2 The Lieb-Liniger model

2.1 The Hamiltonian and the eigenstates

We consider the Lieb-Liniger model [72], consisting of N interacting bosons on a one-dimensional
ring of circumference L. The Hamiltonian reads

HN
LL = −

ħh2

2m

N
∑

j=1

∂ 2

∂ x2
j

+ 2c
∑

j<k

δ(x j − xk), (1)

where m is the mass of the bosons, and c = −ħh2/ma1D is the interaction strength. Here a1D is
the 1D effective scattering length [73] which can be tuned via Feshbach resonances [74]. In
the following we fix ħh= 2m= 1. The second quantized form of the Hamiltonian is

HLL =

∫ L

0

dx
¦

∂xΨ
†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)

©

, (2)

where Ψ†, Ψ are complex bosonic fields satisfying [Ψ(x),Ψ†(y)] = δ(x − y).
The Hamiltonian (1) can be exactly diagonalised for all values of c using the Bethe ansatz

method [42, 72]. Throughout this work we will consider the attractive regime c < 0 and use
notations c = −c > 0. We furthermore define a dimensionless coupling constant by

γ=
c
D

, D =
N
L

. (3)

A general N -particle energy eigenstate is parametrized by a set of N complex rapidities
{λ j}Nj=1, satisfying the following system of Bethe equations

e−iλ j L =
N
∏

k 6= j
k=1

λk −λ j − ic

λk −λ j + ic
, j = 1, . . . , N . (4)

The wave function of the eigenstate corresponding to the set of rapidities {λ j}Nj=1 is then

ψN (x1, . . . , xN |{λ j}Nj=1) =
1
p

N

∑

P∈SN

ei
∑

j x jλPj

∏

j>k

λPj
−λPk

+ icsgn(x j − xk)

λPj
−λPk

, (5)

where the sum is over all the permutations of the rapidities. Eqns (4) can be rewritten in
logarithmic form as

λ j L − 2
N
∑

k=1

arctan

�

λ j −λk

c

�

= 2πI j , j = 1, . . . , N , (6)

where the quantum numbers {I j}Nj=1 are integer (half-odd integer) for N odd (even).
In the attractive regime the solutions of (6) organize themselves into mutually disjoint

patterns in the complex rapidity plane called “strings” [75, 76]. For a given N particle state,
we indicate with Ns the total number of strings and with N j the number of j-strings, i.e. the
strings containing j particles (1≤ j ≤ N) so that

N =
∑

j

jN j , Ns =
∑

j

N j . (7)
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The rapidities within a single j-string are parametrized as [87]

λ j,a
α = λ

j
α +

ic
2
( j + 1− 2a) + iδ j,a

α , a = 1, . . . , j, (8)

where a labels the individual rapidities within the j-string, while α labels different strings of
length j. Here λ j

α is a real number called the string centre. The structure (8) is common
to many integrable systems and within the so called string hypothesis [75, 77] the deviations
from a perfect string δ j,a

α are assumed to be exponentially vanishing with the system size L
(see Refs. [78, 79] for a numerical study of such deviations in the Lieb-Liniger model). A j-
string can be seen to correspond to a bound state of j bosons: indeed, one can show that the
Bethe ansatz wave function decays exponentially with respect to the distance between any two
particles in the bound state and the j bosons can be thought as clustered together.

Even though some cases are known where states violating the string hypothesis are present
[80–84], it is widely believed that their contribution to physically relevant quantities is van-
ishing in the thermodynamic limit. We will then always assume the deviations δ j,a

α to be
exponentially small in L and neglect them except when explicitly said otherwise.

From (6), (8) a system of equations for the string centres λ j
α is obtained [76]

jλ j
αL −

∑

(k,β)

Φ jk(λ
j
α −λ

k
β) = 2πI j

α , (9)

where

Φ jk(λ) = (1−δ jk)φ| j−k|(λ) + 2φ| j−k|+2(λ) + . . .+ 2φ j+k−2(λ) +φ j+k(λ) , (10)

φ j(λ) = 2arctan
�

2λ
jc

�

, (11)

and where I j
α are integer (half-odd integer) for N odd (even). Eqns (9) are called Bethe-

Takahashi equations [75,85]. The momentum and the energy of a general eigenstate are then
given by

K =
∑

( j,α)

jλ j
α , E =

∑

( j,α)

j(λ j
α)

2 −
c̄2

12
j( j2 − 1). (12)

2.2 The thermodynamic limit

In the repulsive case the thermodynamic limit

N , L→∞ , D =
N
L

fixed, (13)

was first considered in Ref. [86], and it is well studied in the literature. In the attractive case,
the absolute value of the ground state energy in not extensive, but instead grows as N3 [87,88].
While ground state correlation functions can be studied in the zero density limit, namely N
fixed, L → ∞ [76], it was argued that the model does not have a proper thermodynamic
limit in thermal equilibrium [75, 88]. Crucially, in the quench protocol we are considering,
the energy is fixed by the initial state and the limit of an infinite number of particles at fixed
density presents no problem.

As the systems size L grows, the centres of the strings associated with an energy eigenstate
become a dense set on the real line and in the thermodynamic limit are described by smooth
distribution function. In complete analogy with the standard finite-temperature formalism
[75]we introduce the distribution function {ρn(λ)}∞n=1 describing the centres of n strings, and
the distribution function of holes {ρh

n(λ)}
∞
n=1. We recall that ρh

n(λ) describes the distribution
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of unoccupied states for the centres of n-particle strings, and is analogous to the distribution
of holes in the case of ideal Fermi gases at finite temperature. Following Takahashi [75] we
introduce

ηn(λ) =
ρh

n(λ)

ρn(λ)
, (14)

ρ t
n(λ) = ρn(λ) +ρ

h
n(λ). (15)

In the thermodynamic limit the Bethe-Takahashi equations (9) reduce to an infinite set of
coupled, non-linear integral equations

n
2π
−
∞
∑

m=1

∫ ∞

−∞
dλ′anm(λ−λ′)ρm(λ

′) = ρn(λ)(1+ηn(λ)). (16)

where

anm(λ) = (1−δnm)a|n−m|(λ) + 2a|n−m|+2(λ) + . . .+ 2an+m−2(λ) + an+m(λ) , (17)

an(λ) =
1

2π
d

dλ
φn(λ) =

2
πnc

1

1+
�2λ

nc

�2 . (18)

In the thermodynamic limit the energy and momentum per volume are given by

k[{ρn}] =
∞
∑

n=1

∫ ∞

−∞
dλ ρn(λ)nλ, e[{ρn}] =

∞
∑

n=1

∫ ∞

−∞
dλ ρn(λ)εn(λ), (19)

where

εn(λ) = nλ2 −
c̄2

12
n(n2 − 1). (20)

Finally, it is also useful to define the densities Dn and energy densities en of particles forming
n-strings

Dn = n

∫ ∞

−∞
dλ ρn(λ), en =

∫ ∞

−∞
dλ ρn(λ)εn(λ). (21)

The total density and energy per volume are then additive

D =
∞
∑

n=1

Dn, e =
∞
∑

n=1

en. (22)

2.3 The quench protocol

We consider a quantum quench in which the system is initially prepared in the BEC state, i.e.
the ground state of (1) with c = 0, and the subsequent unitary time evolution is governed
by the Hamiltonian (1) with c = −c < 0. The same initial state was considered for quenches
to the repulsive Bose gas in Refs [29, 51, 52, 89–91], while different initial conditions were
considered in Refs [55,92–102].

As we mentioned before, the energy after the quench is conserved and is most easily com-
puted in the initial state |ψ(0)〉= |BEC〉 as

〈BEC|HLL|BEC〉= −c〈BEC|
∫ L

0

dx Ψ†(x)Ψ†(x)Ψ(x)Ψ(x)|BEC〉. (23)

The expectation value on the r.h.s. can then be easily computed using Wick’s theorem. In the
thermodynamic limit we have

E
L
= −cD2 = −γD3. (24)
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3 The quench action method

3.1 General considerations

Consider the post-quench time evolution of the expectation value of a general operator O. For
a generic system it can be written as

〈ψ(t)|O|ψ(t)〉=
∑

µ,ν

〈ψ(0)|µ〉〈µ|O|ν〉〈ν|ψ(0)〉ei(Eµ−Eν)t , (25)

where {|µ〉} denotes an orthonormal basis of eigenstates of the post-quench Hamiltonian. In
Ref. [50] it was argued that in integrable systems a major simplification occurs if one is inter-
ested in the time evolution of the expectation values of local operators O in the thermodynamic
limit. In particular, the double sum in the spectral representation (25) can be replaced by a
single sum over particle-hole excitations over a representative eigenstate |ρsp〉. In particular,
we have

limth〈ψ(t)|O |ψ(t)〉=
1
2

∑

e

�

e−δse−iδωe t〈ρsp|O |ρsp,e〉+ e−δs∗e+iδωe t〈ρsp,e|O |ρsp〉
�

, (26)

where we have indicated with limth the thermodynamic limit N , L→∞, keeping the density
D = N/L fixed. Here e denotes a generic excitation over the representative state |ρsp〉. Finally
we have

δse = − ln
〈ρsp,e|ψ(0)〉
〈ρsp|ψ(0)〉

, δωe =ω[ρsp,e]−ω[ρsp], (27)

where ω[ρsp], ω[ρsp,e] are the energies of |ρsp〉 and |ρsp,e〉 respectively. The representative
eigenstate (or “saddle-point state”) |ρsp〉 is described in the thermodynamic limit by two sets
of distribution functions {ρn(λ)}n, {ρh

n(λ)}n. In Ref. [50] it was argued that these are selected
by the saddle-point condition

∂ SQA[ρ]

∂ ρn(λ)

�

�

�

ρ=ρsp

= 0, n≥ 1, (28)

where SQA[ρ] is the so-called quench action

SQA[ρ] = 2S[ρ]− SY Y [ρ]. (29)

Here ρ is the set of distribution functions corresponding to a general macro-state, S[ρ] gives
the thermodynamically leading part of the logarithm of the overlap

S[ρ] = −limthRe ln〈ψ(0)|ρ〉, (30)

and SY Y is the Yang-Yang entropy. As we will see in section 3.2, we will only have to consider
parity-invariant Bethe states, namely eigenstates of the Hamiltonian (1) characterised by sets
of rapidities satisfying {λ j}Nj=1 = {−λ j}Nj=1. Restricting to the sector of the Hilbert space of
parity invariant Bethe states, the Yang-Yang entropy reads

SY Y [ρ]
L

=
1
2

∞
∑

n=1

∫ ∞

−∞
dλ[ρn ln(1+ηn) +ρ

h
n ln(1+η−1

n )]. (31)

We note the global pre-factor 1/2. From Eq. (26) it follows that the saddle-point state |ρsp〉
can be seen as the effective stationary state reached by the system at long times. Indeed, if O
is a local operator, Eq. (26) gives

lim
t→∞

limth〈ψ(t)|O |ψ(t)〉= 〈ρsp|O |ρsp〉. (32)
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3.2 Overlaps with the BEC state

The main difficulty in applying the quench action method to a generic quantum quench prob-
lems is the computation of the overlaps 〈ψ(0)|ρ〉 between the initial state and eigenstates of
the post-quench Hamiltonian. At present this problem has been solved only in a small number
of special cases [50,103–111].

A conjecture for the overlaps between the BEC state and the Bethe states in the Lieb-Liniger
model first appeared in Ref. [51] and it was then rigorously proven, for arbitrary sign of the
particle interaction strength, in Ref. [106]. As we have already mentioned, the overlap is non-
vanishing only for parity invariant Bethe states, namely eigenstates characterised by sets of
rapidities satisfying {λ j}Nj=1 = {−λ j}Nj=1 [105]. The formula reads

〈{λ j}
N/2
j=1 ∪ {−λ j}

N/2
j=1 |BEC〉=

p

(cL)−N N !
∏N/2

j=1
λ j
c

È

λ2
j

c2 +
1
4

detN/2
j,k,=1GQ

jk
Ç

detN
j,k,=1G jk

, (33)

where

G jk = δ jk

�

L +
N
∑

l=1

K(λ j −λl)

�

− K(λ j −λk), (34)

GQ
jk = δ jk



L +
N/2
∑

l=1

KQ(λ j ,λl)



− KQ(λ j ,λk), (35)

KQ(λ,µ) = K(λ−µ) + K(λ+µ), K(λ) =
2c

λ2 + c2
. (36)

The extensive part of the logarithm of the overlap (33) was computed in Ref. [51] in the
repulsive regime. A key observation was that the ratio of the determinants is non-extensive,
i.e.

limth

detN/2
j,k,=1GQ

jk
Ç

detN
j,k,=1G jk

= O (1). (37)

In the attractive regime additional technical difficulties arise, because matrix elements of
the Gaudin-like matrices G jk, GQ

jk can exhibit singularities when the Bethe state contains bound
states [111]. This is analogous to the situation encountered for a quench from the Néel state
to the gapped XXZ model [57–60]. In particular, one can see that the kernel K(µ−ν) diverges
as 1/(δn,a

α − δ
n,a+1
α ) for two “neighboring” rapidities in the same string µ = λn,a

α , ν = λn,a+1
α ,

or when rapidities from different strings approach one another in the thermodynamic limit,
µ→ λ+ ic.

These kinds of singularities are present in the determinants of both GQ
jk and G jk. It was

argued in Refs [57, 58, 111] that they cancel one another in the expression for the overlap.
As was noted in Refs. [57, 58, 111], no other singularities arise as long as one considers the
overlap between the BEC state and a Bethe state without zero-momentum n-strings, (strings
centred at λ = 0). Concomitantly the ratio of the determinants in (33) is expected to give a
sub-leading contribution in the thermodynamic limit, and can be dropped. The leading term
in the logarithm of the overlaps can then be easily computed along the lines of Refs. [57,58]

ln〈ρ|BEC〉= −
LD
2
(lnγ+ 1) +

L
2

∞
∑

m=1

∫ ∞

0

dλρn(λ) ln Wn(λ), (38)

where

Wn(λ) =
1

λ2

c2

�

λ2

c2 +
n2

4

�

∏n−1
j=1

�

λ2

c2 +
j2
4

�2 . (39)
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In the case where zero-momentum n-strings are present, a more careful analysis is required in
order to extract the leading term of the overlap (33) [111,112]. This is reported in Appendix A.
The upshot of this analysis is that (38) gives the correct leading behaviour of the overlap even
in the presence of zero-momentum n-strings.

4 Stationary state

4.1 Saddle point equations

As noted before, the stationary state is characterized by two sets of distribution functions
{ρn(λ)}n, {ρh

n(λ)}n, which fulfil two infinite systems of coupled, non-linear integral equa-
tions. The first of these is the thermodynamic version of the Bethe-Takahashi equations (16).
The second set is derived from the saddle-point condition of the quench action (28), and the
resulting equations are sometimes called the overlap thermodynamic Bethe ansatz equations
(oTBA equations). Their derivation follows Refs [57–60]. In order to fix the density D = N/L
we add the following term to the quench action (29)

−hL

� ∞
∑

m=1

m

∫ ∞

−∞
dλρm(λ)− D

�

. (40)

As discussed in the previous section, S[ρ] in (29) can be written as

S[ρ] =
LD
2
(lnγ+ 1)−

L
2

∞
∑

m=1

∫ ∞

0

dλρn(λ) ln Wn(λ) , (41)

where Wn(λ) is given in (39). Using (41), (31), and (40) one can straightforwardly extremize
the quench action (29) and arrive at the following set of oTBA equations

lnηn(λ) = −2hn− ln Wn(λ) +
∞
∑

m=1

anm ∗ ln
�

1+η−1
m

�

(λ), n≥ 1 . (42)

Here anm are defined in (17), and we have used the notation f ∗ g(λ) to indicate the convo-
lution between two functions

f ∗ g(λ) =

∫ ∞

−∞
dµ f (λ−µ)g(µ). (43)

Eqns (42) determine the functions ηn(λ) and, together with Eqns (16) completely fix the
distribution functions {ρn(λ)}n, {ρh

n(λ)}n characterising the stationary state.

4.2 Tri-diagonal form of the oTBA equations

Following standard manipulations of equilibrium TBA equations [75], we may re-cast the oTBA
equations (42) in the form

lnηn(λ) = d(λ) + s ∗ [ln(1+ηn−1) + ln(1+ηn+1)] (λ) , n≥ 1 . (44)

Here we have defined η0(λ) = 0 and

s(λ) =
1

2c cosh
�

πλ
c

� , (45)

d(λ) = ln
�

tanh2
�

πλ

2c

��

. (46)

The calculations leading to Eqns (44) are summarized in Appendix B. The thermodynamic
form of the Bethe-Takahashi equations (16) can be similarly rewritten. Since we do not make
explicit use of them in the following, we relegate their derivation to Appendix B.
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4.3 Asymptotic relations

Eqns (44) do not fix {ηn(λ)}n of Eqns (42), because they do not contain the chemical potential
h. In order to recover the (unique) solution of Eqns (42), it is then necessary to combine
Eqns (44) with a condition on the asymptotic behaviour of ηn(λ) for large n. In our case one
can derive from (42) the following relation, which holds asymptotically for n→∞

lnηn+1(λ)' −2h+ a1 ∗ lnηn(λ) + ln

�

λ

c

�

λ2

c2 +
1
4

��

. (47)

Here a1(λ) is given in (18) (for n= 1). The derivation of Eqn (47) is reported in Appendix C.
The set of equations (44), with the additional constraint given by Eqn (47), is now equivalent
to Eqns (42).

5 Rapidity distribution functions for the stationary state

5.1 Numerical analysis

Eqns (16), (42) can be truncated to obtain a finite system of integral equations, which are
defined on the real line λ ∈ (−∞,∞). One can then numerically solve this finite system
either by introducing a cut-off for large λ, or by mapping the equations onto a finite interval.
Following the latter approach, we define

χn(λ) = ln

�

ηn(λ)τ2n

qn(λ)

�

, (48)

where qn(λ) is given by

qn(λ) =
1

Wn(λ)
=
λ2

c2

�

λ2

c2 +
�n

2

�2
� n−1
∏

l=1

�

λ2

c2 +
�

l
2

�2
�2

. (49)

Finally, we have defined
τ= eh, (50)

h being the Lagrange multiplier appearing in (42). The functions χn(λ) satisfy the following
system of equations

χn(λ) =
∞
∑

m=1

anm ∗ ln

�

1+
τ2m

qm(λ)
e−χm(λ)

�

=

=
∞
∑

m=1

∫ +∞

0

d µ (anm(λ−µ) + anm(λ+µ)) ln

�

1+
τ2m

qm(µ)
e−χm(µ)

�

, (51)

where anm(λ) are defined in (17). We then change variables

λ(x)
c
=

1− x
1+ x

, (52)

which maps the interval (0,∞) onto (−1,1). Since the distributions χn(λ) are symmetric w.r.t.
0, they can be described by functions with domain (0,∞). Using the map (52) they become
functions χn(x) with domain (−1,1). The set of equations (51) becomes

χn(x) = 2
∞
∑

m=1

∫ 1

−1

dy
1

(1+ y)2
Anm(x , y) ln

�

1+
τ2m

qm(y)
e−χm(y)

�

, (53)
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where

Anm(x , y) = c
�

anm

�

λ(x)−λ(y)
�

+ anm

�

λ(x) +λ(y)
��

. (54)

The thermodynamic Bethe-Takahashi equations (16) can be similarly recast in the form

Θn(x) =
n

2π
− 2

∞
∑

m=1

∫ 1

−1

dy
(1+ y)2

Anm(x , y)
1+ηm(y)

Θm(y), (55)

where Θ(x) = ρ t
n

�

λ(x)
�

, with λ(x) defined in Eq. (52). The infinite systems (53) and (55),
defined on the interval (−1, 1), can then be truncated and solved numerically for the functions
χn(x) and Θn(x), for example using the Gaussian quadrature method. The functions ηn(λ)
are recovered from (48) and (52), while the particle and hole distributions ρn(λ), ρh

n(λ) are
obtained from the knowledge of ηn(λ) and ρ t

n(λ).
As γ decreases, we found that an increasing number of equations has to be kept when

truncating the infinite systems (53), (55) in order to obtain an accurate numerical solution.
As we will see in section 6.2, this is due to the fact that, as γ→ 0, bound states with higher
number of particles are formed and the corresponding distribution functions ρn(λ), ηn(λ)
cannot be neglected in (16), (42). As an example, our numerical solution for γ = 0.25, and
γ = 2.5 is shown in Fig. 1, where we also provide a comparison with the analytical solution
discussed in section 5.3.

Two non-trivial checks for our numerical solution are available. The first is given by
Eq. (24), i.e. the solution has to satisfy the sum rule

∞
∑

n=1

∫ ∞

−∞
dλρn(λ)εn(λ) = −γD3, (56)

where εn(λ) is defined in Eqn (20). The second non-trivial check was suggested in Refs [59,60]
(see also Ref. [58]), and is based on the observation that the action (29) has to be equal to
zero when evaluated on the saddle point solution, i.e. SQA[ρsp] = 0, or

2S[ρsp] = SY Y [ρsp], (57)

where S[ρ] and SY Y [ρ] are defined respectively in (41) and (31). Both (56) and (57) are sat-
isfied by our numerical solutions within a relative numerical error ε® 10−4 for all numerically
accessible values of h. As a final check we have verified that our numerical solution satisfies,
within numerical errors,

γ=
1
τ

, (58)

where τ is defined in (50) and γ = c̄/D is computed from the distribution functions using
(22). Relation (58) is equivalent to that found in the repulsive case [51].

5.2 Perturbative expansion

Following Ref. [51] we now turn to a “perturbative” analysis of Eqns (42). This will provide
us with another non-trivial check on the validity of the analytical solution presented in section
5.3. Defining ϕn(λ) = 1/ηn(λ) and using (50), we can rewrite (42) in the form

lnϕn(λ) = ln(τ2n) + ln Wn(λ)−
∞
∑

m=1

anm ∗ ln(1+ϕm)(λ), (59)

where Wn(λ) is given in (39). We now expand the functions ϕn(λ) as power series in τ

ϕn(λ) =
∞
∑

k=0

ϕ(k)n (λ)τ
k. (60)
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Figure 1: Rapidity distribution functions ρn(λ) and (2π/n)ρh
n(λ) for n-string solutions with

n ≤ 4. The final value of the interaction is chosen as (a) γ = 0.25 and (b) γ = 2.5. The dots
correspond to the numerical solution discussed in section 5.1, while solid lines correspond to
the analytical solution presented in section 5.3. The functions are shown for λ > 0 (being
symmetric with respect to λ = 0) and have been rescaled for presentational purposes. Note
that the rescaling factors for the hole distributions are determined by their asymptotic values,
ρh

n(λ)→ n/2π as λ→∞.
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From (59) one readily sees that ϕn(λ) = O (τ2n), i.e.

ϕ(k)n (λ) = 0, k = 0, . . . , 2n− 1, (61)

ϕ(2n)
n (λ) =

1
λ2

c2

�

λ2

c2 +
n2

4

�

∏n−1
j=1

�

λ2

c2 +
j2
4

�2 . (62)

Using (62) as a starting point we can now solve Eqns (59) by iteration. The calculations
are straightforward but tedious, and are sketched in Appendix D. Using this method we have
calculated ϕ1(λ) up to fifth order in τ. In terms of the the dimensionless variable x = λ/c we
have

ϕ1(x) =
τ2

x2(x2+ 1
4 )

�

1− 4τ
x2+1 +

τ2(1+13x2)
(1+x2)2(x2+ 1

4 )
− 32(−1+5x2)τ3

(1+x2)3(1+4x2)

�

+O (τ6). (63)

5.3 Exact solution

In this section we discuss how to solve equations (16), (42) analytically. We first observe that
the distribution functions ρn(λ) can be obtained from the set {ηn(λ)}n of functions fulfilling
Eqns (42) as

ρn(λ) =
τ

4π

∂τη
−1
n (λ)

1+η−1
n (λ)

, (64)

where τ is given in (50). This relation is analogous to the one found in the repulsive case in
Ref. [51]. To prove (64) one takes the partial derivative ∂τ of both sides of (59). Combining
the resulting equation with the thermodynamic version of the Bethe-Takahashi equations (16),
and finally invoking the uniqueness of the solution, we obtain (64).

This leaves us with the task of solving (42). In what follows we introduce the dimensionless
parameter x = λ/c and throughout this section, with a slight abuse of notation, we will use
the same notations for functions of λ and of x . Our starting point is the tri-diagonal form (44)
of the coupled integral equations (42). Following Ref. [58] we introduce the corresponding
Y -system [113,114]

yn

�

x +
i
2

�

yn

�

x −
i
2

�

= Yn−1(x)Yn+1(x), n≥ 1, (65)

where we define y0(x) = 0 and
Yn(x) = 1+ yn(x) . (66)

Let us now assume that there exists a set of functions yn(x) that satisfy the Y -system (65),
and as functions of the complex variable z have the following properties

1. yn(z)∼ z2, as z→ 0, ∀n≥ 1;

2. yn(z) has no poles in −1/2< Im(z)< 1/2, ∀n≥ 1;

3. yn(z) has no zeroes in −1/2< Im(z)< 1/2 except for z = 0, ∀n≥ 1.

One can prove that the set of functions yn(x) with these properties solve the tri-diagonal form
of the integral equations equations (44) [58]. To see this, one has to first take the logarithmic
derivative of both sides of (65) and take the Fourier transform, integrating in x ∈ (−∞,∞).
Since the argument of the functions in the l.h.s. is shifted by ±i/2 in the imaginary direction,
one has to use complex analysis techniques to perform the integral. In particular, under the
assumptions (1), (2), (3) the application of the residue theorem precisely generates, after
taking the inverse Fourier transform, the driving term d(λ) in (44) [58].
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We conjecture that the exact solution for η1(x) is given by

η1(x) =
x2[1+ 4τ+ 12τ2 + (5+ 16τ)x2 + 4x4]

4τ2(1+ x2)
. (67)

Our evidence supporting this conjecture is as follows:

1. We have verified using Mathematica that the functions ηn(x) generated by substituting
(67) into the Y-system (65) have the properties (1), (2) up to n= 30. We have checked
for a substantial number of values of the chemical potential h that they have the third
property (3) up to n= 10.

2. Our expression (67) agrees with the expansion (63) in powers of τ up to fifth order.

3. Eqn (67) agrees perfectly with our numerical solution of the saddle-point equations
discussed in section 5.1, as is shown in Fig. 1.

Given η1(x) we can use the Y -system (65) to generate ηn(x) with n≥ 2

ηn(x) =
ηn−1

�

x + i
2

�

ηn−1

�

x − i
2

�

1+ηn−2(x)
− 1 , n≥ 2. (68)

As mentioned before, the distribution functions ρn(x) can be obtained using (64). The explicit
expressions for ρ1(x) and ρ2(x) are as follows:

ρ1(x) =
2τ2(1+ x2)(1+ 2τ+ x2)

π(x2 + (2τ+ x2)2)(1+ 5x2 + 4(τ+ 3τ2 + 4τx2 + x4))
, (69)

ρ2(x) =
16τ4(9+ 4x2)h1(x ,τ)

π(1+ 4x2 + 8τ)h2(x ,τ)h3(x ,τ)
, (70)

where

h1(x ,τ) = 9+ 49x2 + 56x4 + 16x6 + 72τ

+ 168x2τ+ 96x4τ+ 116τ2 + 176x2τ2 + 96τ3 , (71)

h2(x ,τ) = 9+ 49x2 + 56x4 + 16x6 + 24τ

+ 120x2τ+ 96x4τ+ 40τ2 + 160x2τ2 + 64τ3 , (72)

h3(x ,τ) = 9x2 + 49x4 + 56x6 + 16x8 + 96x2τ+ 224x4τ

+ 128x6τ+ 232x2τ2 + 352x4τ2 + 384x2τ3 + 144τ4 . (73)

The functions ρn(x) for n ≥ 3 are always written as rational functions but their expressions
get lengthier as n increases.

6 Physical properties of the stationary state

6.1 Local pair correlation function

The distribution functions ρn(λ), ρh
n(λ) completely characterize the stationary state. Their

knowledge, in principle, allows one to calculate all local correlation functions in the thermo-
dynamic limit. In practice, while formulas exist for the expectation values of simple local oper-
ators in the Lieb-Liniger model in the finite volume [115–118], it is generally difficult to take
the thermodynamic limit of these expressions. In contrast to the repulsive case [117,119–123],
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much less is known in the attractive regime, where technical complications arise that are as-
sociated with the existence of string solutions to the Bethe ansatz equations. Here we focus
on the computation of the local pair correlation function

g2 =
〈: ρ̂2(0) :〉

D2
=
〈Ψ†(0)Ψ†(0)Ψ(0)Ψ(0)〉

D2
. (74)

We start by applying the Hellmann-Feynman [119, 120, 122, 124] theorem to the expec-
tation value in a general energy eigenstate |{λ j}〉 with energy E[{λ j}] of the finite system

〈{λ j}|Ψ†Ψ†ΨΨ|{λ j}〉= −
1
L

∂ E[{λ j}]
∂ c

. (75)

In order to evaluate the expression on the r.h.s., we need to take the derivative of the Bethe-
Takahashi equations (9) with respect to c

f (n)(λα) =
1
n

∑

m

2π
L

∑

β

�

f (n)(λα)− f (m)(λβ)−
λn
α

c
+
λm
β

c

�

anm(λ
n
α −λ

m
β ) . (76)

Here anm is given in Eq. (17) and

f (n)(λα) =
∂ λn

α

∂ c
. (77)

Taking the thermodynamic limit gives

f (n)(λ) =
2π
n

�

f (n)(λ)−
λ

c

� ∞
∑

m=1

∫ ∞

−∞
dµ ρm(µ)anm(λ−µ)

+
2π
n

∞
∑

m=1

∫ ∞

−∞
dµ ρm(µ)

�µ

c
− f (m)(µ)

�

anm(λ−µ). (78)

Using the thermodynamic version of the Bethe-Takahashi equations (16) and defining

bn(λ) = 2π
�

λ

c
− f (n)(λ)

�

ρ t
n(λ), (79)

we arrive at

bn(λ) = n
λ

c
−
∞
∑

m=1

∫ ∞

−∞
dµ

1
1+ηm(µ)

bm(µ)anm(λ−µ) . (80)

The set of equations (80) completely fixes the functions bn(λ), once the functions ηn(λ) are
known. The right hand side of (75) in the finite volume can be cast in the form

∂ E
∂ c
=
∑

n

�

∑

α

2nλn
α f (n)(λα)−

c
6

n(n2 − 1)

�

. (81)

Taking the thermodynamic limit, and using (79) we finally arrive at

1
L
∂ E
∂ c
=
∞
∑

n=1

∫ ∞

−∞

dµ
2π

�

2πρn(µ)

�

2nµ2

c
−

c
6

n(n2 − 1)

�

− 2nµbn(µ)
1

1+ηm(µ)

�

. (82)

Combining (80) and (82) we can express the local pair correlation function as

g2(γ) = γ
2
∞
∑

m=1

∫ ∞

−∞

dx
2π

�

2mx bm(x)
1

1+ eηm(x)
− 2πeρm(x)

�

2mx2 −
m(m2 − 1)

6

��

, (83)
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where the functions bn(x) are determined by

bn(x) = nx −
∞
∑

m=1

∫ ∞

−∞
dy

1
1+ eηm(y)

bm(y)eanm(x − y). (84)

In (83), (84) we defined

eηn(x) = ηn(xc) , eρn(x) = ρn(xc) , eanm(x) = canm(xc). (85)

Using the knowledge of the functions ηn(λ) for the stationary state, we can solve Eqns (84)
numerically and substitute the results into (83) to obtain g2(γ).

While (83), (84) cannot be solved in closed form, they can be used to obtain an explicit
asymptotic expansion around γ=∞. To that end we use (19), (20) and (24) to rewrite g2(γ)
as

g2(γ) = 2+ γ2
∞
∑

m=1

∫ ∞

−∞

dx
2π

2mx bm(x)
1

1+ eηm(x)
. (86)

We then use that large values of γ correspond to small values of τ, cf. (58), and carry out a
small-τ expansion of the functions

1
1+ eηn(x)

=
eϕn(x)

(1+ eϕn(x))
, (87)

where eϕn(x) = 1/eηn(x) as in section 5.2. Substituting this expansion into the r.h.s. of (84)
and proceeding iteratively, we obtain an expansion for the functions bn(x) in powers of τ. The
steps are completely analogous to those discussed in section 5.2 for the functions ϕn(λ) and
will not be repeated here. Finally, we use the series expansions of bn(x) and (1+ eηn(x))−1 in
(86) to obtain an asymptotic expansion for g2(γ). The result is

g2(γ) = 4−
40
3γ
+

344
3γ2
−

2656
3γ3

+
1447904

225γ4
+O (γ−5). (88)

In Fig. 2 we compare results of a full numerical solution of Eqns (83), (84) to the asymptotic
expansion (88). As expected, the latter breaks down for sufficiently small values of γ. In
contrast to the large-γ regime, the limit γ → 0 is more difficult to analyze because g2(γ) is
non-analytic in γ= 0. The limit γ→ 0 can be calculated as shown in Appendix E, and is given
by

lim
γ→0

g2(γ) = 2. (89)

As was already noted in Ref. [56], (89) implies that the function g2(γ) is discontinuous in
γ = 0. Indeed, g2(0) can be calculated directly by using Wick’s theorem in the initial BEC
state

〈BEC| : ρ̂(0)2 : |BEC〉
D2

= 1. (90)

This discontinuity, which is absent for quenches to the repulsive regime [51], is ascribed to
the presence of multi-particle bound states for all values of γ 6= 0. The former are also at the
origin of the non-vanishing limit of g2(γ) for γ→∞ as it will be discussed in the next section.

Finally, an interesting question is the calculation of the three-body one-point correlation
function g3(γ) on the post-quench steady state. The latter is relevant for experimental real-
izations of bosons confined in one dimension, as it is proportional to the three-body recombi-
nation rate [125]. For g3 it is reasonable to expect that three-particle bound states may give
non-vanishing contributions in the large coupling limit. While g3 is known for general states in
the repulsive Lieb-Liniger model, its computation in the attractive case is significantly harder
and requires further development of existing methods. We hope that our work will motivate
theoretical efforts in this direction.
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Figure 2: Local pair correlation function g2(γ) in the stationary state at late times after the
quench. The numerical solution of Eqns (83), (84) is shown as a solid orange line. The
asymptotic expansion (88) around γ=∞ up to order O (γ−n) with n= 2,3, 4 is seen to be in
good agreement for large values of γ.

6.2 Physical implications of the multi-particle bound states

A particularly interesting feature of our stationary state is the presence of finite densities of
n-particle bound states with n ≥ 2. In Fig. 3, their densities and energies per volume are
shown for a number of different values of γ. We see that the maximum of Dn occurs at a value
of n that increases as γ decreases. This result has a simple physical interpretation. In the
attractive regime, the bosons have a tendency to form multi-particle bound states. One might
naively expect that increasing the strength γ of the attraction between bosons would lead to the
formation of bound states with an ever increasing number of particles, thus leading to phase
separation. However, in the quench setup the total energy of the system is fixed by the initial
state, cf. (24), while the energy of n-particle bound states scales as n3, cf. Eqns (20), (21).
As a result, n-particle bound states cannot be formed for large values of γ, and indeed they
are found to have very small densities for n ≥ 3. On the contrary, decreasing the interaction
strength γ, the absolute value of their energy lowers and these bound states become accessible.
The dependence of the peak in Fig. 3 on γ is monotonic but non-trivial and it is the result of the
competition between the tendency of attractive bosons to cluster, and the fact that n-particle
bound states with n very large cannot be formed as a result of energy conservation.

The presence of multi-particle bound states affects measurable properties of the system,
and is the reason for the particular behaviour of the local pair correlation function computed
in the previous section. Remarkably, this is true also in the limit γ →∞. This is in marked
contrast to the super Tonks-Girardeau gas, where bound states are absent. To exhibit the
important role of bound states in the limit of large γ, we will demonstrate that the limiting
value of g2(γ) for γ →∞ is entirely determined by bound pairs. It follows from (83) that
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Figure 3: Density Dn and absolute value of the normalized energies per volume en/γ of the
bosons forming n-particle bound states as defined in (21). The plots correspond to (a) γ= 20,
(b) γ = 2, (c) γ = 0.2. The total density is fixed D = 1. The energy densities en are always
negative for n≥ 2 (i.e. |en|= −en for n≥ 2) while e1 > 0.

g2(γ) can be written in the form

g2(γ) =
∞
∑

m=1

g(m)2 (γ), (91)

where g(m)2 (γ) denotes the contribution of m-particle bound states to the local pair correlation

g(m)2 (γ) = γ2

∫ ∞

−∞

dx
2π

�

2mx bm(x)
1

1+ eηm(x)
− 2πeρm(x)

�

2mx2 −
m(m2 − 1)

6

��

. (92)

Let us first show that unbound particles give a vanishing contribution

lim
γ→∞

g(1)2 (γ) = 0. (93)

In order to prove this, we use that at leading order in 1/γ we have b1(x) = x . Using the
explicit expressions for eη1(x), eρ1(x) we can then perform the integrations in the r.h.s. of
Eq. (92) exactly and take the limit γ→∞ afterwards. We obtain

lim
γ→∞

γ2

∫ ∞

−∞

dx
2π

2x b1(x)
1

1+ eη1(x)
= 2, (94)

lim
γ→∞

γ2

∫ ∞

−∞

dx
2π

�

−2πeρ1(x)2x2
�

= −2, (95)

which establishes (93). Next, we address the bound pair contribution. At leading order in 1/γ
we have b2(x) = 2x , and using the explicit expression for eη2(x) we obtain

lim
γ→∞

γ2

∫ ∞

−∞

dx
2π

4x b2(x)
1

1+ eη2(x)
= 0. (96)
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This leaves us with the contribution

lim
γ→∞

γ2

∫ ∞

−∞

dx
2π

�

−2πfρ2(x)
�

4x2 − 1
��

. (97)

Although the function eρ2(x) is known, cf. Eq. (70), its expression is unwieldy and it is difficult
to compute the integral analytically. On the other hand, one cannot expand eρ2(x) in 1/γ inside
the integral, because the integral of individual terms in this expansion are not convergent
(signalling that in this case one cannot exchange the order of the limit γ → ∞ and of the
integration). Nevertheless, the numerical computation of the integral in (97) for large values
of γ presents no difficulties and one can then compute the limit numerically. We found that
the limit in Eq. (97) is equal to 4 within machine precision so that

lim
γ→∞

g2(γ) = 4= lim
γ→∞

g(2)2 (γ). (98)

Finally, we verified that contributions coming from bound states with higher numbers of par-
ticles are vanishing, i.e. g(m)2 (γ)→ 0 for γ→∞, m ≥ 3. This establishes that the behaviour
of g2(γ) for large values of γ is dominated by bound pair of bosons.

7 Conclusions

We have considered quantum quenches from an ideal Bose condensate to the one-dimensional
Lieb-Liniger model with arbitrary attractive interactions. We have determined the stationary
state, and determined its physical properties. In particular, we revealed that the stationary
state is composed of an interesting mixture of multi-particle bound states, and computed the
local pair correlation function in this state. Our discussion presents a detailed derivation of
results first announced in Ref. [56].

As we have stressed repeatedly, the most intriguing feature of the stationary state for the
quench studied in this work is the presence of multi-particle bound states. As was argued
in Ref. [56], their properties could in principle be probed in ultra-cold atoms experiments.
Multi-particle bound states are also formed in the quench from the Néel state to the gapped
XXZ model, as it was recently reported in Refs. [57–60]. However, in contrast to our case, the
bound state densities are always small compared to the density of unbound magnons for all
the values of the final anisotropy parameter ∆≥ 1 [58].

Our work also provides an interesting physical example of a quantum quench, where dif-
ferent initial conditions lead to stationary states with qualitatively different features. Indeed, a
quench in the one-dimensional Bose gas from the infinitely repulsive to the infinitely attractive
regime leads to the super Tonks-Girardeau gas, where bound states are absent. On the other
hand, as shown in section 6, if the initial state is an ideal Bose condensate, bound states have
important consequences on the correlation functions of the system even in the limit of large
negative interactions.

An interesting open question is to find a description of our stationary state in terms of
a GGE. As the stationary state involves bound states, it is likely that the GGE will involve
not yet known quasi-local conserved charges [41, 44, 45] as well as the known ultra-local
ones [126]. In the Lieb-Liniger model technical difficulties arise when addressing such issues,
as expectation values of local conserved charges generally exhibit divergences [29, 89, 126].
In addition, very little is known about quasi-local conserved charges for interacting models
defined in the continuum [41,48].

Finally, it would be interesting to investigate the approach to the steady state in the quench
considered in this work. While this is in general a very difficult problem, in the repulsive

19

https://scipost.org
https://scipost.org/SciPostPhys.1.1.001


SciPost Phys. 1(1), 001 (2016)

regime the post-quench time evolution from the non-interacting BEC state was considered
in [53]. There an efficient numerical evaluation of the representation (26) was performed,
based on the knowledge of exact one-point form factors [118]. The attractive regime, however,
is significantly more involved due to the presence of bound states and the study of the whole
post-quench time evolution remains a theoretical challenge for future investigations.
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A Overlaps in the presence of zero-momentum n-strings

In this appendix we argue that Eq. (38) gives the leading term in the thermodynamic limit of
the logarithm of the overlap between the BEC state and a parity-invariant Bethe state, even in
cases where the latter contains zero-momentum strings.

To see this, consider a parity invariant Bethe state with a single zero-momentum m-string,
and K parity-related pairs of n j-strings. The total number of particles in such a state is then
N = 2

∑

j n j +m. In Ref. [111] an explicit expression for the overlap (33) of such states with
a BEC state in the zero-density limit (L→∞ and N fixed) was obtained. Up to an irrelevant
(for our purposes) overall minus sign, it reads

〈{λ j}
N/2
j=1 ∪ {−λ j}

N/2
j=1 |BEC〉 =

2m−1 Lc
(m− 1)!

√

√ N !
(Lc)N

×
K
∏

p=1

1
s

λ2
p

c2

�

λ2
p

c2 +
n2

p
4

�

∏np−1
q=1

�

λ2
p

c2 +
q2

4

�

, (99)

where λp is the centre of the p’th string. We see that as a result of having a zero-momentum
string, an additional pre-factor L appears. In general, the presence of M zero-momentum
strings will lead to an additional pre-factor LM [111]. While (99) is derived in the zero density
limit, we expect an additional pre-factor to be present also if one considers the thermodynamic
limit N , L →∞, at finite density D = N/L. Importantly such pre-factors will result in sub-
leading corrections of order (ln L)/L to the logarithm of the overlaps. This suggests that (38)
holds even for states with zero-momentum n-strings.

B Tri-diagonal form of the coupled integral equations

B.1 Tri-diagonal Bethe-Takahashi equations

Our starting point are the thermodynamic Bethe equations (16). For later convenience we
introduce the following notations for the Fourier transform of a function

f̂ (k) =F [ f ](k) =
∫ ∞

−∞
f (λ)eikλdλ , (100)
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f (λ) =F−1[ f̂ ](λ) =
1

2π

∫ ∞

−∞
f̂ (k)e−ikλdk . (101)

We recall that f ∗ g denotes the convolution of two functions, cf. (43). The Fourier transform
of an(λ) defined in (18) is easily computed

ân(k) = e−
nc|k|

2 . (102)

Following Ref. [85], we introduce the symbols

[nmp] =







1 , if p = |m− n| or m+ n
2 , if p = |m− n|+ 2, |m− n|+ 4, . . . , m+ n− 2 ,
0 otherwise .

(103)

We can then perform the Fourier transform of both sides of (16) and obtain

nδ(k)−
∑

m=1

∑

p>0

[nmp]ρ̂m(k)e
− c

2 |k|p = ρ̂ t
n(k) , (104)

where ρ t
n(λ) are given in (15). We now define

ρ̂−m(k) = −ρ̂m(k) , m≥ 1, (105)

ρ̂0(k) = 0 . (106)

After straightforward calculations, we can rewrite (104) in the form

ρ̂h
n(k) = nδ(k)− coth

�

|k|c
2

� +∞
∑

m=−∞
e−|k||n−m| c2 ρ̂m(k) . (107)

In order to decouple these equations we note that

ρ̂h
n+1(k) + ρ̂h

n−1(k) = 2nδ(k)

− coth
�

|k|c
2

�

�

−2ρ̂n(k) sinh
�

|k|c
2

�

+ 2 cosh
�

|k|c
2

� ∞
∑

m=−∞
e−|k||n−m| c2 ρ̂m(k)

�

.

(108)

Combining Eqns (107), (108) one obtains

ρ̂ t
n(k) =

1
2cosh (|k|c/2)

�

ρ̂h
n+1(k) + ρ̂

h
n−1(k)

�

− nδ(k)





1− cosh
�

|k|c
2

�

cosh
�

|k|c
2

�





︸ ︷︷ ︸

=0

=

=
1

2cosh (|k|c/2)
�

ρ̂h
n+1(k) + ρ̂

h
n−1(k)

�

. (109)

We can now perform the inverse Fourier transform. Using

1
2π

∫ ∞

−∞
dk

1

cosh
�

k c
2

� e−iλk =
1
c

1

cosh
�

λπ
c

� , (110)

we finally obtain

ρn(1+ηn) = s ∗ (ηn−1ρn−1 +ηn+1ρn+1) n≥ 1 , (111)

where we can choose η0(λ)ρ0(λ) = δ(λ), ηn(λ) is given in Eq. (14), and where

s(λ) =
1

2c cosh
�

πλ
c

� . (112)
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B.2 Tri-diagonal oTBA equations

In this appendix we derive the tri-diagonal equations (44) starting from Eqns (42). Our dis-
cussion follows Ref. [57]. Some useful identities are [75]

(a0 + a2) ∗ anm = a1 ∗ (an−1,m + an+1,m) + (δn−1,m +δn+1,m)a1 , n≥ 2, m≥ 1, (113)

(a0 + a2) ∗ a1m = a1 ∗ a2,m + a1δ2,m , m≥ 1 , (114)

where we define a0(λ) = δ(λ), and where the functions anm(λ), an(λ) are given in Eqns (17),
(18). Convolution of (42) with (a0 + a2) gives

(a0 + a2) ∗ lnηn = (a0 + a2) ∗ gn − a1 ∗ (gn−1 + gn+1)

+ a1 ∗ [ln(1+ηn−1) + ln(1+ηn+1)] , n≥ 1 , (115)

where we defined gn(λ) = − ln Wn(λ), g0(λ) = 0 and η0(λ) = 0. The functions gn(λ) can be
written as

gn(λ) = ln s(2)0 (λ) + ln s(2)n (λ) + 2
n−1
∑

`=1

ln s(2)
`
(λ) , (116)

where

s(2)
`
(λ) = s`(λ)s−`(λ) =

λ2

c2 +
`2

4
. (117)

It is straightforward to show that

(am ∗ fr)(λ) = fm+r(λ) , (118)

where we defined

fr(λ) = ln

�

�

λ

c

�2

+
� r

2

�2
�

. (119)

Using (118) and (116), we can rewrite the driving term in (115) as

d̃n ≡ (a0 + a2) ∗ gn − a1 ∗ (gn−1 + gn+1) = f0 − f2 = ln

�

λ2

c2

�

− ln

�

λ2

c2 + 1

�

, (120)

which allows us to rewrite the oTBA equations in the form

(a0 + a2) ∗ lnηn = d̃n + a1 ∗ [ln(1+ηn−1) + ln(1+ηn+1)] . (121)

We note that d̃n is in fact independent of n. Carrying out the Fourier transform and using that
f0 − f2 = (a0 − a2) ∗ f0 we obtain

F [lnηn] =
1

1+ e−c|k|
(1− e−c|k|)F [ f0]

+
1

1+ e−c|k|
e−

c|k|
2 F [(ln(1+ηn−1) + ln(1+ηn+1))] . (122)

The first term on the right hand side simplifies

1
1+ e−c|k|

(1− e−c|k|)F [ f0] = −2π
tanh(ck/2)

k
. (123)

Finally, taking the inverse Fourier transform of (122), using (110) as well as
∫ ∞

−∞
dke−ikλ tanh(ck/2)

k
= − ln

�

tanh2
�

πλ

2c

��

, (124)
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we arrive at the desired tri-diagonal form of the oTBA equations

ln(ηn) = d + s ∗ [ln(1+ηn−1) + ln(1+ηn+1)] , n≥ 1 , (125)

η0(λ) = 0 . (126)

Here s(λ) is given by Eq. (112) and

d(λ) = ln
�

tanh2
�

πλ

2c

��

. (127)

C Asymptotic behaviour

In this appendix we derive the asymptotic condition (47) for the tri-diagonal equations (44).
Our derivation closely follows the finite temperature case [75]. We start from Eq. (42) for
n= 1

lnη1(λ) = −2h+ ( f0 + f1) + a2 ∗ ln(1+η−1
1 ) +

+∞
∑

m=2

(am−1 + am+1) ∗ ln
�

1+η−1
m

�

, (128)

where fr = fr(λ) is defined in (119). We use now the following identities, which are easily
derived from (118), (120), (121)

a2 ∗ ln(1+η−1
1 ) = a2 ∗ ln(1+η1)− a2 ∗ lnη1 =

= a2 ∗ ln(1+η1)− f0 + f2 − a1 ∗ ln(1+η2) + lnη1 . (129)

Using (129) we can recast (128) in the form

−2h+ a1 ∗ ( f0 + f1) = a1 ∗ lnη2 − a2 ∗ ln(1+η1)− a3 ∗ ln(1+η−1
2 )

−
+∞
∑

m=3

(am−1 + am+1) ∗ ln(1+η−1
m ) . (130)

To proceed, we write

+∞
∑

m=3

(am−1 + am+1) ∗ ln(1+η−1
m ) = (a2 + a4) ∗ ln(1+η−1

3 )

+
+∞
∑

m=4

(am−1 + am+1) ∗ ln(1+η−1
m ) . (131)

After rewriting the first term on the right hand side, we substitute back into (130) to obtain

−2h+ a2 ∗ ( f0 + f1) = a2 ∗ lnη3 − a3 ∗ ln(1+η2)− a4 ∗ ln(1+η−1
3 )

−
+∞
∑

m=4

(am−1 + am+1) ∗ ln(1+η−1
m ). (132)

Iterating the above procedure n times we arrive at

−2h+ an ∗ ( f0 + f1) = an ∗ lnηn+1 − an+1 ∗ ln(1+ηn)− an+2 ∗ ln(1+η−1
n+1)

−
+∞
∑

m=n+2

(am−1 + am+1) ∗ ln(1+η−1
m ) . (133)
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Fourier transforming and using the definition for fr given in (119) we obtain

lnηn+1 = −2h+ ln

�

λ

c

�

λ2

c2 +
1
4

��

+ a1 ∗ lnηn

+a1 ∗ ln(1+η−1
n ) + a2 ∗ ln(1+η−1

n+1) +
+∞
∑

m=2

(am−1 + am+1) ∗ ln(1+η−1
m+n). (134)

Assuming that η−1
n (λ) is vanishing sufficiently fast as n→∞ for a generic (and fixed) value

of λ, we can drop the infinite sum and the two previous terms, and arrive at Eq. (47).

D Perturbative analysis

In this appendix we sketch the calculations leading to the expansion (63). Throughout this
appendix we work with the dimensionless variable x = λ/c. At the lowest order, it follows
from Eq. (62) that

ϕ1(x) =
τ2

x2
�

x2 + 1
4

� +O (τ3). (135)

Since ϕn(x)∝ τ2n, we can neglect ϕn(x) with n≥ 2 to compute the third order expansion of
ϕ1(x). Hence, the infinite sum in (59) for n = 1 can be truncated, at third order in τ, to the
first term (m= 1), where we can use the expansion (135) for ϕ1(λ). Following Ref. [51] one
can then use identity (118) to perform the convolution integral and finally obtain

ϕ1(x) =
τ2

x2
�

x2 + 1
4

�

�

1−
4τ

x2 + 1

�

+O (τ4). (136)

One can then perform the same steps for higher order corrections, at each stage of the calcu-
lation keeping all the relevant terms. For example, already at the fourth order in τ of ϕ1(x)
one cannot neglect the lowest order contribution coming from ϕ2(x) in the r.h.s. of Eq. (59).
For higher orders one also has to consider corrections to ϕn(x) with n≥ 2.

E Small γ limit for g2

In this appendix we prove that
lim
γ→0

g2(γ) = 2 . (137)

Our starting point is Eqn (86). Rescaling variables by

b̂m(x) =
p
γbm

�

x
p
γ

�

, η̂n(x) = eηn

�

x
p
γ

�

, (138)

we have

g2 = 2+
p
γ

∞
∑

m=1

∫ ∞

−∞

dx
2π

�

2mx b̂m(x)
1

1+ η̂m(x)

�

. (139)

The functions b̂n(x) satisfy the coupled nonlinear integral equations

b̂n(x) = nx −
∞
∑

m=1

∫ ∞

−∞
dy

1
1+ η̂m(y)

b̂m(y)ânm(x − y) , (140)
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where

ânm(x) =
1
p
γ
eanm

�

x
γ

�

. (141)

Our goal is to determine the limit

lim
γ→0

∞
∑

m=1

∫ ∞

−∞

dx
2π

�

2mx b̂m(x)
1

1+ η̂m(x)

�

. (142)

The calculation is non-trivial as we cannot exchange the infinite sum with the limit. However,
based on numerical evidence we claim that this limit is finite, and (137) then immediately
follows from (139).

Note that the numerical computation of g2(γ) is increasingly demanding as γ → 0, due
to the fact that more and more strings contribute. Accordingly, the infinite systems (83) and
(84) have to be truncated to a larger number of equations and the numerical computation
takes more time to provide precise results. We were able to numerically compute g2(γ) for
decreasing values of γ down to γ = 0.025 where g2(0.025) ' 2.11 and approximately 30
strings contributed to the computation. We fitted the numerical data for small γ with G(γ) =
α1 +α2

p
γ and we correctly found α1 = 2 within the numerical error.
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