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Abstract: Non-linear realizations of spacetime symmetries can be obtained by a general-

ization of the coset construction valid for internal ones. The physical equivalence of different

representations for spacetime symmetries is not obvious, since their relation involves not

only a redefinition of the fields but also a field-dependent change of coordinates. A simple

and relevant spacetime symmetry is obtained by the contraction of the 4D conformal group

that leads to the Galileon group. We analyze two non-linear realizations of this group, fo-

cusing in particular on the propagation of signals around non-trivial backgrounds. The

aperture of the lightcone is in general different in the two representations and in particular

a free (luminal) massless scalar is mapped in a Galileon theory which admits superluminal

propagation. We show that in this theory, if we consider backgrounds that vanish at in-

finity, there is no asymptotic effect: the displacement of the trajectory integrates to zero,

as can be expected since the S-matrix is trivial. Regarding local measurements, we show

that the puzzle is solved taking into account that a local coupling with fixed sources in one

theory is mapped into a non-local coupling and we show that this effect compensates the

different lightcone. Therefore the two theories have a different notion of locality. The same

applies to the different non-linear realizations of the conformal group and we study the

particular case of a cosmologically interesting background: the Galilean Genesis scenarios.
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1 Introduction

The treatment of non-linear realizations of internal symmetries in quantum field theory is

by now well understood. If a symmetry group G is spontaneously broken to a subgroup H,

the Goldstone theorem ensures that one massless spin zero particle occurs for each broken

symmetry generator. Remarkably, the low-energy dynamics of Goldstone bosons is quite

insensitive to the specific UV theory that originated them and is essentially governed by the

group theory structure of the coset space G/H, as originally shown by Callan, Coleman,

Wess and Zumino (CCWZ) [1, 2]. For a given coset G/H, there is an infinite number

of possible parameterizations leading to different Lagrangians, but these are all physically

equivalent, since local field redefinitions do not change physical observables.

The extension of such considerations to spacetime symmetries is far from trivial. First

of all, the Goldstone theorem no longer applies and we lose the one-to-one correspondence

between massless spin zero particles and broken generators. The number of Goldstone

particles is less than the number of broken generators because certain constraints among

the Goldstones can be imposed, the so-called “inverse Higgs phenomenon” [3].1 A notable

example is the spontaneous breaking of conformal symmetry down to the Poincaré group [6,

1See [4, 5] for recent analyses on the meaning of the inverse Higgs phenomenon.
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7]. In four dimensions the conformal group is isomorphic to SO(4,2) but of the naively

expected 5 Goldstones only one is necessarily present, the dilaton.

The technical generalization of the CCWZ coset construction to spacetime symmetries

has been developed in [3, 8], but the physical interpretation of this construction is perhaps

not totally understood. The spacetime coordinates enter now explicitly in the definition of

the element of the coset. There is still in principle an infinite number of ways of parametriz-

ing the relevant coset but finding explicit tractable parametrizations is not straightforward.

Moreover, and most importantly for the present work, it is not clear whether and in what

sense they are physically equivalent or not.

Two relevant non-linear realizations of the conformal group (and their relation),

dubbed DBI and Weyl representations in [9], have been derived in [10] from the coset

construction of [3, 8]. They are related by a complicated field and spacetime coordinate

redefinition. We have recently shown that the relations between such representations can

be seen as a change of coordinates in AdS5 and lead to the same 2→ 2 dilaton scattering

amplitude [9]. However, the complete physical equivalence of the two representations was

not clear, since around non-trivial backgrounds the aperture of the lightcone of the dilaton

in the two representations is different and theories which have only subluminal propagation

are mapped into theories which allow superluminality.

With this motivation, the aim of this paper is to shed light on the general question of

whether different parametrizations of cosets involving spacetime symmetries are physically

equivalent or not.

We start in section 2 by introducing what is going to be our prominent example of coset

construction: Gal(3 + 1, 1)/ISO(3, 1). This coset, introduced in [11] (see also [12]) to study

Galileons [13], can be seen as the contraction of the conformal coset SO(4, 2)/ISO(3, 1). It

has the advantage, with respect to the latter, of being simpler to treat, yet keeping the same

qualitative features. The two non-linear realizations of this coset that we consider are con-

tractions of the DBI and Weyl representations of [9, 10]. They are related to each other by a

simple-looking field redefinition, eq. (2.7), that crucially involves the spacetime coordinates

as well. Written as an ordinary field redefinition (i.e. keeping spacetime coordinates fixed),

the field redefinition (2.7) can be expanded in an infinite series of higher derivative terms.

Recently the same field redefinition has also been found directly in the case of the

standard (i.e. not conformal) Galileons in [15] (see also [16]). In fact for the coset Gal(3 +

1, 1)/ISO(3, 1), since both the DBI and the Weyl operators reduce to the same set of five

standard Galileons, the transformation that connects the two representations simply maps

the five operators into themselves. In particular this gives rise to the apparent paradox

presented in [15]: a free massless scalar in one representation is mapped in the other into

a non trivial Galileon theory in which superluminality seems to occur! In section 3 we

address this puzzle working at first order in the amplitude of the background. First of all

we show that, in the theory obtained from the free theory by a field redefinition, there is

no asymptotic effect if one considers a localized background which vanishes at infinity. The

trajectory deviates from the lightcone, but the net effect integrates to zero asymptotically.

This squares with the fact that the two theories have the same (trivial!) S-matrix, so that

they should give the same answer to any question which involves asymptotic states.

– 2 –
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We then proceed to consider what happens if one measures the superluminality locally

within a background, coupling the field to an external source, which does not transform

when one changes the coset parametrization. The apparent paradox is solved by realizing

that a local coupling to a source in one representation becomes non-local in the other

representation. We analyze in detail how the non-local coupling provides a delay in the

signal propagation that precisely compensates for the apparent superluminal behaviour.

We thus conclude that the two representations have a different notion of locality and thus

are not physically equivalent.

In section 4 we provide several additional calculations to support this conclusion. In

particular we show that there are no asymptotic effects at second order for a generic back-

ground in subsection 4.1. Furthermore we consider a cylindrically symmetric background

in subsection 4.2, and these two examples illustrate that the cancellation of asymptotic

effects happens only for the particular linear combination of the five Galileons obtained by

mapping the free theory. In subsection 4.3 we show that our arguments apply even when

sources are included. Then in subsection 4.4 we reconsider the Dvali-Gabadadze-Porrati

(DGP) model [17] and we verify we have asymptotic superlumnality in the case of a spheri-

cally symmetric solution. Finally, in subsection 4.5, we come back to our main example and

show how luminality is recovered to all orders in the background amplitude for a specific,

translationally invariant, classical configuration when non-local couplings are considered.

In section 5 we show how the same mechanism applies to the conformal coset and

explains the different aperture of the dilaton lightcone found in [9] in the context of the

Genesis scenario [18, 19]. In section 6 we summarize our findings and conclude with the

general lesson that can be learned from these examples. For completeness, we report in

appendix A how the Galileon map found in [15] is recovered through our coset construction.

In appendix B we explain why the field redefinition we consider (a sum of an infinite number

of higher derivative terms) cannot be truncated; if this is done either the superluminal effect

is not measurable or we are forced to study higher derivative equations of motion.

2 Non-linear realizations of the Galileon group

The existence of a mapping between operators invariant under the non-linearly realized

Galileon symmetry π(y)→ π(y) + c+ bµy
µ can be traced back to the existence of two real-

izations related by a “twist” of the same symmetry breaking pattern Gal(3+1, 1)/ISO(3, 1).

The Galileon algebra Gal(3 + 1, 1) [11] can be written as

[Mρσ, Bν ] = ηνρBσ − ηνσBρ ,
[Pµ, Bν ] = ηµνC ,

[C,Pµ] = 0 ,

[C,Bµ] = 0 .

(2.1)

– 3 –
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Going through the coset construction for non-linearly realized spacetime symmetries it is

easy to write the covariant Cartan 1-form in terms of the generators of the algebra (2.1):

g−1dg = e−ΩµBµe−πCe−y
µPµe(yµ+dyµ)Pµe(π+dπ)Ce(Ωµ+dΩµ)Bµ

= dyµPµ + (dyµΩµ + dπ)C + dΩµBµ .
(2.2)

The field Ωµ can be fixed in terms of the only physical degree of freedom π by imposing

the inverse Higgs constraint

Ωµ(y) = − ∂π

∂yµ
. (2.3)

Now consider the following linear combination of generators

B̂µ =
1√
2L
Bµ +

L√
2
Pµ , Ĉ =

1√
2L
C . (2.4)

It is immediate to verify that the twisted generators (B̂µ, Ĉ) together with (Mµν , Pµ) also

satisfy the Galileon algebra in the same form of eq. (2.1). The Cartan 1-form expanded

in terms of these generators with a new set of spacetime coordinates xµ and Goldstone

bosons q(x), Λµ(x) can then be written as

g−1dg = e−ΛµB̂µe−qĈe−x
µPµe(xµ+dxµ)Pµe(q+dq)Ĉe(Λµ+dΛµ)B̂µ

= dxµPµ + (dxµΛµ + dq)Ĉ + dΛµB̂µ

=

(
dxµ +

L√
2

dΛµ
)
Pµ + (dxµΛµ + dq)

1√
2L
C +

1√
2L

dΛµBµ ,

(2.5)

and the inverse Higgs constraint fixes Λµ to be

Λµ(x) = − ∂q

∂xµ
. (2.6)

The mapping between the two coordinate systems and the Goldstone π(y) and q(x) is

obtained by equating the two expressions for the Cartan form:

yµ = xµ − L∂µq(x) ,

∂π(y)

∂yµ
=

1

L

∂q(x)

∂xµ
,

π(y) =
q(x)

L
− 1

2
(∂q(x))2 ,

(2.7)

where q has been redefined as
√

2q so that the first line, apart from a minus sign,2 is

exactly the coordinate transformation of [15]. Since the two representations satisfy the

same algebra, the invariant operators will be the same in both the (π, yµ) and (q, xµ) basis.

It is clear that a generic operator written in terms of the π field is generally mapped

to a complicated infinite series of higher derivative operators when re-expressed in terms

of the field q (and viceversa). Remarkably, there is a set of special operators that are

mapped into themselves under the mapping (2.7) [15]. These are the so called Galileon

2The slight differences in the notation with respect to [15] are discussed in appendix A.
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operators [13]. In D = 4 they are 5 operators, constructed with n elementary fields and

2n− 2 derivatives (n = 1, . . . , 5). They are the only Galileon invariant operators that give

second order equations of motion.

The map between the Galileon operators can be obtained by the map found in [9]

between the conformal Galileons (i.e. Galileon operators that non-linearly realize the con-

formal group, where π is identified with the dilaton). The Galileon algebra in fact can

be recovered taking an İnönü-Wigner group contraction of the conformal algebra SO(4, 2).

The relevant part of the latter reads

[Mρσ,Kν ] = ηνρKσ − ηνσKρ ,

[Pµ,Kν ] = 2(−ηµνD + 2Mµν) ,

[D,Pµ] = Pµ ,

[D,Kµ] = −Kµ .

(2.8)

This is the standard basis of the conformal algebra. In this representation the operators

of the coset SO(4, 2)/ISO(3, 1) that give second order equations of motion corresponds to

the 5 conformal Weyl Galileons (we follow the nomenclature of [9]) written in terms of the

Goldstone boson π(y).

The group contraction of SO(4, 2) to the Galileon algebra (2.1) is then obtained by

setting

Kµ → ε−1Bµ , D → −1

2
ε−1C (2.9)

and taking the limit ε→ 0. In this way the standard Galileon operators [13] are recovered

as the π → 0 limit of the Weyl ones.

The twist of the generators [9, 10]

K̂µ =
1√
2L
Kµ +

L√
2
Pµ , D̂ =

1√
2L
D , (2.10)

gives the conformal algebra in a different basis:[
K̂µ, K̂ν

]
= 4Mµν ,[

Mρσ, K̂ν

]
= ηνρK̂σ − ηνσK̂ρ ,[

Pµ, K̂ν

]
= 2

(
− ηµνD̂ +

√
2

L
Mµν

)
,[

D̂, Pµ

]
=

1√
2L
Pµ ,[

D̂, K̂µ

]
= − 1√

2L
K̂µ + Pµ .

(2.11)

In this representation the five Galileon operators of the coset are the DBI Galileons [14].

Also in this case the group contraction is taken by setting

K̂µ → ε−1B̂µ , D̂ → −1

2
ε−1Ĉ , (2.12)

– 5 –
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and in the limit ε → 0 gives the algebra (2.1). As a consequence, the DBI Galileons as

well reduce in the q → 0 limit to the same five standard Galileons as before. As shown

in [9], in going from one representation of the conformal group to the other the two sets of

five conformal Galileons (DBI and Weyl) are mapped one into the other. Since after the

group contraction both reduce to the ordinary Galileons, the conformal mapping in the

appropriate limit becomes precisely the duality of Galileon theories reported in [15]. The

details of the limit, the explicit expression of the mapping and the comparison with [15]

are given in appendix A.

Since the mapping between the two representations is a central part of the apparent

paradox that we are going to discuss in section 3, it is worth spending some few lines on it.

In order for π and q to have the same dimensions from now on we further redefine π → Lπ,

q → L2q and denote by L = Λ−1; the map then reads

yµ = xµ − 1

Λ3
∂µq(x) ,

∂π(y)

∂yµ
=
∂q(x)

∂xµ
,

π(y) = q(x)− 1

2Λ3
(∂q(x))2 .

(2.13)

These three conditions are redundant and one can specify only two of them. For example,

given the change of coordinates and the relation between the derivatives of the fields, one

can infer the field redefinition by taking the derivative of the ansatz

π(y) = q(x) + f(∂q) . (2.14)

Since this is short but instructive we will do it explicitly. One finds

∂

∂xµ
q(x) =

∂

∂yµ
π(y) =

∂xν

∂yµ
∂

∂xν
(q(x) + f(∂q))⇒ f(∂q) = − 1

2Λ3
(∂q)2 , (2.15)

under the condition of invertibility of the matrix J = ∂x
∂y , which is the Jacobian of the change

of coordinates. Viceversa, given the coordinate transformation and the field redefinition,

by taking the derivative of π one finds

∂

∂yµ
π(y) =

∂xν

∂yµ
∂

∂xν

(
q(x)− 1

2Λ3
(∂q)2

)
⇒ ∂

∂yµ
π(y) =

∂

∂xµ
q(x) , (2.16)

and thus the derivatives are related as expected from the second line of eq. (2.13), again

under the condition of invertibility of the Jacobian matrix. Of course, in order to retain

the equivalence of the two theories, the minimal assumption that we have to make is the

invertibility of the map between them. From the field redefinition alone, it is not easy to

guess what is q as a function of π, since this would involve solving a nonlinear differential

equation, but the task is made completely trivial by the relation between the derivatives.

– 6 –
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The inverse map is simply given by

xµ = yµ +
1

Λ3
∂µπ(y) ,

∂q(x)

∂xµ
=
∂π(y)

∂yµ
,

q(x) = π(y) +
1

2Λ3
(∂π(y))2 .

(2.17)

Thus the invertibility of the coordinate transformation is also the condition of the invertibil-

ity of the map between the two cosets. In the following we are going to study configurations

for which the map is invertible.

The transformation (2.13) can also be thought of as a shortcut for writing a field

redefinition with an infinite number of derivatives. If one thinks to leave the coordinates

untouched (say that we want to use the y coordinates), the field redefinition takes the form

π(y) = q(y + Λ−3∂π(y))− 1

2Λ3
(∂π(y))2 , (2.18)

which can be solved perturbatively. Up to second order in the expansion parameter ∂2q/Λ3,

the field redefinition reads

π(y) = q(y) +
1

2Λ3
(∂q(y))2 +

1

2Λ6
∂µ∂νq(y)∂µq(y)∂νq(y) + . . . (2.19)

To map one set of Galileon operators into the dual one, one is free to choose one of the

two methods in eq. (2.13) or eq. (2.19), but eventually they will give the same result.

In what follows we will refer to the two non-linear realizations parametrized by the

field π and q simply as the π and q representations, respectively.

3 What about superluminal propagation?

In section 2 we have constructed the π and q representations of the coset Gal(3 +

1, 1)/ISO(3, 1). At fixed spacetime coordinates, they are related to each other by the

field redefinition (2.19) that involves an infinite number of higher derivative terms and an

increasing number of fields. For any physical process for which the series can be trun-

cated we expect the equivalence of the two representations, since physical observables are

field redefinition independent. However, we will see that there are situations, which are

within the regime of validity of the Effective Field Theory (EFT), in which the field re-

definition cannot be expanded so that the two representations have a different notion of

locality. A particularly useful and simple example to discuss these issues is the analysis of

the propagation of fluctuations in presence of a non-trivial background.

Our starting point is the free theory in the π representation. In [15] it was noticed

that the field redefinition discussed in the previous section maps a free theory into a linear

combination of Galileon operators. The map is the following (see appendix A, eq. (A.7))

LGπ = LGπ2 = −1

2
(∂π)2 −→ LGq = LGq2 − LGq3 +

1

2
LGq4 −

1

6
LGq5 , (3.1)

where the LGqi terms are defined in eq. (A.1), with π → q.

– 7 –
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Let us analyze the propagation of perturbations q around a given background q̄. We

take this to be time-independent and assume that ∂2q̄/Λ3 � 1, working in this section

at linear order in this parameter. We are thus interested in terms in the Lagrangian

which are quadratic in q and (at most) linear in q̄, therefore we can drop the quartic and

quintic Galileons for the rest of this section. In this regime, the equation of motion for the

perturbations is

�q − 2

Λ3
�q̄�q +

2

Λ3
∂µ∂ν q̄ ∂µ∂νq = 0 . (3.2)

At the order we are working, we can actually drop the second term if we multiply the

whole equation by (1 + 2�q̄/Λ3). The wavevector of a perturbation with a wavelength

much shorter than the scale of variation of the background satisfies

Gµνkµkν = 0 , Gµν ≡ ηµν +
2

Λ3
∂µ∂ν q̄ . (3.3)

This is equivalent to saying that perturbations are null geodesics of the inverse metric Gµν :3

Gµν ' ηµν −
2

Λ3
∂µ∂ν q̄ . (3.4)

Null trajectories with respect to this metric will in general be superluminal with respect

to the Minkowski lightcone. Indeed, outside a source, where ∇2q̄ = 0, it is easy to realize

that the matrix ∂i∂j q̄ cannot induce subluminal propagation in all directions [20, 21]. This

is somewhat disturbing since we are talking about a theory obtained by a field redefinition

of a free theory.

Let us look at the geodesic equation. Its time component, since there is no time

dependence, simply reduces to d2t/dλ2 = 0, that says we can use t as affine parameter.

We can assume without loss of generality that the propagation, at zeroth order in ∂2q̄/Λ3,

is in one particular direction, say y. The spatial components of the geodesic equation in

terms of the displacement δyi(t) from the unperturbed trajectory, y = t, read

d2δyi

dt2
= −Γiyy

dy

dt

dy

dt
=

1

Λ3
∂y∂y∂

iq̄(y = t) , (3.5)

where we have used dy/dt = 1 for the unperturbed trajectory and calculated the Γ’s from

the explicit form of the metric in eq. (3.4). Integrating we get the displacement from the

underlying Minkowski lightcone

δyi =
1

Λ3

∫
dt

∫
dt ∂y∂y q̄(y = t) =

1

Λ3
∂iq̄
∣∣∣yf
yi
. (3.6)

The integrand is a total derivative so that we only get boundary terms. This implies what

we should have expected: there is no effect (superluminal or not) if the background q̄ is

localized. There is a deviation from the lightcone as long as we are inside the q̄ background,

3Notice that eq. (3.2) does not have the same form of the Klein-Gordon equation ∂µ(
√
−GGµν∂νq) = 0.

The difference between the two, however, consists of terms where the derivatives hit the background instead

of the propagating wave. These are suppressed in the limit in which the wave is very short compared to

the scale of variation of q̄, i.e. in the limit of geometrical optics.
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q̄ 6= 0

Figure 1. The deviation from the lightcone averages to zero asymptotically in the theory obtained

with a field redefinition of the free theory.

but the effect averages to zero asymptotically as shown in figure 1. The two theories are

related by a non-linear field redefinition which changes the interaction terms. Once there

are no more interactions with the background (i.e. when the background turns off), the

position of a wave-packet must be the same in the two theories, and indeed there is no

“asymptotic superluminality”. This is exactly the same argument one uses to show that

the S-matrix is the same. In section 4 we are going to generalize this calculation to higher

order in ∂2q̄/Λ3 and include sources along the path. Furthermore we will show that only

for the particular choice of the coefficients of the eq. (3.1), which are related to the free

theory in the π variable, there is a cancellation of any asymptotic effect.

This, however, does not completely clarify the puzzle. What forbids us to measure a

“local superluminality”, even in the absence of an asymptotic effect? In order to measure

it, the shift |δy| has to exceed at least one wavelength of the perturbation. This means that

|δy| = 1

Λ3
|∂q̄| & ω−1 , (3.7)

where ω is the frequency of the perturbation. Since the frequency of the perturbation

cannot exceed the cutoff scale,4 this requires

∂q̄

Λ2
& 1 . (3.8)

Notice that eqs. (3.7) and (3.8) do not contradict the working hypothesis ∂2q̄/Λ3 � 1.

This is the usual argument of superluminal propagation [20, 21] in the DGP and Galileon

models, which is used to argue against a standard (local and Lorentz invariant) UV

completion for this kind of theories. But surely we cannot rule out a free theory!

The key point here is that one has to specify which are the local operators of the

theory. This is usually taken for granted. When we specify a theory, say the free theory,

4In the case of the free theory we are discussing, the scale Λ does not of course correspond to a cut-off

scale, since the theory is UV complete, and one can stick to the weaker condition, eq. (3.7). In the general

case, however, Λ is the scale above which the non-linear sigma model requires a UV completion.
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we implicitly assume that the field we use is a local operator and that it couples locally

to other fields. Let us trace back what happens in our case starting from the free field

Lagrangian with π locally coupled to an external source J :

LGπ = LGπ2 + LJ = −1

2
(∂π)2 + π(y)J(y) . (3.9)

In discussing superluminality, it is perhaps more intuitive to keep the same coordinates and

only transform the field, as in eq. (2.19). Since eq. (2.19) contains an infinite number of

terms, in general the mapped Lagrangian will also contain an infinite number of operators.

Only for Galileon operators, quite remarkably, we get a Lagrangian with a finite number

of terms, as in eq. (3.1), all the remaining terms being total derivatives. In particular,

infinitely many operators arise when we map LJ in the q-representation:

LJ = π(q(y))J(y) =

(
q(y) +

1

2Λ3
(∂q(y))2 +

1

2Λ6
∂µ∂νq(y)∂µq(y)∂νq(y) + . . .

)
J(y) .

(3.10)

From an EFT point of view, interpreting the scale Λ as a cut-off, one would naively be

justified in truncating the series and dismiss higher derivative operators. The series can

indeed be truncated when considering a perturbative scattering amplitude involving a

given, finite, number of fields in a trivial background, since the higher order terms in the

series involve an increasing number of fields.

However, the series cannot be truncated in discussing whether q propagates superlu-

minally around a non-trivial background. Indeed, the Taylor series (2.19) contains, among

others, terms of the form

∂nq ·
(
∂q̄

Λ3

)n
'
(
ω∂q̄

Λ3

)n
q . (3.11)

Given the criterium (3.7) for a measurable superluminality, we must keep all the terms in

eq. (3.11). Interestingly enough, their contribution can be resummed. This is easily seen

by expanding eq. (2.18):

π(y) = q(y) +

∞∑
n=1

1

n!

(∂π(y))n(∂nq(y))

Λ3n
− 1

2Λ3
(∂π(y))2 , (3.12)

where for simplicity we have omitted the obvious Lorentz tensor structure that appears

in the derivative terms. Let us focus on the terms linear in the fluctuations and with one

derivative acting on q̄. For n ≥ 2 in the above sum the fluctuation must be provided by

the term ∂nq, while (∂π)n = (∂q̄)n gives the background contribution. The resulting series

is easily resummed, leading to a non-local coupling with the source

LJ ⊃ q
(
yµ +

1

Λ3
∂µq̄(y)

)
J(y) . (3.13)

Notice how the last term in eq. (3.12) is crucial to be able to recast the coupling in the

form (3.13). Now we see that there is no paradox. Even though the theory LGq allows for

superluminal propagation, it is equivalent to the free theory we started with only if we

use non-local couplings of the form (3.13). It is straightforward to see that these non-local
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Figure 2. Superluminality, even at leading order in ∂2q̄/Λ3, involves the sum of infinitely many

diagrams.

couplings exactly cancel the change in signal propagation given by eq. (3.6). If, on the

other hand, we use local couplings of sources with LGq, we have superluminality, but this

theory is different from the free one we started with.

It can be useful to see how the deviation (3.6) from a luminal behaviour would arise in a

diagrammatic approach. The background field q̄ acts as a disturbance to the propagation of

the fluctuation of q itself, changing its dispersion relations. At leading order in ∂2q̄/Λ3, the

leading interaction arises from LGq3. Integrating by parts, we can write the interactions as

LGq ⊃ ∂µq∂νq∂µ∂ν q̄ − (∂q)2�q̄ . (3.14)

It is important to stress that when studying the propagation of q in the background q̄ we

are not considering a single vertex of eq. (3.14), but we are resumming an infinite set of

diagrams, as we show in figure 2. This is done automatically in keeping q̄ in the modified

kinetic term for the fluctuations. The point is that when we write an expression like

q(x) ∝ e−ik(1+δc)t+i~k·~x , (3.15)

with δc the variation of the speed of propagation with respect to the speed of light, and we

keep δc at the exponent without linearizing, we are making a non-perturbative statement

with an infinite number of q̄. The criterium for measurable superluminality is saying that

the effect of δc at the exponent is large so that the exponential cannot be expanded. That

is why superluminality is a statement about an infinite number of diagrams.

In section 4.5 we extend our result at all orders in ∂2q̄/Λ3 for particular backgrounds

in which the matrix ∂i∂j q̄ is constant, so that the dynamics of perturbations is effectively

translationally invariant.

4 More on asymptotic effects and locality

We give here several additional examples which involve asymptotic effects and locality.

This section can be skipped without loss of continuity.

4.1 Asymptotic effects at second order in the background

In this subsection we generalize the propagation of signals at second order in ∂2q̄/Λ3 and

show the absence of any asymptotic effect in the theory (3.1), obtained by mapping the

free theory. At this order also the quartic Galileon is relevant, so that we can check that
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its precise coefficient in eq. (3.1) is crucial for the cancellation of asymptotic effects. The

equation of motion can be written as

�q +
2

Λ3
∂µ∂ν q̄ ∂µ∂νq +

3

Λ6
∂µ∂ρq̄∂ρ∂

ν q̄∂ν∂µq = 0 . (4.1)

To get to this form we used the equation of motion of the background q̄, assuming there

are no sources in the region we consider. At lowest order the background thus satisfies

�q̄ = 0. This corresponds to the propagation on an effective metric

Gµν = ηµν +
2

Λ3
∂µ∂ν q̄ +

3

Λ6
∂µ∂ρq̄∂

ρ∂ν q̄ , (4.2)

and thus

Gµν ' ηµν −
2

Λ3
∂µ∂ν q̄ +

1

Λ6
∂µ∂ρq̄∂

ρ∂ν q̄ . (4.3)

For a time-independent background we can still use t as affine parameter and the second

order contributions to the geodesic equation are

d2δy(2) i

dt2
+ Γ(2) i

yy + ∂jΓ
(1) i
yy δy(1) j + 2Γ

(1) i
jy

dδy(1) j

dt
= 0 , (4.4)

where the number in parentheses indicate the order in ∂2q̄/Λ3. The third term in the

equation takes into account that the Christoffel symbols are evaluated on the first order

geodesic. Once this is taken into account all terms in the equation are evaluated on the

unperturbed trajectory in the y direction: y = t. Evaluating all the Γ’s and using the

previous result on δy(1) i, eq. (3.6), it is straightforward to get

d2δy(2) i

dt2
= ∂y∂y

(
∂i∂j q̄∂

j q̄
)
. (4.5)

As at first order, the integral is a total derivative and it vanishes exactly if we consider

localized backgrounds that vanish at infinity.

4.2 Asymptotic effects for a background with cylindrical symmetry

Another interesting example is the one of a background solution q̄ with cylindrical

symmetry. Even though the propagation of fluctuations on the axis of the symmetry

reduces to a one dimensional problem (due to symmetry the geodesic cannot deviate), the

background q̄ depends on all three spatial coordinates so that all the Galileons LGi are

relevant. This example will show that only the particular combination given by eq. (3.1)

gives no asymptotic effect. We will work up to cubic order in ∂2q̄/Λ3, which is the first

non-trivial order that includes LG5.

With this setup in mind, the equation of motion can be written as

�q + ∂µ∂νq

(
2

Λ3
∂µ∂ν q̄ +

3

Λ6
∂µ∂ρq̄ ∂

ρ∂ν q̄ +
4

Λ9
∂µ∂ρq̄ ∂ρ∂σ q̄ ∂

σ∂ν q̄

)
= 0 , (4.6)

where we assumed that there are no sources along the axis of symmetry so that the back-

ground satisfies the equation of motion given by the Lagrangian (3.1). We assume that
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the propagation of perturbations happens on the symmetry axis (say, the z-axis) of the

background q̄. Consider then a wave with energy ω and momentum kz. Its dispersion

relation reads

ω2 = k2
z

(
1 +

2

Λ3
∂z∂z q̄ +

3

Λ6
∂z∂ρq̄ ∂

ρ∂z q̄ +
4

Λ9
∂z∂ρq̄ ∂ρ∂σ q̄ ∂

σ∂z q̄

)
. (4.7)

Furthermore, using cylindrical coordinates it is easy to see that all contractions vanish but

the ones which involve the z-coordinate. This is because both ∂r q̄ = 0 and ∂θ q̄ = 0 on the

z-axis, thus

ω2 = k2
z

(
1 +

2

Λ3
∂2
z q̄ +

3

Λ6
(∂2
z q̄)

2 +
4

Λ9
(∂2
z q̄)

3

)
, (4.8)

and the speed of propagation along the z-axis is

vz(z) =
dω

dkz
=

(
1 +

2

Λ3
∂2
z q̄ +

3

Λ6
(∂2
z q̄)

2 +
4

Λ9
(∂2
z q̄)

3

)1/2

. (4.9)

Since the propagation is in 1+1 dimensions, and the velocity depends only on z, it is easier

to integrate in the spatial coordinate instead of time. This leads to

∆t =

∫ zf

zi

dz
1

vz(z)
' ∆z −

∫ zf

zi

dz
1

Λ3
∂2
z q̄ = ∆z − 1

Λ3
∂z q̄
∣∣∣zf
zi

+O(q̄4) . (4.10)

The precise coefficients of the quartic and quintic operators in the Lagrangian (3.1) is

such that only the first order term remains. Moreover, if the background is localised

(asymptotically trivial), even the linear contribution goes to zero and ∆t = ∆z. Of course,

this comes with no surprise: this choice of couplings is what makes the theory free.

4.3 Asymptotic effects including sources

In this subsection we show that there is no asymptotic superluminality in a general 1 + 1

dimensional problem with time independent backgrounds. In this setup we are forced to

drop the assumption made so far that there are no sources along the path of propagation.

We will work up to second order in ∂2q̄/Λ3. In 1+1 dimensions the Galileon operators LGq4
and LGq5 cancel exactly and we are left with LGqi, with i = 1, 2, 3. In 1 + 1 dimensions we

cannot avoid to add some tadpole term π(y)J̄(y) for generating the background π̄, which

will satisfy the equation of motion

�π̄ = −J̄(y) . (4.11)

Mapping the kinetic term and the tadpole in the π-representation by means of eq. (2.19)

in the q-representation, we obtain

LGπ = −1

2
(∂π)2 + πJ̄(y)

−→ LGq = LGq2 − LGq3 +

(
q +

1

2Λ3
(∂q)2 +

1

2Λ6
∂µ∂νq∂µq∂νq + . . .

)
J̄(y) . (4.12)
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Once the equation of motion is expanded around the background solution

�q̄ = −J̄(y) +O(q̄2) , (4.13)

the dispersion relation for fluctuations will involve also derivatives acting on J̄(y), but in

general these terms can be neglected since the background is assumed to be slowly varying

with respect to the fluctuations. The dispersion relation for perturbations thus reads

ω2 = k2

(
1 +

2

Λ3
∂2q̄ +

1

Λ3
∂2q̄J̄ +

4

Λ6
(∂2q̄)2

)
+O(q̄3) , (4.14)

and using eq. (4.13) the speed of propagation is

v(y) =
dω

dk
=

(
1 +

2

Λ3
∂2q̄ +

3

Λ6
(∂2q̄)2

)1/2

' 1 +
1

Λ3
∂2q̄ +

1

Λ6
(∂2q̄)2 +O(q̄3) . (4.15)

This leads to

∆t =

∫ yf

yi

dy
1

v(y)
' ∆y −

∫ yf

yi

dy
1

Λ3
∂2q̄ = ∆y − 1

Λ3
∂q̄
∣∣∣yf
yi

+O(q̄3) . (4.16)

If the background vanishes asymptotically this contribution goes to zero and ∆t = ∆y, as

expected.

4.4 Asymptotic superluminality in the DGP model

As it was already noticed in [20, 22] the DGP model allows for superluminal propagation

around non-trivial backgrounds. In this section we show that the superluminality persists

even asymptotically; in particular we look at spherically symmetric backgrounds which

vanish at infinity.

In the decoupling limit the Lagrangian for the Goldstone of the DGP model

reads [17, 22]

LDGP = 6LGq2 + 2LGq3 +
1

2M4
qT , (4.17)

where T is the trace of the stress energy tensor and M4 is the four dimensional Planck

scale. From this, the equation of motion is

3�q +
1

Λ3
(�q)2 − 1

Λ3
∂µ∂νq ∂µ∂νq = − 1

4M4
T . (4.18)

Consider a spherically symmetric and homogeneous distribution of matter inside a radius

R? (much larger than the cut-off length Λ−1), with total mass M?. The exact solution of

eq. (4.18) for a spherically symmetric source can easily be found using Gauss theorem and

it reads5

∂r q̄(r) = E(r) =


3Λ3

4 r

(√
1 + 1

2π
R3
V
R3
?
− 1

)
, if r ≤ R?

3Λ3

4 r

(√
1 + 1

2π
R3
V
r3
− 1

)
, if r > R?

(4.19)

5Here we have already chosen the stable solution. See [22] for details.
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1

Figure 3. Plot of the speed of propagation as a function of r for R? = 0.25RV . The discontinuity in

the velocity is produced by the abrupt change in the density field and can be removed by smoothing

the density ρ?.

where RV = Λ−1(M?/M4)1/3 is the Vainshtein radius for the source. Once the action

given by eq. (4.17) is expanded around the background solution, the perturbations of the

field q will travel on null geodesics of the effective metric [22]

Gµν =

(
3 +

2

Λ3

∂r(r
2E)

r2

)
gµν − δµr δνr

2

Λ3
∂rE −

δµθ δ
ν
θ

r2 sin2φ

2

Λ3

E

r
−
δµφδ

ν
φ

r2

2

Λ3

E

r
, (4.20)

where gµν is the Minkowski metric in spherical coordinates. Here we consider a radial null

geodesic passing through the center of the compact object. It is given by the condition

ds2 = −
(

3 +
2

Λ3

∂r(r
2E)

r2

)−1

dt2 +

(
3 +

4

Λ3

E

r

)−1

dr2 = 0 , (4.21)

which defines the radial velocity

vr = ṙ =

(
1−

2
Λ3∂rE

3 + 2
Λ3

∂r(r2E)
r2

)1/2

. (4.22)

The novelty with respect to [22] is that in the inner region r < R?, the constant density

produces a background q̄ ∝ r2 which makes the fluctuation to propagate with a constant

and subluminal speed given by

vr =

√
1− c1

3c1 + 2
, c1 =

√
1 +

R3
V

2πR3
?

− 1 . (4.23)

As can be seen from figure 3, in the inner region the speed is smaller than 1, while

outside the source it is greater than 1 and it approaches 1 asymptotically from above. Thus

to have asymptotic superluminality it is sufficient to have a source with a radius R? much

smaller than its Vainshtein radius RV (notice that the speed (4.23) remains finite even when
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the density diverges), in this case the outer region dominates and there is superluminal

propagation. In the limit R? � RV the inner region can be neglected and the advance in

the propagation is given by

∆t = 2

∫ ∞
0

vr dr ' 0.3RV . (4.24)

To avoid the discontinuity in the velocity produced by the abrupt change in the density

field, one can imagine to smooth the density across a thin layer around R?, but this does

not change the picture qualitatively.

4.5 Non-locality for a translationally invariant background

In this subsection we come back to the cancellation between superluminality and non-

local couplings with sources. In general it is technically difficult to go beyond the first

order calculation of section 3, but a full non-linear result can be achieved for backgrounds

that are effectively translationally invariant. As can be seen from eqs. (3.2) and (3.14)

these are the ones for which ∂2q̄ is constant. For simplicity, consider a background in the

q-representation that depends on a single spatial coordinate only,6

q̄(x) =
1

2
εΛ3x2 . (4.25)

Using the map (2.17), eq. (4.25) is mapped in the π-representation to the background

π̄(y) =
1

2
κΛ3y2 , (4.26)

where

κ =
ε

1− ε . (4.27)

The configuration (4.26) is obtained in the free theory by adding the tadpole

Ltad = −κΛ4LGπ1 = −κΛ3π . (4.28)

The total Lagrangian that we are considering is then

LGπ = LGπ2 + Ltad + LJ = −1

2
(∂π)2 − κΛ3π + π(y)J(y) . (4.29)

The tadpole (4.28) corrects the coefficients of the Lagrangian in the q-representation by

terms proportional to the background, and thus there was no need to consider it in the

leading order calculation presented in section 3. Under the map (A.7), we get

LGπ −→ LGq (4.30)

= −κLGq1 + (1 + κ)LGq2 −
(

1 +
κ

2

)
LGq3 +

1

2

(
1 +

κ

3

)
LGq4 −

1

6

(
1 +

κ

4

)
LGq5 + LJ .

6To avoid clutter in the notation, we denote with the same symbol x the spatial coordinate the back-

ground depends on, and the four-vector xµ. The distinction should be clear from the context. Similarly for

the variable y in the π-representation.
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The equation of motion for the fluctuations is

(1 + κ)�q − 2
(

1 +
κ

2

)
ε�q + 2

(
1 +

κ

2

)
εδµxδ

ν
x ∂µ∂νq = 0 . (4.31)

The speed of propagation of the perturbations can be directly read from the equation of

motion to be

v =
1

1− ε , (4.32)

which for ε > 0 leads to a “would-be” superluminal gain

δy =
y

1− ε . (4.33)

Let us now study the non-local coupling with the source. Using the map (2.17), we

have ∫
d4y π(y)J(y) =

∫
d4x Jac(q(x))

(
q(x)− 1

2Λ3
(∂q)2

)
J

(
x− ∂q

Λ3

)
, (4.34)

where

Jac(q(x)) =

∣∣∣∣Det
∂yµ

∂xν

∣∣∣∣ =

∣∣∣∣Det

(
δµν −

1

Λ3
∂µ∂νq

)∣∣∣∣ = 1− ε+ . . . (4.35)

is the Jacobian factor associated to the coordinate change (2.13) and . . . are terms

involving fluctuations of q. Keeping only linear couplings of the fluctuations with the

source gives simply ∫
d4y π(y)J(y) =

∫
d4x(1− ε) q(x)J(x(1− ε)) . (4.36)

Possible additional higher derivative terms linear in the fluctuations, present in the

Lagrangian (4.34), exactly cancels out. By rescaling the x coordinate

x→ (1 + κ)x =
1

1− εx (4.37)

the Lagrangian (4.30) becomes canonically normalized and the source term (4.36) becomes∫
d4x q

(
t,

x

1− ε , y, z
)
J(t, x, y, z) + . . . (4.38)

Thus, the field in the point (t, x/(1− ε), 0, 0), which corresponds to a superluminal

geodesic, is coupled to a receiver on the lightcone at xµ = (t, x, 0, 0). Hence, the non-local

couplings induced by the field redefinition cancel exactly the superluminal propagation:

as in the free theory, sources exchange signals when their separation is null.

5 Superluminality and locality for the conformal coset

Let us briefly recall the findings of [9, 10] about the non-linear realizations of the con-

formal group. Using the coset construction, two different non-linear realizations of
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SO(4,2)/ISO(3,1) can be obtained, denoted DBI and Weyl representation [9]. Their con-

traction leads respectively to the q and π representations of Gal(3+1,1)/ISO(3,1) discussed

so far. The DBI and Weyl representations are related by the following relations [10]:

yµ = xµ + Leq(x)/Lλµ(x) , π(y) =
q(x)

L
+ log(1 + λ2(x)) , Ωµ(y) =

1

L
λµ(x) , (5.1)

and their inverses

xµ = yµ−L2eπ(y)(1+L2Ω2(y))Ωµ(y),
q(x)

L
= π(y)− log(1+L2Ω2(y)), λµ(x) = LΩµ(y) ,

(5.2)

where

λµ(x) =
∂µq(x) eq(x)/L

1 +
√

1 + e2q(x)/L(∂q(x))2
, Ωµ(y) =

1

2
eπ∂µπ(y) . (5.3)

In [9] it was observed that the dilaton fluctuations in the DBI representation travel sublumi-

nally when one expands the leading Nambu-Goto action around a background q̄ of the form

L∂µe
q̄(x)/L = Cµ . (5.4)

On the other hand, when mapped by means of eq. (5.2) in the Weyl representation the dila-

ton fluctuations travel at the speed of light. Not suprisingly, as we have seen before for the

q and π representations of the coset Gal(3+1,1)/ISO(3,1), the resolution of this apparent

discrepancy is due to the different notion of locality in the DBI and Weyl representations.

Let us focus on the background (5.4) where Ci vanish and the background depends on

time only. This is the case relevant for the Genesis scenarios [18, 19], where we have

Leπ̄(y) = −απy0 , Leq̄(x)/L = −αqx0 , (5.5)

with

αq = απ

(
1 +

α2
π

4

)−1

, x0 = y0 · 1 + α2
π
4

1− α2
π
4

. (5.6)

The simplest action that produces the background (5.5) in the AdS representation contains

only the first two conformal DBI Galileons:

Lq = −(1− α2
q)
−1/2Lq1 + Lq2 = − 1

L4
e−4q/L

√1 + e2q/L(∂q)2 − 1√
1− α2

q

 . (5.7)

As was already observed in [19, 23], the quadratic Lagrangian for the fluctuations of the

field χ = L−1e−q/L on the background χ̄ = −1/(αqx0) in eq. (5.5) reads

S(2)
χ =

1

2
γ3

∫
d4x

(
χ̇2 − 1

γ2
(∂iχ)2 +

6

x2
0

χ2

)
, (5.8)

where

γ2 =
1

1− α2
q

, (5.9)
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and the fluctuations travel strictly subluminally with speed of sound7

cs = γ−1 =
√

1− α2
q . (5.10)

Using the map (A.5) obtained in [9], we get the Lagrangian in the Weyl representation

Lq −→ Lπ = (1− γ)Lπ1 +
1

2
(2γ − 1)Lπ2 −

1

4
γLπ3 +

1

48
(2γ + 1)Lπ4 −

1

192
(1 + γ)Lπ5 .

(5.11)

The quadratic action for the fluctuation of the field φ = L−1e−π reads8

S
(2)
φ =

1

2
N(αq)

∫
d4y

(
− (∂φ)2 +

m2
φ

y2
0

φ2

)
, (5.12)

and thus fluctuations travel at the speed of light.

Let us now add a source term in the action of the form

SJ =

∫
d4xLJ =

1

L

∫
d4x e−q(x

µ)/LJ(xµ) =

∫
d4xχ(xµ)J(xµ) . (5.13)

In the Weyl representation the source is rewritten as

SJ =

∫
d4y

∣∣∣∣Det
∂xµ

∂yν

∣∣∣∣φ(yµ)
(
1 + L2Ω2

)
J(yµ − L2eπ

(
1 + L2Ω2

)−1
Ωµ) . (5.14)

Expanding at first order in the fluctuations of φ, after a lengthy but straightforward com-

putation, modulo an irrelevant overall constant term, we get

SJ =

∫
d4y φ

(
y0, yi

)
J
(
y0(1− α2

q)
−1/2, yi

)
. (5.15)

Thus, the field is coupled non-locally with the source exactly by the amount expected for

the fluctuations to effectively travel with subluminal speed cs =
√

1− α2
q .

6 Summary and conclusions

In this paper we have studied two non-linear realizations of the Galileon group Gal(3+1,1).

These realizations are the contraction of the two known non-linear realizations of the con-

formal group, denoted DBI and Weyl representations in [9]. The two representations are

related by a field redefinition that crucially involves the spacetime coordinates as well.

These field redefinitions (keeping the spacetime coordinates fixed) contain an infinite num-

ber of higher derivative terms. In the regime in which the series can be truncated to a

certain number of terms, such as perturbative scattering processes involving a finite number

of fields in a trivial background, nothing interesting happens: the two theories are simply

7The mass term in (5.8) must be present for symmetry reasons: it cancels the variation of the kinetic term

under time translation δP0χ = χ̄/t that are non-linearly realized because the background is time dependent.

However in the following, when we discuss the propagation, it can be neglected since we consider pertur-

bations with typical frequencies much higher than the inverse time scales on which the background varies.
8Here N(αq) is just some overall normalisation which does not need to be taken into account.
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equivalent. However, in discussing the propagation of perturbations around a background

the series cannot be truncated. The propagation appears qualitatively different in the two

representations. How is it possible for example that, starting from a free theory, one can

induce propagation outside the Minkowski lightcone using a field redefinition? First of all,

we showed that the two representations give the same result if one is interested in a local-

ized background and in its asymptotic effect on a signal. This is not surprising since field

redefinitions change the interactions but should not affect asymptotic properties, similarly

to what happens to the S-matrix. However, if one is interested in local measurements in

the presence of a background, the two representations still seem to give different answers

about the superluminality with respect to the Minkowski lightcone. The point is that for

this kind of measurements one must specify how fields couple with external sources and it

turns out that local couplings in one representation become non-local in the other.

Superluminality, starting from [20], has been used as a way to rule out a conventional,

local and Lorentz invariant UV completion. It is important to emphasize that an under-

lying assumption is that causality is defined by the Minkowski lightcone. This is typically

taken for granted (and implicitly assumed in [20]), and is the reason why we insisted in

keeping the external sources fixed (or equivalently the coordinates fixed). In this context,

if one studies the Lagrangian for the field q obtained from the free field theory without

referring to the map, one can couple it in a generic (and local) way to other particles. In

particular, one assumes that there can be other sectors of the theory which always prop-

agate on the Minkowski lightcone, independently of any background. Clearly, this breaks

the physical equivalence of the two representations: while in the initial free theory differ-

ent massless particles move with the same speed, in the second theory different massless

particles have different speed. With these assumptions, the q theory is pathological since

an asymptotic superluminality can be generated: even though the integrated effect for q

perturbations vanishes, one can obtain an overall effect using, in the regions where the q

speed is subluminal, other fields that propagate on the Minkowski lightcone.

It is worth stressing an alternative procedure.9 Instead of keeping the sources fixed,

one could perform a redefinition of the source J in eq. (3.10):∫
d4y π(y)J(y) =

∫
d4x Jac(q(x))

(
q(x)− 1

2Λ3
(∂q)2

)
J̃(x) , (6.1)

where J̃(x) = J(y). In this way one does not induce any non-locality: we simply look at the

change of coordinates (2.7) as a diffeomorphism acting on all the fields of the theory. Inter-

actions between all the fields and q are induced in the mapped theory and as a consequence

all the particles move on the same lightcone, the transformed of the Minkowski lightcone

in the π representation. In a general background for q, no particle is allowed to propagate

on the Minkowski lightcone; they all propagate on an “effective metric” which depends on

q similarly to what happens in General Relativity and hence the Minkowski lightcone no

longer defines causality. In this case it is meaningless to talk about local superluminality

9We thank C. de Rham and A. Tolley for discussions about this point and for sharing their work [24] on

the subject.
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with respect to the Minkowski lightcone. We have simply rewritten the π theory in a

complicated way: in particular there is no asymptotic superluminality for any field.

We conclude that, without further specifying the couplings with other fields and ex-

ternal sources, the presence of local superluminality does not imply pathologies, as shown

by the example of the free theory mapped in the other representation. A less trivial exam-

ple can be found by considering the conformal Galileons: starting from the Nambu-Goto

action in the DBI representation (which is an interacting theory without pathologies), one

can obtain the corresponding Weyl Lagrangian which admits local superluminal effects.

On the other hand, asymptotic effects are absent in both representations: only asymptotic

superluminality is an unambiguous sign of pathology.

We concentrated on the propagation of perturbations, because this is a simple process

where the relation between the two representations can be studied consistently without

truncating the field redefinition. In this case the necessity of keeping an infinite number of

operators, and thus be sensitive to non-locality, arises from having a large background field

q̄, which makes the condition of measurable superluminality, ∂q̄/Λ2 & 1, compatible with

the regime of validity of the EFT, ∂/Λ � 1. One may ask whether this has an S-matrix

counterpart. In a perturbative computation of S-matrix elements with a given number of

legs at any given order in perturbation theory, only a finite number of terms is relevant, and

thus the series can be truncated. In this case the two representations give the same result

and there is no sign of non-locality. On the other hand, we expect that the inequivalence of

the two representations show up also in S-matrix elements in the absence of any background

and where the series cannot be truncated, for example in the scattering of waves with large

occupation number. It would be nice to have some concrete example of this.

Our results about the inequivalence of different coset constructions for Gal(3 +

1,1)/ISO(3,1) and SO(4,2)/ISO(3,1) should apply to other spacetime symmetries as well.

It would be interesting to consider additional examples to provide further evidence to

this claim, for example in the context of coset constructions at finite density [25] and for

fluids [26].

As we have shown in our previous paper, the DBI and Weyl representations of the

conformal group can both be obtained from a change of coordinates in AdS5. From the

AdS5 point of view, roughly speaking, the first arises in the bulk (a brane in AdS5) while

the second arises on the boundary. It might be interesting to see if the non-local relation

between the two representations can shed some light on some aspects of the AdS/CFT

correspondence.
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A Map between Galileon operators

In this appendix we show in detail how the contraction of the coset group SO(4, 2)/ISO(3, 1)

to Gal(3+1, 1)/ISO(3, 1) turns the map found in [9] between the two non-linear realizations

(DBI and Weyl) of the conformal group into the Galileon “duality” of [15]. For the Weyl

and DBI Galileons we use the definitions and normalizations of our paper [9]: the interested

reader can find there the explicit form in eq. (4.1) for the first set of 5 operators and in

eq. (4.5) for the latter. We label them (for i = 1, . . . , 5) Lπi and Lqi respectively. We further

redefine π → Lπ and q → L2q (L = 1/Λ) to have π and q with mass dimension one.

In the case of the coset Gal(3 + 1, 1)/ISO(3, 1), as discussed in section 2, the operators

in the two representations have exactly the same form, written in terms of the Goldstone

π or q. They are the standard Galileons and we use the following definitions [27]:

LGπ1 = π/L3 ,

LGπ2 = −1

2
(∂π)2 ,

LGπ3 = −L
3

2
(∂π)2[Π] ,

LGπ4 = −L
6

2
(∂π)2

(
[Π]2 − [Π2]

)
,

LGπ5 = −L
9

2
(∂π)2

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
,

(A.1)

and the same for LGqi. Here for convenience we defined Π the matrix of second derivatives

of π, Πµν ≡ ∂µ∂νπ, and [. . . ] is the trace operator. The powers of L in front of the operators

are introduced to make them of dimension four.

The Galileons in eq. (A.1) can be obtained starting from the Weyl Galileons and taking

the leading term in the limit π → 0:

LGπ = Limπ→0NW · Lπ, (A.2)

where the diagonal matrix N simply depends on the relative normalization of the operators,

with our choices N = diag(1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2).

The limit in the case of DBI Galileons is less direct because each operator now gives a

linear combination of the standard Galileons:10

LGq = Limq→0 T · Lq , (A.3)

where

T =


1
4 0 0 0 0

−1 1 0 0 0

2 −6 1 0 0

0 24 −6 −1 0

0 −48 21
2 4 −1

2

 . (A.4)

10More precisely, the limit that we take is q ∼ ε3/2, qL ∼ ε for ε→ 0.
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It is clear at this point that when the limit is taken on both sides, the map corresponding

to the twist of the conformal algebra derived in [9]

MLq→Lπ =


0 1

2
7
64 − 1

24 − 1
192

0 0 − 1
16 − 1

12 − 1
48

4 0 −11
8 0 −1

8

0 0 −3
2 2 −1

2

0 −96 21 8 −1

 (A.5)

becomes a transformation that maps the standard Galileons into themselves:

LGπ = N ·M · T−1 · LGq . (A.6)

There is one last step that has to be done: the fields π and q in the Galileon coset are

−2 times the ones used in the conformal coset defined in [9]. This is the consequence of

the normalization factor −1/2 in the definition of the generators C and Ĉ in eqs. (2.9)

and (2.12). Including this extra factor the transformation in eq. (A.6) becomes:
1 −1 1

2 −1
6

1
24

0 1 −1 1
2 −1

6

0 0 1 −1 1
2

0 0 0 1 −1

0 0 0 0 1

 . (A.7)

This is exactly the “duality” obtained in [15] when the differences in the conventions are

taken into account: qhere = −qthere and Lhere
Gπ = diag(1,−12,−6,−4,−5) · Lthere

Gπ .

B Superluminality with a finite field redefinition

In this appendix we study the case in which the field redefinition is truncated and not

composed by an infinite number of terms. We start again from the Lagrangian for a free

particle and use the finite field redefinition (without changing coordinates)

π = q +
1

2Λ3
(∂q)2 , (B.1)

which corresponds to the first term of eq. (2.19). The Lagrangian then reads

LGπ2 −→ L = −1

2
(∂q)2 +

1

2Λ3
�q(∂q)2 − 1

8Λ6
∂µ(∂q)2∂µ(∂q)2 . (B.2)

Obviously, since the field redefinition is truncated, we do not recover a Galileon Lagrangian

and thus, due to the presence of the quartic operator, the equation of motion for the field q is

not of second order. Nevertheless when expanded around a non-trivial background q̄, since

the second (DGP-like) term in eq. (B.2) gives a correction to the speed of propagation which

is linear in the background, one expects the quartic term to be negligible (its contribution

is O(q̄2)). If this were true, it would be troublesome: since we are dealing with a finite

field redefinition, the notion of local operators remains the same before and after the field
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redefinition and thus nothing could compensate for the superluminality induced by the

DGP operator. Of course this is not the case.

The issue with the argument just proposed is that when the superluminality is mea-

surable within the EFT the quartic operator cannot be disregarded. To understand why

this is the case, it is sufficient to consider the equation of motion derived from the La-

grangian (B.2):

�q − 1

Λ3
�q�q +

1

Λ3
∂µ∂νq ∂µ∂νq −

1

2Λ6
∂µ
(
�(∂q)2∂µq

)
= 0 , (B.3)

where the last term (coming from the quartic operator) gives higher derivative terms on

the fluctuations of the form

∂q̄

Λ3

∂q̄

Λ3
�2q ,

∂q̄

Λ3

∂2q̄

Λ3
∂�q . (B.4)

As discussed above, see eq. (3.7), the superluminality induced by the DGP operator is

measurable if
1

Λ3
∂q̄ & ω−1 . (B.5)

When this happens the first term of eq. (B.4) becomes of order one and cannot be neglected:

∂q̄

Λ3

∂q̄

Λ3
�2q ∼ �

ω2
�q ∼ �q . (B.6)

The measurability of the effect within the EFT makes sense if the scale Λ is interpreted

as the cutoff which suppresses all the higher-dimension operators, while of course here we

are just looking at a free theory in disguise. However, even if we forget about the EFT

point of view and we simply care about the solutions of the differential equation (B.4), we

reach the same conclusion: one cannot neglect the quartic operator when talking about

superluminality around weak backgrounds (recall also the discussion below eq. (3.15)).

Notice that the situation with Galileons is very different. Since in the equation of

motion there are two derivatives per field, the quartic Galileon simply corrects the speed

of propagation

δc(2)
s ∼

(
∂2q̄

Λ3

)2

, (B.7)

which is indeed smaller than the effect due to the DGP term for ∂2q̄/Λ3 � 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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