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INTRODUCTION

In the last decade, the field of heterostructures involving transition-metal ox-

ides as building blocks has grown to become one of the most active areas in the

field of correlated materials and, more in general, in condensed matter. The in-

terest in these systems is motivated by the possibility to artificially design and

manipulate electronic phases inaccessible in the bulk constituents. The proto-

typical and most studied heterojuncion is formed by the two band insulator

LaAlO3 (LAO) and SrT iO3 (STO) where an insulator-metal transition occurs at

the interface as a function of the thickness of the LAO layer. When the latter ex-

ceeds a universal threshold, a few-layer thick two-dimensional electron gas es-

tablishes on the STO side. A similar phenomenology is realized at the interface

between STO and the Mott insulator LaTiO3. In both cases the 2DEG turns into

a superconductor at 300mK. The phenomenology of these systems, which are
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only an example of the many opportunities offered by heterostructures formed

by transition-metal oxides and correlated materials, reveals immediately that a

number of physical effects conspire to determine their fascinating properties.

Electron-electron correlations are certainly expected to play a role because of

the narrow bands arising from the d electrons of transition-metal oxides. More-

over, there are strong evidences of an important role of electron-phonon cou-

pling already in bulk STO, and the phonon-driven interaction is the most likely

candidate for the two-dimensional superconductivity found at the interfaces.

Moreover, an important role of spin-orbit coupling is expected at interfaces, and

it will be particularly important for 5d systems like iridates. All these compet-

ing interactions should be treated on the same footing without assuming a clear

hierarchy in order to disentangle their effects in the rich phenomenology. This

means that any theoretical treatment should be able to handle competing inter-

actions. This can be realized using the Dynamical Mean-Field Theory, a pow-

erful approach which freezes spatial fluctuations in order to fully account for

the local quantum dynamics arising from the different relevant interactions. In

order to treat layered systems, Dynamical Mean-Field Theory must be extended

in order to allow for different physics on different layers. In this thesis we con-

tribute to the theoretical understanding of heterostructures of transition-metal

oxides and correlated materials touching all the above-mentioned points. We

now briefly introduce the structure of the thesis and the content of the different

chapters. The first Chapter is devoted to an introduction about transition-metal

heterostructures with some emphasis on the LTO/STO and LAO/STO systems.

In the second Chapter we introduce the several theoretical models we use in

the rest of the thesis, namely single-band and multi-band Hubbard modeling of
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strong correlations, electron-phonon interaction and spin-orbit coupling.

Chapter 3 briefly introduces DMFT and its extensions to treat all the interac-

tions discussed in the second Chapter.

The fourth chapter contains a novel extensions of DMFT to layered systems

which minimizes finite-size effects and approximation, as well as an application

of the method to the attractive Hubbard model, which allows us to study the

proximity effects as a function of the various model parameters.

In Chapter 5 we discuss the interplay between strong correlations and electron-

phonon interaction, identifying the conditions under which an s-wave super-

conductor can be realized in the presence of strong correlations. An application

to a model version of the LTO/STO system is presented.

Finally, in Chapter 6 we study the interplay between strong correlations,

Hund’s coupling and spin-orbit interaction in a three-fold degenerate model

for d electrons. A study of the magnetic phase of the iridate compound Sr2IrO4

is finally presented.

All these result contribute to improve our understanding of the complex

interplay underlying the physics of transition-metal oxides and will represent

the basis to build a more complete modelization of there systems.



CHAPTER

1

INTERFACE PHYSICS

The surface of a material, or the interface with a different compound can display

electronic properties far different from the bulk. Even a clean and regular sur-

face can induce remarkable effects associated to the breaking of the translational

and rotational symmetries. One of the most obvious effects is the reduction of

the effective kinetic energy at the surface due to the missing bonds, but also the

crystal fields are modified, leading to the lifting of degeneracy between differ-

ent orbitals. An interface between two materials also leads to stress and strain,

which further complicates the theoretical study of these systems. Furthermore,

interfaces often host disorder effects of different origin: point defects, disloca-

8



CHAPTER 1. INTERFACE PHYSICS 9

tions and stacking faults tend to be incorporated into the lattice with their own

electronic or magnetic properties and may act as scattering centers. Hence also

the chemical composition may change close to the interface. The relevance of

these phenomena obviously depends on the specific microscopic properties of

different surfaces or interfaces, leading to an immense variety of physical re-

sponses. The huge variety of control parameters also leads to the opportunity

to design systems in order to optimize some properties.

This scenario becomes even richer if we consider materials with sizable in-

teraction leading to strong correlation effects, like transition-metal oxides (TMOs).

Since the electronic states are altered at interfaces, their correlations might be

strongly modified as well, resulting in a dramatic change of the collective elec-

tronic and magnetic properties, which can also lead to a completely differ-

ent phenomenology of the interface with respect to the bulk constituents. An

interface-driven reduction of the electronic screening is expected to enhance the

correlation effects driven by the Coulomb interaction, but, on the other hand

theon-site Coulomb energy U can be lowered by several eV if the screening is

enhanced by image charges, as is the case of an interface between a TMO and

a conventional metal[4, 28]. In LaxCa1−xV O3, for example, due to the reduced

atomic coordination, the bands are expected to be narrowed at the surface, thus

the ratio of U/W is expected to be enhanced and, for a range of dopant con-

centrations x, these compounds display insulating surfaces while the bulk is

metallic[47]. Conversely, at the interfaces or surfaces of Mott/band-insulators,

since U or the charge transfer gap ∆ may decrease to values smaller than the

bandwidth W , a phase transition to a metallic phase may be initiated[4]. In-

terface effects might be exploited to assess specific requirements of electronic
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devices without degrading the bulk, for example creating ferromagnetic inter-

faces in between lattices whose groundstate is naturally antiferromagnetic[80].

Another set of correlated system in which the interface has an electronic phase

different from the bulk are junctions involving TMOs. Surprisingly at the in-

terface between two insulating TMOs a high-mobility electron gas arise which,

at low enough tmeperature, may also become superconducting [10] as will be

explained in the following.

In the following sections we briefly review first some basic properties of in-

terfaces involving copper-based high-temperature superconductors (cuprates)

and then we give a broad overview of interfaces between transition-metal ox-

ides, in order to provide a general introduction of the main ideas of the experi-

ments that motivate the theoretical work reported in this Thesis.

1.1 Some basic aspects of interfaces of high-temperature

superconductors

The high-temperature superconductors are arguably the most studied compounds

in the last decades. Despite the lack of a consensus on a general theory for these

materials, their phase diagram is well established. This is not the place for a

comprehensive review of these materials, but we limit ourselves to remind that

superconductivity emerges by doping holes into an antiferromagnetic charge-

transfer insulator, whose existence is a consequence of the strong Coulomb re-

pulsion. The whole phase diagram is believed to derive from the physics of

strong correlations, including the elusive pseudogap region, where the system
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has a spectral gap, but it is no longer superconducting, and the d-wave symme-

try of the order parameter, with nodes in the gap function. The superconducting

properties of the cuprates are indeed strongly affected by interfaces due to the

short superconducting coherence lengths, which are comparable with the size of

the unit cells, and the sensitivity on defects [26]. A further reason is the key role

of the electronic density in determining the critical temperature. Therefore any

mismatch in the carrier density can lead to huge changes in the superconduct-

ing properties, as it is realized at interfaces between high-Tc superconductors

and conventional metals such as silver or gold[54, 27].

1.1.1 Influence of the order parameter on the interface

The superconducting order parameter in the cuprates is almost universally a

robust dx2−y2 symmetry[87, 86], with nodal lines in the Brillouin zone, which

reflects in a precise symmetry of the oder parameter in real space. The elec-

tronic phase at an interface is strongly affected by this symmetry, in particular

when the junctions between different grains have a finite angle. In this case

the lobes of the order parameter connect each other with misorientation and

the superconducting coupling across the junction is damped with increasing

angle[77, 6]. Such characteristics have never been reported for Josephson junc-

tions built from conventional s-wave superconductors, and imply the existence

of areas with negative critical current[34], which is easily understood in terms

of the above arguments. The sign-difference between the phases of neighbor-

ing lobes of the dx2−y2-wave shift the local phase differences by π, resulting in a

negative Josephson current: J = Jc sin (φ+ π).
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Figure 1.1: (right) Schematic view of the dx2−y2 order parameter configuration at
a grain boundary with a symmetric [001]-tilt misorientation of 15°; (left) sketch
of a misoriented interface between the superconducting lobes showing how the
additional phase shift of π can induce a backward current across the junction

In this kind of misoriented junctions, the order parameter is strongly sup-

pressed as a combined effect of the short coherence length[6, 35] and of the

orientation of the adjacent grain. Among the consequences of the order param-

eter symmetry there is the occurrence of bound states in the barrier and midgap

states at zero energy[38]. All these observations confirm the expectation that

the superconduciting properties of cuprate junctions are strongly influenced by

the interfaces and their detailed geometry, much more than what happens in

conventional s-wave Josephson junctions.

1.1.2 Band Bending

The bending of the electronic band structure induced for example by local vari-

ations of the work function can lead to charge-transfer processes[83]. A pre-
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cise description of the modification in the interface electronic properties due

to charge transfer processes is hard to develop: the length scales involved, the

electrostatic screening length, the inverse of the Fermi vector 1/kF , and the co-

herence lengths are all comparable to the lattice-spacing. This invalidate the

average approaches typically used to define charge and potential distributions.

An alternative method to assess the charge-transfer effects relies on the micro-

scopic description of the pairing mechanism, which is still missing. On the

other hand, it is known experimentally that the band bending and the associ-

ated charge transfer lead to an insulating interface at a grain boundary[48] and

transport is expected to occur by tunneling.

1.2 Interfaces between Transition-metal oxides

Transition-metal oxides occupy a special place in the field of material science

because they offer a huge variety of physical properties, which ultimately arise

from the strong correlation properties associated to the electrons populating

the narrow 3d bands of the transition metal ions, while the p-bands are fully

populated because of the large electronegativity of oxygen (even if there are no-

table exceptions in which the p orbitals play an active role, especially in "late"

transition metal oxides such as cuprates or nickelates). The intrinsic correla-

tion effects experience by these electrons lead to a local entanglement of charge,

spin, orbital and lattice degrees of freedom. Within this picture, electrons col-

lective behavior result in a complex plethora of emergent phenomena such as

Mott insulators and different long-range ordered phases of different kind, rang-

ing from superconductivity to magnetism and more exotic phases. The word of
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transition-metal oxides is also very rich, and it allows to handle and control

these emergent phases by means of artificially grown heterostructures tailored

to optimize known phenomena or to give rise to new and surprising results.

The lowered symmetry at the interface clearly favors the appearance of broken

symmetry phases which can not occur in the bulk system. Indeed, in several

cases, these emergent phase have a two-dimensional nature, where electronic

correlation are enhanced by a local reduction of the competing kinetic energy.

A common feature in many TMOs directly follows from the common ABO3

perovskite crystal structure where the transition metal is surrounded by six oxy-

gens located at the vertex of an octahedron. As will be discussed in detail, this

structure produce a crystal field splitting that pushes the eg orbitals (dx2−y2 and

d3z2−r2) at a much higher energy than the three-fold degenerate t2g orbitals (dxy,

dyz and dzx) as in fig.[1.2].

Figure 1.2: Effect of the cubic crystal field splitting on d orbitals

In "early" TMOs, where the valence bands are of pure t2g character, and their

radial distribution leads to a vanishing overlap with the interstitial oxygen p



CHAPTER 1. INTERFACE PHYSICS 15

orbital because of the different parity. Therefore the p bands can only be vis-

ited through virtual processes eventually leading to a ferromagnetic or antifer-

romagnetic superexchange across the interface. Another effect which makes

interfaces different from the bulk counterparts is the increased relevance of rel-

ativistic effects like Spin Orbit Coupling (SOC) which is another topic that will

be addressed in the present thesis. The emergence of SOC within this context

can be naively understood in terms of the electric field induced by the broken

inversion symmetry induced by the surface. A moving electron will therefore

experience a magnetic field causing the precession of the spin. This is the well-

known Rashba SOC, which adds to the more intrinsic SOC arising from the

coupling between atomic spin and orbital angular momentum, which is not so

large in TMO, but it becomes very important for 5d compounds such as iridates

and osmates. In the final chapter of this thesis we will address the interplay

between SOC and strong correlation effects, including the Hund’s coupling at a

simple model level, a necessary step before considering the more involved and

realistic situation of the Rashba coupling at strongly correlated interfaces.

1.2.1 Controlling factors

1.2.1.1 Strain and interdiffusion

Any interface implies a lattice mismatch, tipically ∼ 1 − 2%, which leads to

compressive or tensile strain on each of the constituents. This effect can be

enhanced by atomic reconstruction at a surface and it leads to a modulation

of the hopping amplitude and to a a lifted orbital degeneracy. This can result

in strong modification of the electronic phase such in La0.7Ca0.3MnO3. For this



CHAPTER 1. INTERFACE PHYSICS 16

compound it has been demonstrated that the compressive strain induced by

the growing substrate can bring the groundstate from metallic to insulating,

while no such effect occur with tensile strain[12, 11]. Due to similarities in size

and chemical bondings, the interdiffusion of ions is another feature that can

strongly influence the interface properties especially when layers are thinner

than 10Ȧ[46].

1.2.1.2 Atomic and electronic reconstruction

The Mott transition is controlled by the ratio between the screened Coulomb re-

pulsion and the electronic bandwidth. The latter is controlled by the interatomic

distance and by the geometrical arrangement of atoms. Both control parameters

are expected to change at a surface or an interface because of its reconstruction.

In the case of a surface layer the reduced number of neighboring atoms (coor-

dination number) results in a reduced kinetic energy and a consequent increase

of the effect of the interaction. On the other hand, a change in screening may

diminish the effective U controlling the charge transfer gap[29, 3]. The change

may become larger, for a TMO-normal metal interface or smaller, for a TMO-

vacuum interface. For example experiments on the compound Ca1.9Sr1.1RuO4

have shown that the surface undergoes a Mott transition at Tc ∼ 125K while

the bulk remains metallic only until Tc ∼ 150K. This deviation from the bulk

behavior has been explained noticing that the RuO6 octahedra have a smaller

tilt angle at the surface, this decrease the Ru − O distance therefore enhancing

the orbital overlap and the bandwidth.

The TMO heterojunctions with theABO3 perovskite structure are influenced

by another kind of reconstruction that involve mainly electronic degrees of free-
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dom. Electronic reconstruction may occur in a different way depending wether

in the presence of an interface or a surface. In the latter case, a charged po-

lar layer may emerge from an insulating bulk, as in the case of LaTiO3[60]. In

junctions between TMO’s charge leakage from one compound to another may

induce an electronic density different from the bulk in the interface region.

This is the case of the two-dimensional electron gas (2DEG) at the interface

of two insulating oxides LaTiO3 (LTO) and SrT iO3 (STO)[60]. The electronic

configuration of bulk LTO is one d-electron per Ti atom, owing a Mott insu-

lating state at a commensurate filling, while STO is a band insulator. The two

compounds have substantially the same crystal structure and lattice constant,

then strong atomic reconstruction effects can be safely ruled out leaving only

electronic reconstruction to be accounted for the interfacial properties. Naively

one could expect the electronic reconstruction to lead to doped band and Mott

insulators in the layers close to the interface. The details of this process and the

properties of the emerging two-dimensional electron gas are far less intuitive

and proved very hard to theoretically tackle.

1.2.2 Two-dimensional electron gas at the LAO/STO interface

One of the most exciting phenomena at oxide interfaces is the electronic recon-

struction that results in the creation of an interfacial electron gas occurs at the

interface between LaAlO3 (LAO) and STO[59, 7, 21, 67]. This is one of the most

studied junctions involving TMO’s due to his robustness agains degradation

and the east growth of these two large bandgap insulators (5.6eV for LAO and

3.2eV for STO) on the substrate. In their bulk electronic configurations those
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two TMO are band insulator with ABO3 perovskite structure. For this class of

compounds, the crystal in the 001 direction can be divided into AO and BO2 al-

ternating planes. Considering the oxygen formal valence of −2, only a finite set

of cations can be used in order to preserve charge neutrality in the bulk unit cell.

In this framework the STO consists of subsequent neutral planes of Sr+2O−2

and Ti+4O−4
2 , while LAO has alternating net charges La+3O−2 and Al+3O−4

2 , re-

sulting in a polar discontinuity at the interface that introduces a large energy

cost for atomically abrupt junction. How the system responds to this energy

cost can be understood in terms of a simple electrostatic model for interfacial

reconstruction.
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Figure 1.3: (a) Unreconstructed n-type interface showing schematically the non-
negative electric field (E), leading to an electric potential (V) that diverges with
thickness. (b) Unreconstructed p-type interface where the potential diverges
negatively. (c) The divergence catastrophe at the n-type interface can be avoided
if 1/2 electron per unit cell is added to the last Ti layer. This produces an in-
terface dipole that causes the electric field to oscillate about 0, and the potential
remains finite. The uppermostAlO2 layer would be missing 1/2 electron, which
would bring the electric field and potential back to zero at the upper surface. (d)
The divergence for the p-type interface is avoided by removing 1/2 electron per
unit cell from the SrO plane in the form of oxygen vacancies.

Depending on the extremal planes, the polar junction can be n-type
(
AlO

(−1)
2 /LaO(+1)/T iO

(0)
2

)
or p-type

(
AlO

(−1)
2 /SrO(0)/T iO

(0)
2

)
, and in both cases an alternating electric field,

generated by the layer net charge, leads to an electrostatic potential that di-

verges with the thickness. For an abrupt interface the bare dipole is Do =

−0.5e× cLAO = −1.9eÅ that, in terms of electrostatic potential, gives a potential

drop of ∆V = 15V per each LAO unit cell. For comparison, this would exceed

the LAO band gap just with a single unit cell. Nonetheless, considering a dielec-

tric polarizability for LAO of εr = 24, the effective electrostatic potential energy

is reduced to 0.20eV/Å and it will equal the band gap only when the number of
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LAO layers is about 5 unit cells [65]. This electrostatic divergence is commonly

known as the polar catastrophe, and it requires some kind of charges redistribu-

tion, over a critical LAO thickness, to be eliminated. The conducting properties

of the n-type interface are consistent with the polar catastrophe picture: if the

LAO coating is less than four unit cells thick, the otherwise metallic junction is

a strong insulator and below a separation distance of six unit cells, the sample

resistivity is found to increase with decreasing LAO thickness[81]. The coating

thickness dependence of the interfacial reconstuction can be seen as the conse-

quence of the increase of the electrostatic potential, which is proportional to the

LAO thickness.

Figure 1.4: Sheet conductance of LAO/STO heterostructures as function of the
LAO thickness. (b) A schematic band diagram of the LAO/STO interface just
before the electronic reconstruction.
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The electronic reconstruction mechanism In TMO charge rearrangement can

occur thanks to the possibility of a mixed valence charge state on the individual

ions, in contrast to semiconductors where the ions have a fixed valence. In fact

one of the most popular mechanisms to understand the charge reconstruction

at the LAO/STO interface relies on the net transfer of half of the unit charge

per two-dimensional unit cell from LAO to the first layer of STO, maintaining

the overall charge neutrality. For n-type junction the transfer involves negative

charge: Titanium in STO is in a 3d0 configuration and has a Ti+4 valence, thus

the charge transferred from the AlO2 layer will change the valence of 50% of the

titanium ions at the interface to Ti+3. The resulting configuration for the last

layer of STO is Ti+3.5, leading to a metallic interface. In this electronic reconstruc-

tion the uppermostAlO2 plane of LAO would be missing half an electron. In the

p-type junction the last STO layer must acquire an extra half-hole and, due to

the fact that, for Titanium, the Ti+4.5 mixed valence is energetically inacessible,

an atomic reconstruction is required, in the form of oxygen vacancies in the SrO

plane, leaving the interface insulating. In both cases the reconstruction gen-

erates an interface dipole that causes the electric field to oscillate around zero,

keeping the potential finite and avoiding the polar catastrophe. This mechanism

is sketched in Fig.[1.3]. Spectroscopic studies corroborate this picture finding,

for n-type interfaces, (0.7± 0.1) e−/u.c. per unit cell on the Ti atoms, and a rel-

evant fraction of oxygen vacancies (0.32± 0.06) e+/u.c. in the p-type interface

and no free holes[56]. It worth mentioning that in this kind of reconstruction

oxygen vancancies act as hole donors in contrast with their standard role in

bulk oxides as electron donors, and they are far more robust against annealing.
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Figure 1.5: In each panel, the SrT iO3 substrate is on the left and the LaAlO3 on
the right.
(a) n-type interface showing the fractions of elemental Ti and La and the Ti+3

fraction. There is excess Ti+3 on the substrate side of the interface. (b) Corre-
sponding Ti and La EELS profiles for the p-type interface, showing almost no
excess Ti+3. (c) Fractional compositions the n-type interface, showing a net va-
cancy excess of δ = 0.1±0.04. (d) Fractional composition for the p-type interface
showing a significant accumulation of excess vacancies δ = 0.32± 0.06.

As it can be seen from Fig.[1.5], at the n-type interface the electrons are not

confined in a single layer but they spread into a screening cloud delocalized

along a few unit cells, in a width of about 10nm, containing slightly more elec-

trons than expected, which in turn are compensated for by a smaller number of
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oxygen vacancies. This increase in the dipole moment at the interface can be ex-

plained in terms of interface defects due to the exchange of Sr cation with La on

the STO side. A more recent [47salluzz] approach to the electronic reconstruc-

tion of n-type interfaces relies on a ionic picture, in which an initially neutral

LaO layer acts as a half-electron donor for the neighboring AlO2 layers. The re-

sulting charge stacking along the growth direction is the same described above,

with the advantage of not requiring the tunneling of the half-electron from the

far topmost layer to the interface and naturally explaining the appearance of the

compensating charges on both sides of the LAO film.

Figure 1.6: Stacking of LaO(+1) and AlO
(−1)
2 planes along the [001] direction of

LAO/STO interface. Starting from neutral planes, at the equilibrium the LaO
layers donate electrons which becomes bound in the neighbouringAlO2 planes.
In particular 0.5 electrons are donated to two neighbour AlO2 planes in the bulk
of LAO (on the upper and lower unit cells), and 0.5 electrons are donated natu-
rally to the charge neutral TiO2 plane (a positive uncompensated charge of -0.5
e should remain on the surface)

Open questions Although this model captures many features of the observed

phenomena, few open questions still remain. One among the others is the dif-



CHAPTER 1. INTERFACE PHYSICS 24

ference between the experimentally measured electronic carrier density (2−4×

1013cm−2) in n-type interface [81, 76] and the one predicted by the polar catas-

trophe model (3× 1014cm−2). A possible explanation is that part of the electrons

injected from LAO become localized and do not contribute to the conduction.

The electronic localization at the interface has been extensively studied in the

context of strong-correlation effects, lattice deformations, polarons, etc. (see,

e.g., Refs.[88, 93, 64, 63, 70]). One of the latest proposal to explain the carrier

density relies on a phase-separation at the interface, with non-percolating con-

ducting regions surrounded by insulating ones. Increasing the LAO thickness,

more electrons are injected and give rise to conduction. The onset of conduction

may arise because electrons start to occupy higher-energy interfacial orbitals,

e.g., different Ti 3d − t2g sub-bands[66, 22, 72] . Indeed the two-dimensional

spatial confinement has the consequence of lifting the t2g orbital degeneracy

and to produce a sub-band structure[73] where heavier dxz and dyz orbitals are

pushed to higher energies.
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Figure 1.7: (Left) Electronic sub-band structure in the Brillouin zone calculated
for the LAO/STO interface[37]. (Right) Spatial dependence of the square of
the associated sub-band eigenfunctions in the direction perpendicular to the
interface; d‖ refers to dxy orbitals while d⊥ refers to dxz and dyz orbitals [38].
The orbital character of the states is shown in both panels; for each orbital a
superscript labels the energy of the band at the Gamma point. One notices that,
for the first three dxy sub-bands, it also identifies the location of the TiO2 layer
counted from the interface where the probability of presence of the carriers in
that band is dominant.

As can be seen from fig.[1.7] showing the modulus square of the eigenfunc-

tions of the low energy sub-bands, the conduction bands come from d orbitals

with a strong dxy character in the first three TiO2 layers next to the interface.

For the narrow bands arising from the confined d shell, the ratio between the

Coulomb repulsion energy and the bandwidth is no more a negligible quantity,

hence theoretical approaches relying on a independent particles picture are not

appropriate. The framework of this kind of physic is the that of strongly corre-

lated electron systems in which e − e correlation must be taken into account in

a many-body scheme despite the original building blocks are band insulators.
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1.2.3 Two-dimensional electron gas at the LTO/STO interface

Another spectacular example of an emergent metallic state at the interface be-

tween naturally insulating TMO compounds has been extensively studied at the

junction between STO and LaTiO3 (LTO), where the latter is a Mott insulator. In

[60] it has been reported the synthesis of a (SrT iO3)n/(LaTiO3)m multilayered

structure showing a well defined one dimensional charge modulation due to an

extra electron per Ti sites resulting in a metallic state at the interface. As we dis-

cussed above, the formal valence of the STO Titanium atom is Ti+4 giving rise

to a band insulator, while in LTO the formal valence is Ti+3 resulting in a single

electron in a narrow d shell. At integer fillings the short-range Hubbard repul-

sion can localize the carriers leading to a Mott insulator. It has been argued

that minor deviation from this picture might occur considering that the LTO

crystal has not perfect a perfect orthorhombic symmetry but presents an tetrag-

onal distortion [39] due to the small lattice constant mismatch (aSTO = 3.91Å

and aLTO = 3.97Å). This eventually results into non diagonal components in

the t2g density of states at the inteface, which implies that a slightly different

basis diagonalizes the system with a slightly larger density of states possibly

leading to a strongly correlated metal rather than a Mott insulator. Therefore

the ideal charge depletion we are referring to occurs at the interface between

a band insulator and a strongly renormalized metal with non integer 3d occu-

pancy. Any other perturbation of the electronic d state is negligible at the Fermi

level despite the chemical abruptness of the interface. As in the previous case

also in this junction a threshold thickness of LTO is required to retrieve bulk-like

electronic properties.
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Figure 1.8: (a) Spatial distribution contributions of Ti and La atoms comnig
forom EELS spectroscopy; (b) decay of the Ti+3 signal away from the single
and double LTO layer.

In Fig.[1.2.3] we show how the Ti+3 signal can be fitted through an expo-

nential decay with a characteristic length of l = 1.0 ± 0.2nm. A rough estimate

for this value has been given in the context of an effective mass description

which confirms that this system can be understood only in terms of a strongly

correlated metal. Indeed considering a dielectric constant-effective mass ratio

of ε/m∗ ∼ 10 ÷ 100 the resulting Thomas-Fermi screening length would be

l = 0.23 ÷ 0.72 in rather good agreement with the above estimate. Finally in
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Fig.[1.2.3] we report the summary of the electronic properties of the LTO/STO

interface where the overall conductivity has been found to be roughly 2/3 the

La fraction present in the superlattice. Since the interface charge modulation

results from the equilibrium distribution of LaO donor layers, an appropriate

theoretical description of this interface would be the one provided by the Hub-

bard model with the inclusion of long range mean-field interactions.

Figure 1.9: (a) Ti+3 area across the LTO unit cell as a function of the LTO thick-
ness; (b) Ti+3 fraction as a function of the LTO thickness; (c) measured carrier
density for different superlattice composition compared with the bulk results
for Sr doped LTO, the slope of the dashed line is 2/3.

1.2.4 Superconductivity at oxide interfaces

In both LAO/STO and LTO/STO heterojunctions a superconducting phase ap-

pears below the common critical temperature of Tc ∼ 300mK. This is a most

remarkable result in many respects, but perhaps the most distinctive aspect lies
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in the two dimensional nature of the superconducting condensate, testified by

critical field measurements which reveal a strong differentiation between the

parallel and perpendicular Hc components. Considering Hc one can extrapo-

late the Landau-Ginzburg coherence length of the superconducting sheet:

ξ (T ) =

√
φo

2πµoH⊥c (T )
(1.1)

which gives ξLAO = 60nm and ξLTO = 42nm, while the thickness of the conden-

sate is given by:

d =

√
3φo

πξ (T )H
‖
c (T )

(1.2)

resulting in dLAO = 10nm and dLTO = 12nm. These values demonstrate the close

similarity between the superconducting phases in the two junctions, regardless

the different nature of one of the two constituents. Another independent con-

firmation of the two-dimensional nature of the system comes from conductivity

that, in this geometry, has a peculiar logarithmic dependence on the tempera-

ture:

σ (ω) = σo +
pe2

πh
ln
T

Tc
(1.3)

where p depends on the most relevant scattering process which is responsible

for the loss of phase coherence and to the resistive behavior. In LTO/STO such

logarithmic dependence has been clearly observed with an estimated value of

p very close to the one characteristc of e − e interactions. Both the phase di-

agrams, reported in Fig.[1.10], have a dome-shaped aspect with an “under-

doped” and an “overdoped” regime where a continuous tuning of the super-

conducting transition has proven feasible with the direct observation of a su-
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perconductor to insulator transition via a gate voltage [9].

Figure 1.10: (a) SC phase diagram for the LAO/STO (a) and LT)/STO
(b)junctions.

We have already described that the electronic reconstruction is responsible

for the 2DEG at the LAO/STO junction and how this conducting sheet is located

in the STO surface. Also this feature is shared by the LTO/STO interface, where

the 2DEG is confined within few unit cells on the STO side [10]. Thus the main

difference between the two system is in the electronic structure band differen-

tiation due to the inversion symmetry breaking, that takes place in the LAO

junction. The effect that this band splitting have on superconductivity can be

deduced from the doping dependence of Tc: in bulk STO the superconducting

phase develops at very low density and it is stable over a wide doping range.

On the other hand the interfacial superconductivity in LAO/STO develops only

over a density threshold of 5 · 1018cm−1. This can be roughly understood con-

sidering that “heavy” electron bands imply a large effective density of states for

the quasiparticles which, in a simple picture, can favor superconductivity by

enhancing the effective coupling. The fact that, in bulk STO, the lowest band is
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“heavy” would explain the wide doping range in which superconductivity has

been found. On the other hand in LATO/STO the lowest band has a dyx charac-

ter with a much smaller effective mass and it lies approximately 300meV below

the Fermi level. This would explain why superconductivity sets in only at a

given doping, which corresponds to the filling of the heavier dxz and dxz sub-

bands. The reduction of SC in the overdoped region is believed to be caused

by the filling of bands different from those where superconductivity is expected

to establish, which causes an higher cross section for e − e scattering processes

[10].

The pairing mechanism that binds the electron in Cooper pairs, and even-

tually leads to their condensation in an actual superfluid phase at low tem-

perature, has recently been addressed[15, 13], obtaining enlightening results in

the framework of the electron-phonon (e− ph) coupling. When carriers and the

hosting lattice site are strongly coupled, a moving electron, or hole, can displace

ions from their equilibrium position. The two kind of excitation, electronic and

phononic, cannot be considered disentangled and form a quasiparticle called

polaron. A polaron is a fermionic carrier surrounded by the lattice distortion

caused by its own presence, which in turn reduces its mobility as measured by

a phonon-driven enhancement of the effective mass. We will discuss these fea-

tures at length in the original chapters of this thesis. A fingerprint of a polaronic

excitation is a hump in the spectral weight at the binding energy of the phonon

ωo.
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Figure 1.11: (a)High-resolution ARPES images along the ky = 0 line with the
superimposed theoretical dxy (pink) and dyz (green) bands. The lower panels
show the corresponding second derivative plots, which clearly show both the
quasiparticle peak and the dispersive hump formed by the LO3 phonon. (b,c)
The characteristic energy distribution curves manifests a polaronic metal state
formed by the LO3 phonon identified by the the clear hump dispersion.

In Fig.[1.11] we report ARPES measurements on the buried STO doped re-

gion, in the LAO/STO junction along the ky = 0 direction, with superimposed

the theoretical dispersion of dxy and dyz sub-bands. We first notice the agree-

ment between theory and experiment as far as the band differentiation is con-

cerned. Moreover the experiment detect clear signs of interaction by means

of a reduced effective mass m∗ = 2.5m with respect of those computed nu-

merically. The energy distribution curves reported in Fig.[1.11], which corre-

spond to ARPES intensities as a function of the photon energy for different k

points, present a hump at about 118meV which is a the signature of a bosonic

mode excitation and, since, the hump structure is the same for dxy and dyz,

then the additional coupling does not depend on the orbital spatial distribu-
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tion. It has been shown[15] that this peak in the k-resolved spectral function

can be attributed to phononic modes suggesting that the conducting 2DEG at

the LAO/STO interface is a polaronic metallic state with a carrier density of

roughly n = 0.12electrons per unit cell.

Figure 1.12: Phonon dispersion at various electron doping levels with arrows
indicating the mode shifting as a function of the density; (b) Atomic displace-
ments associated with the LO3 mode at the R-point.

In order to address the nature and symmetry of this phononic excitation the

authors of Ref.[15] computed the phonon mode dispersion in a cubic lattice of

doped STO that we reproduce in Fig.[1.12] identifying the optical longitudinal

LO3 phonon mode as the only one at the energy of the hump ωo ∼ 118meV . This

lattice excitation correspond to the “breathing distortion” of the octahedral cage

around the Ti ion which is charachteristic of a short-range and screening insen-

sitive e− ph coupling well reproduced by an Holstein coupling with a Einstein

model from the theoretical point of view. Estimates [13] on the e − ph cou-

pling interaction have found the rather high value of λ ∼ 1 which explains the

strong renormalized quasiparticle feature and the fact that, according to BCS
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theory, phonon coupling must be unusually strong to explain superconductiv-

ity with such a low carrier density. On the other hand BCS estimate based on

the value λ ∼ 1 would predict a critical temperature of Tc > 60K while, two

order of magnitude above the measured value. On the other hand, a weak-

coupling BCS superconductivity has been proposed owing to the value of the

ratio 2∆o

KBTc
= 3.56 ± 0.03 where ∆o is the extrapolated zero temperature gap.

Thus, another valid path is to estimate λ from the spectroscopic superconduct-

ing gap, from which a value of λBCS ∼ 0.1 has been extracted together with

the conclusion that Coulomb repulsion interaction must be responsible for the

reduced effective attractive interaction.

The quest for a unifying solution that connects low density, strong Coulomb

repulsion, high e−ph interaction in a two-dimensional geometry and s-wave su-

perconductivity has enthralled theoretician for quite a long time nowadays and

this is precisely the framework where an important part of the work reported

in the present Thesis must be placed.



CHAPTER

2

MODELING CORRELATED

ELECTRONS AT INTERFACES

In the previous chapter we gave a brief overview of the complex properties of

heterostructures of transition-metal oxides. Even if we limited to the most basic

aspects of their phenomenology, our summary has emphasized that a proper

theoretical modeling of these compounds should include electron-electron and

electron-phonon interactions, as well as the spin-orbit coupling. The multi-

orbital nature of the relevant d bands also requires a multi-band description in-

cluding the Hund’s coupling. Last, but not least, a theoretical approach should

35
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be able to account for the inhomogeneous electronic properties at the interface,

which can change the hierarchy between the several energy scales associated

to the variety of interactions we mentioned before. In this chapter we intro-

duce the basic ideas behind the theoretical description of the main interaction

effects taking place in TMO heterostuctures. We start from the basic concepts

of electron-electron correlations (Sec. 2.1) and their extension to multi-orbital

systems (Sec. 2.1.1). We take a little detour to discuss the attractive Hubbard

model, which is introduced as the simplest model to study superconductivity

beyond the BCS limit (Sec. 2.1.2). Sec. 2.2 is devoted to the electron-phonon

interaction in the simplest Holstein moel and its interplay with strong correla-

tion physics in the Hubbard-Holstein model. Finally in Sec. 2.3 we discuss the

local spin-orbit coupling in multi-orbital systems. We postpone to Chapter 3 the

discussion of the methodology we employ in this thesis to study the above in-

teractions, the Dynamical Mean-Field Theory and, in Chapter 4, its extension to

inhomogeneous layered systems, which is one of the novel results of this work.

2.1 The Hubbard Model and electron-electron inter-

actions

Within the Born-Oppenheimer the Hamiltonian which describes Ne electrons

interacting with NI ions forming a regular lattice is:

H =
Ne∑
i

− ~
2me

∇2
i︸ ︷︷ ︸

T

− e2

4πε

NI∑
j

Zi
|ri −Rj|︸ ︷︷ ︸
V

+
1

2

e2

4πε

Ne∑
j 6=i

1

|ri − rj|︸ ︷︷ ︸
U

(2.1)
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where r and R are the positions of the electrons and ions respectively. Eq.[2.1]

is composed by a single-electron contribution T + V , consisting of a kinetic and

static potential terms, and a electron-electron (e-e) interaction term U . The latter

prevents to write the whole hamiltonian as a sum of single-particle disentan-

gled hamiltonians, which is the main reason why this many-body problem defies

any simple solution. As we will discuss in the following, the difficulty lies also

in the different nature of the two terms of Hamiltonian of Eq.[2.1]. While the

single-particle contribution can be diagonalized in the momentum representa-

tion {|k〉} giving rise to a set of bands, the U term is diagonal in the configura-

tion representation {|ri〉}, which makes the simultaneous diagonalization very

hard. From this dichotomy follow two different approaches to attack this prob-

lem according to the effective strength of the two terms. For weakly interacting

systems, as it happens when the valence electrons populate s or d shells, the ef-

fect of the interaction can be recast into an effective single-particle description,

as in Hartree-Fock approximation or in Kohn-Sham density functional theory

(DFT).

On the other hand, for systems with valence electrons in open d or f shells,

the e-e correlations due to the Coulomb repulsion are not negligible and the sin-

gle particle picture fails. The most spectacular effect of the electron correlation

is to challenge one of the most basic results of the band-theory of solids. Accord-

ing to this theory, which relies on a single-particle picture, a solid is an insula-

tor if the electrons completely populate one band leaving the following band

empty, while any other filling of the bands corresponds to a metallic state. In

strongly correlated systems instead the Coulomb repulsion between electrons

can results in a insulating phase even though the bands are partially filled as
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long as the number of electrons per ion is integer. These systems are called

Mott insulators since N. Mott has been the first to propose this correlation-

driven breakdown of the band-theory of solids. Rephrasing the Hamiltonian

of Eq.[2.1] in second quantization, on a basis of localized Wannier functions as-

sociated to the ionic positions produces the following lattice model:

H = −
∑
αβ

∑
σσ̄

∑
ij

t̂
(
ĉ†iασ ĉ

†
jβσ̄ + h.c.

)
+

1

2

∑
αβγδ

∑
σσ̄

∑
ijlm

Û ĉ†iασ ĉ
†
jβσ̄ ĉkγσ̄ ĉlδσ (2.2)

Here ĉiασ

(
ĉ†iασ

)
is the destruction (creation) operator of a fermion with spin

σ of the α band of the i-th lattice site. The hopping matrix t̂ = tαβσσ̄ij is the

parametrization of the non-interacting dispersion of the T + V operator:

tαβσσ̄ij =

ˆ
drψ†iασ (r)

[
~

2me

∇2 − V (r)

]
ψjβσ̄ (r) (2.3)

and Û = Uαβγδ
σσ̄,ijkl encloses all the correlations:

Uαβγδ
σσ̄,ijkl =

ˆ
drdr′ψ†iασ (r)ψ†jβσ̄ (r)U (r− r′)ψkγσ̄ (r′)ψlδσ (r′) (2.4)

The energy associated to the scattering process of two particles in the quantum

states |iασ, jβσ̄〉, scattering into the states|kγσ̄, lδσ〉, is given by Uαβγδ
σσ̄,ijkl. It is easy

to realize that the therm with i = j = k = l (on-site interaction) is the largest

term. This obviously descends from the fact that the Coulomb interaction de-

cays with the distance, but in many materials it is reasonable to neglect all the

non-local terms because of the screening of the Coulomb interaction between

valence electrons given by the core levels, which can make the interaction short
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ranged. In order to illustrate the basic interplay between the two terms, it can be

useful to simplify the general hamiltonian of Eq.[2.2] by restricting to the case of

a singular orbital band. This leads to the popular single-band Hubbard model,

arguably one of the basic and most studied models in condensed matter:

H = −t
∑
σ

∑
ij

(
ĉ†iσ ĉ

†
jσ + h.c.

)
− µ

∑
i

(n̂i↑ + n̂i↓) + U
∑
i

n̂i↑n̂i↓. (2.5)

Already the simples single-band formulation of the problems features the archety-

pal competition between the delocalizing effect of the kinetic energy and the lo-

calizing tendency driven by the electron-electron interaction. As we shall see in

the next chapter, when the number of electrons equals the number of sites (half-

filling), this simple model presents a metal-insulator transition (Mott-Hubbard

transition) increasing the strength of the interaction U and changing the ratio

with respect to the bare half-bandwidth D ∼ d · 2t. For small U/D the sys-

tem is in fact in a metallic Fermi-liquid state, where the effects of interactions

are largely included in the effective mass renormalization, while for very large

U/D the electrons are localized, one per lattice site, in order to minimize the

repulsive potential energy.

In this phase, the charge degrees of freedom are frozen out since double

occupations become energetically very unfavorable resulting in a strong sup-

pression of the hopping. Thus, in the U/W → ∞ limit and for n = 1, only the

spin degrees of freedom persist and the Hubbard model simplifies to the quan-

tum Heisenberg model. If we move away from half-filling, double occupancy is

still forbidden, but the presence of empty sites allows the charge tunneling re-

sulting in the so-called t − J model. An insulator-to-metal transition can occur
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also by changing the density away from half-filling when the interaction is kept

constant at U > Uc. This is the so-called filling-driven transition, which –for

a two-dimensional lattice– is believed to entail the main physics of the high-

temperature superconductors.

Indeed this simple model, or its extensions to multi-band configurations,

is able to describe many of the effects which are experimentally observed in

strongly correlated materials, like, e.g., the transition-metal oxides we briefly

discussed in Chapter 1.

2.1.1 Multi-band Hubbard Model and Hund’s coupling

The single-band Hubbard Model can be very helpful to understand and visu-

alize the physics of strongly correlated materials, but it is a reasonable miscro-

scopic model for a rather small set of real materials, with the notable example

of the cuprates, which have a single active electronic band at the Fermi-level.

The majority of the known transition metals oxides, as well as iron-based su-

perconductors, are instead multi-band materials, with several bands crossing

the Fermi level.

The presence of several bands does not merely make the problem more com-

plicated, but it gives rise to interesting novel phenomena which have attracted

a lot of interest in the last few years. Indeed many compounds with multior-

bital configurations d2, d4 and d6 display clear signatures of strong correlations

despite being far from a Mott transition because of a moderate value of the

U/D ratio. The key player in these anomalies has been identified in the Hund’s

coupling. This effect is peculiar of multi-orbital correlated systems and it cor-



CHAPTER 2. MODELING CORRELATED ELECTRONS AT INTERFACES 41

respond to the energy scale associated with intra-atomic exchange, which low-

ers the cost in repulsive Coulomb energy when placing two electrons in differ-

ent orbitals with parallel spin, as opposed to two electrons in the same orbital.

Different studies, in the context of iron pnictides and multi-orbital Kanamori

model[25, 90], revealed that the low-energy quasiparticle coherence scale is con-

siderably reduced by Hund’s coupling. For systems with integer filling dif-

ferent from global half-filling, however, the Hund’s coupling shifts the Mott

transition to larger values of the interaction, therefore creating a large region

of interactions where the system is in a strongly correlated metallic state but

it is not close to full Mott localization. There two-fold effect of the exchange

interaction has been called a Janus effect to underline the dual nature[25]. For

half-filled band, instead, the Mott transition is pushed to smaller values of the

interactions, coherently with the decrease of the coherence scale.

The intermediate region with strong correlations but far from the Mott tran-

sition has been shown to display remarkable properties including a finite-temperature

incoherent non-Fermi liquid metallic state with frozen local moments, anoma-

lies in the magnetic response function [33], and a marked orbital-selective be-

havior in which different orbitals have a completely different degree of correlation[24,

23]. Quantitatively, one can derive additional intra-orbital local interactions for

multi-orbital systems directly from Eq.2.4:

U =

ˆ
drdr′ |ψα↑ (r)|2 U (r− r′) |ψα↓ (r′)|2

U ′ =

ˆ
drdr′ |ψα↑ (r)|2 U (r− r′) |ψβ↓ (r′)|2

J =

ˆ
drdr′

ˆ
drdr′ψ†ασ (r)ψ†βσ̄ (r)U (r− r′)ψβσ̄ (r′)ψασ (r′)
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The full many-body multi-orbital Kanamori interaction term of the Hamiltonian

is:

H = U
∑
α

n̂α↑n̂α↓ + U ′
∑
α 6=β

n̂α↑n̂β↓ + (U ′ − J)
∑
α 6=β,σ

n̂ασn̂βσ (2.6)

+JX
∑
α 6=β

ĉ†α↑ĉα↓ĉ
†
β↓ĉβ↑ + JP

∑
α 6=β

ĉ†α↑ĉ
†
α↓ĉβ↓ĉβ↑

composed by the density-density interaction, involving the n̂ operators, and the

JX spin-flip and JP pair hopping interactions. As described in [32], rewriting

Eq.[2.6] by means of the total density, spin and angular momemtum operators:

N̂ =
∑
ασ

n̂ασ Ŝ =
∑
α

∑
σσ̄

ĉ†ασσ̂ĉασ̄ L̂ = i
∑
αβγ

∑
σ

εαβγ ĉ
†
ασ ĉβσ (2.7)

the simultaneus charge, spin and orbital UC (1) ⊗ SUS (2) ⊗ SOO (3) invariance

is mantained provided:

JX = J JP = J U ′ = U − 2J (2.8)

With these restriction Eq. 2.6 can be written as:

H = (U − 3J)
N̂
(
N̂ − 1

)
2

− 2JŜ2 − J

2
L̂2 +

5

2
JN̂ (2.9)

The three Hund’s phenomenological rules for the (orbitally degenerate) ground-

state are now justified:

• the total spin S should first be maximized;

• given S, total angular momentum L should be maximized;
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It has been clarified by many authors how, the Hund’s coupling has a strong

influence on the critical interaction stregth Uc.

Figure 2.1: Critical coupling separating the metallic and Mott insulating (para-
magnetic) phase, as a function of Hund’s coupling, for a Hubbard-Kanamori
model of three degenerate bands with one (red), two (green) and three (blue)
electrons per site. The model is solved with DMFT, with a semi-circular density
of states of bandwidth 2D for each band. Dashed lines indicate the atomic-like
estimates. The shaded region corresponds to U − J < 0 (J > U/3).

Fig. 2.1 shows the dependence of Uc on J for a Hubbard-Kanamori model

of three (M = 3) degenerate orbitals. As we mentioned above, in the N =

1,M, 2M−1 cases, at small J , the effect is to strongly reduce Uc then to increase

it roughly linearly at larger J , making the Mott phase harder to reach. An ex-

austive review on this topic is given in Ref.[32].
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2.1.2 Attractive Hubbard Model

In this section we take a little detour from our main direction and we consider

an attractive Hubbard model as a simple model for superconductivity. We will

indeed use this model in Chapter 4 to discuss the effect of an interface on su-

perconductivity beyond the weak-coupling limit. This model is indeed widely

used to study the crossover from a weak-coupling superconductivity, which is

essentially described within a mean-field approach analogous to the BCS the-

ory, and a strong-coupling superconductivity, in which tightly bound pairs of

bosonic nature are formed at high temperature and superconductivity is associ-

ated with their condensation (Bose-Einstein condensation, BEC)[44, 84, 85]. This

two regimes are continuously connected by the so called BCS-BEC crossover.

The model has exactly the same form of the repulsive model except for the

sign of the interaction and it consists of two competing terms, namely, the hop-

ping kinetic energy and a local istantaneous pairing:

H = −t
∑
σ

∑
ij

(
ĉ†iσ ĉ

†
jσ + h.c.

)
− µ

∑
i

(n̂i↑ + n̂i↓)− U
∑
i

n̂i↑n̂i↓, (2.10)

where U is a positive quantity in order to describe an attraction between elec-

trons. The on-site density-density interaction term favors double occupancy

and, below a critical temperature Tc, the formation of s-symmetric pairs. The

electron pairs become local in the strong-coupling limit. The model is suitable

to descibe the evolution from conventional BCS superconductivity, at U/D � 1,

to bosonic pair condensation when U/D � 1, just tuning the ratio U/D. A

mean field analysis [69] of the weak-coupling limit shows indeed a BCS-like be-

havior with a Hartree critical temperature of kBTc ∼
√
n(2− n)e−2W/|U | while,
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in the opposite limit[68], the bounded electron behave like hard core spin 0

bosons with a mean-field estimate of the critical temperature that goes like:

Tc ∼ 1−n
ln 2−n

n

2t2

U
in the high density limt. This BEC phase is peculiar of sys-

tems with short-range, unretarded pairing and characterized by an extremely

short coherence length, which can be found in materials with strong couplings

between electrons and lattice[91] or electron and bosonic excitations such as

plasmons[37, 79]. The ground state of the attractive Hubbard model is a singlet

s-wave superconductor for any interactionU and filling n, in contrast to the case

U > 0, where a gap exists only at integer fillings. It can be shown how, through

the staggered particle-hole canonical transformation on a bipartiteA−B lattice:

ĉi↓ → (−1)sign(i∈A,B) ĉ†i↓ (2.11)

the AIM can be exactly mapped in a repulsive Hubbard model in a magnatic

field. In particular, the kinetic term is unaltered, the interaction changes its

sign while, as most noticeable modification, the chemical potential of the AIM

becomes a magnetization operator:

− µ
∑
i

(n̂i↑ + n̂i↓)→ −µ
∑
i

(n̂i↑ − n̂i↓) (2.12)

In the particular case of n = 1 the SC groundstate of the attractive Hubbard

model is degenerate with a staggered charge density wave (CDW) phase, this

can be easily understood by means of the mentioned mapping. The antiferro-

magnetic order parameter of the repulsive model is given by the magnetization
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defined on the bipartite lattice:

−→m =
∑

α=x,y,z

mα

=
∑

α=x,y,z

∑
i∈A,B

(−1)sign(i)
〈
ĉ†iσσ̂

αĉiσ̄

〉

Applying backwards the transformation of Eq.[2.11] to the three components

of −→m one finds that the z-component correspond to the CDW order parameter,

while a linear combination of the two components of the in-plane magnetization

gives the complex order parameter of the attractive Hubbard model:

mz →
∑
i∈A,B

(−1)sign(i) (〈n̂i↑〉+ 〈n̂i↓〉 − 1)

mx + imy →
∑
i∈A,B

〈
ĉ†i↑ĉ

†
i↓

〉
mx − imy →

∑
i∈A,B

〈ĉi↓ĉi↑〉

The mapping clearly shows that, whenever the repulsive model has an anti-

ferromagnetic state, the attractive model will describe a s-wave superconduc-

tor degenerate with a charge-density waves. Indeed as soon as the attractive

model is doped, the degeneracy is lifted and the superconducting state remains

the most stable. This is easily understood in the repulsive framework, where

the mapping implies a uniform magnetic field along the z direction (which cor-

responds to the chemical potental that drives the attractive model out of half-

filling). Hence the z-component of the staggered magnetization will be disfa-

vored with respect to the planar components. Therefore the mapping implies

that the s-wave superconductor is the lowest-energy solution for any density in
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the attractive model.

2.2 The Holstein Model

In this section we review some important aspects of the electron-phonon cou-

pling and its interplay with the electron-electron interaction which can be im-

portant at the interface between different transition metal oxides, as we dis-

cussed briefly in Chapter 1.

As we mentioned before, when the carriers are strongly coupled with the

lattice, their motion becomes strongly entangled with the heavy phononic de-

grees of freedom. Hence the effective mass cab be very large and the electrons

can turn into polarons. The concept of a polaron has been introduced by Lan-

dau to describe a state in which the presence of an electron is associated to a

finite lattice distortion, which further binds the electron leading to what Lan-

dau describes as an electron digging its own potential well. If we follow the

properties of an electron as a function of its coupling with the lattice, we find a

continuous evolution from a perturbative regime, in which the electron-phonon

coupling only leads to a small effective mass correction, to a strongly coupled

polaronic regime, in which the hopping is exponentally renormalized and the

carrier is almost localized. The crossover becomes sharper and sharper as the

phonon frequency is reduced and it turns into an actual transition in the limit

of vanishing phonon frequency, when the phonons become classical variables.

The simplest model Hamiltonian that encloses polaron physics and Coulomb

electron-electron correlation on equal footing, is the Holstein electron-phonon

coupling Hamiltonian, which assumes an on-site coupling between a disper-
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sionless Einstein phonon and the electronic density fluctuations:

H = HtUµ +
∑
i

[
ωob̂
†
i b̂i + g

(
b̂†i + b̂i

)(∑
σ

n̂iσ − 1

)]
(2.13)

where HtUµ is the Hubbard Hamiltonian of Eq.[2.5] and b̂i

(
b̂†i

)
are the annihi-

lation (creation) operators of a phonon of frequency ωo on the site i. Here we

introduce directly a Hubbard-Holstein model which also features the Hubbard

interaction, but we will first discuss results in the absence of the Coulomb re-

pulsion.

The relevant parameters of the Holstein model are the dimensionless electron-

phonon coupling:

λ =
2g2

ωoD
(2.14)

and the adiabatic ratio between phononic and electronic charateristic energy

scales:

γ =
ωo
D

(2.15)

being D the half-bandwith as usual. Depending on γ one can identify two

regimes: in the adiabatic limit, which is realized in most materials, the phonon

energy is small compared to the half-bandwith, γ � 1. This corresponds to the

situation in which the phonon timescales are long compared to the electronic

ones, and the lattice polarization is retarded due to a large ionic mass.

In the opposite anti-adiabatic λ & 1, limit we assume that the phonons are

faster than the electrons, so that the phonon-mediated interaction between the

electrons becomes instantaneous. This regime is of course hardly realized in

actual materials, unless one considers the ratio between a bare phonon fre-



CHAPTER 2. MODELING CORRELATED ELECTRONS AT INTERFACES 49

quency and a renormalized bandwidth arising from strong correlations. A simi-

lar approach has been employed in studies of superconductivity in alkali-doped

fullerides[20, 18].

From basic notions on the quantum harmonic oscillator one knows that the

bosonic operators can be expressed in terms of momentum and position opera-

tors b̂†i =
√

1
2Miωo

(Miωox̂i − ip̂i) and his hermitian conjugate. With this canonical

transformation the Hamiltonian of Eq.[2.13] becomes:

H = HU +
∑
i

[
p̂2
i

2Mi

+
1

2
Miω

2
o x̂

2
i + βx̂i

(∑
σ

n̂iσ − 1

)]
(2.16)

from which is clear that, due to the interaction with the electrons, the phononic

oscillator amplitude is shifted. In the adiabatic limit, i.e. Mi → ∞, the Born-

Oppenheimer principle can be applied and the groundstate can be factorized in

the electronic and phononic contribution |Ψo〉 = |Ψel〉 |Ψph〉 with |Ψel〉 depend-

ing parametrically from the atomic displacements xi.

The e− ph incteraction naturally gives rise to an effective interaction which

drives the system towards a superconducting instability. As a function of the

e − ph coupling we have a crossover from a standard BCS superconductor to a

strong-coupling bipolaronic superconductivity, which is the phononic version

of the BCS-BEC crossover of the attractive Hubbard model. A bipolaron is in-

deed a pair of polarons which is bound at very high temperature because of the

energetic gain in sharing the same lattice distortion. At much lower temper-

ature bipolarons condense leading to a superconductor. The crossover is also

characterized by a reduction of the coherence length of the pairs. While the

weak-coupling pairs of BCS theory are extremely delocalized, bipolaronic bind-
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ing occurs on very short distances, and it is therefore a reasonable candidate to

describe the real-space pairing effects observed in TMO[15, 13] and other su-

perconducting materials [6]. In such correlated systems the instantaneous e− e

and the retarded e − ph interactions are comparable and, remarkably, the re-

tarded nature of the latter, can stabilize the pair formation even in the presence

of large Coulomb repulsion. The e − ph interaction strength of the known cor-

related materials is in the intermediate region, where perturbative approaches

fails. However, analyzing the two limits, one can gain informations which are

valid also far from the range of applicability of perturbation expansions.

2.2.1 Weak-coupling limit

Switching on the e− ph interaction the electron becomes weakly dressed result-

ing in an increase of the effective mass, and an effective retarded interaction

between electrons on different sites is introduced. The latter can be deduced

from second-order perturbation theory in the coupling constant g but we find it

simpler to derive it from a path-integral formulation. The action related to the

electron-phonon coupling in the Holstein-Hubbard hamiltonian is:

Se−ph =

ˆ β

0

dτ
∑
i

[
b̂†i (τ)Do

b̂i
(τ) b̂i (τ) + g

(
b̂†i (τ) + b̂i (τ)

)(∑
σ

n̂iσ (τ)− 1

)]
(2.17)

where we defined the inverse propagator of the non-interacting phonon on the

i-th lattice site Do
b̂i

(τ) = (∂τ + ωo). Using the standars formulas for multidimen-

sional complex gaussian integration, one can extract the effect of the phonon

field over the electronic degrees of freedom computing the effective electron-
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phonon action:

Seffe−ph =

ˆ β

0

dτdτ ′
∑
i

[(∑
σ

n̂iσ (τ)− 1

)
Go
b̂i

(τ − τ ′)

(∑
σ

n̂iσ (τ ′)− 1

)]
(2.18)

where:

Go
b̂i

(τ − τ ′) = −g2
[
Do
b̂i

(τ)
]−1

δ (τ − τ ′)

= −g2 [∂τ + ωo]
−1 δ (τ − τ ′)

takes the form of an effective retarded density-density interaction. We can gain a

deeper physical insight in Matsubara frequency representation, where the ac-

tion of Eq.[2.18] reads:

Seffe−ph =
∑
nl

∑
i

[(∑
σ

n̂iσ (iωn)− 1

)
g2

iΩl − ωo

(∑
σ

n̂iσ (iωn)− 1

)]
(2.19)

The denominator can be rewritten as:

∑
l

1

iΩl − ωo
=

∑
l>0

1

2

[
1

iΩl − ωo
+

1

−iΩl − ωo

]
=

∑
l>0

1

2

[
1

iΩl − ωo
− 1

iΩl + ωo

]
=

∑
l>0

ωo

(iΩl)
2 − ω2

o

Focusing on the half-filling case, i.e. when n̂i↑ + n̂i↓ = 1, the particle-hole sym-

metric factor (
∑

σ n̂iσ (iωn)− 1)2 gives the additional factor of 2. Finally one

obtains the well known renormalized retarded interaction for the half-filled
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Hubbard-Holstein model:

Ue−ph (ω) = U +
2g2ωo
ω2 − ω2

o

= U +
ω2
o

ω2 − ω2
o

λD (2.20)

In the antiadiabatic limit, when the ion motion is istantaneous, the interac-

tion becomes istantaneous as well, eventually resulting in an effective attractive

Hubbard Model with Ue−ph (ω) = U − λD.
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Figure 2.2: Effective potential of Eq.[2.20] for U = 0.5 and various e − ph inter-
action strength
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2.2.2 Strong-coupling limit

When λ & 1 the hopping part of Eq.[2.13] can be trated perturbatively with the

Lang-Firsov canonical transformation with a unitary operator1 defined as:

Ŝ = − g

ωo

∑
iσ

n̂iσ

(
b̂†i − b̂i

)
(2.22)

the rotated operators2 are:

b̃i = b̂i +
g

ωo

∑
σ

n̂iσ

c̃i = ĉie
g
ωo

(b̃†i−b̃i)

1The canonical transformation can be physically interpreted as a shift of the ions position at
the site where the phase fluctuation occurs:

〈x̃i〉 ∼
〈
b̃†i + b̃i

〉
=

〈
b̂†i + b̂i +

2g

ωo

∑
σ

n̂iσ

〉
= 〈x̂i〉+

2g

ωo

∑
σ

〈n̂iσ〉 (2.21)

2Where we used:

Õ = e
ˆSÔe−

ˆS

= Ô +
[
Ŝ, Ô

]
+

1

2

[
Ŝ,
[
Ŝ, Ô

]]
+ ...
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In this new basis the phononic contribution is diagonal, while the electrons ac-

quire a phase shift θ̃i = e
g
ωo

(b̃†i−b̃i). The hamiltonian now reads:

H̃ = −t
∑
ijσ

[
c̃†iσ c̃jσθ̃

†
i θ̃j + h.c.

]
+
∑
i

[
ωob̃
†
i b̃i −

(
µ− g2

ωo

)∑
σ

ñiσ +

(
U − 2g2

ωo

)
ñi↑ñi↓

]
(2.23)

= H̃t +
∑
i

[
ωob̃
†
i b̃i −

λD

2

∑
σ

ñiσ + λDñi↑ñi↓

]
(2.24)

From this expression we can extract valuable information.

• the unitary operator Ŝ involves the total density, rather than density fluc-

tuations as in Eq.[2.13]. This allow us to exactly define the half-filling

chemical potential from the atomic t = 0 limit of Eq.[2.24], where µ = −λD

results in the lowest energy for the
∑

σ ñiσ = 1 configuartion;

• the same quantity can be regarded as the lattice deformation energy gain

due to the polaronic formation Ep = g2

ωo
= λD

2
;

• the groundstate of H̃ is degenerate with respect of the site index i, with an

electron for each lattice site. In the strong-coupling limit the translational

invariace is broken since all electron are trapped in their “self-digging”

hole with a vanishing hopping amplitude at the zeroth order. Consdering

the first order kinetic contribution one finds an exponentially decay in the

nearest neighbor hopping amplitude [49]:

teff = 〈i| c̃†iσ c̃jσθ̃
†
i θ̃j |j〉 = te

− g2

ω2o = te−
λD
2ωo = te−

Ep
ωo (2.25)
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• the effective on-site interaction is renormalized by the binding energy of

two polarons:

Ũ = U − 2Ep (2.26)

which is the same result of the non-adiabatic limit.

For negative effective interaction Ũ < 0 one can easily form bound pairs, but,

even for Ũ > 0 a polaron bound state can persist. This can be shown with

second order perturbation theory with respect of H̃t, considering a starting con-

figuration where two electrons with opposite spin resides on adjacent lattice

sites |Ψ〉 = ĉ†i↑ĉ
†
i+a↓ |0〉. Following [[49, 55]], two kind of hoppings can be iden-

tified: those exponentially vanishing in the strong-coupling limit, of the kind

of Eq.[2.25], related to a different initial and final lattice configuration, and the

non-vanishing ones. The latter correspond to processes where the lattice con-

figuartion is left unchanged, but electrons hops out on neighbouring sites, with-

out carrying the lattice deformation, and subsequently hops back on the original

site. The virtual intermediate state has an energy of 2Ep, since it contanis a po-

larized site without the electron and an electron in an undistorted site, then a

global energy gain of −t2/2Ep is provided by this process. If, in the intermedi-

ate virtual state, the arrival lattice site already contains an electron an additional

energy cost of U has to be considered giving a correction of −t2/U . All these

energy contribution are computed from:

T̃ = H̃t

[
ε− H̃

]−1

H̃t (2.27)
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over a small irreducible subset of degenerate states of H̃. The existence con-

dition for the bipolaron is found upon diagonalizing the operator of Eq.[2.27]

with a binding energy of:

∆E = − t2

Ep
+

4t2

U
(2.28)

this means that the bipolaron is stable, even if composed by weakly bounded

polarons, when:

U < 4Ep (2.29)

or alternatively:

λ >
1

2

U

D
(2.30)

In conclusion, the bipolaron bound state begin start to appear already when the

global interaction of Eq.[2.20] is negative, i.e for 1
2
U
D
< λ < U

D
, and persists when

the rescaled interaction becomes attractive at λ > U
D

eventually stabilizing a

superconducting phase.

2.2.3 The bipolaron insulator in the Holstein model and phonon

softening precursor

As we discussed bipolarons can condensate with a Bose-Einstein mechanism

eventually leading to superconductivity[2]. If superconductivity is prevented,

the bipolarons can condense in a charge-ordered insulating state, composed by

pairs localized in their self-trapping potential. Indeed it has been demonstrated

[17] that the metal-insulator transition (MIT) is not associated to the formation

of individual polarons, and insulating behavior can be associated only with lo-

calized bipolarons. Calculation performed mainly with DMFT [17, 53] demon-
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strated that, for the pure Holstein model, i.e. when U = 0, in the adiabatic regime

the MIT is located at λc ≈ 0.76÷ 0.83.

Figure 2.3: (a) z and Ω/ωo (inset) for γ = 0.1 vs λ in a DMFT(ED) calculation. The
arrow marks the MIT for γ = 0 as in [16]; (b) Electronic spectral function for
various e− ph coupling λ

Through a mean field analysis of the model[8], it has been shown how the

nature of this insulating phase is deeply connected with the CDW instability.

The latter instability shows up, at mean-field level, at λ(mf)
CDW = 0.578 with two

peaks in the spectral functions shifted of ±gxmf above and below the Fermi

level. This behavior can be explained in terms of an effective potential for the

ions Vλ (x). The static field x can be written in terms of both the average ion

displacement and the average of the total density fluctuation either, which are

linearly coupled in the Holstein hamiltonian:

x =
1√

2Mωo

〈
b̂† + b̂

〉
= − 2

√
ωo

g

ωo

〈∑
σ

n̂σ − 1

〉
3 In the anti-adiabatic limit the MIT occurs when λc ≈ 1.44, at the same time the non-

vanishing value of Ω/ωo indicates that the phonon renormalization is less effective.
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For λ < λ
(mf)
CDW , Vλ (x) is a simple harmonic potential, while at λ > λ

(mf)
CDW it be-

comes a double-well potential with minima at ±gxmf and a central barrier that

rapidly grows with λ. When λ � λ
(mf)
CDW the central barrier will exponentially

restrain the hopping between the two minima making the groundstate an in-

coherent superposition of doubly occupied and empty sites. This will lead to

a charge-ordered state in calculations where the translational symmetry can be

broken.

Figure 2.4: (a) Lattice fluctuations
〈
x̂2 − 〈x̂〉2

〉
as computed in Ref.[53] ,the thick

dotted line represents the mean-field value x2
mf and the thin dotted line shows

the λ→∞ limit for the same quantity; (b) Phonon propagator spectral function
A (ω) = − 1

π
=D (ω) showing a softening with increasing λ.

As shown in Fig.[2.2.3] the expectation value of the fluctuations of the dis-

placement
〈
x̂2 − 〈x̂〉2

〉
computed on top of the mean field, extends shortly above

λ
(mf)
CDW and has a maximum at λ∗ < λ

(mf)
CDW , in the crossover region towards the

double-well structure, where the potential is broad and shallow. The effect of

this enhancement in the displacement fluctuation can be understood computing

the phonon propagator:

D (iΩn) =

ˆ β

0

dτeiΩnτ
〈

T
[(
b̂† (τ) + b̂ (τ)

)(
b̂† + b̂

)]〉
(2.31)
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from which the renormalized phonon frequency Ω/ωo can be extracted as:

(
Ω

ωo

)2

= − 2

ωoD (0)
(2.32)

As can be seen from Fig.[2.3] this quantity is decreasing with λ, showing that

the transition toward the insulator has a precursor in the phonon softening [53].

In particular, looking at the spectral function of the phonon propagator A (ω) =

− 1
π
={D (ω + i0+)} reported in Fig.[2.2.3], the phonon softening is related to an

increase of a low-frequency peak occurring exactly at λ = λ∗ where the two

minima in the effective potential starts to deepen and the fluctuations have their

maximum. The connection between position fluctuation and phonon softening

comes from the fact that in the model the position operator is linearly coupled

to the electronic density. Indeed, another way to derive the phonon propagator

is:

D (iΩn) = Do (iΩn) +Do (iΩn) g2χc (iΩn)Do (iΩn) (2.33)

where χc (iΩn) is the charge susceptibility and Do (iΩn) = (Ωn − ωo)−1 is the

bare phonon propagator. Eq.[2.33] shows how strictly D (iΩn) depends on χc:

the peak in A (ω) has its equivalence in a low-energy peak of χc, which is the

precursor of the metal to bipolaronic insulator transition. An alternative argu-

ment leading to the same conclusion starts form the mapping of the Holstein

model into the attractive Hubbard model in the antiadiabatic limit. As we de-

scribed above, the latter can be inturn mapped onto a repulsive Hubbard model

with an exchange in the spin and charge channels. Hence the low-energy peak

in the spin susceptibility, which is the precursor of the insulating phase, will

have an equivalent peak in the charge susceptibility in the Holstein model.
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2.2.4 The Holstein-Hubbard model phase diagram at half-filling

In the case of the Holstein-Hubbard model the situation is far more involved,

since, even if a bound state exists for relatively large values of the Hubbard

interaction U , it is not easy to find analytically when the bipolaronic insulating

phase becomes the groundstate. The results of several numerical simulations

[16, 8, 17, 30, 41] can shed light on this point, in the following we will focus on

those based on Dynamical Mean-Field Theory.

In Fig.[2.5] we report the zero-temperature phase diagram of the model for a

system with a semi-elliptic density of states of half-bandwidth D in the param-

agnetic sector where all the broken-symmetry phases such as CDW, Supercon-

ductivity and antiferromagnetism are inhibited.

Figure 2.5: Phase diagram of the half-filled Holstein-Hubbard model over the
e − ph coupling λ and the Hubbard interaction U/D in the adiabatic (γ = 0.05)
regime. The yellow region stands for metal (M), orange for bipolaronic insulator
(BPI) and blue for Mott Hubbard insulator (MHI)
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When both the bipolaron energy Ebp/D = λ and the Hubbard interaction

U/D are small, the groundstate is metallic (M). For large λ and zero or small U

we recover the transition to the bipolaronic insulator (BPI), while, in the large

U regime and zero or small λ, we reach the standard Mott-Hubbard insulator

(MHI). In particular, we obviously recover the two limiting cases of the model,

namely the pure Holstein model with λc ≈ 0.6 and the Single band Hubbard

model with Uc1 ≈ 2.75D and Uc2 ≈ 3D. The degree of correlation of the metal-

lic state, reflected by the inverse of the quasiparticle weight z, increases with

increasing either λ or U . The boundary of the BPI phase λc increasing with U

due to the fact that the attractive e−ph interaction must overcome the repulsive

interaction to localize the bipolaron after the formation of the bound state. On

the other hand the boundary of the Mott phase Uc weakly depends on λ because

the phonons are coupled with density fluctuations which are frozen close to the

Mott transition.

One can gain more understanding of the phase diagram considering the ef-

fective retarded interaction of Eq.[2.20]. The Hubbard repulsion and the phononic

potential compete in the adiabatic limit, while in the antiadiabatic limit, for

large enough λ, the model can be mapped into the attractive Hubbard model.

For this reason the λ = U/D line plays a crucial role in the phase diagram as,

for large enough interaction strength, the three phases converge on a tricritical

point on this line.
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Figure 2.6: (a), z as U is increased, and 〈n↑n↓〉 as U is increased and decreased
along the cut 3 of Fig.[2.5]; (b) double occupancy in M state, and ground state
energy E along the cut 2a in Fig.[2.5] as U is increased (for M) or decreased (for
BPI). The phase transition occurs at U ∼ 0.96 where the energies of the M and
BPI states become the same.

As shown by Fig.[2.6] the M-MHI transition is second order for any value of

λ since 〈n↑n↓〉(M) and 〈n↑n↓〉(MHI) meets at Uc2 while the M-BPI one is first order

since 〈n↑n↓〉(M) and 〈n↑n↓〉(BPI) do not match at λc. The nature of the BPI can be

understood considering the U = 0 and λ = ∞ limit of the Holstein-Hubbard

model, where the e − ph coupling favors only the empty and doubly occupied

states. As we discussed, this state is naturally unstable towards a CDW which

we was not allowed in the calculations we discuss. For this reason, also in

this model, the BPI is identified by a degenerate groundstate with respect of

C = 〈
∑

σ n̂σ − 1〉 ≈ 1 and C = 〈
∑

σ n̂σ − 1〉 ≈ −1 states, reflecting the nature of

the BPI as a incoherent superposition of doubly occipied and empty sites.
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Figure 2.7: Plots of z and C as g is increased along the cut 2b of Fig.[2.5]

Fig.[2.7] shows how the expectation value of C versus the e − ph coupling

constant g, at a fixed U/D = 1, increases from zero to a finite value discontinu-

ously.

Focusing on the particular case of a strongly correlated metallic regime, i.e.

close to the Mott transition, it has been demonstrated that the electronic quasi-

particle weight is unaffected by the e−ph coupling[74]. As we described above,

at U = 0, the effect of the e − ph coupling is to decrease zqp, reflecting the

crossover to polaronic carriers and eventually reaching the bipolaronic metal-

insulator transition. Switching on the Hubbard repulsion, zqp (U, λ) is found to

be a decreasing function for any value of the coupling strength. However, the

ratio zqp (U, λ) /zqp (U, 0) has the non monotonic behavior reported in Fig.[2.8]

that can be explained thinking in terms of a reduction of the effective repulsion

prevailing against the hopping polaronic renormalization.
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Figure 2.8: (a)The ratio zqp (U, λ) /zqp (U, 0) vs λ is shown for different values of
U ; (b)the coefficient η, plotted as a function of ωo

U

We can define an effective static repulsion Ueff that, in the pure Hubbard

model, gives the same value of the quasiparticle weight so that zqp (Ueff , 0) =

zqp (U, λ). It has been shown in Ref.[74] that the effective repulsion can be parametrized

as:

Ueff = U − ηλD (2.34)

where the dimensionless parameter η can be directly derived from the leading

order in the 1/U expansion of the Kondo model, whose physic is captured by

DMFT. The Kondo coupling is poorly affected by the e− ph coupling in the adi-

abatic limit due to the fact that the two kind of electronic processes enclosed in

the model, namely the double occupancy of a lattice site and the phonon excita-

tion, resides in different time domains. In the strongly correlated regimes, when

U � ωo the first is a “fast” process which takes place in a frozen phononic con-

figuration as we described in Sec 2.1.2.2. The correction of the Kondo coupling
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due to the phononic degrees of freedom is:

JK (λ)

JK (0)
∼ 1 + η

λD

U
(2.35)

which gives the effective static Ueff of Eq.[2.34] for the Kondo model in terms

of the parameter:

η =
2ωo
U

1 + 2ωo
U

(2.36)

Fig.[2.8] shows how this functional form is able to capture the behavior of η for

various ωo/U obtained from DMFT calculations. Another confirmation that e−

ph coupling do not affect the low energy physics of the systems comes looking

at the spectral function of the pure Hubbard model at Ueff and the one of the

Holstein-Hubbard model.

Figure 2.9: The electron spectral function for the Hubbard-Holstein model
(dashed line), compared with a pure Hubbard model

Indeed in Fig.[2.2.4] the low energy part of the spectrum is identical, while

major changes occur only at high energy scale.
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2.3 Spin Orbit Coupling in d orbitals

The Spin Orbit Coupling (SOC) is an interaction between the electronic spin S

and his orbital angular momentum L4. It follows from the non relativistic ex-

pansion of the Dirac Hamiltonian and, for potentials with spherical symmetry,

reads:

HSOC =
1

2 (m0c)
2

1

r

dV

dr
L · S (2.37)

Due to this term in Hamiltonian, the groundstate of a single electron atom is no

longer degenerate with respect of L ans S, resulting in a so called fine structure

splitting between the (2L+ 1) (2S + 1) levels with different J = L + S. Indeed

this splitting can be evaluated considering the expectation value:

HSOC = λSOC
1

2

(
J (J + 1)− L (L+ 1)− 3

4

)
(2.38)

where λSOC is the expectation value of the coupling strength. Considering a

simple V ∼ 1/r potential it can be shown that λSOC scales like Z4 being Z the

atmic number, so it is straightforward for havy elements to have non negligible

SOC. For multi-electron atoms the coupling between spin and orbital degrees

of freedom can be descibed in two ways:

• In the Russel-Sanders coupling the total angular momentum L =
∑

i ji of

the electronic shell is coupled with the total spin S =
∑

i si resulting in a

splitting with a multiplicity of 2S + 1 if L > S or 2L+ 1 otherwise and an

4In order to avoid misunderstanding we will use capital bold letters to indicate total vectors
resulting from the sum over all the electrons while the standard character refers explicitly to
a particular component. When the component is unspecified we refer to the eigenvalue of
the matrix representation labelled with “ ˆ ”. Lowercase letters are referred to single electron
variable.
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energy separation proportional to λSOC .

• In the jj coupling, typical in the case of heavy elements, the SOC is compa-

rable to all the other energy scales, therefore the total angular momentum

of a single electron j = l + s is the conserved quantity.

These two kinds of coupling are indeed limiting cases of the phenomenology

which are usuful to understand the more involved situation in actual materials.

In general the SOC will have some intermediate strength that, generally speak-

ing, shifts from the first to the second kind taking into consideration heavier

elements. It is important to underline that the Hund’s third rule, which states:

• the lowest J = |L − S| should be selected for less than half-filled shell,

while highest J = L+ S for densities above half-filling

is the direct consequence of the presence of SOC. Focusing on the particular case

of interest for TMO, i.e. d orbitals in cubic symmetry, the five-fold degeneracy

is already lifted by a crystal field splitting between the eg and t2g subset.
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Figure 2.10: Density probability distribution of d orbitals.

This can be naively understood considering that, typically, the transition

metal atom is enclosed in an octahedron surrounded by six ligand atoms and

looking at Fig.[2.10] one sees that t2g orbitals are not oriented in the direction of

the ligand point charges, resulting in a geometrical configuration more stable

against the Coulomb repulsion. The energy splitting is given by[71]:

ε (t2g) = ε (d) +
6Ze2

a
− 4Dq

ε (eg) = ε (d) +
6Ze2

a
+ 6Dq

whereD = 35Ze2

4a5
and q = 2

105

´
r6 |Rnd (r)|2 dr. In the basis {dyz, dzx, dxy, d3z2−r2 , dx2−y2}

the d orbitals are splitted in a eg doublet and a t2g triplet so the three component

of the orbital andular momentum of a single electron have the following repre-
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sentation:

l̂x =



0 0 0 −i
√

3 −i

0 0 i 0 0

0 −i 0 0 0

i
√

3 0 0 0 0

i 0 0 0 0



l̂y =



0 0 −i 0 0

0 0 0 i
√

3 −i

i 0 0 0 0

0 −i
√

3 0 0 0

0 i 0 0 0


(2.39)

l̂z =



0 i 0 0 0

−i 0 0 0 0

0 0 0 0 2i

0 0 0 0 0

0 0 −2i 0 0


These matrices are hermitian with purely imaginary elements. Since the matrix

elements in the eg subspace are zero, the SOC will be zero as well, since for

these states the orbital angular momentum is completely quenched. This is true

as long as the orbital splitting induced by the crystal symmetry is much larger

than the one induced by SOC. Moreover for the non-vanishing block matrix in
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the t2g subspace the following relation holds:

l̂ (t2g) = −l̂ (p) (2.40)

which means that the expectation value of l̂2 (t2g) is l (l + 1) with l = 1 rather

than l = 2 as one would have expected for d orbitals. This is the so called TP-

equivalence. It is important to underline that this is only a formal equivalence,

indeed l̂ (t2g) do not satisfy the angular momentum commutation relation, since

the off-diagonal elements connecting the t2g and the eg are neglected. To com-

pute the matrix representation of the SOC hamiltonian HSOC = λSOC l̂ ⊗ σ̂ in

the most general way for d orbitals in cubic symmetry one has to condider the

full five dimensional l̂ matrix of Eq. [2.39]. However, it can be shown [71] that

the SOC spitting do not mix the two subspaces, being the block off-diagonal

elements of HSOC zero in the Dq >> λSOC limit. Due to this decoupling we are

allowed to consider only the t2g orbital angular momentum operator in the SOC

hamiltonian:

HSOC = λSOC l̂ (t2g)⊗ Ŝ

= λSOC
1

2

[
l̂x (t2g)⊗ σ̂x + l̂y (t2g)⊗ σ̂y + l̂z (t2g)⊗ σ̂z

]

= λSOC
1

2


0 iσ̂z −iσ̂y

iσ̂y 0 iσ̂x

−iσ̂x −iσ̂z 0

 (2.41)

The new good quantum number is therefore j = l (t2g)+s. In this basis the SOC

hamiltonian is diagonalized into a j = 1/2 doublet, corresponding to the ξ(1)
SOC =
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λSOC eigenvalue, and a j = 3/2 quarted, corresponding to the ξ(2)
SOC = −λSOC/2

eigenvalue:

HSOC = λSOC
1

2

(
j (j + 1)− l (l + 1)− 3

4

)
=


ξ

(1)
SOC = λSOC (×2) j = 1/2

ξ
(2)
SOC = −λSOC/2 (×4) j = 3/2

(2.42)

resulting in a global SOC splitting of ∆ = 3λSOC/2. The degeneracy can be fur-

ther split considering the eigenvalues jz of the z component of the total angular

momentum ĵz defined as:

ĵz = l̂z (t2g)⊗ 1(2) + 1(3) ⊗ Ŝz

=

 l̂z (t2g) + 1
2
1(3) 0

0 l̂z (t2g)− 1
2
1(3)


The SOC hamiltonian is then diagonalized in the following basis Θ:

|j = 1/2; jz = +1/2〉 =
1√
3

(−i |dyz, ↑〉 − |dzx, ↑〉+ i |dxy, ↓〉)

|j = 1/2; jz = −1/2〉 =
1√
3

(−i |dyz, ↓〉+ |dzx, ↓〉 − i |dxy, ↑〉)

|j = 3/2; jz = +1/2〉 =
1√
2

(−i |dyz, ↓〉 − |dzx, ↓〉)

|j = 3/2; jz = +3/2〉 =
1√
6

(+i |dyz, ↑〉+ |dzx, ↑〉+ 2i |dxy, ↓〉)

|j = 3/2; jz = −3/2〉 =
1√
6

(−i |dyz, ↓〉+ |dzx, ↓〉+ 2i |dxy, ↑〉)

|j = 3/2; jz = −1/2〉 =
1√
2

(+i |dyz, ↑〉 − |dzx, ↑〉)
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This concludes the description of the fine structure splitting of d orbitals in cubic

symmetry.



CHAPTER

3

DYNAMICAL MEAN FIELD

THEORY

Despite the formal simplicity the Hubbard model has resisted to the attempts to

solve it exactly, except for one dimension, and, as we will discuss in the follow-

ing, in infinite dimension. A conventional route is given by perturbation expan-

sion around a small parameter such as U/W (weak-coupling expansion), W/U

(strong-coupling expansion), 1/T (high temperature expansion) or the density n

(low density expansion). However, the most interesting and less trivial physics,

such as the Mott metal insulator transition at T = 0 and half-filling, happens in

73
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the case when both kinetic energy and the interaction strength are of the same

magnitude, i.e. in the absence of an obvious small parameter and far rom the

large-doping and large-temperature limits.

A completely different path has been paved by studies of correlated elec-

trons in infinite coordination, which have shown that a suitable scaling of the

hopping matrix elements leads to a finite expectation value of the kinetic energy

per site and, consequently, to a "fair" competition with the Hubbard term, which

obviously has an extensive expectation value. Therefore an infinite-coordination

Hubbard model is expected to display the physics of strong correlations and

a Mott transition. On the other hand, this non-trivial physics can exploit im-

portant formal simplifications which allow for an exact solution of the Hub-

bard model. In particular the self–energy of the problem becomes entirely local

Σ (kω)→ Σ (ω), i.e., momentum–independent, while it retains the full ω–dependence[52].

Based on this result, it has been possible to develop the Dynamical mean-

field theory (DMFT), one of the most popular and successful theoretical meth-

ods to treat strongly correlated electron systems that exploits this result. It ex-

tends the classical mean-field approach to the quantum dynamical domain by

mapping a lattice model onto an effective impurity model. The latter describes

the interaction of the correlated impurity site with a non-interacting self con-

sistently determined electron “bath” through an hybridization function. All the

non local degrees of freedom are self-consistently averaged in this effective bath

fully retaining the dynamic frequency dependency of the self-energy. In this

scheme all the single-site expectation values corresponds to the local projection

of the original lattice observables.
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3.1 Derivation of the Dynamical Mean-Field Theory

Equations

We will briefly sketch the fundamentals steps in the derivation of the DMFT

equation following Ref.[31], using functional integral formulation in terms of

Grassmann variables. There are several ways to obtain DMFT equations, the

one presented relies on the cavity method: the underlying idea is to focus on

a given lattice site, say ”o”, assumed to be equivalent to all the other, and to

integrate out all the degrees of freedom different from ”o”. This allows to define

an effective local dynamics for site ”o” that takes into account the effects of the

rest of the lattice. For the single-band Hubbard model the action of the lattice

model is defined as:

S
[
ĉ†iσ, ĉiσ

]
=

ˆ β

0

dτ
∑
ijσ

ĉ†iσ [(∂τ − µ) δij − tij] ĉjσ + U
∑
i

n̂i↑n̂i↓

The effective action is obtained through field integration over all the fermion

fields except of those related to the arbitrary site “o”:

1

Zeff
e−Seff [ĉ

†
oσ ,ĉoσ] =

1

Z

ˆ ∏
ij 6=oσ

D
[
ĉ†iσ, ĉjσ

]
e−S[ĉ

†
iσ ,ĉjσ] (3.1)

The key quantity will be the Green’s function for the fermions on site “o”

computed on the effective local action

Goσσ′ (τ) =
1

Zeff

ˆ ∏
σ

D
[
ĉ†oσ, ĉoσ′

]
ĉ†oσ (τ) ĉoσ′ (0) e−Seff [ĉ

†
oσ ,ĉoσ′ ] (3.2)



CHAPTER 3. DYNAMICAL MEAN FIELD THEORY 76

and hereafter will refer to this quantity as:

Gσσ′ (τ) = Goσσ′ (τ) (3.3)

In order to obtain an analytical formulation of the local effective action Seff it is

convenient to split the lattice action into three parts S = So + δS + S(o) which

correspond, respectively, to

• The contribution of the electrons on the impurity site:

So =

ˆ β

0

dτ

[∑
σ

ĉ†(H)
oσ (τ) (∂τ − µ) ĉ(H)

oσ (τ) + Un̂o↑ (τ) n̂o↓ (τ)

]
(3.4)

• The connections between site “o” and rest of the lattice:

δS = −
ˆ β

0

dτ
∑
j 6=oσ

(
tjoĉ

†
jσ ĉoσ + toj ĉ

†
oσ ĉjσ

)
(3.5)

this term contains only quadratic terms in a number of the order of the

lattice connnectivity;

• The action of the cavity i.e. the one of the whole lattice without “o” and

the bonds which connect it to the lattice:

S(o) =
´ β

0
dτ

[∑
i 6=oσ

ĉ†iσ (∂τ − µ) ĉiσ + U
∑
i 6=o

n̂i↑n̂i↓

−
∑
{ij}6=oσ

(
tjiĉ
†
jσ ĉiσ + tij ĉ

†
iσ ĉjσ

)

Now Eq.[3.1] can be reformulated as a quantum average of the operator e−δS
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over the cavity ensemble:

e−Seff =
Zeff
Z

ˆ ∏
i 6=oσ

D
[
ĉ†iσ, ĉiσ

]
e−S

=
Zeff
Z

e−So
ˆ ∏

i 6=oσ

D
[
ĉ†iσ, ĉiσ

]
e−δSe−S

(o)

So as to have:

Seff = So − ln
(〈
e−δS

〉
(o)

)
(3.6)

where we neglect the normalization constant K = − ln
(
ZeffZ(o)

Z

)
. Now we

shall make use of the “linked cluster theorem”, which states that, given an un-

perturbed action So and a perturbation Spert = δS, the logarithm of the pertur-

bation averaged over the unperturbed ensemble can be rewritten as the sum of

all connected diagrams in a perturbation expansion on Spert:

Seff = So − ln

´ ∏i,σD
[
ĉ†iσ, ĉiσ

]
e−S

(o)
e−δS

´ ∏
i,σD

[
ĉ†iσ, ĉiσ

]
e−S(o)


= So − ln

´ ∏i,σD
[
ĉ†iσ, ĉiσ

]
e−S

(o)
[∑∞

n=0

´ β
0

∏n
l=1−

dτl
n!
δS (τl)

]
´ ∏

i,σD
[
ĉ†iσ, ĉiσ

]
e−S(o)


= So +

∑ all connected diagrams of a

perturbation expansion in Spert


Defining:

ηi (τ) = toiĉoi (τ)

ηi (τ) = toiĉ
†
oi (τ)
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one obtains:

Seff = So +
∞∑
n=1

ˆ β

0

∑
{i1...jn}6=o

G
(o)
i1...inj1...jn

(τ1, ..., τ
′
n)

n∏
l=1

ηil (τl)× ηjl (τ ′l ) dτldτ
′
l

= So +
∞∑
n=1

ˆ β

0

M (τ1, ..., τ
′
n) dτldτ

′
l (3.7)

In the last equation M (τ1, ..., τ
′
n) is the sum of all the connected cavity Green’s

Functions of any order (one-particle, two-particle, . . . ) weighted by an hopping

amplitude toi per each fermionic operator. This expression is formally exact, but

it is however of little practical use, as it contains correlators af arbitrarily high

order which can hardly be computed. A huge simplification occurs in the limit

of infinite dimension if the hopping is rescaled as:

tij =
t̃

d−|i−j|/2
(3.8)

where |i− j| is the distance between the lattice site connected by tij . As we

mentioned above, this condition is necessary to have a finite expectation value

of the kinetic energy per site in the d → ∞, a necessary condition to have non

trivial physics.

We can easily see that only the first term in Eq.[3.7] survives in the infinite-

coordination limit: the two point connected Green’s function (single-particle

Green’s function), which appears in the first term of Eq.[3.7],scales like the hop-
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ping connecting the two sites1:

G
(o)
ijσ (ω) ∝ d−|i−j|/2 (3.10)

Considering that i and j are two different neighbors of the site "o", all the non

local cavity Green’s function have at least |i− j| = 2, which implies thatG(o)
ijσ (ω)

is of the order of 1/d. From Eq.[3.8] follows that the hopping contribution at

the first order will scale as toitoj ∝ d−1. Finally, the first terms features two

sums over the lattice sites which bring each one factor d. Therefore the first

term, of the expansion remains of order 1. The same arguments show [31] that

all higher orders are vanishing in the d → ∞ limit. Any further order brings

indeed two more summations over different sites, two more hoppings, and a

Green’s function with two more legs. Overall this gives a further 1/d, so that all

the other terms vanish in the infinite-coordination limit.

With these approximation the effective local action in the infinite coordina-

1In order to prove this result, we can express the Green’s function as a Neumann series:

G
(o)
ijσ (ω) = 〈iσ| 1

ω −T
|jσ〉 =

1

ω
〈iσ| 1

1− 1
ωT
|jσ〉

=
1

ω
〈iσ|

∞∑
n=0

(
tij
ω

)n
|jσ〉 =

1

ω
〈iσ|

∞∑
n=0

(
t̃

ω

1

d−|i−j|/2

)n
|jσ〉

So the first order contribution scales as:

G
(o)
ijσ (ω) ∝ d−|i−j|/2 (3.9)
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tion limit reads:

Seff = −
ˆ β

0

dτdτ ′
∑
σ

ĉ†oσ (τ)

[
δ (τ − τ ′) (−∂τ + µ)−

∑
ij

toitojG
(o)
ijσ (τ − τ ′)

]
ĉoσ (τ ′)

+

ˆ β

0

dτUn̂o↑ (τ) n̂o↓ (τ) (3.11)

where G(o)
ijσ (τ − τ ′) is the single-particle Green’s function of the cavity, i.e., of

the lattice substracted of the special site “o” and the bonds connecting it to the

nighbors.

It is customary to define a dynamical Weiss field:

G−1
oσ (τ − τ ′) = δ (τ − τ ′) (−∂τ + µ)−

∑
ij

toitojG
(o)
ijσ (τ − τ ′)

= δ (τ − τ ′) (−∂τ + µ)− Γoσ (τ − τ ′)

which plays the role of a non interacting Green’s function of the effective lo-

cal theory, but it has not to be confused with the local component of the non-

interacting lattice Green’s function. In order to proceed in the derivation is use-

ful to Fourier transform from the imaginary-time representation to the Matsub-

ara imaginary-frequency domain:

Seff = −
∑
σn

ĉ†oσnG−1
oσ (iωn) ĉoσn + Un̂o↑n̂o↓

with:

G−1
o (iωn) = iωn + µ− Γo (iωn) (3.12)
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where

Γo (iωn) =
∑
ij

toitojG
(o)
ijσ (iωn) (3.13)

It can be proved [31, 51] that, for any lattice with one site removed one can

directly connect the cavity Green’s function with a combination of exact lattice

Green’s functions so that

Γo (iωn) =
∑
ij

toitojGij (iωn)−
∑

i t
2
oiG

2
io (iωn)

Go (iωn)
.

This equations is an important step ahead because it only contains Green’s func-

tion of the full lattice model, and the unphysical cavity quantities have disap-

peared. Finally the above summations can be turned into integrals, which can

all be expressed in terms of the local Green’s function of the lattice model. In-

troducing the self-energy of the local effective theory

Σ (iωn) = G−1
oσ (iωn)−G−1 (iωn) (3.14)

one finally gets:

G−1
o (iωn) = Σ (iωn) +

[
D̃ (iωn + µ− Σ (iωn))

]−1

(3.15)

being D̃ the Hilbert transform over the non interacting density of states. This

is an equation which allows to compute the Weiss field G−1
o (iωn) through the

knowledge of the self-energy. This equation plays the role of a self-consistency

condition connecting two quantities defined within the effective local theory.

In the next paragraph we will briefly comment about the solution of the self-
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consistent equation.

We conclude this section by giving a more transparent and insightful form

to the self-consistency condition.

G (iωn) =
∑
k

1

iωn + µ− εk − Σ (iωn)
(3.16)

where εk is the bare dispersion of the model. This formulation implies that

the Green’s function of the effective theory coincides with the local compo-

nent of the lattice Green’s function once the lattice self-energy is replaced by

the momentum-independent self-energy of the effective theory. Hence we have

shown that an exact solution of the Hubbard model in the infinite-coordination

limit yields a quantum version of a mean-field theory, in which a lattice model

is mapped onto an effective single-site theory subject to a self-consistency con-

dition ensuring that the local component of the Green’s function coincides with

that of the site we chose to construct the effective theory, which is indeed equiv-

alent to any other.

3.2 Solution of the DMFT. Exact Diagonalization

We have demonstrated that in the infinite-coordination limit we can build an ex-

act effective action for a single lattice site. The effective action contains a Weiss

field which depends on frequency and it can be computed self-consistently

through the knowledge of the Green’s function (or the self-energy) of the ef-

fective theory.

Therefore a solution of the DMFT can be obtained by means of an iterative
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procedure. We start solving an effective local theory for some initial Weiss field

G−1
oσ and we compute the Green’s function and the self-energy corresponding to

che chosen Weiss field. Then the self-consistency condition Eq.[3.16] is used to

compute a new value of the Weiss field. The procedure is then repeated until

the Weiss field and the Green’s function do not change in the iterations and we

have found a self-consistent set of variables. While the self-consistency condi-

tion is a trivial algebraic equation in the frequency domain, the solution of the

effective local theory is a non-trivial step, due to the interacting nature of the

effective theory, which still contains a local interaction term. Therefore, despite

the huge simplification with respect to the original lattice model, the effective

theory requires some numerical solution. The most popular numerically ex-

act solvers are Numerical Renormalization Group, Continuous-Time Quantum

Montecarlo and [36] Exact Diagonalization (ED), [14, 19] which is the method

we employ in the present thesis. Besides the manageable computational cost,

one advantage of ED solver is that the T = 0 spectrum can be directly obtained

on real frequency axis. On the other hand, the exponential growth of the Hilbert

space impose severe limitation to the number of orbitals to be considered in the

bath parametrization. It is important to underline that the parameterizaton of

the effective bath in a discrete number of orbitals has no relation with the finite

size of the real lattice, as well as the Weiss field correspond only to the non in-

teracting Green’s function of the impurity model but not to the local projection

of the non interacting lattice Green’s function (to be correct they are equal only

in the U = 0 case).

The ED solution requires to represent the local effective theory in terms of a

Hamiltonian representation, in which the dynamical Weiss field is represented
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in terms of set of auxiliary non-interacting fermions hybridized with the inter-

acting site. The Hamiltonian we described is nothing but an Anderson impurity

model, which has been introduced long before the developement of DMFT to

study the effect of interacting impurities in metallic hosts.

We start by showing a general representation of a multi-orbital Hubbard

model. The effective impurity model can be written as

HAIM =
∑
α,β

∑
σ,σ̄

d̂†ασĤlocd̂βσ̄ + Ĥint (3.17)

+
∑
α,β

∑
σ,σ̄

Nb∑
k,k′=1

ĉ†ασkĤ
bath
kk′ ĉβσ̄k′

+
∑
α,β

∑
σ,σ̄

Nb∑
k=1

(
V̂kk′ ĉ

†
ασkd̂βσ̄ + V̂ ∗kk′ d̂

†
ασ ĉβσ̄k

)

where {α, β} and {σ, σ̄} are the orbital and spin index , while k is the effective

bath index. ĉo(ĉ†o) and ĉk(ĉ†k) represent the destruction (creation) operator in act-

ing on the impurity ”o” and on k-th, form 1 to Nb, bath site respectively. This

formulation encloses all the possible connection geometries of the AIM depend-

ing on the choice of the various contribution:

• Ĥloc = Hloc
αβσσ̄ is the non interacting local Hamiltonian of the correlated

impurity site. This Hamiltonian capture the real non interacting physics

of the model under investigation:

Hloc
αβσσ̄ =

∑
k

Hloc
αβσσ̄ (k) (3.18)
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• Ĥint is the rotational invariant Kanamori interaction term of Eq.[2.6]. For

the single-band model this reduces to the standard density-density inter-

action Un̂o↑n̂o↓.

• Ĥbath
kk′ = Hbath

αβσσ̄kk′ is the Hamiltonian of the bath. This quantity is self con-

sistently determined as well as the following term

• V̂kk′ = Vαβσσ̄kk′ is the hopping connecting the bath Hamiltonian to the im-

purity site.

There is a substantial level of arbitrariness in the specific topology of the AIM,

i.e. in the matrix representation of Ĥbath
kk′ and V̂kk′ , hence the choice can be tai-

lored on the physical properties under investigation. In the following we dis-

cuss the optimal choices to address the electron-phonon and spin-orbit cou-

plings.

For the single-band Hubbard model we can use, without loss of generality,

a diagonal representation of the effective bath, Ĥbath
kk′ = εkδkk′ , and the corre-

sponding hoppings V̂kk′ = Vkδkk′ .

The few steps of a standard DMFT loop will be briefly described in this

simple case. The other extensions, suited for example for multiorbital com-

putations, can be straightforwardly derived. Thus the impurity Hamiltonian of

Eq.[3.17] reduces to:

HAIM = −µ (n̂o↑ + n̂o↓) +Un̂o↑n̂o↓+

Nb∑
kσ

εkĉ
†
σkĉσk +

Nb∑
kσ

Vk

(
ĉ†σkd̂σ + d̂†σ ĉσk

)
(3.19)

All the information regarding the effective bath is encoded in the hybridiza-

tion function, written in terms of the anderson parameters εk and Vk, represent-
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ing respectively the onsite energy of the bath level and it’s connection to the

impurity site. It worth mentioning that the strict self-consistency can only be

obtained with a continuous bath of states. The approximation the exact diag-

onalization solver is the parametrization of hybridization function in terms of

a discrete number of poles Nb, which will be cast into a minimization problem

in the Anderson parameters. The maximum size of the truncated Hilbert is

ntot = 22ns where ns = Nb + 1 is on the total number of sites considered in the

model. As previously mentioned, the most severe limitations in the ED method

is the exponential growth of the number of states with the number of bath lev-

els considered. Simplifications in the diagonalization procedures comes form

the symmetry properties of the considered Hamiltonian. In the simplest case

the repulsive single band Anderson impurity Hamiltonian commutes with the

total spin N̂σ =
∑ns

i n̂iσ operators, indeed it can be decomposed in smaller N̂↑,

N̂↓ conserving blocks.

The formal expression of Γ can be trivially obtained by integrating the bath

degrees of freedom, i.e., all the indexes different form ”o”. The expression for

the hybridization function in this simple case reads:

Γo (iωn) =
∑
k

|Vk|2

iωn − εk
(3.20)

With a given set of Anderson parameters and interaction strength U , the impu-

rity Hamiltonian is written in a tridiagonal representation through the Lanczos

algorithm ad readily diagonalized. Once obtained the groundstate energy Eo

and the corresponding eigenvector |Ψo〉, the impurity interacting Green’s func-
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tion is computed in terms of the Kallen-Lehmann formula2:

Gimp
o (iωn) =

∑
m

∑
j

∣∣∣〈j| ĉo ∣∣∣Ψ(m)
o

〉∣∣∣2
iωn −

(
Ej − E(m)

o

) (3.22)

Where |j〉 ans Ej represent respectively all the Fock states connected with the

groundstate by the destruction operator and the corresponding excitation en-

ergy. The latter are again computed with the Lanczos algorithm. In Eq.[3.22] m

is the index of the degenerate groundstates.

Then we use the impurity Green’s function to compute the exact self-energy

of the impurity model

Σ (iωn) = G−1
o (iωn)−Gimp−1

o (iωn) , (3.23)

from which we compute the local component of lattice Green’s function

Gloc
o (iωn) =

∑
k

Go (k, iωn) =
∑
k

1

iωn + µ− εk − Σ (iωn)
(3.24)

which is used to obtain a new Weiss field through the self-consistency condition.

Gnew−1
o (iωn) = Σo (iωn) +Gloc−1

o (iωn) (3.25)

2The reported equation holds for T = 0 calculations, however, in the spirit of the Lanczos,
it can be generalized to the T > 0 case. Taking into account not only the groundstate |Ψo〉 but
also a finite set of, say Ne, excited states |Ψi〉 one gets:

Go (T, iωn) =
1∑Ne

i e−βEi

Ne∑
i

∑
j

∣∣〈j| ĉ†o |Ψi〉
∣∣2 (e−βEi + e−βEj

)
iωn − (Ej − Ei)

(3.21)

where β = 1/T
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The latter will be used as an input for the minimization procedure aimed to

obtain a new set of Anderson parameters. This closes the DMFT loop, that will

be perpetrate until convergence of two subsequent solutions Go and Gnewo under

a given threshold.

3.3 Phase diagram of the single band Hubbard model

with DMFT

In the following, we briefly review the key features of the electronic phases of

the Hubbard model captured by DMFT. The phenomenology is summarized in

the framework of the single band Hubbard model at half-filling in the bethe

lattice[31].

3.3.1 The Fermi liquid regime

The Fermi liquid at T = 0 is a correlated metal with strongly renormalized,

but still coherent, quasiparticle excitations, peculiar of the single band Hubbard

model for any value of the interaction as long asU < Uc. Within this regime both

the real and imaginary part of the self-energy have a well defined frequency

behavior:

<Σo (ω) =
U

2
+ (1− zqp)ω +O

(
ω3
)

=Σo (ω) = −Bω2 +O
(
ω4
)
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being zqp the inverse of the effective mass renormalization m∗/m or, equiva-

lentely, the band renormalization factor at the Fermi energy ε∗F = zqpD. This

quantity to some extent measure the level of correlations of the metallic state,

whish is the only solution for the single-band Hubbard model for U < Uc. zqp

can be experimentally probed by means, for example, of the optical conductiv-

ity Drude weight. In addition it sets the temperature threshold T ∗ above which

the quasiparticle excitations lose their coherence acquiring a finite lifetime. The

effect of interactions on the metallic state can be directly understood in terms of

the local spectral function:

A (ω) = − 1

π
={G (ω + iδ)} (3.26)

which in the Fermi liquid phase displays two high energy bands, accounting

for the incoherent excitatioins centered on ±U/2, and a sharp quasiparticle peak

pinned to the Fermi level. The latter has a reduced bandwidth proportional to

the quasiparticle weight itself zqp < 1, that, as we said, can be interpreted as the

coherence-scale for the quasi-particles. The missing 1−zqp spectral weight at the

Ferm energy is transferred to the high energy bands. The Luttinger-Ward theo-

rem states that the valueA (ω = 0) is pinned to the non-interacting value, which

means that the correlations do not modify the Fermi surface. In the T > 0 case a

finite incoherent scattering term is present even at the Fermi level, resulting in

a non vanishing self-energy imaginary part at ω = 0. If this condition occurs in

the T = 0 case the system violates the Luttinger-Ward therorem resulting in the

so called non-Fermi liquid phase.
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Figure 3.1: Schematic plot of the conduction bath spectral function and impurity
orbital configurations, illustrating the separation of energy scales at half-filling,
close to the Mott transition and spectral density A (ω), for increasing values of
U/D. The first four curves correspond to an increasingly correlated metal, while
the bottom one is an insulator.

3.3.2 The Mott Insulator

In the strong coupling regime the system becomes a gapped Mott Insulator. At

half-filling the real part of the self-energy is an anti-symmetric, hence vanishing,

function, therefore, in order to have a vanishing spectral function at the Fermi

level, the Imaginary part of the self-energy is diverging. The insulating phase is

characterized by unscreened local moments ordered into an antiferromagnetic

phase. Upon heating, thermal fluctuations tends to fill the gap and eliminate the

divergence in the imaginary part of the self-energy that reaches a finite value at

ω = 0.
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3.3.3 Antiferromagnetism

The solution for the Hubbard model in 3D is an antiferromagnet (AFM) for any

finite value of U . The Landau order parameter of this transition is the staggered

mangnetization m and it’s associated to a gap in the single particle spectrum of

the system.

Figure 3.2: Schematic phase diagram of the 3d Hubbard model in the tempera-
ture T interaction U plane for perfect nesting. (a) The solid red line is the N´eel
temperature T N below which the system is antiferromagnetic. Coming from
the left, it is a metallic state that becomes un- stable to antiferromagnetism by
the Slater mechanism. Coming from the right, it is a gapped insulator with lo-
cal moments described by the Heisenberg model that becomes unstable to an-
tiferromagnetism. The dashed green line above the maximum T N indicates a
crossover from a metallic state with a Fermi surface to a gapped state with local
moments. That crossover can be understood in (b) where antiferromagnetism is
prevented from occurring. There dynamical mean-field theory predicts a first-
order phase transition between a metal and a Mott insulator, with a coexistence
region indicated in blue.
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The fact that the normal state, i.e. above Tc, is different wether approaching

the transition from the weak or strong coupling side is a consequence of the

crossover transition. The sistem goes from an itinerant Slater antiferromagnet

phase to a gapped phase, ascribable to an Heisenbeg model, increasing the ratio

U/D. While the 0 < T < Tc metal-insulator thermodinamic transition is second

order, the quantum T = 0 transition is overscreend by the fact that, as we said,

AFM is the groundstate for any value of U . The DMFT approach overcomes

this limitation since it’s possible to suppress the AFM solution simply imposing

that Gimp
↑ = Gimp

↓ . With this symmetry, exception given for a small coexistence

region, the groundstate of the Hubbard model is a paramagnetic metal, sepa-

rated from a paramagnetic Mott insulator by a first order transition that occurs

at Uc ∼ 2.5W . In this sense the T = 0 Mott transition is a precursor of the

crossover between the metallic and insulating phases. The coexistence region

of the T = 0, DMFT solution of the Hubbard model extends from the value

Uc1 ∼ 2.5D, above which the mean-field insulating solution begins to appear

with the opening of the Mott gap, to Uc2 ∼ 3D where the paramagnetic metal

dies by means of a second order vanishing quasiparticle weight. Uc1 and Uc2 ex-

tend at finite temperature into a critical point, above which the phase transition

is continuous.
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Figure 3.3: Phase diagram in the U–T plane. At low temperatures, two criti-
cal lines Uc1(T ) and Uc2(T ) individuate the coexistence region. The two lines
converge at a finite-temperature critical point.

3.4 Electron-Phonon coupling in DMFT

In the Hubbard-Holstein model a single harmonic oscillator is attached to each

site of the original lattice. In the spirit of DMFT this term can be viewed as an

additional interaction term acting on the impurity, hence it can be taken into

account exactly. The electron-phonon coupling on the impurity reads:

Ĥe−ph = −g
∑
σ

(n̂oσ − 1/2)
(
b̂+ b̂†

)
+ ωob̂

†b̂ (3.27)

The most pervasive extension of the ED approach to DMFT will be in the Hilbert

space, that has to be expanded over a set of bosonic degrees of freedom onto

which the phononic operators b̂ and b̂† are going to act. This expansion take the
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form of a simple external product:

|Ψel, nph〉 = |Ψel〉 ⊗ |nph〉 (3.28)

In practice, for each electronic Fock state a complete bosonic subspace will be at-

tached. It is important to underline that this is just how we expanded the Hilbert

space, not that the groundstate is factorizable between the two subspaces. As

a matter of fact in our calculations the electronic and phononic contribution to

|Ψo〉 are not disentagled at all. Clearly the number of phonon has not an up-

per bound, thus also this additional subspace has to be truncated allowing for a

maximum number of excited phonons Nph. This value has to be chosen wisely

in the adiabatic regime and in strong coupling, where phonon excitations are

energetically convenient. For all the result presented in the Thesis we choose

Nph = 8. The only other minor change is in the evaluation of the impurity

Green’s function: Eq.[3.22] still holds and the impurity operator will act just

on a wider number of states, namely Nel × (Nph + 1). The ED method intrinsi-

cally offers the advantage of a direct evaluation of the real frequency electron

and phonon spectral functions, as well as phononic observables. Regarding the

choice of the maximum number of phonons, the excitation probability distribu-

tion P (nph) over the electron-phonon groundstate |Ψo, Nph〉 has been computed.

This quantity has a peak on the average number of phonons excited for a given

set of interaction parameters:

P (nph) = 〈Ψo, Nph| b̂†b̂ |Ψo, Nph〉 (3.29)
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A key quantity in order to tackle the problem of the polaron crossover, is the

phonon displacement probability distribution:

P (X) = 〈Ψo, Nph|X〉 〈X|Ψo, Nph〉

=

Nph∑
iph,jph

〈Ψo, iph|ψiph (x)ψjph (x) |Ψo, jph〉

where ψiph (x) is the Hermite polynom related to the i-th excited phononic level.

As we mentioned in the previous chapter, this quantiy ha been used to locate

the position of the crossover through the bimodality criterion.

3.5 Superconductivity in DMFT

The ED procedure can be easily extended in order to capture the superconduct-

ing phase by means of the anomalous Green’s function:

F (k, τ) = −〈Tτ [ĉk↑ (τ) ĉk↓ (0)]〉 (3.30)

the local nature of the DMFT approach permits only singlet pairings, for which

Ŝ = 0, Ŝz = 0 and for the Ŝz = 0 subspace of a triplet Ŝ = 1 pairing. This

limitation is reflected in two symmetry conditions for F :

F (−k,−τ) = F (k, τ)

F (−k,−τ) = −F (k, τ)
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that allows for a purely real F . The above mentioned DMFT equations have to

be reformulated in terms of Nambu spinors Ψ̂†k =
(
ĉ†k↑ĉ−k↓

)
in order to define a

local Green’s function as:

Ĝloc (iωn) =
∑
k

−
〈

T
[
ΨknΨ

†
kn

]〉

=

 Gloc (iωn) Floc (iωn)

Floc (iωn) −G∗loc (iωn)


Due to the presence of an anomalous component, the whole impurity problem

is now expressed in a 2 × 2 matrix formulation: the local self-energy as well as

the Weiss field will acquire an extra off-diagonal component, so the self consis-

tency equation simply become:

Ĝ−1
o (iωn) = Ĝ−1

loc (iωn) + Σ̂ (iωn) (3.31)

From the technical point of view, the superconducting phase can be introduced

in the AIM in two ways: allowing for a pairing term between an electron on

the impurity and one electron in the bath, or, alternatively including a pairing

field between the electrons belonging to the bath. We chose to use this sec-

ond approach since it corresponds to a Weiss field in which a single Anderson

parameter controls the SC phase owing a better accuracy in the minimization

procedure. The Hamiltonian pairing term to be added to Eq.[3.19] is:

HSC =

Nb∑
k

∆k

(
ĉ†↑kĉ

†
↓k + ĉ↓kĉ↑k

)
(3.32)
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Due to this coupling term, the Anderson Hamiltonian do not commute anymore

with N̂↑ and N̂↓. Now the conserved quantity is the total z-projection of the

spin operator Ŝz = N̂↑− N̂↓, resulting in a bigger dimension of the Hamiltonian

blocks. The last equation needed to close again the DMFT loop is the matrix

formulation of the Weiss field:

Ĝ−1
o (iωn) = 1 (iωn + µ)− V 2

k

(iωn − εk) (iωn + εk)−∆2
k

 iωn + εk −∆k

−∆k iωn − εk


(3.33)

3.6 Spin Orbit Coupling in DMFT

In the present thesis we address the effect of Spin-Orbit Coupling (SOC) in

strongly correlated electron systems, focusing on three-fold degenerate t2g or-

bitals. As mentioned above, spin and orbital degrees of freedom are known to

be coupled in heavy d compounds because of the large atomic number. In this

work we have mainly focused on the effect of an atomic spin-orbit coupling

in a simple-model framework, but we also presented some results for a bulk

solid of Sr2IrO4. In this section we briefly described our implementation of the

SOC within DMFT. Clearly the multi-orbital nature of the system cannot be ne-

glected, but the diagonal bath representation used so far is not correct anymore.

In order to properly study the local SOC hamiltonian of Eq.[2.41] we are going

to use a different approach that goes under the name of impurity replica. The un-

derlying idea is to reproduce in the bath hamiltonian Hbath
αβσσ̄kk′ the full spin and

orbital structure of the local Hamiltonian Hloc
αβσσ̄. With this purpose the Ander-
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son impurity Hamiltonian is very similar to the one of Eq. 3.17 with a diagonal

representation of the hopping term between the impurity and the replica.

V̂αβσσ̄kk′ = Vkδαβδσσ̄ (3.34)

Upon the integration of the non local fermionic degrees of freedom one gets the

following hybridization matrix:

Γαβσσ̄ (iωn) =
∑
k

|Vk|2
[
iωn −Hbath

αβσσ̄kk′

]−1 (3.35)

The only other extension of the DMFT method with respect to what we de-

scribed in the previous sections is the computation of the off-diagonal compo-

nents of the impurity Green’s function connecting different orbitals and spinsGαβσσ̄ (iωn).

This is not completely straightforward because the Lanczos algorithm, used to

extract the poles in the Kallen-Lehmann spectral representation, can construct

only diagonal spectral representations of Hemitian operators of the form:

∑
j

〈Ψ| Ô† |j〉 〈j| Ô |Ψ〉
iωn −∆Ej

(3.36)

This allows to obtain directly any diagonal Green’s function, but for the off-

diagonal components we had to engineer the all the possible linear combination

in the spin-orbital indexes and build the Green’s functions G̃ generated by the
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following operators so as to have the following auxiliary:

G̃1 ⇒ Ô = ĉ†ασo + ĉ†βσ̄o

G̃2 ⇒ Ô = ĉασo − ĉβσ̄o

G̃3 ⇒ Ô = ĉ†ασo + iĉ†βσ̄o

G̃4 ⇒ Ô = ĉ†ασo − iĉβσ̄o

then the off-diagonal Green’s function will be given by:

Gαβσσ̄ =
1

2

[(
G̃1 + G̃2

)
+ i
(
G̃3 + G̃4

)
− (1 + i) (Gασ +Gβσ̄)

]
(3.37)

With this method, one can take into account any kind local Hamiltonian, given

as input, including those containing the local projection of the SOC.



CHAPTER

4

INHOMOGENEOUS DYNAMICAL

MEAN FIELD THEORY

In this Chapter we present a general approach to treat layered materials and su-

perconductors within the framework of Dynamical Mean-Field Theory. In order

to allow for different physical properties in different layers, a necessary condi-

tion to study the effect of interfaces and heterostructures, we have to abandon

one of the assumption of DMFT, namely the equivalence between all the lat-

tice sites. A general strategy to extend the DMFT approach to inhomogenous

systems has been introduced independently by several authors [40, 78, 82] and

100
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it has been given different names. The fundamental idea is to map a lattice

model with geometrically or electronically inequivalent sites in a collection of

correlated impurities connected through a self-consistency condition. As will

be described in the following, non-local self-energies are still assumed to van-

ish, but different local self-energies can be obtained corresponding to different

spatial position of the system. Depending whether the translational symmetry

is fully broken or partially preserved along some direction, different real-space

distribution of the effective impurity problem can be designed. These kinds

of non-uniform DMFT schemes allow to study broken-symmetry states with a

given spatial arrangement of charge and/or spin.

4.1 Derivation of the Inhomogeneous DMFT Equa-

tions

For the specific target of this thesis, namely the investigation of correlated lay-

ered materials, the translational symmetry is broken only in the direction lon-

gitudinal to the heterostructure. Hence we will define one impurity model for

every inequivalent layer, while translational invariance is enforced within each

layer. For systems with fully broken translational symmetry, such as lattices in

optical traps, the method can be pushed even further allowing for an impurity

problem for each lattice site.

We will briefly describe the key steps to obtain inhomogeneous DMFT equa-

tions following Ref.[58, 57]. First we note that the effective local action has the

same form of Eq.[3.11] as it does not depend on the lattice structure besides the
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information hidden in the Weiss field

Si,eff = −
ˆ β

0

dτdτ ′
∑
σ

ĉ†iσ (τ)G−1
iσ (τ − τ ′) ĉiσ (τ ′) +

ˆ β

0

dτUin̂i↑ (τ) n̂i↓ (τ)

G−1
iσ (τ − τ ′) = δ (τ − τ ′) (−∂τ + µ)− Γiσ (τ)

with Γiσ (τ) =
∑

jk tiktjiG
(o)
jkσ (τ − τ ′). However the self-consistency equation

has to be generalized to account for a non-uniform local self-energy.

Motivated by the symmetry of the specific problem we are dealing with, we

choose to work in a mixed representation where the longitudinal dependency is

made clear. The 3D simple cubic lattice (sc) is considered to be built up by two-

dimensional layers along the (001) direction. Accordingly, the position vector to

a particular site is written as Ri = md+Rim . Here Rim stands for the coordinate

within in the layer while m is the layer index, so that1:

|Ri〉 = ĉ†i |0〉 = ĉ†mĉ
†
im
|0〉 = |m,Rim〉 (4.1)

We shift in a diagonal formulation with respect of the planar wavevector k‖

through the unitary rotation:

ĉ†m,k‖ =
1√
N‖

∑
im

ĉ†ime
ik‖Rim

Note that the fully translational invariant representation is recovered consider-

1From now on we will drop the spin index, and use only the letter ”m” to explicitly indicate
the plane index in a layer geometry
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ing:

ĉ†k =
1√
N⊥

∑
m

ĉ†m,k‖e
ik⊥md

Under these considerations the single band inhomogeneous Hubbard Hamilto-

nian becomes:

H =
∑
mk‖

εm,k‖ ĉ
†
m,k‖

ĉm,k‖−
∑
mlσ

tml
(
ĉ†mσ ĉlσ + h.c.

)
+
∑
mσ

(µ− εm) n̂lσ+
∑
mσ

Umn̂m↑n̂m↓

(4.2)

to which corresponds the following local interacting Green’s function:

Ĝloc (iωn) =
∑
k‖

[(
iωn + µ− ε̂k‖

)
1− T̂ − V̂ − Σ̂ (iωn)

]−1

(4.3)

where we defined:

• the fully off-diagonal matrix T̂ representing the hopping between the planes

so that: 〈m| T̂ |l〉 = −tzml = −t⊥ml

• the fully diagonal matrix V̂ representing the local energy of each plane so

that: 〈m| V̂ |l〉 = εmδml

• the fully diagonal matrix ε̂k‖ representing the bidimensional dispersion re-

lation of each later. For a square lattice this reads: 〈m| ε̂k‖ |l〉 = −2 (txm cos kx + tym cos ky) δml

• the fully diagonal self-energy operator: 〈m| Σ̂ (iωn) |l〉 = Σm (iωn) δml

With these additional contribution the matrix local Green’s function will acquire
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a non-diagonal term due to T̂ :

G−1
m = 〈m| Ĝ−1 |m〉 = iωn + µ− εm − Σm (iωn)

G−1
ml = 〈m| Ĝ−1 |l〉 = −tml

Following the derivation of the homogeneous case, the missing step is the rela-

tion between the lattice self-energy and the impurity one. With this purpose, we

will now elucidate the missing connection between the impurity hybridization

function Γi and the lattice matrix Green’s function. The latter can be written in

a compact fashion defining the diagonal operator:

ζ̂ = (iωn + µ) 1− V̂ − Σ̂ (iωn) (4.4)

so as to have:

Ĝ−1 (iωn) = ζ̂ − T̂ (4.5)

While the site-dependent hybridization function Γi can be written with:

Gi (iωn) Γi (iωn) =
∑
jk

tijtki [Gi (iωn)Gjkσ (iωn)−Gji (iωn)Gki (iωn)] (4.6)

Is important to underline that, at this level, all the indexes of this equation have

nothing to do with the system partition into layers, but have to be regarded, in a

general way, as the indexes of the two-point connected Green’s function. From
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Eq.[4.6] follows:

GiΓi = Gi

∑
jk

〈i| T̂ |k〉 〈k| Ĝ |j〉 〈j| T̂ |i〉 −
∑
j

〈i| T̂ |j〉 〈j| Ĝ |i〉
∑
k

〈i| Ĝ |k〉 〈k| T̂ |i〉

= Gi 〈i| T̂ ĜT̂ |i〉 − 〈i| T̂ Ĝ |i〉 〈i| ĜT̂ |i〉

Now, recalling that T̂ = ζ̂ − Ĝ−1, one has:

GiΓi = Gi

(
〈i| ζ̂Ĝζ̂ |i〉 − 〈i| ζ̂ |i〉

)
−
(
〈i| ζ̂Ĝ |i〉 − 1

)(
〈i| Ĝζ̂ |i〉 − 1

)
= G2

i ζ
2
i −Giζi −

(
G2
i ζ

2
i − 2Giζi + 1

)
= Giζi − 1

Where the fact that the ζ̂ operator is fully diagonal, while T̂ is not, has been

extensively used. Reshaping the last equality one gets:

Gi =
1

ζi − Γi
=

1

iωn + µ− εi − Σi (iωn)− Γi (iωn)
(4.7)

This equation relates the diagonal parts of the lattice local Green’s function and

lattice self-energy to the Weiss functions:

G−1
i (iωn) = iωn + µ− εi − Γi (iωn) (4.8)

Through the self-consistency equation:

G−1
i (iωn) = Gi (iωn) + Σi (iωn) (4.9)

This last expression closes the set of DMFT equations suited to describe an in-
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homogeneous lattice system. Operatively one has to:

• solve a set of N impurity problems with an initial guess on Ĝ−1
o (iωn), in

order to get the N -dimensional self-energy matrix Σ̂ (iωn);

• build the matrix

Â
(
k‖, iωn

)
= (iωn + µ) 1− ε̂k‖ − T̂ − V̂ − Σ̂ (iωn) (4.10)

which satisfies the condition Â
(
k‖, iωn

)
Ĝ
(
k‖, iωn

)
= 1, and compute the

layer-resolved local Green’s function matrix

Ĝloc (iωn) =
∑
k‖

Â
(
k‖, iωn

)−1 (4.11)

• exploit the self-consistency condition to extract a new Weiss field from the

diagonal part of the local Green’s function matrix:

(Gnewi )−1 (iωn) = Σi (iωn) +
(
Gloc
i

)−1
(iωn) (4.12)

The loop is repeated until convergence of two subsequent solutions. The com-

putational effort of the R-DMFT scheme roughly scales linearly with the num-

ber of impurity models, i.e. with the number of inequivalent sites in the original

system.
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4.2 Embedding Scheme for layered superconductors

As mentioned above, the proper way to treat problems related to layered ge-

ometries is to adopt a mixed representation. Indeed, the in-plane translational

invariance is preserved, by means of a diagonal k‖, while a off diagonal hop-

ping connects different planes. To the inverse of the system Green’s function

Â
(
k‖, iωn

)
, will contribute all the diagonal single particle operators plus the

self-energy matrix, while all inter-plane operator will contribute as off-diagonal

terms. Thus, trying to deal with a 3D system in this notation, would give a

infinite dimensional matrix, as a consequence, in order to exploit some sort of

computational advantage, a truncation must be performed. In this framework,

the existing embrional theory of the embedded medium has been extended and

improved in the present thesis. We start defining how we are going to truncate

the infinite number of planes needed to get the 3D systems and how the finite

size side-effects of this truncation has been taken care of. In the case of N layer

interposed between two semi-infinite leads the Green’s function matrix can be

defined as:
AB1 AB1L AB1B2

ALB1 ÂL AB2L

AB2B1 ALB2 AB2




ĜB1 ĜB1L ĜB1B2

ĜLB1 ĜL ĜB2L

ĜB2B1 ĜLB2 ĜB2

 = 1 (4.13)

where:

• ÂLL is the N -dimensional operator of the N layers that make the het-

erostructure, it takes the form of Eq.[4.10];
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• AB are the scalar operators referred to the semi-infinite bulk enclosing the

heterostructured slab;

• ALB are the scalar terms that connect the layers to the leads. Depending

on the hopping range they can acquire extra dimension. In the single band

repulsive Hubbard model one has ALB = ε⊥ = tz, while for the supercon-

ducting extension of this method ÂLB = ε̂⊥ = tzσ̂z;

• ABB is the scalar term referred to the connection between the semi-infinite

leads. In the following we will consider only nearest neighbor hopping,

i.e. the leads are assumed far enough to consider negligible any mutual

influence, then ABB = 0.

From Eq.[4.13] we can extract the explicit expression for the layer resolved

Green’s function and understand how it is modified by the presence of the

leads:

ĜL =
[
ÂL − ALB1A

−1
B1
AB1L − ALB2A

−1
B2
AB2L

]−1

=
[
(iωn + µ) 1− ε̂k‖ − Σ̂ (iωn)− Ŝ1

(
k‖, iωn

)
− ŜN

(
k‖, iωn

)]−1

where we defined the energy dependent embedding potentials S:

Ŝα
(
k‖, iωn

)
= ε̂⊥GBα

(
k‖, iωn

)
ε̂⊥1δLα (4.14)

The index α run from 1to N depending how deep into the slab the effect of the

bulk goes, as we stated before, considering only nearest neighbor hopping one

would get only α = 1 and α = N scalar potentials. The present derivation can
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be straightforwardly extended to the superconducting case simply adding the

extra anomalous component to the Green’s function of each layer and consider-

ing ε̂⊥ = tzσ̂z as inter-layer hopping.

The last step is to derive the correct expression for the semi-infinite bulk

Green’s function GB, following the derivation of the foremost paper [42] in

which the embedding method has been formulated for non-interacting systems.

A standard tight-binding hamiltonian for a infinite piristine 3D lattice is:

Ho = −t
∑
〈ij〉∈3D

(
ĉ†i ĉj + h.c.

)
− µ

∑
i

n̂i (4.15)

With the purpose to address systems with layered structure, this hamiltonian

can be firstly partitioned into planes:

Ho = −t
∑

〈imjm〉∈2D

(
ĉ†im ĉjm + h.c.

)
− µ

∑
im

n̂im − t
∑

〈mn〉∈1D

(
ĉ†mĉn + h.c.

)
=

∑
m

Hm +
∑

〈mn〉∈1D

T̂nm

then rewritten using the mixed {|m,Rim〉} representation defined above:

Ho =
∑
mk‖

(
εm,k‖ − µ

)
n̂m,k‖ +

∑
〈mn〉∈1D

T̂nm (4.16)

We now consider the semi-infinite crystal by starting from a piristine 3D crystal,

described byHo, and inserting an imaginary plane in a given, say [100], crystal-

lographic direction. In the following we will refer to the system made by two

semi-infinite crystal with the term cleaved crystal, while for surface we indicate

the planes of atoms immediately adjacent to the cleavage plane, which is just a
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mathematical tool aimed to separate the system in a left and right side. In the

following we will refer to a geometry where m < 0 indicates the left portion

systems, while m ≥ 0 the right portion.

The Hamiltonians of the perfect and cleaved crystals are then:

Ho =
∑
L,R

(
HmL + T̂mLnL

)
+ T̂mRmL +

(
HmR + T̂mRnR

)
H =

∑
L,R

(
HmL + T̂mLnL + ÛmL

)
+
(
HmR + T̂mRnR + ÛmR

)

Where we used the mL (mR) notation to indicate planed on the left(right) side

of the cleavage plane. H is the hamiltonian perturbed by the plane and by def-

inition the hoppings connecting the left and right side are missing. One can

consider an additional perturbation Û arising, e.g., due to a change in the elec-

tronic distribution near the surface, that cannot be written in a general way.

We will introduce later this perturbation in a self-consistent way. The overall

perturbation is:

V̂ = H−Ho

= −T̂mRmL + ÛmR + ÛmR

With the following matrix elements:

〈
mαk‖

∣∣ V̂ ∣∣mβk‖
〉

= Vmαmβ
(
k‖
)

= V0−1 + V−10 + U0 + U−1

where, in the last equality, we condidered nearest neighbor hopping. As usual,
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the connection between the perturbed Green’s function Ĝ and the unperturbed

one Ĝ(o) is:

Gmn

(
k‖
)

= G(o)
mn

(
k‖
)

+
∑
pq

G(o)
mp

(
k‖
)
Vpq
(
k‖
)
Gqn

(
k‖
)

(4.17)

in this equation the Green’s function indexes runs over all the planes. The re-

quired symmetry conditions, yet to be demonstrated, are:

〈
m,k′‖

∣∣ Ĝ(o)
∣∣n,k‖〉 = G(o)

mn

(
k‖,m− n

)
δ
(
k′‖ − k‖

)
〈
m,k′‖

∣∣ Ĝ ∣∣n,k‖〉 = Gmn

(
k‖,m, n

)
δ
(
k′‖ − k‖

)
(4.18)〈

m,k′‖
∣∣ V̂ ∣∣n,k‖〉 = Vmn

(
k‖,m, n

)
δ
(
k′‖ − k‖

)
here Ĝ(o) depends only on the difference (m− n) since is the Green’s function of

the perfect infinite crystal. Now we start from a general definition of G(o) (k, ω)

and derive an expression for G(o)
mn

(
k‖,m− n

)
that fulfill the symmetry condi-

tions of Eq.[4.18]. The Green’s function of the unperturbed lattice is:

〈k′| Ĝ(o) |k〉 =
δ (k− k′)

ω + iη − ε (k)
= G(o) (k, ε) (4.19)

Our mixed representation can be obtained from a partial Fourier transform of

the fully translational invariance k space:

∣∣m,k‖〉 =
1√
N⊥

∑
k⊥

|k〉 e−ik⊥md (4.20)



CHAPTER 4. INHOMOGENEOUS DYNAMICAL MEAN FIELD THEORY112

so that:

〈
m,k′‖

∣∣ Ĝ(o)
∣∣n,k‖〉 =

1

N⊥

∑
k⊥k

′
⊥

〈k′| Ĝ(o) |k〉 e−ik⊥nd+ik′⊥md

=
1

N⊥

∑
k⊥k

′
⊥

δ (k− k′)

ω + iη − ε (k)
e−ik⊥nd+ik′⊥md

=
1

N⊥

∑
k⊥k

′
⊥

δ
(
k‖ − k′‖

)
δ (k⊥ − k′⊥)

ω + iη − ε (k)
e−ik⊥nd+ik′⊥md

=
1

N⊥

∑
k⊥

eik⊥(m−n)d

ω + iη − ε (k)
δ
(
k‖ − k′‖

)
= G(o)

mn

(
k‖,m− n

)
δ
(
k′‖ − k‖

)
only considering the obvious orthogonality between k‖ and k⊥ vectors, the so-

lution with the right translational symmetry has been achieved. Now, consid-

ering only the perturbed Green’s function of the m = 0 surface, on the right of

the cleveage plane, one has:

G0 = G
(o)
0 +

[
G

(o)
0 U0 +G

(o)
0−1V−10

]
G0

=
G

(o)
0

1−
[
G

(o)
0 U0 +G

(o)
0−1V−10

] (4.21)

Hence, the needed unperturbed Green’functionG(o)
mn, in order to write down the

formal expression for the Green’s function of the topmost surface of the semi-
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infinte right bulk are:

G
(o)
0

(
k‖, ω

)
=

1

N⊥

∑
k⊥

1

ω − iη − ε (k)
(4.22)

G
(o)
0−1

(
k‖, ω

)
=

1

N⊥

∑
k⊥

e−ik⊥d

ω − iη − ε (k)

Clearly, since we are dealing with correlated systems, to these Green’s func-

tion will correspond a bulk self-energy. Operatively, in the non-uniform DMFT

procedure, one has to:

• include the calculation of two additional impurities, one for each lead and

compute the correlated version of Eq.[4.22] in the DMFT language:

G(o)
a

(
k‖, iωn

)
=

1

N⊥

∑
k⊥

e−ik⊥da

iωn + µ− εk‖ − 2tz cos k⊥ − ΣB (iωn)
(4.23)

for a = 0 and a = −1.

• build the Green’s function of the surface of the semi-infinite bulkGB

(
k‖, iωn

)
=

G0

(
k‖, iωn

)
with Eq.[4.23], and the corresponding embedding potential

S
(
k‖, iωn

)
;

• build the inverse of the slab Green’s function matrix Â
(
k‖, iωn

)
inserting

the potentials in the extremals components, i.e., those connected to the

leads, and proceed with the DMFT loop previously described.

It is important to underline how S is not a static quantity: it is updated each

loop since the sum over k‖ of Eq.[4.23] provides a local Green’s function for

the semi-infinite bulks Gloc
B (iωn) =

∑
k‖
GB

(
k‖, iωn

)
through wich we define
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the Weiss fields (and the related Anderson parameters) via the self-consistency

condition:

(GnewB )−1 (iωn) = ΣB (iωn) +
(
Gloc
B

)−1
(iωn) (4.24)

Figure 4.1: Sketch of inhomogeneous DMFT + Emedding operational scheme.

Fig.[4.2] presents results for a ten-layer slab for uniform parameters U/t =

−9 and half-filling. In the absence of any embedding potential, the slab breaks

translational symmetry and the order parameter ∆ becomes larger at the edges.

Introducing the embedding potential according to the described scheme, we

obtain the results shown as a dotted green line with large dots in Fig.. Here we

consider completely uniform parameters, and the embedding potential strongly

reduces the inhomogeneity, even if a minor enhancement of the order parameter

is clear at the edges of the slab. In order to further reduce the effects of the

finiteness of the slab, in this thesis we propose a simple strategy to improve the

scheme, introducing a feedback of the slab on the semi-infinite bulks. The idea

is simply to define a potential created by the slab onto the semi-infinite bulks

on the two edges. As a matter of fact GB calculated this way is insensitive to the

presence of the slab: the embedding potentials, in which the effects of the bulks

are enclosed, acts only from the leads to the extremals layers Green function.

Assuming that an embedding potential is a general way to consider, within
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the Green function of a layer, the effect of an adjacent system, whose details

resides in the structure of the potential itself, this approach has been used to

include a feedback potential SS from the m = 1 and m = N layers to the bulks.

Namely, from the second iteration SS
(
k‖, iωn

)
= ε⊥Gm

(
k‖, iωn

)
ε⊥ is computed

and inserted in Eq.[4.21] so as to have:

G0 =
G

(o)
0

1−
[
G

(o)
0 U0 +G

(o)
0−1V−10 − SS

] (4.25)

The data in Fig.[4.2] demonstrate that the feedback further reduces the inhomo-

geneity and it allows to essentially reproduce the uniform bulk even with a very

limited number of layers.
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Figure 4.2: Order parameter ∆ vs layer index of a 10 layer system with uniform
Hubbard parameter U/t = −9 at half-filling. Red line: ∆ enhancement in the
external layers of a slab. Green line: ∆ profile of the same system connected
with the leads, the dots refers to the order parameter calculated with ĜB. A
considerable disagreement with the bulk reference (crosses) is found. Blue line:
the inclusion of the feedback potential turns into a reduction of both leads and
external layers order parameters to a value much closer to the bulk reference.
The inset shows a magnification of the mentioned effects

4.3 Layered DMFT for the Attractive Hubbard model

In this section we present the first results using the embedding+feedback pro-

cedure for an attractive Hubbard model. In this section we limit ourselves to

this extremely simplified situation in order to test the performance of our ap-

proach in a well-controlled model and to single-out the effects which arise from

the strength of the pairing interaction from the many other effects which are
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expected to take place in a real system.

Furthermore, in this section we fix the local density to one electron per

site on each layer by imposing particle-hole symmetry. This chouce obviously

freezes charge redistribution across the interface. We chose to start with this

situation to single out the intrinsic effects due to the proximity from the effects

due to charge transfer across the interface, which would obviously affect the

results. Interestingly, we find important proximity effect even in this case.

4.3.1 Observables

To characterize the superconducting states of our layered superconductor and

its spatial dependence we focused on few relevant observables. The most direct

evidence of the superconducting state and its strength is the layer-resolved zero-

temperature pairing amplitude, simply obtained as the integral of the anoma-

lous part of the α-th layer Green’s function:

∆α = T
∑
n

Fα (iωn) = 〈ĉασ ĉασ̄〉 (4.26)

while the kinetic energy reads:

〈Eα
k 〉 = T

∑
n

ˆ
dερ (ε)Tr

{
εσ̂3Ĝα (ε, iωn)

}
(4.27)

Notice that while the global order parameter and potential energy are simply

obtained by summing the contributions from the different layers, the bulk ki-

netic energy also includes the contributions from the interlayer hoppings, which

do not contribute to the above 〈Eα
k 〉. Finally we can compute the quasiparticle
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weight, namely:

zα =
(
1− ∂Σ11

α (iωn) /∂ (iωn)
)−1 (4.28)

Where Σ11
α (iωn) is the normal component of the α-th layer self-energy. We use

zα as a measure of the coherence of the low-lying excitations at the gap edge. In

a BCS superconductor these excitations are completely coherent and we recover

z = 1, while increasing the coupling it decreases even if slightly.

4.3.2 Benchmark with the homogeneous reference

In Fig. we demonstrate that our feedback performs accurately for different ob-

servables and for any value of the parameters. We consider again homogeneous

parameters and we vary the value of the interaction U . Here we plot the aver-

age over the slab of ∆, z and of the double occupancy D as a function of U and

we compare with a bulk cubic lattice (which should be reproduced when the

finite-slab effect are canceled) and, for reference, with a two-dimensional calcu-

lation corresponding to a single layer. To illustrate the general validity of our

approach we consider both a negative U , for which we find superconductiv-

ity, and a positive U model, in which s-wave superconductivity can not estab-

lish and therefore representing the normal state. The three panels of Fig.[4.3.2]

clearly show that for every value of U the three observables coincide with their

bulk counterparts.
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Figure 4.3: (a) Order parameter ∆, (b) quasiparticle weight z, (c) double occu-
pations expectation value D = 〈n̂o↑n̂o↓〉 vs interaction strength U at half-filling.
Red and blue lines refers respectively to the square and cubic lattice, single site
DMFT calculations. Green dots represents the results for the central plane of an
homogeneous system made of 7 layers, similar to the blue one in Fig.

4.3.3 Interface between weak- and strong-coupling supercon-

ductors

As a first example we consider the interface between two semi-infinite systems

with different values of the attractive interaction, considering ten active layers

for both systems. In Fig.[4.3.3] we present results in which we fix the interaction

at a relatively small interaction U/t = −3 on the left side, while on the right side
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we tune the interaction from U/t = −3 to a much larger attraction U/t = −7.5.

We present layer-resolved pairing amplitude ∆α , quasiparticle weight zα, dou-

ble occupancy Dα and in-plane kinetic energy 〈Ekα〉 as a function of the layer

index α. On the right side of the figure the bulk values are shown for reference.

We first observe that also in this case our embedding+feedback scheme pro-

vides an essentially continuous connection between the leads (corrected by the

feedback) and the first layers which we explicitly treat with layered DMFT. The

evolution across the slab is rather smooth, especially for the order parameter,

shown in panel (a), for which a significant proximity effect leads to an enhance-

ment of the order parameter on the left side which penetrates for almost ten

layers. The effect is quantitatively significant. For example the order parameter

in the first layer of the weak-coupling superconductor can be increased by 50%

when the pairing amplitude of the right system is U = −7t. Also the right-side

is substantially affected by the presence of the weakly-coupled superconductor.

The reverse effect on the strong-coupling superconductor is however smaller in

absolute and relative terms with an order parameter which is reduced at most

of 10%. Interestingly the spatial extent over which the order parameter is af-

fected is not strongly dependent on the value of the interaction in the right half.

The double occupancy, which is also related to the potential energy has a simi-

lar evolution, but the proximity effects are limited to a thinner slice of the slab

of around three layers and the relative change induced by proximity is much

smaller. A similar behavior is shown by the layer kinetic energy, which is nega-

tive and larger in amplitude on the left (weak-coupling side). Interestingly, the

presence of the stronger-coupling superconductors leads to a slight increase of

the modulus of the kinetic energy in the first layers of the weak-coupling side.
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Finally, the quasiparticle weight, which can be used to measure the coherence

of the electronic excitations, is slightly increased in the weak coupling side, and

it de- creases in the strong-coupling region, even if all these variations are rela-

tively small.
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Figure 4.4: ∆α, zα, Dα and −〈Ek〉 in a 20 layer thick heterostructure. The calcu-
lation starts from the omogeneous case in which both left (index≤ 10) and right
sides (index ≥ 11) have the same U/t = −3, and proceed decreasing U in the
right side. The points outside the heterostructure are those computed starting
from the leads Green’s functions used to compute the embedding potential ĜB.
The crosses are the results for a bulk DMFT calculation for the cubic lattice.

In Fig.[4.3.3] we present an analogous analysis in which the left side has a

constant U/t = −10 while on the right side the interaction goes from −10t to
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−3t. The qualitative results are similar to the previous even if the proximity

effects are reduced both in their spatial extension and it the strength of the ef-

fect because of the stronger coupling on the left side, which leads to a short

coherence length and the physics becomes more local. Still, a clear intermediate

region, where the physical quantities smoothly connect, appears. Also in this

case, the effect is quantitatively stronger for the superconducting order parame-

ter, which is again increased up to a factor 2 on the weaker- coupling side (now

the right half)
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Figure 4.5: ∆α, zα, Dα and −〈Ek〉 in a 20 layer thick heterostructure. The left
half (index ≤ 10) is kept at U/t = −10, while for the right half (index ≥ 11) we
used smaller or equal values of the attraction strength.
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4.3.4 Interface between correlated metal and superconductor

We now move to a different situation where one of the two halves of the system

would not be superconducting by itself. On the left side we consider a metal

with a finite repulsion U/t = 4, which would lead to a moderately correlated

metal in a bulk system, while on the right we tune the attractive interaction from

0 to U = −6t. The results, plotted in Fig.[4.3.4], show that despite the repulsive

interaction superconductivity can penetrate for a few lay- ers of the metal, and

that important effects are observed on the superconducting side. This is a clear

qualitative violation of the local-density approximation even in the absence of

charge redistribution across the interface. The effect on the order parameter is

small but clearly visible (one obtains an order parameter which is around 0.05

the bulk value on the superconducting side), while the double occupancy is es-

sentially unaffected by the connection between the two semi-infinite systems.

The kinetic energy presents an interesting increase (in modulus) in the first lay-

ers of the metallic system, the same region where superconductivity is able to

penetrate in the repulsive metal. These results clearly demonstrate that the ap-

proach we have devised is able on one hand to reproduce the bulk results when

we are sufficiently far from the interface and on the other hand to display non-

trivial and interaction dependent proximity effects, which can lead to important

effects in real systems. The effect is generally strongerfor the order parameter

than for the other observables we considered.
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Figure 4.6: ∆α, zα, Dα and −〈Ek〉 in a 20 layer thick heterostructure. Here on
the left side we have a correlate metal with a repulsive U/t = 4, while on the
right side we tune an attractive interaction.. The wiggles in the quasiparticle
weight are a numerical artifact due to the small energy scales involved in the
calculation of the derivative.

4.3.5 Conclusions

In the present section we have introduced an effective extension of the embed-

ding approach which allows to study heterostructure of interacting systems

by means of a small number of active layers. Our extension is twofold. For

the first time we extend the formalism to the superconducting state, and we

also introduce a “feedback” of the slab onto the embedding potential which re-



CHAPTER 4. INHOMOGENEOUS DYNAMICAL MEAN FIELD THEORY125

duces the finite-size effects introduced by the finiteness of the slab. We have

demonstrated that the feedback correction indeed dramatically reduces the ef-

fects of a finite slab and it produces essentially exact results for all the relevant

layer-resolved observables when treating homogeneous bulk systems. After

having established the accuracy of the refined embedding approach, we have

also presented two applications of the method to paradigmatic situations where

a heterostructure is formed out of two semi-infinite systems separated by a two-

dimensional interface. In particular we consider a superconductor with differ-

ent values of the attractive strength connected with either a superconductor or

a metal with intermediate repulsive interactions. We find that in the first case

important proximity effects take place and stronger superconductor increases

the superconducting order parameter for around ten layers for a wide range of

parameters. In the second case superconductivity penetrates in the repulsive

system for around two layers, qualitatively changing the physics of the sys-

tem. In both cases the strongest effects are seen on the order parameters, while

the kinetic and potential energies remain closer to the results for two discon-

nected systems. It is worth mentioning that, imposing particle-hole symme-

try and fixing every layer to be half-filled, we freeze the charge redistribution

which would naturally enhance the effects we describe. In this paper we lim-

ited to the simple attractive Hubbard model at half-filling in order to benchmark

our method and, more importantly, to single out the effects associated with the

strength of the coupling from the vaiety of effects happening at a real interface.

Indeed our results demonstrate that this approach can be used to study inter-

face or heterostructures involving two superconductors with different coupling

strength, which can be seen as a greatly simplified version of heterostructures
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involving copper oxides with different doping, or heterostructures involving

Mott insulators and s-wave superconductors. However, our method can be ex-

tended to include several realistic features. For example the ap- proach can be

applied to the paradigmatic LTO/STO system, where the STO can be modeled

as a Mott insulator with positive U , while LTO can be described as a band

insulator with a weak electron-phonon interaction. The latter can be either ap-

proximated with an at-tractive Hubbard interaction or with an actual coupling

between the electrons and phononic degrees of freedom. Indeed our approach

can be straightforwardly extended to models in which the s-wave supercon-

ductivity arises from electron-phonon coupling of the Holstein type. In this

case one could study if the presence of STO can turn LTO into a superconductor

by providing carriers to the band insulator, thereby activating the BCS pairing

as in doped bulk LTO. Furthermore, the present approach can also be combined

with density-functional theory to introduce the realistic electronic structure and

close the gap with actual materials.



CHAPTER

5

ELECTRON-PHONON COUPLING

IN CORRELATED SYSTEMS: FROM

BULK TO HETEROSTRUCTURES

In this section we present our new results on the Holstein-Hubbard model us-

ing DMFT to study homogeneous systems, and its layered extension to study

heterostructures connecting a Mott insulator with a band insulator mimicking

the LTO/STO system. The main focus of this Chapter is the study of the ef-

127
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fects on superconductivity of the competition between the instantaneous Hub-

bard repulsion and the retarded attractive interaction driven by dispersion-

less phonons. In Chapter 2 we have discussed previous results on the non-

superconducting phase and we have shown that in the half-filled system the

only way to observe phonon fingerprints is to assume that the electron-phonon

coupling exceeds the Coulomb interaction. In this Chapter we focus on the ef-

fect of doping on this competition with a particular interest on the possible onset

of a phonon-driven s-wave superconducting phase in a system dominated by

the Hubbard repulsion.

5.1 Half-filled Hubbard-Holstein model

In most of the present Chapter we will therefore study the DMFT solution of

the Holstein-Hubbard model on the Bethe lattice with semi-elliptic density of

states given by D (ε) = 2
πD2

√
D2 − ε2, semibandwidth D = 1 and adiabatic ratio

γ = 0.2 for various Hubbard interaction U/D and electron-phonon coupling λ.

In Chapter 2 we have already reported in Fig.[2.5] the phase diagram in the U -λ

plane of the model obtained neglecting any long range ordered phase. A cor-

related metallic phase extends in a region surrounded by a Mott Insulator and

a bipolaronic insulator. The transition line between the metal and the MHI is

only weakly dependent of the e − ph interaction strength and the transition is

always of second order. The transition between M and BPI instead is second-

order for small coupling and it turns into a first-order line when the interactions

are intermediate or strong. Here we focus on the metallic region surrounded by

the insulating phases, which is the most likely ground from which supercon-
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ductivity can originate. To better characterize the competition between the two

interactions and to understand to what extent this metallic state can support

s-wave superconductivity, we first focus on the quasiparticle weight and the

efffective mass (which are simply inversely proportional within DMFT).

As it has been pointed out before [75], the competition between the two in-

teractions leads to non-monotonous behavior of these quantities as a function

of the control parameters. Indeed both the e − e and e − ph interaction would

lead to a reduction of quasiparticle weight and an increase of the effective mass

in the absence of the competing interaction. This is showm, for example in the

data of the two panels of Fig.[5.1] and Fig.[5.2], which show the two quantities.

In the left panels we show results as a function of λ for different value of U while

the right panels show them as a function of U for different values of λ. This cor-

responds respectively to vertical and horizontal cuts in the phase diagram in

Fig.[2.5].
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Figure 5.1: (left) Quasiparticle weight zqp for various values of the Hubbard in-
teraction strength as a function of λ, corresponding to vertical cuts to the phase-
diagram of Fig.[2.5]; (right) Quasiparticle weight zqp for various values of the
e−ph interaction strength λ as a function of U , corresponding to horizontal cuts
on the same phasediagram. The Red dotted line in the U/D dependent figure
and in the following ones represent the result for the repulsive Hubbard model
in absence of the phononic bath.

Figure 5.2: Effective mass ratio m∗/m ∼ 1/zqp versus λ at fixed U/D (left) and
versus U/D at fixed λ (right)

For small values of U/D ≤ 1 the effective mass indeed increases with λ

reflecting the crossover to polaronic carriers while it shows a non monotonic

behaviour at higher U/D. The mononotonic behavior is a direct consequence

of the competition between the two interactions. For finite U the system has
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already some correlations in the absence of λ. Turning the e − ph coupling on,

the first effect is to effectively reduce the Coulomb repulsion, thereby reducing

the correlations and making the system closer to a non-interacting one. This

is the region where Z increases as a function of λ. When the e − ph coupling

is of the same order of U , a further increase leads instead to a more standard

renormalization due to the phonons, which corresponds to the final decrease

before the BPI is reached. Each line, corresponding to a different value of U

ends indeed n the BPI transition line, marked with a black triangle at the critical

value λc2 (U). The transition is definitely first-order for intermediate and large

U , while for small U the character of the transition appears more continuous.

Indeed it has been shown [17] that the second-order nature of the transition re-

quires an extremely accurate study to be unambiguously detected already in

the pure Holstein model. Extending this careful study in the presence of corre-

lations would be an extremely lengthy work which lies beyond the scope of the

present work.

A completely analougous effect can be seen considering cuts with fixed λ:

for weak e − ph coupling z is substantially unaffected by phonons and reflects

a trend driven by U/D only, while for larger λ the non monotonic behavior of

z is revealed. As can be seen from the comparison with the λ = 0 case the

value of Uc at which the Mott insulating phase occurs is shifted to higher val-

ues increasing the e − ph coupling strength. Obviously this behaviour can be

explained through the same effective coupling previously described. Here the

system with U = 0 is already correlated by the finite λ, and switching on U

we first counteract the phonon effects before entering in the regime where U

dominates over the e − ph coupling and the Z is reduced as a function of U
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before reaching the continuous Mott transition. The main difference between

the two plots was already apparent in the phase diagram. The critical λ for the

BPI strongly depends on the value of U , while the Mott transition critical point

weakly depends on λ.

We now move to the superconducting phase in order to connect the proper-

ties of the normal state with the potential for a superconducting phase. Indeed

only a few studies addressed the superconducting (SC) properties of this model,

and we still lack a sistematic understanding on how s-wave superconductivity

occurs in the non-trivial adiabatic regime, where the competition between in-

stantaneous Hubbard interaction and retarded electron-phonon coupling has

more subtle features. In this Chapter we investigate what are the chances to

develop s-wave superconductivity in the presence of correlations and we fo-

cus in particular on the dependence on the carrier density. Naively, one can

surmise that the region where phonon-driven superconductivity can establish

is that where the e − ph couplling prevails, namely close or beyond the line

separating the metallic state from the bipolaronic insulator. This line coincides

with the U/D = λ line in the strong e − e coupling regime while it deflects to-

ward higher values of λ for intermediate coupling strengths. This line, in the

antiadiabatic ωo →∞ limit, separates the region where the effective interaction

Ueff = U − λD, is globally repulsive or attractive. Hence, if there is a chanche

for superconductivity in the half-filled model, this is the region to explore. On

the other hand, the competition between the two terms is expected to become

less extreme as we introduce doping, which will give the electron-phonon in-

teraction more space to be active. Therefore, in the rest of the chapter we will

focus on the doping dependence to look for the ideal conditions to establish
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superconductivity.

Figure 5.3: Superconducting order parameter ∆ versus λ at fixed U/D (left)
and versus U/D at fixed λ (right). Black square points represent the last value
of the coupling in the metallic phase in absence of superconductivity. Black
triangle points represents the last converged DMFT solution, i.e. right before
the bipolaronic insulator phase. The dotted black line indicates the interaction
strength that gives the highest value of the order parameter.

In Fig.[5.3] we plot the order parameter defined as the expectation value of

the singlet cooper pair ∆ = 〈ĉ↓ĉ↑〉 as a function of the e− ph interaction strength

(left) and of the Hubbard interaction (right) following the same scheme we used

to plot Z andm∗. As expected, for U/D = 0 we find superconductivity for every

value of λ until the bipolaronic transition takes place (λ < λc2 (U = 0)). Indeed

in this case a superconducting solution exists also for λ > λc2 (U = 0), but it is

degenerate with the charge-density wave. As a matter of fact, it is extremely

hard to follow the superconducting solution in the regime where the charge-

ordered bipolaronic state establishes because of a numerical tendency to break

the spatial symmetry. We did not perform the very demanding numerical calcu-

lation necessary to follow the superconducting solution until very large values

of λ because these values are not interesting for the systems we would like to
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study. A similar behavior is found for small values of U , where however there is

a minimal value of λ, that we call λc1, for superconductivity to establish. Clearly

this testifies that some value of λ is always necessary to overcome the repulsive

interaction. The value of λc1 correspond to the one at which the effective inter-

action becomes attractive only for intermediate Hubbard interaction, while it

deviates to even higher values at stronger e − e coupling. Finally, we find that

retardation effects that allows to stabilize a superconducting solution even in

the λ < U/D case are found below U/D = 1. We can expect en enhancement

of this interesting effect pushing the adiabatic ratio to lower values, which have

not been explored so far.

Figure 5.4: Superconducting boundary in the phase diagram of Fig.[2.5]. Here
Uc1 and Uc2 are the equivalent of λc1 and λc2 in the case of horizontal cuts. The
red dotted line indicates the value of λ that would give an effective attraction in
the Kondo coupling expansion of Eq.[2.34].
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The results for the critical values of λ that encloses the SC region of the phase

diagram are summarized in Fig.[5.4] and they mostly follow the normal-state

diagram of Fig.[2.5]. The transition to the SC state is found to be always first or-

der in our numerical implementation and, comparing with Fig.[5.1], it is found

to occur when zqp (λ, U) has almost its maximum value on the fixed λ cut. This

is indeed the value of λ for which the carriers are closer to non-interacting as a

result of the cancellation between the two interaction terms. As we mentioned

above, in the region of moderate repulsion, this value is significantly reduced

with respect to U = λ, signaling that retardation effect play a positive role.

Finally we observe that the maximum value of the order parameter does not

necessarily correspond to the maximum e − ph coupling available before the

bipolaronic instabilities hits, i.e. λc2. This is a further non-trivial result associ-

ated to retardation effects.

We can give a rough and naive argument to rationalize the onset of super-

conductivity in terms of the region of frequency in which the effective interac-

tion is attractive according to the dynamical effective interaction which is sim-

ply given by:

ωo

√
1− λD

U
< ω < ωo (5.1)

This frequency region shrinks towards zero when λD/U → 0 and it achieves its

maximum extension, reaching zero frequency ω ∈ [0, ωo] at λD = U . For this

reason superconductivity is essentially guaranteed to establish at λ = U , while

more subtle retardation effects can reveal it in a wider region of parameters.

To gain further insight on how the e − ph interaction effects can survive the

strong correlations, we now focus on another quantity directly related to the
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e − ph interaction, namely the phonon displacement distribution. As we men-

tioned in the section describing the implementation of DMFT for the Holstein-

Hubbard model, this is a groundstate observable and is given by the quantum

average of the projection operator |x̂〉 〈x̂| on the subspace where the ion dis-

placement operator x̂ has the eigenvalue x:

P (x) = 〈Ψ|x̂〉 〈x̂|Ψ〉 (5.2)

This quantity can be used to measure the magnitude of the local distortion,

being:

〈x̂〉 =

ˆ
xP (x) dx (5.3)

as well as their fluctuation:

〈
x̂2
〉

=

ˆ
x2P (x) dx (5.4)

At weak coupling P (x) is centered around a single value (unimodal) with a

peak that broadens upon increasing λ. In the strong e − ph coupling regime,

P (x) eventually develops a multi peaked structure which indicates different

possible distortions, each associated to one of the charge states. This is another,

more quantitative, description of a polaronic state, in which the charge state

and the phonon displacement are deeply entangled.

Physically, this means that a certain fraction of lattice sites are polarized by

the presence of electrons so as to have an average polarization greater than its

own fluctuations. In Fig.[5.5] we report the phonon displacement distribution,

for all the values of the Hubbard interaction considered, in the close proximity
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of the two critical values of the e− ph coupling λc1 and λc2 relevant for the SC.

Figure 5.5: Phonon displacement distributions P (x) for the coupling strength
for which SC has been found

The first thing that we notice is the quench on the unimodal distribution at

the onset of SC: we found this increase systematically for each value of U/D. In-
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creasing λ the distribution lowers its central peak and, at λc2, the system reach

the BPI phase as the distribution becomes bimodal. A closer inspection to the

values of the e − ph strength reveals that the maximum value of the supercon-

ducting order parameter is found when the system has the most pronounced

displacement fluctuations right before entering the BPI as shown in Fig.[5.6],

while the development of a finite distortion is detrimental to superconductivity.

This is also the reason why we did not push further the calculations to stabilize

the superconducting phase in the region beyond λc2.

Figure 5.6: Average distortion fluctuation compute as
〈
x̂2 − 〈x̂〉2

〉
The role of position fluctuation and phonon softening as a precursor of the

BPI metal-insulator transition have been already pointed out, as we discussed in

Chapter 2, but its relevance in the context of superconductivity has never been

discussed so far. Our result reveals that the ideal conditions for an electron-

phonon superconductor in the presence of correlations are not given by the

largest value of the effective coupling, which may drive a finite distortion thereby
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favoring a charge-ordered state, but they are associated to a maximum of the

charge fluctuations, which are indeed the key condition to have electron-phonon

driven superconductivity.

5.2 Finite doping case

As we described in the previous section, the reduced effectiveness of the e− ph

coupling in the presence of strong e−e correlation, can be explained considering

that the Hubbard interaction freezes the charge fluctuation, to whom phonons

are coupled. This charge-freezing phenomenon is particularly extreme at half-

filling, where an actual Mott-Hubbard transition can take place, and it becomes

less and less pronounced as we dope the system away. On the other hand,

the electron-phonon interaction is expected to remain active also for significant

doping, at least as far as the ability to drive superconducting pairing is con-

cerned.

Figure 5.7: Superconducting order parameter for the Holstein model (U = 0) as
a function of λ and n Notice that the color scale is different with respect to Fig.
5.2.1
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For this reason we have performed extensive calculations for the supercon-

ducting phase of the Hubbard-Holstein model as a function of the density n, the

electron-phonon coupling λ and the Hubbard repulsion U .

We start by presenting the results for a pure Holstein model, which we re-

port in Fig.[5.2],which we compare with those for an intermediate interaction

strength U/D = 1 in Fig.[5.2].

Figure 5.8: (left)λ, n Superconducting order parameter of the Hubbard-Holstein
model at intermediate interaction strength U/D = 1 with emphasized the po-
sition of the emergent SC dome at high doping. (right) magnification of the
emergent SC dome at intermediate densities. Notice that the color scale is dif-
ferent with respect to Fig. 5.2.1

The system without e − e correlation displays a superconducting ground-

state for every value of λ and n (identical results would be obtained for n > 1

because of particle-hole symmetry). and the superconducting order parameter

is maximum around half-filling and it decreases as a function of doping due to

the reduced density of states. Obviously ∆ increases as a function of λ for any

density.

A much richer phenomenology is revealed in the presence of correlations.
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Notice that, for graphical purposes, the two diagrams have a different color

scale and the same color corresponds to a reduction by a factor 3 of the order

parameter. For n = 1 we start from the results shown in Fig.[5.3], while de-

creasing n the order parameter is first reduced but, at low densities, it starts to

increase before finally vanishing for the completely empty band n = 0. This

is particularly clear in the intermediate λ region. In the right panel we show a

magnification of the low-density region where the revival of superconductivity

is observed, which shows a clear dome-shaped behavior around a small density

n ' 0.2. We have thus identified a region where strong correlations lead to a

revival of superconductivity far from the region where the superconducting or-

der parameter is maximum for the purely phononic system. We emphasize the

behavior in this region in the middle panel of the right colum of Fig.[5.9], where

we plot cuts at different λ. This shows how the low-density dome appears at

n ∼ 0.2 and λc1 and eventually merges with the main SC structure that persists

up to the same density when λc1 < λ < λc2.
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Figure 5.9: Horizontal cuts to the λ, n phase diagram for various U/D. The lines
have been shifted upwards for graphical purposes.

In the other panels of Fig.[5.9] we plot the same information for different

values of U/D. It is apparent that the low-density region is ubiquitously present

as long as the interaction strength is not vanishing, and it always merges with
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the n = 1 dome when the coupling is increased. In the case of large U , which is

the most relevant for transition-metal oxides (bottom-right panel), indeed one

finds that the low-density region expands to intermediate and relatively large

densities for intermediate electron-phonon interaction strength. In this regime

one would conclude that the main superconducting phase is indeed the finite-

density dome which then extends to half-filling.

As we described in the previous section, the onset of superconductivity by

enhancing λ in the Holstein-Hubbard model for U/D has a first-order charac-

ter at half filling. Instead in the hole-doped system the same SC transition is

found to be of second order, as shown in Fig.[5.10]. Once again the n = 1 order

parameter profile is the same of Fig.[5.3] displaying a coexistence between the

metallic and SC solution at λ = λc1 and the line corresponding to the lowest

plotted density roughly coincides with the emerging dome of Fig.[5.2]. At the

smallest densities we have some artifical jumps in the plot due to the numerical

difficulties to converge DMFT results in the low-density region.
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Figure 5.10: Superconducting order parameter as a function of λ for three values
of U and different densities.

The last effect we analyze in this system is the dependence of the quasipar-

ticle properties on the e−ph coupling. It has been shown that in the strong e− e

correlation regime the e−ph coupling has a little effect on mass renormalization

for a wide range of densities. In Fig.[5.11] we plot the effective mass renormal-

ization as a function of λ for different doping levels and for different degrees of

e − e correlation following the same graphical representation we used for the

superconducting order parameter in Fig. [5.10]. While in the half-filled case of

the weakly interacting system m ∗ /m rapidly increases towards the polaronic

regime, for lower densities this exponential enhancement softens. Upon further

increasing the Hubbard interaction, the mass renormalization become almost
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insensitive to the e − ph coupling strength at low densities, where the value of

m∗/m is completely determined by U/D. Interestingly, the latter is the region of

parameters where we found the broadest superconducting region as a function

of doping.

Figure 5.11: Effective-mass renormalization as a function of λ for three values
of U and different densities.

Finally, to show in a comprehensive fashion the effect of doping on the mass

renormalization due to the e− ph coupling, for different values of the Hubbard

interaction, in Fig.[5.12] we plot m∗/m as a function of λ for different U/D and

fillings. Remarkably, the results for all the values of U/D considered in this sec-

tion collapse on the same line when the carrier density is n ∼ 0.2. This result

is twofold: firstly it demonstrate that, under a certain doping level, the e − e
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does not affect the quasiparticle properties of the system. On the other hand,

in this strongly-correlated region the polaronic exponential mass enhancement

is completely overwhelmed by the repulsion. This forbids the formation of po-

larons and the occurrence of a finite displacement which, as we discussed in the

previous section, is detrimental for superconductivity.

Figure 5.12:

The line onto which all the results seems to collapse can be understood

through a simple Hartree-Fock analysis of the self-energy [1]. The Hubbard in-

teraction involves only electrons with opposite spin while the effective retarded

e − ph coupling is insensitive to the spin and is coupled to the total density.
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Therefore the total Hartree contribution to the self-energy is:

ΣH (0) = (U − λD)
n

2
− λDn

2
= (U − 2λD)

n

2
(5.5)

where the first term comes from processes involving opposite spins, while the

second is due to interactions between parallel spins. This term in the limit of low

density vanishes. The Fock contribution to the self-energy in a system coupled

to bosons is given by:

ΣF (iωn) = −λD
2
ωo

ˆ
dεN (ε)

[
f e (ε) + f b (−ωo)
iωn − (ε+ ωo)

− f e (ε) + f b (ωo)

iωn − (ε− ωo)

]
(5.6)

where N (ε) is the non interacting density of states and f e and f b are the elec-

tronic and bosonic statistical distibutions respectively. The integral can be solved

in the two relevant limits of the adiabatic ratio:

ΣF (iωn) =


−→
ωo→∞

−λD
2

(n− 1)

−→
ωo→0

−λD
2
iωnN (εF )

(5.7)

where N (εF ) is the density of states at the Fermi level. In the case under in-

vestigation and reported in Fig.[5.12] the Hartree-Fock contribution to the self-

energy is then given by:

ΣHF (iωn) = −λD
2
iωn

(
2

πD

)
(5.8)
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and the effective mass ratio becomes:

m∗

m
∼ 1

zqp
= 1− ∂= [Σ (iωn)]

∂iωn

∣∣∣∣
iωn=0

= 1 +
λ

π
(5.9)

This result holds only in the low density limit, in which the Hartree contribu-

tion can be neglected, and for intermediate values of the Hubbard interaction.

Setting, as a matter of fact a lower bound to m∗/m. Also this feature is captured

by Fig.[5.12] where the agreement between the Hartree-Fock limit and the line

where the data collapse lowers with increasing U/D. As a matter of fact, in this

region of parameters, the e − e interaction almost completely quenches the ef-

fects of the e − ph interaction allowing only for a Hartree-Fock-like shift which

corresponds to a perturbative results. This condition however is sufficient to

drive superconductivity in this low-density region.

5.3 The case study of LTO/STO

Artificial heterostructures based on correlated insulating TMOs display remark-

able changes in the electronic properties by changing the thickness of the con-

stituent layers. As we described, among the most studied heterostructures are

those hosting a metallic bidimensional layer at the interface between two insu-

lators. The case of the LTO/STO junction between a Mott and a band insula-

tor is the ideal playground for the study of an electronic reconstruction which

is not influenced by structural distortion. In this interface the 2DEG has been

demonstrated to be confined mainly on the STO side, where the charge depleted

from the LTO coating is accumulated within a few unit cells, essentially doping
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an empty d-band. Remarkably this interface, the popular LAO/STO system,

becomes superconducting under 300mK. A possible source of pairing which

seems to be supported by the experimental evidence is the electron-phonon

coupling. A strong coupling between a longitudinal optical phonon and the

electrons has been indeed found and polaronic features have been proposed.

This raises the question as to whether the electron-phonon superconductivity

of a simple Hiolstein model can be responsible for this phenomenon once we

factor in all the many factors which should result in the fragile balance sta-

bliizing this low-temperature superconductors. As we discussed, low carriers

density, Coulomb repulsion and phononic retarded attraction, reduced dimen-

sionality and electrostatic stability of the 2DEG should all play a role. In this

section we tried to merge our knowledge, acquired studying these problems

separately, with the purpose to demonstrate the stability of a superconducting

phase in a model system as close as possible to the real one. Thus we considered

a substrate of 10 layers of a band insulator (which models STO) with a 5-layer

thick coating of Mott insulator representing LTO. The difference between STO

sites and LTO sites is given by the fact that the LTO layers host a a positive +1

point charges that represents La interstitial ions. For the sake of simplicity we

consider a single-band description for the titanium atoms of both oxides. In the

absence of the interface, this band would be empty for STO sites and half-filled

for LTO sites due to the positive charge of the La ions.

The minimal electrostatic long-range interaction of an electron belonging to

the Ti d band, is then given by the interplay of mutual repulsion, between elec-

trons on neighboring sites at Ri, and attraction, produced by the La ions at RjLa

as in Fig.[5.13].
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Figure 5.13: Sketch of the minimal unidimensional modellization of the
LTO/STO junction

To capture all the main features of the LTO/STO junction within an inhomo-

geneous DMFT scheme, we considered our system of 15 layers, each with its

own self-energy arising from a specific impurity model as described in Chap-

ter 3. For every layer we assume the same Hubbard repulsion U/D = 2.5 and

a coupling with a local Holstein phonon. The choice of a uniform Hubbard U

does not take into account the fact that Ti atoms in STO are expected to have

a smaller screened Coulomb repulsion then those in LTO, but we preferred to

avoid to introduce one extra free parameter (the difference between the two

Hubbard interactions). While the local correlations are treated dynamically by

means od DMFT, the non-local correlations which are necessary to describe the

charge redistribution through the interface are treated via a Hartree approxi-

mation to include, at the self-consistency level, all the long range electrostatic

interactions via the site-dependent potential:

VH(i) =
N∑
j 6=i

1

2

e2 〈nj〉
ε |Ri −Rj|

−
NLa∑
jLa

e2

ε |Ri −RjLa|
(5.10)

Where i is the index of the lattice site considered, ε is the dielectric constant, and

〈nj〉 the electronic density computed within layered DMFT. Vi is self-consistently

determined at each DMFT iteration and it controls the charge profile along the

heterostructure. With this approach we obtain the charge profile and the site-

resolved spectral function, reported in Fig.[5.14], in good agreement with pre-
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vious results, where only electron-electron interactions were considered within

a similar approach [43, 62, 61].

Figure 5.14: Layer-resolved spectral function calculated for 15-layer het-
erostructure for U = 3D, ε = 20

As other studies focused on the same phenomenology, but in a different

geometry, we found that the long range potential drives the region that contains

the La ions into the Mott insulating state, and leaves unaltered the system in the

deep band insulator side. This result in a stable and well reproducible charge

reconstruction thickness of about 3 u.c. that extends within the band insulator.

In this border region the solution is a correlated low-density metal, while for

sites far from the interface the spectral function is very similar in to the one
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obtained from a non interacting tight-binding model in a cubic lattice. On the

LTO side the high Coulomb correlations results in a Mott insulating state with

a charge density pinned to approximately one per site. In Fig.[5.15] we report a

representative density profile where the charge depletion is evident.

Figure 5.15: Density profile, quasiparticle weight and Hartree potential along
the model heterostructure.

To include the effect of phonons we selected, as a starting point, a previously

converged heterostructure, with a stable metallic region of three layers, then we

adiabatically switched on the electron-phonon coupling λ in order to simplify

the convergence. Upon changing λ, the density slightly rearranges so as to have

a < 10% different dielectric constant in the stable configuration arising from the

long-range potential. Given that in all our homogeneous calculations described
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in the previous sections the superconducting phase has been rarely found at

λ < U/D, we considered in this first stage high values of λ.

Unfortunately, all our calculations in this direction converged with a total

suppression of the superconducting order parameter for any value of λ consid-

ered. Even starting from a stable homogeneous superconductor and switching

on the long-range Coulomb interaction did not provide positive results as far as

superconductivity is concerned, and a purely metallic solution is found. Our re-

sults suggest that the heterostructure and its long-range interactions are actually

detrimental to superconductivity with respect to the homogeneous system, in

contrast with what we found for the attractive Hubbard model. However, as we

mentioned above, our calculations used a particularly "severe" choice of param-

eters, where the same Hubbard repulsion has been used on the LTO and STO

sides of the junction. Despite both oxides share a titanium atoms, it is certainly

expected that the effective Coulomb interaction will be smaller on the STO side,

therefore favoring superconductivity, and it might also be layered-dependent.

The evaluation of this effect will be investigated in the next months.



CHAPTER

6

SPIN ORBIT COUPLING IN DOPED

PEROVSKITES

In this section we will report our study of the interplay between Spin-Orbit

Coupling (SOC) and e−e interaction, including the Hund’s coupling, in a multi-

orbital model. We focus on three-fold degenerate t2g orbitals in a bulk with

perfect cubic symmetry as a starting point for more realistic configurations. In

the case of TMO heterostructures, this is of course an oversimplified picture

since, for example, it does not include the broken translational symmetry that

occurs at the LAO/STO interface. The latter would manifest itself through a

154
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splitting between orbitals with a density probability distribution perpendicular

to the interface (dzx and dyz) and the one that lies parallel to the surface (dxy).

For a non-interacting system with this kind of broken translational symmetry

the effect of SOC is to open a gap at the k points where different sub-bands

intersect.

Despite of this details, a general picture of the effects of e − e correlation in

systems with SOC at different fillings is still lacking also in the relatively simple

bulk case, that, on the other hand, can be appropriate for the LTO/STO junc-

tion. Indeed, the majority of the theoretical approach to 4d and 5d compounds

are focused on material-specific models at a given electronic density. The main

result of this chapter is a discussion and classification of the paramagnetic solu-

tions of the t2g model with SOC for all the possible densities as a function of the

Hubbard U , the ratio Jh/U and the SOC strength. In the absence of the Hund’s

coupling, the local SOC is responsible for a new diagonal band representation

where the total angular momentum is the new conserved number. This pic-

ture has recently attracted great interest [45, 5, 50, 92]in the context of 5d sys-

tems, where the large spin-orbit coupling is expected to form local eigenstates

of the total angular momentum which, in the presence of strong correlations,

can order giving rise to new kind of magnetic states where the spin and or-

bital angular momenta are entangled. This is the case of the iridate compound

Sr2IrO4, where, owing to the five electrons in the t2g levels, one expects a half-

filled Jeff = 1/2 state which can in turn be Mott localized for moderate values

of the Hubbard repulsion [45].
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6.1 DMFT extension to paramagnetic Spin-Orbit cou-

pled models

As we described in Sec.(2.3) an octahedral lattice environment leads to a crystal-

field splitting that separates the five d orbitals into high energy eg and low en-

ergy t2g. If the number of electrons to populate the d levels is smaller or equal to

6 only the t2g levels will be occupied and we can safely neglect the high-energy

eg orbitals. The effect of SOC is to further reduce the orbital degeneracy splitting

the t2g manifold according to the eigenvalues of the total angular momentum

J = L + S. This implies a low-energy quadruplet with J = 3/2, and an high-

energy doublet with J = 1/2. The energy splitting is given by ∆SOC = 3λSOC/2.

We consider a simple cubic lattice with the three t2g orbitals, so that the

single-particle Hamiltonian reads

Ĥ = H (k) +HSOC (6.1)

= −2t [cos (kx) + cos (ky) + cos (kz)] δαβδσσ′ + λSOC l̂ (t2g)⊗ Ŝ

The hamiltonian of Eq.[6.1] has the following local projection:

Hloc =
∑
k

Ĥ = λSOC l̂ (t2g)⊗ Ŝ

= λSOCL̂S

the formulation of the SOC operator that we adopted is the one we discussed

in Chapter 2 as written in Eq.[2.41] where we have introduced the operator

Θ that diagonalizes it. Obviously, in the non interacting case, computing the



CHAPTER 6. SPIN ORBIT COUPLING IN DOPED PEROVSKITES 157

spectral function starting from the diagonal Hamiltonian or diagonalize with Θ

the Green’s function in the spin-orbital basis would have given the same result,

that we report in FIg.[6.1].

Figure 6.1: Non interacting spectral function and band dispersion of the degen-
erate three orbital model with SOC

In the presence of a fully rotationally invariant Hubbard interaction which

controls the charge fluctuations, as it happens in the Hubbard Hamiltonian with

Kanamori interaction of Eq.[2.6] when we put Jh = 0 and the interaction is

essentially U/2n2
i , where ni is the total charge on every site, we can perform the

same rotation, which leaves the interaction invariant. Therefore it is natural and

straightforward to work in the basis of J and Jz, where the spin-orbit coupling

acts like a crystal-field splitting.

The situation becomes much more involved when a more realistic interac-

tion is consider, either in the full Kanamori form or in another alternative forms.

In all these cases the full interaction is not invariant under the rotation Θ, which

implies that the interaction has a complicated form in the basis which diag-

onalizes the spin-orbit. In particular, since the Hund’s contribution does not

commute with J , the eigenvalues of the full Hamiltonian are no longer eigen-
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states of J and Jz. We remind that the full Kanamori interaction is invariant

with respect to the UC (1)⊗SUS (2)⊗SOO (3), i.e., under transformation that ro-

tate independently the spin and orbital sectors. The SOC breaks this invariance

since it mixes the spin and orbital indices.

This situation creates some technical difficulties to the solution of impurity

models with both SOC and a non-trivial interaction. If we remain in the original

orbital basis the interaction remains the familiar Kanamori term, but the single-

particle Hamiltonian contains off-diagonal terms connecting different spins and

orbitals. These hopping terms naturally generate off-diagonal Green’s func-

tion with the same indices, which can create some problem in Continuous-Time

Quantum Monte Carlo solutions of the impurity model. For this reason, most

previous studies of SOC in the presence of strong correlations have used the ba-

sis which diagonalizes the non-interacting part of the Hamiltonian (J , Jz basis),

but, for technical reasons have preferred to use only a density-density inter-

action and/or eliminated the off-diagonal interaction terms generated rotating

the interaction in the new basis [5, 50]. The exact diagonalization solver does

not suffer from the same limitations of the CTQMC as far as the non-diagonal

Green’s functions are concerned. For this reason, in our calculations we worked

in the original t2g orbital basis, adding an explicit non-diagonal SOC term and

the familiar Kanamori interaction. As we will show in the following, we used

the J , Jz basis to discuss our results, but the change of basis has been performed

only at the end of the calculations.

As it has been discussed in several previous chapters, it is particularly useful

in the DMFT context to consider paramagnetic solutions, in which the broken-

symmetries characteristic of the problem at hand are inhibited. These solutions
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help us in identifying the nature of the metallic state from which the broken-

symmetry solution develops and to identify the degree of correlation of the sys-

tem, which is somewhat hidden in the broken-symmetry state. In the standard

cases we discussed so far, implementing the paramagnetic constraint is practi-

cally very simple. In the case of antiferromagnetism, one can simply impose a

single Green’s function and a single Weiss field for each spin species in a way

that completely forbids any spontaneous symmetry breaking. For the case of

superconductivity this is even simpler as it just requires to set the anomalous

Green’s functions to zero. In the case of a spin-orbit coupled system, this choice

can be trickier because the constraint has to be imposed in a basis different from

the one where the calculations are performed and, in the presence of a finite Jh,

in a basis which is not known analytically.

Let us focus, for the sake of definiteness, on the popular case of n = 5, where,

at least in the absence of Hund’s coupling, the J = 3/2 are completely filled and

the J = 1/2 is half-filled. Therefore one expects a simple antiferromagnetic

solution very similar to a S = 1/2 system, where the ordered moment is given

by J , and the symmetry is broken in some direction, that we can take as the z

direction. Thus, one would have an alternating pattern of states with jz = ±1/2

conceptually equivalent to the Sz = ±1/2 antiferromagnet of the single band

Hubbard model. For the standard S = 1/2 case, the method in order to avoid

the antiferromagnetic solution is simply to solve the Anderson impurity model

for a single spin and impose that the same behavior holds for the other spin.

This condition is not so easy to enforce in the present case, however one can

easily show that the two solutions with Jz = ±1/2 correspond to an impurity
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Green’s function with the structure

Ĝ =



G1 iφ1 0 0 0 −φ1

−iφ1 G1 0 0 0 +iφ1

0 0 G2 φ2 −iφ2 0

0 0 φ2 G2 −iφ2 0

0 0 iφ2 iφ2 G2 0

−φ1 −iφ1 0 0 0 G1


(6.2)

where only four different functions fully characterize the state and to another

(degenerate) solution where the indices 1 and 2 are exchanged. Then a para-

magnetic solution is obtained symmetrizing the two solutions with opposite J

projection, which means simply to use a single Green’s function where G1, G2,

φ1 and φ2 are replaced by averages

G (iωn) =
G1 +G2

2
(6.3)

φ (iωn) =
φ1 + φ2

2
.

Leading to the paramagnetic impurity Green’s function:

Ĝ (iωn) = 1G (iωn) + 2φ (iωn) L̂S (6.4)

Once that the right symmetry is imposed on Ĝ, all the other quantities (self-

energy and Weiss field) naturally preserve the same structure, that consists of a

diagonal function that represent the orbital renormalization and an off diagonal

function related to the renormalization of the SOC. The self-energy is finally
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used to compute the local Green’s function matrix:

Ĝ (iωn) =
1

L

∑
k

1

iωn + µ−H (k)−HSOC − Σ̂ (iωn)
(6.5)

the latter will be then diagonalized by the rotatation Θ leading to the diagonal

spectral representation in the J basis as well as all the other relevant quantities

on which our analysis is based.

6.2 Spin-Orbit Coupling and Electron Correlations

in degenerate t2g bands

Motivated by the fact that the majority of the studies focused on the e − e

correlation effects in this model have been carried out in the basis of J and

Jz, we started our analysis in the case where SOC is reasonably strong, i.e.

λSOC = 0.5D and λSOC > Jh, so that the above basis is at least a good start-

ing point. This will allow us to better benchmark our results with previous

literature. Before entering the discussion regarding the whole phase diagram

as a function of the density and the interaction parameters, we will now briefly

describe how we characterized our solutions taking, as a reference, the results

for the case Jh = 0 for each density. The calculations are done using ED as the

impurity solver with Ns = 9 total orbitals, which corresponds to a three-orbital

impurity plus two replicas in the bath, which is parameterized as discussed in

Sec.(3.3).
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Fermi Liquid Solutions For moderate interactions, the solutions of DMFT

are expected to be metalic with Fermi liquid behavior. This is signaled by

a finite spectral weight at the Fermi-level accompanied by a vanishing self-

energy. The Fermi-liquid behavior within DMFT can also be accessed from the

imaginary-frequency Green’s functions, which have to converge in the zero-

frequency limit, to the same value of the non-interacting systems. In Fig.[6.2]

we report our results for the case n = 1, which clearly show a Fermi-liquid be-

havior, which is expected because for this density, all the interactions besides

the Hubbard U are essentially irrelevant.
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Figure 6.2: Solution for the n = 1 case as a function of U/D

Non Fermi-Liquid Solutions In principle, in the presence of competing inter-

actions, the solution of the DMFT equations may depart from the Fermi-liquid

prediction, giving rise to a Non-Fermi-liquid (NFL) phase. This phase is a metal
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with incoherent spectral weight at low energy. This is signalled by a finite value

of the imaginary part of the self-energy and a deviation from the Luttinger the-

orem prediction of the Green’s function, despite the finite value of the spectral

function. We need to stress however that the present study is limited to two 9

energy levels, which means that we only have two replicas of the cluster in the

bath. This might limit our ability to describe the detailed features of our solu-

tions and it can induce spurious deviations from the FL behavior. Therefore all

the reported NFL behavior we discuss in the following must be taken with a

grain of salt and will be confirmed or disproved by more accurate calculations

with more bath levels. With all the above caveats in mind, we mention that we

found NFL behavior for both the n = 2 and n = 5 case, reported in Fig.[6.3] and

Fig.[6.5].
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Figure 6.3: Solution for the n = 2 case as a function of U/D

Band insulator This is the simplest phase that can be found in the model and

it correspond to the situation where the Fermi level lies within the gap induced

by SOC, namely when n = 4. This is the only case in which we found the bands
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being completely non interacting but just further separated by an additional

splitting of the order of U .

Figure 6.4: Solution for the n = 4 case as a function of U/D
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Mott Insulator Upon increasing the Hubbard interaction the system eventu-

ally undergoes a Mott transition at a critical value of the interaction that strongly

depends, at least in the Jh = 0 case, on the filling condition. This correspond

to the absence of a quasiparticle peak and, at half filling, to a divergence of the

self-energy. In Fig. [6.5] this evolution towards the Mott insulator is reported

for the n = 5 case with an half-filled Jeff = 1/2 band being in the paramagnetic

superposition of the jz = ±1/2 solutions. The spectral function vanishes at the

Fermi energy and the two high-energy structures centered around ω± = U/2

are clearly visible thus reproducing a similar picture as that of the single-band

Hubbard model.
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Figure 6.5: Solution for the n = 5 case as a function of U/D

Phase diagram for vanishing Hund’s coupling We now discuss the phase di-

agrams obtained as a function of U for different integer densities and for fixed

values of the SOC. We start from the case Jh = 0. In this case we expect to re-
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produce the results of a three-band Hubbard model with a crystal-field splitting

which shifts one of the three levels above the two others, which remain degen-

erate. In Fig.[6.6] we report the phase diagram for integer densities with a SOC

given by λSOC = 0.5D, as a function of the Hubbard interaction U/D.

Uc=2.91D

Uc=2.4D

J=1/2
J=3/2

N=1

J=1/2
J=3/2

N=2

J=1/2
J=3/2

N=3

J=1/2
J=3/2

N=4
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J=3/2

N=5
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U=4l
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NFL FL MI BI

Uc=2.75D

Jh=0  lSOC=0.5D

Figure 6.6: Phase diagram of the three orbital model in the Jh = 0 case as a
function of the Hubbard interaction and electron density in the diagonal basis.

The first thing that we notice in this rich phase diagram is the sharp dis-

tinction between the n = 1, 2, 3 and 4, which correspond to a partial (or total)

filling of the Jeff = 3/2 band and n = 5 case, corresponding to the half-filling

condition in the Jeff = 1/2 band. This distinction is however rigorous only in

the limit of very large spin-orbit coupling. Here we use a rather large value,
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such that the full splitting is 3/4 of the bare bandwidth. This leads however to

some interesting features. The critical value of Uc = 2.4D for the n = 2 case is

quite close to the estimates for a half-filled two fold degenerate Hubbard model.

This is of course not surprising and we can attribute the deviations to the finite

value of the SOC-driven splitting. The results for the n = 1 and n = 3 give

rise to two Mott transitions which would be completely identical for a single

two-fold degenerate band exotic and essentially consists in a doped Jeff = 3/2

band, hence with a metallic solution stable up to higher value of Uc. The dis-

crepancy between the two value might be ascribed to a mixing of the Jeff = 3/2

electrons with the upper empty band in the n = 3 case. The value of the critical

interaction is also compatible with estimates for two-orbital models. While in

the case n = 4 we have a simple evolution from a metal for small U , when the

two bands are partially filled because the crystal-field splitting is not sufficient

to completely populate the Jeff = 3/2 band, to a band insulator at larger U ,

where the effective crystal-field splitting is sufficient to completely polarize the

occupation. On the other hand, we find a relatively small value of the critical

U in the case n = 5 with respect to the single-band model estimate. We can not

exclude that part of the discrepancy is due to our numerical method, but we

stress again that in principle the Jeff = 1/2 picture is only approximate if the

splitting induced by the SOC does not clearly exceed the bandwidth. With these

preliminary results we would suggest that the general tendency to enhance the

effect of correlation is a direct consequence of the SOC rather than associated

to a reduced bandwidth. In this sense, the usual picture in which the small Uc

of the n = 5 strontium iridate is ascribed only to the reduced bandwidth of the

Jeff = 1/2 band might not be completely correct.
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Figure 6.7: Quasiparticle weight as a function of the Hubbard interaction in the
FL phases found.

In Fig.[6.7] the quasiparticle weight for the metallic solutions in the different

cases. We find clearly a FL solution before the Mott transition only for n = 1

and n = 3 where the only populated band is that with Jeff = 3/2 band. The zqp

behavior confirms that n = 1 and n = 3 are almost symmetric around n = 2,

with a small difference which is ascribed to the fact that in the case n = 3 we

expect to have a little larger admixture with the Jeff = 1/2 band because of the

larger occupation of the Jeff = 3/2 manifold. In the right panel we show the

results for n = 4, where zqp is one in the band insulator and very close to it in

the metallic region.
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Figure 6.8: Particle-hole symmetry between the n = 1 and n = 3 densities of the
Jeff = 3/2 band

Fig.[6.8] shows, as a further support to be above picture for the n = 1 and

n = 3 cases, that the Jeff = 3/2 spectrals weight of the n = 1 and n = 3 cases

are essentially equal under a particle-hole transofrmation.

Figure 6.9: Effect of correlation in the half-filled active bands.

In Fig.[6.9] we show that the low energy spectral function of the the half-

filled active bands, i.e. n = 2 for Jeff = 3/2 and n = 5 for Jeff = 1/2, is es-

sentially the same for moderate values of U , while they evolve differently upon

increasing U/D. This probably supports the general idea that the enhanced cor-
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relations, accountable for the lowering of Uc in the Jeff = 1/2 band, are due to

the specific presence of SOC rather than to a reduced bandwidth.

6.2.1 Phase diagram for finite Hund’s coupling

We now move to the fate of the phase transitions we discussed when a finite

Hund’s coupling is considered. In recent papers [25] it has been pointed out

that Hund’s coupling deeply influences the Mott transition strongly modifying

the critical value of the Mott transition in a way which depends critically on

the number of electrons. The key point is the reduced groundstate degeneracy

induced by the fact that Jh favors high-spin configurations. In degenerate t2g

orbital without SOC Jh strongly favors the Mott insulating state in the half-

filled configuration reducing the critical U , while in the other integer fillings the

critical U is shifted to larger values of the interaction revealing the region which

is usually called a Hund’s metal. For all the densities, the metallic coherence is

reduced by the Hund’s coupling.

The interplay between this physics, which is based on the energetic advan-

tage of high-spin configurations, and the SOC coupling, which favors the for-

mation of eigenstates of J has not been discussed with the same detail. In

Fig.[6.10] and Fig.[6.11] the phase diagram for Jh = 0.15U and Jh = 0.25U is

reported using the same format we used for the previous case.
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Figure 6.10: Phase diagram of the three orbital model in the Jh = 0.15D case as a
function of the Hubbard interaction and electron density in the diagonal basis.
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Figure 6.11: Phase diagram of the three orbital model in the Jh = 0.25D case as a
function of the Hubbard interaction and electron density in the diagonal basis.

It is clear at a first sight that the effect of the Hund’s coupling changes sub-

stantially the picture, even when its value is smaller than the spin-orbit coupling

strength. We observe in fact that the NFL phase extends in a wider region and

the Mott insulator is shifted to values larger than those we considered for all the

densities different from n = 3. Moreover the critical Uc in the global half-filling

case decreases with Jh , in agreement with the results in the absence of SOC that

we just reviewed.
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Figure 6.12: Quasiparticle peaks in the FL bands for various values of the
Hund’s coupling.

In order to check the limits and validity of this parallelism we plot in Fig.[6.12]

the spectral weight as a function of U for all the available densities. We see that,

in the n = 1 case, the result on the Jeff = 3/2 is to progressively become more
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screened with respect of the e−e interaction, resulting in a greater Uc. When the

system contains n = 3 electrons even a small Jh is able to counteract the split-

ting between the bands with different value of Jeff and mix them. As a result

the critical Uc for the Mott transition is further reduced. For n = 4, the Hund’s

coupling has the the opposite effect with the onset of a long tail in zqp which is

associated to the fact that the Hund’s coupling inhibits the polarization between

the two bands. Therefore we have two partially filled bands which experience

some correlation effects, instead of the band insulator we find for Jh = 0. We

do not show data for the quasiparticle weight for the n = 2 and n = 5 densities

since in the NFL phase it is not possible to define an equivalent of zqp.
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Figure 6.13: Effect of Hund’s coupling for all the avalable densities at U/D = 1.5
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Figure 6.14: Effect of Hund’s coupling for all the avalable densities at U/D = 2

Finally in Fig.[6.13] and Fig.[6.14] we plot the spectral functions for two rep-

resentative values of the interactions comparing, for every integer filling, the
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results for two different values of Jh. Upon increasing Jh the diagonal bands

which are formed without the Hund’s coupling progressively merge one into

the other. The effect appears to be quantitatively stronger at n = 3. This proves

that, for Jh > 0, the interacting system is not diagonal in the Jeff basis. There-

fore implying that, in principle, we cannot describe the system as a effective

J = 1/2 system. We also notice that in this case, our reciept to impose a param-

agnetic solution is not as motivated as in the Jh = 0 case.

As a matter of fact, the result of our “wrong” rotation is to bring the system

in a mixed basis representation, where, for any value of the interaction, all the

bands are partially filled. The overall rough picture that we can draw with

the available data, remains within the known “Janus-faced” mechanism with

an additional apparent NFL phase that persists and even expands for densities

reminiscent of the integer fillings for the Jeff bands. We can not quantify this

statement completely because we are not allowed to estimate zqp in the NFL

phase, yet the increasing of Uc at n = 1, his decreasing at the global half-filling

density n = 3 and the intermediate behavior at n = 4, are clues that make us

confident in the reliability of our picture.

The next steps of this investigation will use a larger number of bath sites

in the Ed scheme in order to confirm the presence of the NFL phase. Another

rather obvious aspect to explore is to pinpoint the position of the Mott transition

for n = 1 and n = 3, which lies outside the region we explored here. The DMFT

results could be compared with estimates based on an atomic picture. We will

also focus on the more involved case of λSOC < Jh where the picture of two

degenerate bands well separated from the third one does not hold anymore. In

this case the third Hund’s rule should be obeyed.
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6.3 Antiferromagnetic solution for Sr2IrO4

In this final section we present some results on an actual material, the celebrated

Sr2IrO4, which has been proposed as a material realization of a Jeff = 1/2 Mott

insulator [45]. In order to reproduce the low-temperature physics of this com-

pound there is no need to symmetrize the solutions to obtain a paramagnet and

we can safely allow the system to relax in the solution that minimizes its en-

ergy. In particular we do not assume any particular basis where the magnetic

ordering has to appear and we simply work in the original orbital basis keep-

ing all the interaction terms. In this case we abandon a model point of view

and we obtain the single-particle Hamiltonian from density-functional theory

using the Perdew-Burke-Ernzerhof recipe for the generalized-gradient approx-

imation. The bandstructure includes the spin-orbit coupling. The spin-orbit

splitting is estimated around 190meV . A set of maximally localized Wannier

orbitals is obtained from the bandstructure using Wannier90.

This Iridium compound has not a perfect cubic symmetry, but has tilted oc-

tahedra within the planes [89] that forced us to include eight sites in the unit

cell and, more importantly in the DMFT cell. This means that in principle we

have eight different self-energies for the eight inequivalent atoms. All the sites

are considered as different multi-orbital impurities coupled through the non lo-

cal hopping terms coming from the DFT calculations. In practice this is another

application of the inhomogeneous DMFT scheme. The interaction strength that

we considered are [5] U = 2.3 and Jh = 0.15.
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Figure 6.15: Diagonal component of the non interacting Green’s function of
Sr2IrO3
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Figure 6.16: Diagonal component of the interacting Green’s function of Sr2IrO3

for the different sites
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In Fig.[6.15] and Fig.[6.16] are reported the diagonal component of the non

interacting and interacting Green’s function versus the site index. It is interest-

ing to observe that, despite we did not impose any symmetry in the present cal-

culation and the Hund’s coupling is not negligible, we have essentially two sets

of local Green’s functions which nicely follow the structure of Eq.[6.2], which

in turn corresponded to Jz = ±1/2. This strongly suggest that the Jeff = 1/2

picture seems to be closely realized in this material, at least in the antiferro-

magnetic phase. Computing the expectation of the operator ĵz one indeed ob-

tains a values oscillating between ±0.45 as in Fig.[6.17] in an almost perferct

ĵz−antiferromagnetic ordering.

Figure 6.17: Expectation values of the z-component of the spin, angular mo-
mentum and total momentum operators.



CHAPTER

7

CONCLUSIONS

This work has been devoted to the study of the combined effects of different

interactions in layered heterostuctures composed by correlated transition-metal

oxides. Among these, a central role is played by the stabilization of a metal-

lic two-dimensional high-mobility electron gas at the interface between two

bulk insulator. The case which attracts more interest is probably LTO/STO,

an interface between a band and a Mott insulator where the conducting sheet

originates from a charge depletion/accumulation process. A full description of

the phenomena occurring at these interfaces is a formidable theoretical prob-

lem which requires to include the strong correlation effects characteristic of

185
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transition-metal oxides, including the Hund’s coupling which immediately plays

a role when more than one orbital must be considered and the geometrical

structure of the heterostructure, which obviously plays a major role. Moreover,

electron-phonon coupling is believed to play a major role in these systems and it

is a likely candidate for the microscopic mechanism behind the interface super-

conductivity. Finally, spin-orbit coupling is active at the interfaces and it give

rise to a subtle interplay with the correlation effects and the electron-phonon

interaction.

In this thesis we made several steps towards a theoretical description of

these systems in the framework of Dynamical Mean-Field Theory. This ap-

proach is particularly suited to handle several interactions at the same time

without assuming any hierarchy, even if it has the limitation to freeze spatial

fluctuation. The limitation can be overcome by using inhomogeneous extension

of DMFT as the one we implement in the present work. The main contributions

of this present work have been

• We implemented a generalization of DMFT to layered superconductors.

The necessity of an inhomogeneous extension arises when the transla-

tional symmetry is broken, which is precisely the situations related of het-

erostructures. The fundamental idea of this inhomogeneous extension is

the mapping of the lattice model into a finite minimal number of inequiv-

alent sites connected through a self-consistency condition. However, this

implies to use a finite system, in our case a finite number of layers. The

effect of the finiteness can be limited using an embedding potential which

has been previously proposed and that we extended to superconductors.
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Moreover we introduced a novel “feedback” effects of the finite system

onto the embedding potential which further reduces the finite-size effect.

This makes our approach sufficiently accurate to study tiny superconduct-

ing amplitudes as the ones observed in the actual heterostructures.

• We tested the approach for a simple attractive Hubbard model solving

for different superconductor/superconductor and superconductor/metal

junctions, and we found important proximity effects in both cases. We

observed that different observables have different size and extension of

proximity effects. To single-out the effect of the coupling strength we froze

charge fluctuations.

• We stuedied the conditions for an s-wave superconducting phase to es-

tablish in a system subject to a strong Hubbard-like repulsion. Before con-

sidering a reasonably realistic description of a Mott/band insulator junc-

tion, we considered the Holstein-Hubbard model in a uniform system. In

this model a Hubbard repulsion competes with a local electron-phonon

coupling and we have found, besides other results that at half-filling or

close to it superconductivity can only be realized when the strength on

the electron-phonon coupling exceeed the Coulomb repulsion, but at low

densities a novel superconducting dome establishes and it becomes quite

large in the case of large repulsion.

Encouraged by model results, we combined our theoretical description of

heterostructures with the coupling of the interactions studying a Mott/band

insulator heterostructure in the presence of al electrostatic repulsion which

accounts for the charge redistribution. Unfortunately the first results do
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not lead to superconductivity at the interface. A possible reason is that

we took the rather extreme view to use the same repulsion on the Mott

and band insulating sides, and a more screened Coulomb repulsion on the

band-insulating side may definitely revive the superconducting phase.

– We studied the interplay between spin-orbit coupling and electronic

correlations in a three-fold degenerate model with Hund’s coupling.

Using Exact Diagonalization as an impurity solver we can work in

the basis of the original orbitals without assuming that the system is

diagonalized by the transformation that diagonalizes the spin-orbit

coupling. We study the evolution of the electronic properties in the

paramagnetic state for a number of parameters discussing the Mott

transitions for all the different integer fillings as a function of both

the spin-orbit coupling strength and the Hund’s coupling.

Finally we study the magnetic phase of Sr2IrO4 using a DMFT in

combination with density-functional theory. Our results show an or-

dering of the global angular moment in agreement with expectations

and experiments.

The results obtained during the thesis lay the foundations of future

studies in which we will be able to combine all the above effects

briding the gap between the experimental advances and our –still

limited– understanding of the exciting phenomena occurring at inter-

faces. The next step to be taken will include the study of heterostruc-

turing in iridates and a more realistic description of LTO/STO inter-

faces.
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