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Introduction

One purpose of Computational Neuroscience is to try to understand by using

models how at least some parts in the brain work or how cognitive phenomena oc-

cur and are organized in terms of neuronal activity. The Hopfield model of a neural

network, rooted in Statistical Physics, put forward by J. Hopfield in the 1980s, was

one of the first attempts to explain how associative memory could work. It was suc-

cessful in guiding experiments, e.g., in the hippocampus and primate inferotemporal

cortex. However, some higher level cognitive functions that the brain accomplishes

require, to be approached quantitaively, by more advanced models beyond simple

cued retrieval. Thought processes, the faculty of language (in the narrow sense, as

defined by [7]), confabulation, producing poetry, drawing, arithmetics, complex nav-

igation and many types of creative activity could be possible examples. It is thought

essential that recursion – an ability to generate sequences of arbitrary length from

a finite set of elements – stands at the core of all these examples. In the early

2000s, Treves proposed to model global cortical dynamics with a Potts network [8],

as will be explained more fully in the coming chapters. The model tries to cap-

ture recursive dynamics by first implementing Braitenberg’s idea of the modularity

of the cortex [2, 9, 10] into a Potts spin associative network model, earlier studied

by Kanter [11] and by Bollé [12–15] in a statistical physics context; the proposal

followed a number of studies of multi-modular cortical networks, with O’Kane and

Fulvi Mari, in the 1990s, that had reached a kind of mathematical dead end [16–19].

The storage capacity and optimal Hebbian learning rule in the static Potts network

(the version without adaptation) were found by Kropff and Treves in 2005 [20]. In

the presence of time dependent thresholds, latching dynamics as a model of infinite

recursion has been studied by Russo et al in 2008 [21]; latching can be defined as

the successive retrieval of a sequence of stored memory patterns, which can be sus-

tained for a certain length of time, or in some conditions indefinitely. Namboodiri

and Pirmoradian also devoted their efforts to this line of work [21,22].

This thesis consists of five chapters and is organized as follows.

In chapter 1, the concepts of neuron and anatomical structure of the cortex, fo-

cusing on the role of pyramidal cells, are presented, to motivate the Potts network

as a realization of Braitenberg’s perspective. The Hopfield model is also briefly

introduced as warming up for the Potts network, and the necessity of sequential

retrieval (latching) is discussed. In chapter 2, the Potts network as a mathematical

model is defined, with the equations of motion that govern latching dynamics. This

part corresponds to the modelling sections in [23]. The main body of chapter 3 is

from [24]. In this chapter, the approximate equivalence between multi-modular and

static Potts networks is discussed, where the specific multi-modular network can be
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referred to as the one studied by O’Kane and Treves in the early 1990s [16,17]. The

significance of the self-feedback term, called w-term, which was initially introduced

by Russo and Treves in 2012 [5], becomes evident in the reduction from the modular

level. The storage capacity is estimated by replica analysis in the presence of such

w-term, which was missing in previous studies. The w-term on the one hand rein-

forces the strength of the global attractors in latching, but on the other hand it may

end up ruining memory capacity. In chapter 4, which is essentially [23], latching

dynamics is analysed in the slowly and fast adapting regime in terms of latching

length, quality of retrieval, crossover in overlap and correlations of patterns.

The work presented in chapter 3 and 4 were done in collaboration with Vezha

Boboeva and Michelangelo Naim. In chapter 5, hetero-associative learning is addi-

tonally introduced with a modified Hebbian rule for instructed sequential recalling,

and its effects on latching and the correlation between successive patterns are dis-

cussed. This part comes from the work reported in [25]. Finally, in the concluding

chapter we comment on the previous chapters and on future studies.
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Chapter 1

Background

1.1 Neurons and cortical anatomy

Nervous systems consist of neurons connected by synapses. To give approximate

orders of magnitude, it is estimated that there are 1011 neurons and each can have

about 105 synaptic connections with others in the human brain. These scales are

already astronomical numbers, that can only be analysed by statistical tools. Pre

and post synaptic neurons are linked by synapses, where neurotransmitters triggered

by action potentials coming along the axon of the pre synaptic neuron are released,

carrying information in chemical form to arrive at the dendrites or cell body of the

post synaptic neuron (Fig.1.1).

Figure 1.1: Synaptic connection of two neurons, reprinted from [1].

Among the best characterized neurons are pyramidal cells. They are present

in the cerebral cortex, where they comprise about 80% of the neurons, in the hip-

pocampus, amygdala and other areas of the brain. Although many types of neurons

play important roles in functioning of the nervous system, our main topic through-

out the thesis will be the pyramidal neurons of the cortex. Fig.1.2 shows examples

of pyramidal neurons in temporal cortex (upper left), pyriform cortex (upper right),

insula (lower left) and visual cortex (lower right), in the human brain.

In particular, frontal cortex, which will be the core region modelled by our Potts

neural network (as will be explained later) consists of pyramidal neurons with a

clear layered structure (Fig.1.3).
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Figure 1.2: Pyramidal neurons in the human brain: temporal cortex (upper left),

pyriform cortex (upper right), insula (lower left), visual cortex (lower right). The

figure is taken from [2] and it was originally produced by Cajal (1911).

Figure 1.3: Scheme of frontal cortex in the human brain, from [3].
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1.2 Cortex: Braitenberg’s view

We summarize the view of Braitenberg on the cortex based on [2,26]. Pyramidal

neurons in the cortex, and in particular in the frontal cortex, are connected with each

other to form complicated networks. Their basal dendrites collect local collaterals,

which do not usually exit the grey matter, coming from neighbouring cells, to form

a local network (called the B-system in Braitenberg’s terminology) that is specific to

the local area. Some axons leave the grey matter and spread towards other cortical

areas through the white matter. In the first or upper layer in the grey matter, the

apical dendrites of pyramidal cells collect mainly these long-range cortico-cortical

connections and form another network, called the A-system. There is no clearcut

distinction, however, between the A and B-systems in their apical or basal position

on the dendrites or the receiving cells; while there is in terms of local axons versus

axons that travel through the white matter. They comprise, therefore, the global

and local connections among pyramidal cells in the cortex, and it is assumed that

the range spanned by the local network of one pyramidal cell is approximately of

the same order of magnitude as the dimensions of its dendritic tree, up to a millime-

ter. The essential difference between local (B) and global (A) networks is that the

B system can be considered to be metric, meaning that the probability of a local

connection between two neurons strongly depends on their distance, while for the A

system it is ametric, in that their distance is not directly relevant.

In this thesis we shall use multi-modular networks to model the A and B systems.

The B system is modeled by the connections within a module and the A system

consists of many modules that form a global network. It should be noted that the

assumption of modules, with well-defined boundaries between them, is not realistic,

and it is an additional ingredient, not necessarily implied by the distinction between

the A and B systems per se As already mentioned in the introduction, considerable

efforts to study extensive autoassociative networks have been carried out using multi

modular models, by O’Kane, Fulvi Mari and Treves [16–19]. Later, Treves came up

with an advanced model – the Potts model, which essentially treats the modules as

multi flavour Potts variables. The whole network is connected among Potts spins

by long-range synaptic connections.

Details will be defined and discussed in other chapters of the thesis.

1.3 The Hopfield neural network

Computational Neuroscience focuses on explaining at least in some aspects how

the brain or its specific parts could work, by using simplified models. Since there

are an enormous number of neurons in the brain, we could expect the outcome of

collective behaviors of the neurons to be relevant for behaviour. Of course, it does

not mean that all brain activities are the results of the coherence of a massive num-

ber of neurons. At least, however, if we put our interest on computations such as

associative memory in cortex or hippocampus, we can say that in principle it is

not possible to describe high level cognitive functions or brain activity exhibited as

collective neuron behavior, even though we understand the information carried by
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the activity of individual neurons.

This is not limited to the study of neuroscience, but it is rather accepted as a general

principle when we deal with macroscopic properties of interacting elements, in many

fields of science.

In fact, it has already been recognized and highlighted by P. W. Anderson in

1972 in his famous article “More is different” [27]. There are many examples. Sup-

pose that we know the number of water molecules in a bucket. We know not only

the initial conditions, coordinates and momenta of individual molecules, but also

that they follow Newton’s second law of motion. It is true that we can trace all

the molecules at any time by integrating equations of motion. However, we can

never explain the phase transition – gas to liquid or liquid to ice or vice versa with

our information on molecules. It is because there are different fundamental laws at

different scales of particles and quantitative change brings about qualitative differ-

ences. Sound waves in the crystals, ferromagnetism in magnets, superconductivity

in Hg, and superfluidity in He4 are the typical favourite examples by physicists. It

should be emphasised that emergent behavior in many body systems has nothing to

do with the microscopic details of the states of the elements.

Coming back to the brain, we are now convinced of the necessity of adopting

models, methods and ideas developed in statistical physics for tackling theoretical

problems in computational neuroscience. In our hands we have neurons, our micro-

scopic constituents, connected by synapses.

In this regard, J. J. Hopfield was the first to introduce the statistical method in

studying a large neural network quantitatively [28]. The classical Ising spin model

in statistical physics is usually used as an metaphor. In the “Hopfield model” which

Figure 1.4: Cartoon of 1 dimensional surface of Energy function H in a Hopfield

network. Deep wells represent attractors (stored patterns).

is a standard model for memory in computational neuroscience, a model neuron has

only two (firing or quiescent) states, S0
i , S

1
i ,

Si = {
S0
i ∶ hi < Ui
S1
i ∶ hi > Ui

, (1.1)

where the input that each neuron experiences is hi = ∑i≠j JijSj +h
ext
i and hexti is the

contribution external to the network.
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Although it seems to oversimplify the nature of actual neurons, it already reveals

rich properties of neural networks just as in statistical physics the simple Ising model

already captures the properties of phase transitions between different phases (para-

magnetic and ferromagnetic), low energy excitations and other emergent behaviors.

Synaptic connections between pre and post synaptic neurons i, j are imprinted

following a Hebb rule

Jij = λ
p

∑
µ=1

ξµi ξ
µ
j , (1.2)

where p binary patterns {ξµi ∣µ = 1,⋯, p; i = 1,⋯,N} are considered over N neurons.

The basic assumption is that, at the stage of learning patterns, repeated and persis-

tent stimulation of the pre synaptic neuron onto the post synaptic neuron reinforces

the connection between them. Two neurons that are active are likely to be coupled

together, which was expressed as “fire together, wire together” by Hebb. Further-

more this synaptic plasticity is additive with respect to the learned patterns.

With this learning rule the patterns that are stored become attractors or content-

addressible memories of the global dynamics, in the Hopfield network. Mathemat-

ically, conditions that Ji,j = Jj,i and Ji,i = 0 for arbitrary i guarantee the existence

of those attractors, but relaxing the symmetry of Ji,j does not fundamentally alter

the picture that we have in mind.

The Hamiltonian (energy function) that governs such attractor dynamics can be

defined

H = −
1

2
∑
i≠j
Ji,jSiSj −∑

i

hexti Si. (1.3)

Dynamic attractors in the energy landscape are also called autoassociative mem-

ories since any initial state of the network (cue) will lead to the successful retrieval

of the closest stored pattern.

(a) (b)

Figure 1.5: Phase diagram in terms of α = p/N and temperature T (a); average

fraction of errors in FM states at T = 0 (b). p is the total number of stored patterns

and N the total number of neurons. Both figures are taken from [4]. See the text

for TR, TM and TC .

We present the results from [4] for the Hopfield model in the absence of an

external field. In Fig.1.5a, the possible phases are presented in α−T phase diagram,
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where α = p/N , p is the total number of stored patterns and N the total number

of neurons, considering the limits p → ∞, N → ∞. TM is the temperature at

which the first ferromagnetic (FM) solutions appear, Tc the temperature below which

FM states become absolute minima. TR is the temperature below which replica

symmetry breaking occurs. In Fig.1.5b, the average percentage of errors is shown

as a function of α. αc = 0.138 is the storage capacity at T = 0 above which retrieval

fails for the Hopfield model. The replica method was applied and the plots were

obtained by solving mean field equations. For more details, we refer to [29–33].

1.4 Beyond simple cued retrieval

As already mentioned in the introduction, one of our main questions is to un-

derstand how the human brain produces creative thoughts and behavior.

Indeed, systems neuroscience has mainly focused on the states induced, in par-

ticular in the cortex, by external inputs, be these states simple distributions of

neuronal activity or more complex dynamical trajectories. It has largely eschewed

the question of how such states can be combined into novel sequences that express,

rather than the reaction to an external drive, spontaneous cortical dynamics. Yet,

the generation of novel sequences of states drawn from even a finite set has been

characterized as the infinitely recursive process deemed to underlie language pro-

ductivity, as well as other forms of creative cognition [7]. If the individual states,

whether fixed points or stereotyped trajectories, are conceptualized as dynamical at-

tractors [34], the cortex can be thought of as engaging in a kind of chaotic saltatory

dynamics between such attractors [35]. Attractor dynamics has indeed fascinated

theorists, and a major body of work has shown how to make relevant for neuro-

science the concepts and analytical tools developed within statistical physics, but

the focus has been on compact, homogeneous neural networks [28–31, 36]. These

have been regarded as simplified models of local cortical networks – as well as, e.g.,

of the CA3 hippocampal field – and have not been analysed in their potential salta-

tory dynamics, given that it would make no sense to consider local cortical networks

as isolated systems. Even in the case of a ground-breaking investigation of puta-

tive spatial trajectory planning [37], the hippocampal activity that expressed it was

thought not to be entirely endogeneous, but rather guided by external inputs, in-

cluding those representing goals and path integration. Therefore, formal analyses of

model networks endowed with attractor dynamics have been largely confined to the

simple paradigm of cued retrieval from memory.

Attempts have been made to explore methodologies to study mechanisms be-

yond simple cued retrieval. The first primitive trial was by Abeles in 1982 [38]. He

came up with a kind of feedforward network, which consists of multiple chains and

each link in a chain contains a certain number of neurons that are intended to be

synchronized. At every unit of time in the evolution of the network, each neuron

in a link influences all of the neurons in the next link in the chain. The probabil-

ity of the existence of the chain was studied as a function of the number of neurons
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per chain. But still, the model is far from capturing dynamic processes for thoughts.

In 1986, Sompolinsky and Kanter proposed a network model in [39] that is

capable of retrieving time series of patterns. They essentially added to the Hopfield

model an asymmetric hetero-coupling term with a similar associative learning rule

Jij = J
1
ij + J

2
ij =

1

N

p

∑
µ=1

ξµi ξ
µ
j +

λ

N

q

∑
µ=1

ξµ+1i ξµj ,

where i ≠ j, q < p. λ is a parameter that controls the strength of the instructions

with which we endow the network. They observed that at small λ, the sequence

of instructed patterns are retrieved in time with fair qualities (worse than in the

absence of λ, though), but when λ becomes strong enough, the sequence is smeared

out quickly.

In 1987, Tsuda et al. [40] suggested another model of nonequilibrium neural

network in which there are two building blocks (I,II). Block I is a recurrent network

with positive and negative feedback, while block II has extra negative feedback

that destabilizes the attractor states of the whole system. The recurrent network

models essentially the ensemble of axon collaterals of pyramidal cells, while positive

and negative feedback reflect the stellate and basket cells. The negative feedback

that only exists in block II captures the properties of specific inhibitory neurons.

The resulting network performs the dynamic process of recalling and its trajectory

in phase space can be chaotic, depending on the system parameters. They called

attractor ruin the state of destabilized attractors. For more details, we refer to

[35,40,41].

In 1992, Herrmann et al. studied a Hopfield-like model with a provision for vari-

able thresholds, by imposing their time dependence [42]. Concepts are stored hier-

archically in semantic classes, and the authors focused on three kinds of transitions:

semantic transitions within semantic class, episodic transition between different se-

mantic classes, random transitions.

There are examples involved in drawing, confabulation, thought processes in

general, and language, which are all considered to be largely independent of external

stimuli, at their core, and to combine generativity with recursion [7, 43–48].

The choice for models that emulate recursive processes remains open. In this thesis,

we use the adaptive Potts network proposed by Treves in 2005 [8] and explore

interesting aspects of the latching. For the mathematical conditions under which

latching exists, we refer to [49]. The model itself will be discussed in chapter 2 in

detail.



Chapter 2

Potts neural networks

In this chapter, we introduce a Potts network in detail. In this thesis we some-

times differentiate the notion of adaptive Potts network from a static one, depending

on whether or not it contains time dependence of thresholds for its units. In fact, we

always mean adaptive network when we refer to a Potts network, except in chapter

3, where we derive it from a multi-modular model.

Potts neural networks, originally studied merely as a variant of mathematical or

potentially applied interest [11–15], offer one approach to model spontaneous dy-

namics in extended cortical systems, in particular if simple mechanisms of temporal

adaptation are taken into account [8]. They can be subject to rigorous analyses of

e.g. their storage capacity [20], or of the mechanics of saltatory transitions between

states [21] and are amenable to a description in terms of distinct ‘thermodynamic’

phases [5,50]. The dynamic modification of thresholds with timescales separate from

that of retrieval, i.e., temporal adaptation, together with the correlation between

cortical states, are key features characterizing cortical operations, and Potts network

models may contribute to elucidate their roles. Adaptation and its role in semantic

priming [51] have been linked to the instability manifested in schizophrenia [52].

The Potts description is admittedly an oversimplified effective model for an un-

derlying two-level auto-associative memory network [17]. The even more drastically

simplified model of latching dynamics considered by the Tsodyks group [53, 54],

however, has afforded spectacular success in explaining the scaling laws obtained for

free recall in experiments performed 50 years ago. The Potts model may be relevant

to a wide set of behaviors and to related experimental measures, once the correspon-

dence between model parameters and the quantities characterizing the underlying

two-level network are elucidated. This correspondence will be the topic of chapter

3.

2.1 Potts units

Let us consider an attractor neural network model comprised of Potts units, as

depicted in Fig.2.1. The rationale for the model is that each unit represents a local

network of many neurons with its own attractor dynamics [28, 31], but in a simpli-

fied/integrated manner, regardless of detailed local dynamics. Local attractor states
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are represented by S+1 Potts states: S active ones and one quiescent state (intended

to describe a situation of no retrieval in the local network), σki , k = 0,1,⋯, S, with

the constraint that ∑
S
k=0 σ

k
i ≡ 1 . We call this autoassociative network of Potts units

a Potts network, and refer to studies of some of its properties [5, 8, 20,21,55].

Figure 2.1: Global cortical model as a Potts neural network, redrawn from [5].

The ‘synaptic’ connection between two Potts units is in fact a tensor summarizing

the effect of very many actual connections between neurons in the two local networks,

but still, following the Hebbian learning rule [56], the connection weight between

unit i in state k and unit j in state l can be written as [20]

Jklij =
cij

Ca(1 − a/S)

p

∑
µ=1

(δξµi ,k −
a

S
)(δξµj ,l −

a

S
) (1 − δk0)(1 − δl0), (2.1)

where cij is 1 if two units i and j have a connection and 0 otherwise, C is the average

number of connections per unit, a is the sparsity parameter, i.e. the fraction of active

units in every stored global activity pattern ({ξµi }, µ = 1,2,⋯, p) and p is the number

of stored patterns. The last two delta functions imply that the learned connection

matrix does not affect the quiescent states. We will use the indices i, j for units, k,

l for states and µ, ν for patterns. Units are updated in the following way:

σki =
exp (βrki )

∑
S
l=1 exp (βrli) + exp [β(θ0i +U)]

(2.2)

and

σ0
i =

exp [β(θ0i +U)]

∑
S
l=1 exp (βrli) + exp [β(θ0i +U)]

, (2.3)

where rki is the input to (active) state k of unit i integrated over a time scale τ1,

while U and θ0i are, respectively, the constant and time-varying component of the

effective overall threshold for unit i, which in practice act as inverse thresholds on its

quiescent state. θ0i varies with time constant τ3, to describe local network adaptation

and inhibitory effects. The stiffness of the local dynamics is parametrized by the

inverse ‘temperature’ β (or T −1), which is then distinct from the standard notion of

thermodynamic noise. The input-output relations (2.2) and (2.3) ensure that

S

∑
k=0
σki = 1.
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In addition to the overall threshold, θki is the threshold for unit i specific to state

k, and it varies with time constant τ2, representing adaptation of the individual

neurons active in that state, i.e. their neural or even synaptic fatigue.

2.2 Dynamics

The time evolution of the network is then governed by equations that include

three distinct time constants:

τ1
drki (t)

dt
= hki (t) − θ

k
i (t) − r

k
i (t) (2.4)

τ2
dθki (t)

dt
= σki (t) − θ

k
i (t) (2.5)

τ3
dθ0i (t)

dt
=

S

∑
k=1

σki (t) − θ
0
i (t), (2.6)

where the field that the unit i in state k experiences reads

hki =
N

∑
j≠i

S

∑
l=1
Jklij σ

l
j +w (σki −

1

S

S

∑
l=1
σli) . (2.7)

The ‘local feedback term’ w is a parameter, first introduced in [5] that modulates

the inherent stability of Potts states, i.e. that of local attractors in the underlying

network model. It helps the network converge to an attractor faster by giving

positive feedback to the most active states and so it effectively deepens their basins

of attraction. Note that in this formulation, feedback is effectively spread over (at

least) three time scales: w is positive feedback mediated by collective attractor effects

at the neural activity time scale τ1, θki is negative feedback mediated by fatigue at the

slower time scale τ2, while θ0i is also negative, and it can be used to model both fast

and slow inhibition; for analytical clarity, we consider the two options separately,

as the ‘slowly adapting regime’, with τ3 > τ2, and the ‘fast adapting regime’, with

τ3 < τ1. It would be easy, of course, to introduce additional time scales, for example

by distinguishing a component of θ0i that varies rapidly from one that varies slowly,

but it would greatly complicate the observations presented in the following.

The overlap or correlation of the activity state of the network with the global

memory pattern µ can be measured as

mµ =
1

Na (1 − a/S)

N

∑
j≠i

S

∑
l≠0

(δξµj l −
a

S
)σlj. (2.8)

Randomly correlated memory patterns are generated according to the following

probability distribution

P (ξµi = k) =
a

S
, (2.9)

P (ξµi = 0) = 1 − a,

while an algorithm of generating correlated patterns is presented in Appendix A and

further details can be found in [8], [57].



Chapter 3

The Potts network as a

quantitative model of the cortex

In recent years considerable attention has been paid to the ambition to recon-

struct and simulate in microscopic detail the structure of the human brain, possibly

at the 1:1 scale, with outcomes that have been questioned [58]. A complementary

perspective is that put forward by the late neuroanatomist Valentino von Brait-

enberg, who in many publications argued for the need to understand overarching

principles of mammalian brain organization, even by recourse to dramatic simplifi-

cation [2]. In this spirit, over 40 years ago Braitenberg proposed the notion of the

skeleton cortex, that is comprised solely of its N pyramidal cells [9]. Since on their

apical dendrites they receive predominantly synapses from axons that originate in

the pyramidal cells of other cortical areas and travel through the white matter, while

on their basal dendrites they receive mainly synapses from local axon collaterals, and

the two systems, A(pical) and B(asal), can be estimated to include similar numbers

of synapses per receiving cell, Braitenberg further detailed what could have later

been called a small world scheme [26]. In such a scheme, the N pyramidal cells are

allocated to N =
√
N modules, each including N cells, fully connected with each

other. Each cell would further receive, on the A system, N − 1 connections from

one cell drawn at random in each of the other modules. Therefore each cell gets

2(N − 1) connections from other pyramidal cells, the A and B systems are perfectly

balanced, and the average minimal path length between any cell pair is just below

2. Of course, the modules are largely a fictional construct, apart from special cases,

or at least their generality and character are quite controversial [59–61], but the

distinction between long-range and local connections is real, and the simple model

recapitulates a rough square-root scaling of both systems, with N ∼ 103 ÷ 105, in

skeleton cortices which in mammals range from ca. N ∼ 106 to ca. N ∼ 1010.

The functional counterpart to the neuroanatomical scheme is the notion of Heb-

bian associative plasticity [56], considered as the key mechanism that modulates

both long- and short-range connections between pyramidal cells. In such a view,

autoassociative memory storage and retrieval are universal processes through which

both local and global networks operate [2]. Cortical areas across species would

then share these universal processes, whereas the information they express would

be specific to the constellation of inputs each area receives, which the simplified
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Potts units ~ modules 

Figure 3.1: The Braitenberg model regards a skeleton cortex of N pyramidal cells

as comprised of
√
N modules of

√
N cells each. The Potts model then reduces each

module to a multi-state unit, where a state corresponds to a dynamical attractor

of the local cortical module. How should the number of states per module, S, be

thought to scale with N ?

skeleton model does not attempt to describe. Underlying the diversity of higher-

order processes of which cortical cognition is comprised, there would be the common

associative operation of multi-modular autoassociative memory.

The Hopfield model of a simple autoassociative memory network [28] has opened

the path to a quantitative statistical understanding of how memory can be imple-

mented at the network level, through thorough analyses of attractor neural networks.

The initial analyses, with networks of binary units, then shifted towards networks

with more of the properties seen in the cortex [62,63].

As for connectivity, attempts to reproduce quantitative observations [64], given

the apparent lack of specificity at the single cell level [65], in some cases have led

to models without modules, but in which the probability of pyramidal-to-pyramidal

connections depends on the distance between neurons, rapidly decreasing beyond a

distance that conceptually corresponds to the radius of a module [66].

But has Braitenberg’s suggested simplification, the skeleton of units with their

A and B system, enabled the use of the powerful statistical-physics-derived analy-

ses that had been successfully applied to the Hopfield model? Only up to a point.

Studies of multi-modular network models including full connectivity within individ-

ual modules and sparse connectivity with other modules could only be approached in

their most basic formulation, in which all modules participate in every memory, and

their sparse connectivity is random [16,17]; and attempts to articulate them further

have led to analytical complexity [18,19,67,68] or to the recourse to effectively local

coding schemes [69], without yielding a plausible quantification of storage capacity.

The Potts associative network, in contrast, has been fully analyzed in its original

and sparsely coded versions [11–15,20] and it has been argued to offer an ever further

simplification of a cortical network than Braitenberg’s [8], amenable to study also

its latching dynamics [5]. The correspondence between Braitenberg’s notion and the

Potts model has not, however, been discussed. In this chapter, we do it with the
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Figure 3.2: Toy model for a cortex comprised of modules, in which each pyramidal

cell in the module receives sparse inputs from other modules on the apical dendrites-

dashed line (in color) on top panel. Five modules, each of which contains five

neurons and three features (local patterns/attractors) are presented for illlustration

(Nm = 5, p = 6, S = 3, a = 0.6). A global memory patterns in the table can be thought

of as comprised of features. Features have to be bound together by the tensor

connections, in the Potts model, where sparse coding means that not all features

pertain to every memory; the rest of the Potts units are in their quiescent state.

aim at establishing a clearer rationale for using the Potts model to study cortical

processes.

3.1 From a multi-modular Hopfield network to a

Potts network

3.1.1 Thermodynamic correspondence

Let us consider an underlying network of Nm modules ( [16–19]), each comprised

of Nu neurons, each of which is connected to all Nu − 1 other neurons within the

same module, and to L other neurons distributed randomly throughout all the other

modules. We make the critical “Hopfield” assumption [28] that both short- and long-

range synaptic connections are symmetric. Each module can retrieve one of S local

activity patterns, or features, that are learned with the corresponding short range

connections. We index it with k = 1, . . . , S. Furthermore, p global activity patterns,

each consisting of combinations of aNm features, are stored on the dilute long-range

connections, as illustrated in Fig.3.2.

Let us make here the simplifying assumption that the firing rates, η, that rep-

resent a local pattern k within a module m, are identically and independently

distributed across units, given by the distribution Pη (ηkim). A global pattern,
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µ = 1, . . . , p, is a random combination {kµ1 , . . . , k
µ
m, . . . , k

µ
Nm

}. Note as ζ ≡ pa/S

the average number of global patterns represented by a specific local pattern, given

global sparsity a, and assume it for simplicity to be an integer number. The total

number of connections to a neuron is given by C = L + Nu − 1 and we define the

fraction of long range connections as γ = L/C. We also impose, as in [6], that Pη
satisfies ⟨η⟩ = ⟨η2⟩ = au, such that local representations are also sparse, with spar-

sity parameter au distinct from the global one a, both measures parametrizing, at

different scales, sparse coding.

Using Hebbian covariance rules [70] in the multi-modular network, we have

J short
im,jm = ρs

1

C

p

∑
µ=1

⎛

⎝

ηk
µ
m
im

au
− 1

⎞

⎠

⎛

⎝

ηk
µ
m
jm

au
− 1

⎞

⎠
(3.1)

J long
im,jn

= ρl
cim,jn
C

p

∑
µ=1

(
ηµim
au

− 1)(
ηµjn
au

− 1) (3.2)

where ρs and ρl are parameters that adjust the dimensions of short- and long-range

connections, and can regulate their relative strength. The variable cim,jn is a binary

variable

cim,jn = {
1 with probability ε

0 with probability (1 − ε)
(3.3)

where ε = L/Nu(Nm − 1).

In those cases in which an energy function can be defined, i.e., essentially, if

cim,jn = cjn,im the attractor states of the system, [31], correspond to the minima

of a “free energy”. The “Hamiltonian” of the multi-modular network, which is

proportional to Nu ×Nm, is in those cases given by

H = −
1

2
∑
m

∑
im,jm≠im

J short
im,jmVimVjm −

1

2
∑

m,n≠m
∑
im,jn

J long
im,jn

VimVjn (3.4)

= Hs +Hl

where Vim can be threshold linear type defined as

Vim(τ + δτ) = {
0 him(τ) < Tthr
g ⋅ (him(τ) − Tthr) him(τ) > Tthr.

Threshold linear description of the unit is adopted in order to mimic the real

firing operation of neurons ( [6], [71], [72]). It is depicted in Fig.3.3. It is simple

enough to treat the network in analytial way and complex enough to capture the

real firing behaviour.

Estimating cim,jn with its mean ε, we can rewrite the second term as

Hl = − ∑
m,n>m

∑
im,jn

J long
im,jm

VimVjn

= −ρl ∑
m,n>m

∑
im,jn

cim,jn
C

p

∑
µ=1

(
ηµim
au

− 1)(
ηµjn
au

− 1)VimVjn

≃ −ρl
ε

C
∑

m,n>m
∑
µ
∑
im,jn

(
ηµim
au

− 1)(
ηµjn
au

− 1)VimVjn .
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Figure 3.3: Threshold linear model: (a) Experimental data coming from a layer 2/3

pyramidal cell in rat visual cortex; (b) model. Plots are cited from [6].

For a given pattern µ the only contribution to ηµim is ηξ
µ
m

im
. Let us now define the

local correlation of the state of the network with each local memory pattern as

σξ
µ
m
m =

1

Nu
∑
im

(
ηξ

µ
m

im

au
− 1)Vim (3.5)

where to avoid introducing additional dimensional parameters, we assume that the

activity Vi of each model neuron is measured in such units, and suitably regulated

by inhibition, that the local correlations are automatically normalized to reach a

maximum value of 1. We then obtain

Hl = −ρl
εN2

u

C
∑

m,n>m
∑
µ

σξ
µ
m
m σξ

µ
n
n

= −ρl
εN2

u

C
∑

m,n>m
∑
µ
∑
k

∑
l

δξµmkδξµnlσ
k
mσ

l
n

= −Nu ∑
m,n>m

∑
k,l

Jklmnσ
k
mσ

l
n , (3.6)

where we have introduced

Jklmn = ρl
εNu

C
∑
µ

δξµmkδξµnl = ρl
γ

Nm − 1
∑
µ

δξµmkδξµnl. (3.7)

On the other hand, using (3.5), the first term can be rewritten as

Hs = −∑
m

∑
im,jm>im

JSim,jmVimVjm

≃ −ρs
ζ

C
∑
m

∑
im,jm>im

S

∑
ξ=1

⎛

⎝

ηξim
au

− 1
⎞

⎠

⎛

⎝

ηξjm
au

− 1
⎞

⎠
VimVjm

= −ρs
ζ

C
∑
m

S

∑
ξ=1

⎧⎪⎪
⎨
⎪⎪⎩

∑
im,jm

⎛

⎝

ηξim
au

− 1
⎞

⎠

⎛

⎝

ηξjm
au

− 1
⎞

⎠
VimVjm −∑

im

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

ηξim
au

− 1
⎞

⎠
Vim

⎤
⎥
⎥
⎥
⎥
⎦

2 ⎫⎪⎪
⎬
⎪⎪⎭

≃ −ρs
ζ

C
∑
m

⎧⎪⎪
⎨
⎪⎪⎩

N2
u∑

k

(σkm)
2
−
S(1 − au)

au
∑
im

[Vim]
2
⎫⎪⎪
⎬
⎪⎪⎭

. (3.8)

where we have noted the absence of self-interactions, and estimated with its mean

ζ ≡ pa/S the number of contributions to the encoding of each local attractor state.
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Putting together (3.6) and (3.8), where we neglect the last term in the Nu → ∞

limit, and noting that Nu/C ≃ 1 − γ, we have

H ≃ −Nu ∑
m,n>m

∑
k,l

Jklmnσ
k
mσ

l
n −Nuρsζ(1 − γ)∑

m
∑
k

(σkm)
2
. (3.9)

We have therefore expressed the Hamiltonian of a multi-modular Hopfield net-

work in terms of mesoscopic parameters, the σkm’s, characterizing the state of each

module in terms of its correlation with locally stored patterns. This could be re-

garded as (proportional to) the effective Hamiltonian of a reduced Potts model, if

due attention is paid to entropy and temperature. Since the σkm’s are infinite (in

the Nm → ∞ limit) but infinitely fewer than the Vi’s (in the Nu → ∞ limit), the

correct Potts Hamiltonian is akin to a free-energy for the full multimodular model,

it should scale with Nm and not with Nm × Nu, and it should include the proper

entropy terms. One can write

exp−βPottsHPotts({σ
k
m}) = ∑

{Vi}
exp−βH({Vi}∣{σ

k
m}). (3.10)

The correct scaling of the Potts Hamiltonian implies that an extra Nu factor present

in the original Hamiltonian has to be reabsorbed in the effective inverse Potts tem-

perature βPotts, which then diverges in the thermodynamic limit. This means that

the Potts network can be taken to operate at zero temperature, in relation to its

interactions between modules. Within modules, however, the effects of a non-zero

noise level in the underlying multi-modular network persist in the entropy terms.

These can be estimated by suitable assumptions on the distribution of microscopic

configurations that dominate the thermodynamic (mesoscopic) state of each module.

One such assumption is that a module is mostly in states fragmented into competing

domains of n0, n1, . . . , nk, . . . , nS units, fully correlated with the corresponding local

patterns, except for the first n0, which are at a spontaneous activity level. This

would imply that, dropping the module index m, σk = nk/Nu, and the constraint

∑
S
k=0 σ

k = 1 is automatically satisfied. The number of microscopic states charac-

terized by the same S + 1-plet n0, . . . , nk, . . . , nS is Nu!/∏
S
k=0 nk!. The log of this

number, which can be estimated as −Nu∑
S
k=0 σ

k lnσk, has to be divided by β and

then subtracted for each module from the original Hamiltonian, as the entropy term

that comes from the microscopic free-energy. This becomes the effective Hamilto-

nian of the Potts network by further dividing by Nu, because a factor Nu has to be

reabsorbed into β. Therefore one finds the additional entropy term in the reduced

Hamiltonian

βHentropy
Potts ({σkm}) =∑

m

S

∑
k=0
σkm lnσkm. (3.11)

The above shows that the original inverse temperature β retains its significance

as a local parameter, that modulates the stiffness of each module or Potts units,

even though the effective noise level in the long-range interactions between modules

vanishes. The precise entropy formula depends also on the assumptions that all

microscopic states be dynamically accessible from each other, which would have to

be validated depending on the dynamics assumed to hold within each module. An

alternative assumption is that individual units can in practice only be exchanged
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between a fragment correlated with local pattern k and the pool n0 of uncorrelated

units. Under that assumption the entropy can be estimated from the log of the

number ∏
S
k=1(Nu!/n0!nk!), which yields

βH′entropy
Potts ({σkm}) =∑

m

S

∑
k=1

{σkm ln
σkm

σkm + σ0
m

+ σ0
m ln

σ0
m

σkm + σ0
m

} (3.12)

as in [5].

Note that, in (3.9), the sparse connectivity between modules of the multi-modular

network does not translate into a diluted Potts connectivity: each module, or Potts

unit, receives inputs from each of the other Nm−1 modules, or Potts units. One can

consider cases in which, instead, there are only cm connections per Potts unit, e.g.

the highly diluted and intermediate connectivity considered in the storage capacity

analysis below.

3.1.2 Parameters for the dynamics

These arguments indicate how the local attractors of each module can be reinter-

preted as dynamical variables of a system of interacting Potts units. The correspon-

dence cannot be worked out completely, however (and (3.9) is not fully equivalent to

the Hamiltonian defined in [5]), if anything because the effects of inhibition cannot

be included, given the inherent asymmetry of the interactions, in a Hamiltonian

formulation. In the body of work on neural networks stimulated by the Hopfield

model, some of the effects ascribed to inhibition have been regarded as incapsulated

in the peculiar Hebbian learning rule that determines the contribution of each stored

pattern to the synaptic matrix, with its subtractive terms. Similar subtractive terms

can be argued on the same basis to take into account inhibitory effects at the module

level, and they lead to replace the interaction

Jklmn = ρl
γ

Nm − 1
∑
µ

δξµmkδξµnl (3.13)

with

J ′klmn = ρl
γ

Nm − 1
∑
µ

(δξµmk − a/S)(δξµnl − a/S), (3.14)

the form which appears in [5]. The local feedback term there, parametrized by w,

can be made to roughly correspond to the second term in (3.9) by imposing that

ρsζ(1 − γ)/ρlγ = w/2.

To extend further the approximate correspondence, beyond thermodynamics and

into dynamics, we may assume that underlying the Potts network there is in fact

a network of Nm × Nu integrate-and-fire model neurons, emulating the dynamical

behaviour of pyramidal cells in the cortex, as considered by [73] and [74]. The simple

assumptions concerning the connectivity and the synaptic efficacies are reflected in

the fact that the inputs to any model neuron in the extended network are determined

by globally defined quantities, namely the mean fields, which are weighted averages

of quantities that measure, as a function of time, the effective fraction of synaptic

conductances (g, in suitable units normalized to ∆g) open on the membrane of any
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cell of a given class, or cluster (G) by the action of all presynaptic cells of another

given class, or cluster (F)

zFG (t) =
1

Nlocal,F
∑
α∈F

gα (t)

∆gFG
, (3.15)

where gα is the conductance of a specific synaptic input. The point is that among

the clusters that have to be defined in the framework of Ref. [73], many cluster pairs

(F,G), those that comprise pyramidal cells, share the same or a similar biophysical

time constant, describing their conductance dynamics [73], i.e.

dzFG (t)

dt
= −

1

τFG
zFG (t) + νF (t −∆t) , (3.16)

where νF (t) is the firing rate. If τFG is the same across distinct values for F and G,

one can compare the equation for any such cluster pair to the first equation of (2.4),

namely

τ1
drki (t)

dt
= hki (t) − θ

k
i (t) − r

k
i (t) .

Since rki is the temporally integrated variable representing the activity of unit i

in state k varying with the time scale of τ1, it can be taken to correspond to the

(integrated) activation of pyramidal cells in a module. One can conclude that τ1
summarizes the time course of the conductances opened on pyramidal cells by the

inputs from other pyramidal cells. It represents the inactivation of synaptic conduc-

tance and, like the firing rates are a function of the z, our overlap is a function of

the r. Neglecting adaptation (θki ), we can think of the correspondence as

hki ∼ ∑
α∈F

να → rki ∼ ∑
α∈F

zα (3.17)

therefore rki represents the state of the inputs to the integrate-and-fire neurons within

a module, i.e., a Potts unit, and we can identify the constant τ1 with the inactivation

time constant for the synapses between pyramidal cells, τEE , whereas inhibitory and

adaptation effects will be represented by τ2 and τ3 in the Potts model.
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3.2 Storage capacity of the Potts network

3.2.1 Fully connected network

In the previous section, we have expressed the approximate equivalence between

the Hamiltonian of a multi-modular Hopfield network and that of the Potts network.

This means that we can study the retrieval properties of the Potts network, as an

effective model of the full multi-modular network. In this section, we study the

storage capacity of the Potts network with full connectivity using the classic replica

method. Taking inspiration from [20] and [5], let us consider the Hamiltonian which

is defined as:

H = −
1

2

N

∑
i,j≠i

S

∑
k,l=0

Jklij δσikδσj l +U
N

∑
i

(1 − δσi0) −
w

2

N

∑
i

[∑
k>0

δ2σik −
1

S
(1 − δσi0)

2
] . (3.18)

The coupling between the state k in unit i and the state l in unit j is a Hebbian

rule ( [5, 15,20,28,55])

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Jklij =
1

Na(1−ã) ∑
p
µ=1 vξµi kvξ

ν
j l

vξµi k = (δξµi k − ã) (1 − δk0)

(3.19)

where N is the total number of units in our Potts network (for clarity we drop

henceforth the subscript Nm, except when discussing parameters in the end of this

chapter), p is the number of stored random patterns, a is their sparsity, i.e., the

fraction of active Potts units in each, and ã = a/S. As mentioned above, U is

the time-independent threshold acting on all units in the network, as in [20]. The

main difference with the analysis in [20] is that here we have included the term

proportional to w in (3.18). This self-reinforcement term pushes each unit into the

more active of its states, thus providing positive feedback.

The patterns to be learned are drawn from the following probability distribution

( [5, 20,55])

{
P (ξµi = 0) = 1 − a

P (ξµi = k) = ã ≡ a/S .
(3.20)

Using the trivial property that δ2i,j = δi,j we can rewrite the Hamiltonian as

H = −
1

2Na (1 − ã)

p

∑
µ=1

(
N

∑
i

vξµi σi)

2

+
1

2Na (1 − ã)

N

∑
i

p

∑
µ=1

v2ξµi σi
+

+ (U −
w (S − 1)

2S
)
N

∑
i

vξµi σi
δξµi σi − ã

.

In the following let us define

Ũ = U −
w (S − 1)

2S
. (3.21)
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We now apply the replica technique ( [32,33,75]) to H, following refs. [11,29–31,63].

The free energy of N Potts units in replica theory reads

f = −
1

β
lim
n→0

lim
N→∞

⟨Zn⟩ − 1

Nn
, (3.22)

where ⟨⋅⟩ is an average over the quenched disorder (in this case represented by the

condensed patterns in our network), as in [31].

The partition function Zn of n replicas can be written as

⟨Zn⟩ = ⟨Tr{σγ} exp [−β
n

∑
γ

Hγ] ⟩ (3.23)

= ⟨Tr{σγ} exp

⎡
⎢
⎢
⎢
⎢
⎣

β

2Na (1 − ã)
∑
µγ

(
N

∑
i

vξµi σ
γ
i
)

2

−
β

2Na (1 − ã)

N

∑
i

∑
µγ

v2ξµi σ
γ
i

−βŨ∑
iγ

vξµi σ
γ
i

δξµi σ
γ
i
− ã

⎤
⎥
⎥
⎥
⎥
⎦

⟩ .

Using the Hubbard-Stratonovich transformation

exp [λa2] = ∫
dx

√
2π

exp [−
x2

2
+
√

2λax] ,

the first term in (3.23) can be written as

exp

⎡
⎢
⎢
⎢
⎢
⎣

β

2Na (1 − ã)
(
N

∑
i

vξµi σ
γ
i
)

2⎤
⎥
⎥
⎥
⎥
⎦

= ∫
dmγ

µ
√

2π
exp

⎡
⎢
⎢
⎢
⎣
−
(mγ

µ)
2

2
+

√
β

Na (1 − ã)
mγ
µ

N

∑
i

vξµi σ
γ
i

⎤
⎥
⎥
⎥
⎦
.

The change of variable mγ
µ → mγ

µ

√
βNa (1 − ã), and neglecting the sub-leading

terms in the N →∞ limit, gives us

⟨Zn⟩ = ⟨Tr{σγ}∫ ∏
µγ

dmγ
µ ⋅

⋅ expβN

⎡
⎢
⎢
⎢
⎢
⎣

a (1 − ã)

2
∑
µγ

(mγ
µ)

2
+∑
µγ

mγ
µ

N

N

∑
i

vξµi σ
γ
i
−

1

2N2a (1 − ã)

N

∑
i

∑
µγ

v2ξµi σ
γ
i

−
1

N
Ũ∑

iγ

vξµi σ
γ
i

δξµi σ
γ
i −ã

⎤
⎥
⎥
⎥
⎥
⎦

⟩ . (3.24)

Discriminating the condensed patterns (ν) from non condensed ones (µ) in the

limit p→∞ and N →∞ with the fixed ratio α = p/N ,
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⟨Zn⟩ = Tr{σγ}∫ ∏
µγ

dmγ
µ∫ ∏

λγ

dqγλdrγλ ⋅ exp

⎧⎪⎪
⎨
⎪⎪⎩

−
βN

2
∑
µ>s

⎡
⎢
⎢
⎢
⎢
⎣

a (1 − ã)∑
γ

(mγ
µ)

2

−a (1 − ã)βã∑
γλ

mγ
µm

λ
µqγλ

⎤
⎥
⎥
⎥
⎥
⎦

−
αβãN

2
∑
γγ

qγγ − βNaŨ∑
γγ

qγγ

−
Nαβ2

2
∑
γλ

rγλ (ã
2qγλ −

1

NS (1 − ã)
∑
ik

Pkvkσγi vkσλi )

⎫⎪⎪
⎬
⎪⎪⎭

⋅ ⟨ expβN

⎡
⎢
⎢
⎢
⎢
⎣

a(1 − ã)

2

ν≤s
∑
νγ

(mγ
ν)

2

+
ν≤s
∑
νγ

mγ
ν

N

N

∑
i

vξνi σ
γ
i
−

1

2N2a(1 − ã)

N

∑
i

ν≤s
∑
νγ

v2ξνi σ
γ
i

⎤
⎥
⎥
⎥
⎥
⎦

⟩ (3.25)

where we introduced qγλ, the overlap between different replicas, analogous to the

Edwards-Anderson order parameter [76],

qγλ =
1

Naã (1 − ã)
∑
ik

Pkvkσγi vkσλi . (3.26)

The saddle point equations are

∂

∂mγ
ν
= 0Ð→mγ

ν = ⟨
1

Na (1 − ã)
∑
i

⟨vξνi σ
γ
i
⟩ ⟩ , (3.27)

∂

∂rγλ
= 0Ð→ qγλ =

1

Naã (1 − ã)

N

∑
i

⟨∑
k

Pk ⟨vkσγi vkσλi ⟩ ⟩ , (3.28)

∂

∂qγλ
= 0Ð→ rγλ =

S (1 − ã)

α
∑
µ

⟨mγ
µm

λ
ν⟩ − [

2S

α
Ũ + 1]

δγλ
βã

. (3.29)

After performing the multidimensional Gaussian integrals over fluctuating (non

condensed) patterns we have

⟨Zn⟩ = ∫

ν∈[1,...,s]

∏
νγ

dmγ
ν ∫ ∏

λγ

dqγλdrγλ ⋅

⋅ expN

⎧⎪⎪
⎨
⎪⎪⎩

− β
a (1 − ã)

2
∑
νγ

(mγ
ν)

2
−
α

2
Tr ln [a (1 − ã) (1 − βãq)] − (3.30)

αβ2ã2

2
∑
γλ

rγλqγλ − βã [
α

2
+ SŨ]∑

γγ

qγγ + ⟨ ln Tr{σγ} exp [βHξσ] ⟩

ξv

⎫⎪⎪
⎬
⎪⎪⎭

,

where

Hξσ =∑
νγ

mγ
νvξνσγ +

αβ

2S (1 − ã)
∑
γλ

rγλ∑
k

Pkvkσγvkσλ . (3.31)
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Following (3.22),

f = lim
n→0

fn = lim
n→0

⎧⎪⎪
⎨
⎪⎪⎩

a (1 − ã)

2n
∑
νγ

(mγ
ν)

2
+

+
α

2nβ
Tr ln [a (1 − ã) (1 − βãq)] +

αβã2

2n
∑
γλ

rγλqγλ

+
ã

n
[
α

2
+ SŨ]∑

γγ

qγγ −
1

nβ
⟨ ln Tr{σγ} exp [βHξ] ⟩

ξv

⎫⎪⎪
⎬
⎪⎪⎭

. (3.32)

Furthermore, imposing the replica symmetry [32]

mν
γ = m

qγλ = {
q for γ ≠ λ

q̃ for γ = λ

rγλ = {
r for γ ≠ λ

r̃ for γ = λ,

we finally obtain the replica symmetric free energy

f =
a (1 − ã)

2
m2 +

α

2β
[ln (a (1 − ã)) + ln (1 − ãC) −

βãq

(1 − ãC)
] +

+
αβã2

2
(r̃q̃ − rq) + ãq̃ [

α

2
+ SŨ] +

−
1

β
⟨∫ Dz ln(1 +∑

l≠0
exp [βHξl ]) ⟩, (3.33)

where C = β (q̃ − q) and

H
ξ
l =mvξl −

αaβ (r − r̃)

2S2
(1 − δl0) +

S

∑
k=1

√
αrPk

S (1 − ã)
zkvkl . (3.34)

Detailed derivation of replica symmetric free energy is in Appendix B. C and

H
ξ
l are both quantities that are typical of a replica analysis. Hξl is the mean field

with which the network affects state l in a given unit if it is in the same state as

condensed pattern ξ (note that Hξl = 0). C measures the difference between q̃, the

mean square activity in a given replica, and q, the coactivation between two different

replicas. Note that in the zero temperature limit (β → ∞), this difference goes to

0, such that C is always of order 1. It will be clarified in another section, through

a separate analysis, that C is related to the derivative of the output of an average

neuron with respect to variations in its mean field.

The self-consistent mean field equations in the limit of β → ∞ are obtained by

taking the derivatives of f with respect to the three replica symmetric variational

parameters, m,q, r

m = 1
a(1−ã)⟨ ∫ Dz∑l≠0 vξl

⎡
⎢
⎢
⎢
⎢
⎣

1

1+∑
n≠l

exp[β(Hξ
l
−Hξn)]

⎤
⎥
⎥
⎥
⎥
⎦

⟩

→ 1
a(1−ã) ∑l≠0 ⟨ ∫ Dzvξl∏n≠l Θ [H

ξ
l −H

ξ
n] ⟩ (3.35)
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q → q̃ =
1

a
∑
l≠0

⟨∫ Dz∏
n≠l

Θ [H
ξ
l −H

ξ
n] ⟩ (3.36)

C =
1

ã2
√
αr
∑
l≠0
∑
k

⟨∫ Dz

√
Pk

S (1 − ã)
vklzk∏

n≠l
Θ [H

ξ
l −H

ξ
n] ⟩ (3.37)

r̃ → r =
q

(1 − ãC)
2 (3.38)

β (r − r̃) = 2(Ũ
S2

aα
−

C

1 − ãC
) (3.39)

where

∫ Dz = ∫ dz
exp (−z2/2)

√
2π

. (3.40)

The Θ function gives non-vanishing contribution only for Hξl −H
ξ
n > 0, i.e.

∑
k>0

(vkl − vkn) zk > −m

√
S2 (1 − ã)

αar
(vξl − vξn) −

αaβ (r − r̃)

2S2

√
S2 (1 − ã)

αar
(δn0 − δl0) .

Moreover, it is convenient to introduce two combinations of order parameters,

x =
αaβ (r − r̃)

2S2

√
S2 (1 − ã)

αar
,

y = m

√
S2 (1 − ã)

αar
.

At the saddle point, they become

x =
1

√
q + ãC

√
r

√
1 − ã

α̃
[Ũ − α̃

C

2

√
r

q
] ,

y =

√
1 − ã

α̃
(

m
√
q + ãC

√
r
) , (3.41)

where α̃ = αa/S2. By computing the averages in (3.35) and (3.39), we get three

equations that close the self consistent loop with (3.41),

q =
1 − a

ã ∫ Dp∫
∞

yã+x−i
√
ãp
Dzφ (z)

S−1

+ ∫ Dp∫
∞

−y(1−ã)+x−i
√
ãp
Dzφ (z + y)

S−1
(3.42)

+ (S − 1)∫ Dp∫
∞

yã+x−i
√
ãp
Dzφ (z − y)φ (z)

S−2
,

m =
1

1 − ã ∫
Dp∫

∞

−y(1−ã)+x−i
√
ãp
Dzφ (z + y)

S−1
− q

ã

1 − ã
, (3.43)
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C
√
r =

1
√
α̃ (1 − ã)

⎧⎪⎪
⎨
⎪⎪⎩

1 − a

ã ∫ Dp∫
∞

yã+x−i
√
ãp
Dz (z + i

√
ãp)φ (z)

S−1

+ ∫ Dp∫
∞

−y(1−ã)+x−i
√
ãp
Dz (z + i

√
ãp)φ (z + y)

S−1
(3.44)

+ (S − 1)∫ Dp∫
∞

yã+x−i
√
ãp
Dz (z + i

√
ãp)φ (z − y)φ (z)

S−2
⎫⎪⎪
⎬
⎪⎪⎭

,

where φ(z) = (1 + erf(z/
√

2))/2. It is insghtful to consider the limit cases of (3.41)-

(3.44). One such limit case is ã ≪ 1 and the resulting self-consistent equations

are

x =
1

√
α̃q

(Ũ −
α̃C

2

√
r

2
) (3.45)

y =
m

√
α̃q

(3.46)

m = φ(y − x) (3.47)

q =
1 − a

ã
φ(−x) + φ(y − x) (3.48)

C
√
r =

1

2πã
{

1 − a

ã
exp (−x2/2) + exp (−(y − x)2/2)} . (3.49)

Detailed derivation is in Appendix C.

3.2.2 Highly diluted network

A more biologically plausible case is that of the diluted network where the number

of connections per unit cm is less than N . Specifically, we consider connections

of the form cijJij, where Jij is the usual symmetric matrix derived from Hebbian

learning. cij equals 0 or 1 according to a given probability distribution and we note

λ = ⟨cij⟩/N = cm/N the dilution parameter. In general, cij is different from cji,

leading to asymmetry in the connections between units. In this case, the capacity

cannot be analyzed through the replica method. We therefore apply the signal to

noise analysis. The local field of unit i in state k writes

hki =∑
j

∑
l

cijJ
kl
ij σ

l
j − Ũ (1 − δk,0) (3.50)

where the coupling strength between two states of two different units is defined as

Jklij =
1

cma(1 − ã)
∑
µ

vξµi kvξ
µ
j l
. (3.51)

In the highly diluted limit cm ∼ log(N) (cp. next section for more details), the

assumption is that the field can be written simply as the sum of two terms, signal

and noise. While the signal is what pushes the activity of the unit such that the

network configuration converges to an attractor, the noise, or the crosstalk from

all of the other patterns, is what deflects the network away from the cued memory

pattern. The noise term writes
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nki ∝
p

∑
µ>1

N

∑
j(≠i)
∑
l

vξµi kvξ
µ
j l
σlj ,

that is, the contribution to the weights Jklij by all non-condensed patterns. By virtue

of the subtraction of the mean activity in each state ã, the noise has vanishing

average:

⟨nki ⟩P (ξ) ∝
p

∑
µ>1

N

∑
j(≠i)
∑
l

⟨vξµi ,k⟩⟨vξ
µ
j ,l
σlj⟩ = 0 .

Now let us examine the variance of the noise. This can be written in the following

way:

⟨(nki )
2⟩∝

p

∑
µ>1

N

∑
j(≠i)=1

∑
l

p

∑
µ′>1

N

∑
j′(≠i)=1

∑
l′
⟨vξµi ,k vξµ

′

i ,k
⟩⟨vξµj ,l vξµ

′

j′
,l′
σljσ

l′

j′⟩ ,

where statistical independence between units has been used. For randomly corre-

lated patterns, all terms but µ = µ′ vanish. Having identified the non-zero term, we

can proceed with the capacity analysis. We can express the field using the overlap

parameter, and single out, without loss of generality, the first pattern as the one to

be retrieved

hki = vξ1i km
1
i +∑

µ>1
vξµi km

µ
i − Ũ(1 − δk0). (3.52)

where we define the local overlap mi as

mi =
1

cma(1 − ã)
∑
j

∑
l

cijvξ1j lσ
l
j . (3.53)

We now write

∑
µ>1

vξµi ,km
µ
i ≡

S

∑
n=1

vn,k ρ
n zni (3.54)

where ρ is a positive constant and zni is a standard Gaussian variable. Indeed

in highly diluted networks the l.h.s., i.e. the contribution to the field from all of

the non-condensed patterns µ > 1, is approximately a normally distributed random

variable, as it is the sum of a large number of uncorrelated quantities. ρ can be

computed to find

ρn =

√
αPn

(1 − ã)S
q (3.55)

where we have defined

q = ⟨
1

Na
∑
j

∑
l

(σlj)
2⟩ . (3.56)

The mean field then writes

hki = vξ1i km +
S

∑
n=1

vn,k

√
αPn

(1 − ã)S
qzn − Ũ(1 − δk0) . (3.57)

Averaging mi and q over the connectivity and the distribution of the Gaussian

noise z, and taking the β →∞ we get to the mean field equations that characterize

the fixed points of the dynamics, (3.35) and (3.36). In the highly diluted limit
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however, we do not obtain the last equation of the fully connected replica analysis,

(3.38).

The difference between fully connected and diluted cases must vanish in the

ã≪ 1 limit, as shown in ( [20], [77]). In this limit we have x = Ũ/
√
α̃q, y = m/

√
α̃q

while (3.43) and (3.42) remain identical.

3.2.3 Network with intermediate connectivity

As in the previous section, we can express the field using the overlap parameter,

and single out the contribution from the pattern to be retrieved, that we label as

µ = 1, as in (3.52). However, for high enough connectivity one must revise (3.54):

the mean field has to be computed in a more refined way, through a self-consistent

method, that we present here.

Given the high connectivity of the network, the probability distribution of the

cij plays a crucial role. We will consider three different distributions. The first is

refered to as random dilution (RD), which is

P (cij, cji) = P (cij)P (cji) (3.58)

with

P (cij) = λδ(cij − 1) + (1 − λ)δ(cij) . (3.59)

The second is the symmetric dilution (SD), defined by

P (cij, cji) = λδ(cij − 1)δ(cji − 1) + (1 − λ)δ(cij)δ(cji) . (3.60)

The third is what we call state dependent random dilution (SDRD)–specific to the

Potts network– in which

P (cklij) = λδ(c
kl
ij − 1) + (1 − λ)δ(cklij) ; (3.61)

we note that in this case the connectivity coefficients are state-dependent.

We have performed simulations with all three types of connectivity, but will

focus the analysis onto the RD type, which exhibits higher capacity as shown in

Fig.3.7. RD and SD are known in the literature as Erdos-Renyi graphs. Many

properties are known about such random graph models [78], [79]. It is known that

for λ below a critical value, essentially all connected components of the graph are

trees, while for λ above this critical value, loops are present. In particular, a graph

with cm < log(N) will almost surely contain isolated vertices and be disconnected,

while with cm > log(N) it will almost surely be connected. log(N) is a threshold for

the connectedness of the graph, distinguishing the highly diluted limit, for which a

simplified analysis of the storage capacity is possible, from the present intermediate

case, for which a complete analysis is necessary.

When applying the self-consistent signal to noise analysis (SCSNA), [66, 80, 81]

the noise term is assumed to be a sum of two terms

∑
µ>1

vξµi ,km
µ
i = γ

k
i σ

k
i +

S

∑
n=1

vn,k ρ
n
i z

n
i (3.62)
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where zni are standard Gaussian variables, and γki and ρni are positive constants to

be determined self-consistently. The first term, proportional to σki , represents the

noise resulting from the activity of unit i on itself, after having reverberated in the

loops of the network; the second term contains the noise which propagates from

units other than i. The activation function writes

σki =
eβh

k
i

∑
l
eβh

l
i

≡ F k({yli + γ
l
iσ
l
i}l) . (3.63)

where yli = vξ1i ,lm
1
i +∑n vn,lρ

n
i z

n
i −U(1 − δl,0). One would need to find σki as

σki = G
k({yli}l) , (3.64)

where Gk are functions solving (3.63) for σki . However, (3.63) cannot be solved

explicitly. Instead we make the assumption that {σli} enters the fields {hli} only

through their mean value ⟨σli⟩, so that we write

Gk({yli}l) ≃ F
k({yli + γ

l
i⟨σ

l
i⟩}l) . (3.65)

In Appendix D there are the details of the calculation that yield γki = γ and ρki = ρ
k.

γ =
α

S
λ

Ω/S

1 −Ω/S
(3.66)

where α = p/cm, ⟨⋅⟩ indicates the average over all patterns and where we have defined

Ω = ⟨
1

N
∑
j1

∑
l1

∂Gl1
j1

∂yl1
⟩ . (3.67)

From the variance of the noise term one reads

(ρn)2 =
αPn

S(1 − ã)
q{1 + 2λΨ + λΨ2} , (3.68)

where we have defined

q = ⟨
1

Na
∑
j,l

(Gl
j)

2⟩ (3.69)

and

Ψ =
Ω/S

1 −Ω/S
. (3.70)

The mean field received by a unit is then

H
ξ
k = vξ,km +

α

S
λΨ(1 − δk,0) +

S

∑
n=1

vn,kz
n

√
αPn

S(1 − ã)
q{1 + 2λΨ + λΨ2} − Ũ(1 − δk,0) .

(3.71)

Taking the average over the non-condensed patterns (the average over the Gaus-

sian noise z), followed by the average over the condensed pattern µ = 1 (denoted by

⟨⋅⟩ξ), in the limit β →∞, we get the self-consistent equations satisfied by the order

parameters
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m =
1

a(1 − ã)
⟨∫ DSz ∑

l(≠0)
vξ,l ∏

n(≠l)
Θ(H

ξ
l −H

ξ
n)⟩

ξ

, (3.72)

q =
1

a
⟨∫ DSz ∑

l(≠0)
∏
n(≠l)

Θ(H
ξ
l −H

ξ
n)⟩

ξ

, (3.73)

Ω = ⟨∫ DSz ∑
l(≠0)
∑
k

zk
∂zk

∂yl
∏
n(≠l)

Θ(H
ξ
l −H

ξ
n)⟩

ξ

. (3.74)

where in the last equation for Ω, integration by parts has been used. Note the

similarities to the equations ((3.35)-(3.37)) obtained through the replica method

for the fully connected case. The equations just found constitute a generalization

to λ < 1. In particular, in the highly diluted limit λ → 0, we get γ → 0 and

(ρn)2 → αPn
(1−ã)S q, which are the results obtained in the previous section; in the fully

connected case, λ = 1, the correspondence between the m and q variables is obvious,

while for Ω it can be shown with some algebraic manipulation. Indeed, from the

following identity,

ρ2 =
αPn

S(1 − ã)
q(1 +Ψ)2 , (3.75)

by using the replica variable r = q/(1 − ãC)2 we get

ρ2 =
αPn

S(1 − ã)
r(1 − ãC)2(1 +Ψ)2 . (3.76)

By comparing this with (3.34), the mean field, we get an equivalent expression for

Ψ,

Ψ =
ãC

1 − ãC
. (3.77)

From the original definition of Ψ in (D.9), it follows that the order parameter C,

obtained through the replica method, is equivalent to Ω, up to a multiplicative

constant:

C = Ω/a . (3.78)

We can show that (3.74) coincides with (3.37). Moreover, by comparing the SCSNA

result for γ to the replica one, we must have

α

S
Ψ − Ũ = −

αaβ(r − r̃)

2S2
(3.79)

from which

β(r − r̃) = 2(Ũ
S2

αa
−

C

1 − ãC
) , (3.80)

identical to (3.39).
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3.3 Simulation results

Do computer simulations confirm the analyses above? Starting with the effect

of setting the overall threshold, we show, in Fig.3.4a, retrieval performance as a

function of the threshold, both through simulations and by solving (3.41).
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Figure 3.4: (a) How often a fully connected Potts network retrieves memories, as a

function of the threshold U and the number of stored memories p, with N = 1000,

S = 7, a = 0.25, β = 200. Color represents the fraction of simulations in which the

overlap between the activity state of network and a stored pattern is ≥ 0.9. The

solid lines are obtained by numerical solution of (3.41)-(3.44). (b) The dependence

of αc on U for different values of w. While for the optimal threshold U a non-zero

value of w is detrimental to the capacity, for higher than optimal thresholds it can

lead to a lower effective threshold Ũ , enhancing capacity.

It is clear that the simulations agree very well with numerical results. The

maximum storage capacity αc (where α ≡ p/cm, or α ≡ p/N for a fully connected

Potts network) is found at approximately U = 0.5, as can also be shown through a

simple signal to noise analysis. It is possible to compute approximately the standard

deviation γki of the field, (3.52) with respect to the distribution of all the patterns, as

well as as the connectivity cij, by making the assumption that all units are aligned

with a specific pattern to be retrieved σlj = ξ
1
j . We further discriminate units that

are in active states ξ1i ≠ 0 from those that are in the quiescent states ξ1i = 0 in the

retrieved pattern µ = 1.

γki ≡
√

⟨(hki )
2⟩ − ⟨hki ⟩

2 =

¿
Á
Á
ÁÀ

(p − 1)a

cmS2
+ (δξ1i ,k − ã)

2
⎛

⎝

1

cma
−

1

N

⎞

⎠
. (3.81)

The optimal threshold U0 is one that separates the two distributions, optimally such

that the minimal number of units in either distribution reach the threshold to go in

the wrong state
U0 − ⟨hki ∣ξ1i =0⟩

γki ∣ξ1i =0
= −

U0 − ⟨hki ∣ξ1i ≠0⟩

γki ∣ξ1i ≠0
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U0 =
γki ∣ξ1i =0

γki ∣ξ1i =0 + γ
k
i ∣ξ1i ≠0

−
a

S
. (3.82)

We can see that U0 Ð→ 1/2−ã for γki ∣ξ1i =0 ∼ γ
k
i ∣ξ1i ≠0, consistent with the replica analysis

and simulations in Fig.3.4a. Given such an optimal value for U , Fig.3.4b shows that

the effect of the feedback term w on the storage capacity, being purely subtractive,

is just to shift to the right the optimal value.
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Figure 3.5: Storage capacity αc as a function of sparsity a for different values of

w for both fully connected (a) and diluted (b) networks as obtained by numerical

solution of (3.41)-(3.44). (a) also includes points from simulations. The parameters

are S = 5, U = 0.5, β = 200.

Fig.3.5 illustrates the same effect of the feedback term, by setting U = 0.5 and

charting the storage capacity as a function of the sparsity a for different values

of w, for both fully connected (a) and diluted networks (b). In both cases, αc
decreases monotonically with increasing w, for low a, when U = 0.5 is close to

optimal. Increasing a, one reaches a region where U = 0.5 is set too high, and

therefore αc benefits from a non-zero w, even though its exact value is not critical.

For very high sparsity parameter (non-sparse coding) all curves except w = 0 seem to

coalesce. The envelope of the different curves represents optimal threshold setting

that takes feedback into account, and as a function of a it shows, both for fully

connected and diluted networks the decreasing trend familiar from the analysis of

simpler memory networks [82].
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Figure 3.6: (a) Storage capacity αc as a function of the sparsity a. Dots correspond

to simulations of a network with N = 2000, cm/N = 0.1, S = 5, and β = 200 while

curves are obtained by numerical solution of (3.41)-(3.44). (b) Storage capacity

as a function of S with same parameters as in (a) and with a = 0.1. (c) S = 50,

illustrating the ã≪ 1 limit case.

The two connectivity limit cases are illustrated in Fig.3.6, which shows, in (a),

the dependence of the storage capacity α on the sparsity a in the fully connected and

diluted networks with U = 0.5, w = 0 and S = 5. In Fig.3.6b instead, S is varied and

in Fig.3.6c S = 50, corresponding to the highly sparse limit ã ≪ 1. While for S = 5

the two curves are distinct, for the highly sparse network with S = 50 the two curves

coalesce. The curves are obtained by numerically solving (3.41)-(3.44). Moreover,

the storage capacity curve for the fully connected case in (a) matches very well with

Fig.2 of [20]. Diluted curves are always above the fully connected ones in both (a)

and (b), as found in [20].
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Figure 3.7: Storage capacity curves, obtained through simulations, as a function

of the mean connectivity per unit cm/N for three different types of connectivity

matrices cij. Network parameters are S = 2, a = 0.1, U = 0.5 and β = 200.

Finally, we show in Fig.3.7 the little change in storage capacity across the connec-
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tivity models introduced earlier. Contrary to the Hopfield network, SD has higher

capacity than RD. Both RD and SDRD on the other hand seem to have almost

identical capacity. All models have the same capacity at the fully connected case, as

they should. Note in particular the very limited decrease of αc = p/cm with cm/N in-

creasing up to almost full connectivity, with all three models, in contrast with what

one observes in the Hopfield network. This is because coding is relatively sparse, at

a = 0.1, and made effectively even sparser by S = 2, so that ã = 0.05.

In the end, the storage capacity of the Potts network is primarily a function of

a few parameters, cm, S and a, that suffice to broadly characterize the model, with

minor adjustments due to other factors. How can these parameters be considered

to reflect cortically relevant quantities?

The Potts network, if there are Nm Potts variables, requires, in the fully con-

nected case, Nm ⋅ (Nm − 1) ⋅S2/2 connection variables (since weights are taken to be

symmetric we have to divide by 2). In the diluted case, we would have Nm ⋅ cm ⋅ S2

variables (the factor 2 is no longer relevant, at least for cm → 0). The multi-modular

Hopfield network, as shown in Sect.3.1, has only Nm ⋅ Nu ⋅ L long-range synaptic

weights. This diluted connectivity between modules is summarily represented in

the Potts network by the tensorial weights. Therefore, the number of Potts weights

cannot be larger than the total number of underlying synaptic weights it represents.

Then cm ⋅ S2 cannot be larger than L ⋅Nu.

In the simple Braitenberg model of mammalian cortical connectivity [26], which

motivated the multi-modular network model [17], Nu ≃ Nm ∼ 103 − 105, as the total

number of of pyramidal cells ranges from ∼ 106 in a small mammalian brain to ∼ 1010

in a large one. In a large, e.g. human cortex, a module may be taken to correspond

to roughly 1 mm2 of cortical surface, also estimated to include Nu ∼ 105 pyramidal

cells [10]. A module, however, cannot be plausibly considered to be fully connected;

one can imagine instead a short-distance connection probability of the order of 1/10,

and a number of short-range connection similar to the one, L, of long-range ones,

yielding L ≃ 0.1Nu.

What about cm and S? What values would be compatible with associative

storage? If there are S patterns on Nu neurons, there would only be S ⋅ Nu ⋅ au
variables available in order to determine local synaptic weights. It is reasonable

then to take S ⋅Nu ⋅ au > L ⋅Nu, but in turn we have L ⋅Nu > cm ⋅ S2, hence

cm ⋅ S < Nu ⋅ au

which would lead, if we take again au ∼ 0.1, to cm and S to be at most of or-

der 101 − 102 over mammalian cortices of different scale, essentially scaling like the

fourth root of the total number of pyramidal cells, which appears like a plausible,

if rough, modelling assumption. We could take these range of values, together with

the approximate formula (see [20] and Fig.3.6b)

pc ∼ 0.15
cmS2

a ln(S/a)
(3.83)

to yield estimates of the actual capacity the cortex of a given species. The major

factor that such estimates do not take into account, however, is the correlation
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among the memory patterns. All the analyses reported here apply to randomly

assigned memory patterns. The case of correlations will be treated elsewhere in [57].

The above considerations may sound rather vague. They capture, however, the

quantitative change of perspective afforded by the coarse graining inherent in the

Potts model. We can simplify the argument by neglecting sparse coding as well

as the exact value of the numerical pre-factor k (which is around 0.15 in (3.83)).

The Potts model uses NmcmS2 weights to store up to kcmS2/ lnS memory patterns,

each containing of order Nm lnS bits of information, therefore storing up to k bits

per weight. In this respect, it is not different from any other associative memory

network, including the multi-modular model which it effectively represents. In the

multi-modular model, however, (in its simplest version) the 2kN2
uNm bits available

are allocated to memory patterns that are specified in single-neuron detail, and

hence contain in principle NuNm bits of information each. The network can store and

retrieve up to a number pc of them, which has been argued in [16] to be limited by the

memory glass problem to be of the same order of magnitude as the number of local

attractors, itself limited to be of order Nu. By losing the single-neuron resolution,

the Potts model forfeits the locally extensive character of the information contained

in each pattern, but it gains essentially a factor S/ lnS (scaling approximately as
√
Nu) in the number of patterns. Many more, but less informative, memories. This

argument can be expanded and made more precise by considering, again, a more

plausible scenario with correlated memories.



Chapter 4

Latching dynamics

In this chapter, we address the question of when robust latching occurs, as a

model of spontaneous sequence generation, with extensive computer simulations,

mostly focused on latching between randomly correlated patterns. We consider first

the slowly adapting regime (τ1 ≪ τ2 ≪ τ3) in which active states (τ2) adapt slower

than activity propagation to other units (τ1), while inhibitory feedback is restricted

to an even slower timescale, τ3. Next we contrast with it the fast adapting regime

(τ3 ≪ τ1 ≪ τ2) in which, instead, inhibitory feedback is immediate, relative to the

other two time scales.

The critical parameters at play are the number of patterns, p, the number of

active states, S, and the number of connections per unit, C, and we also look at the

effect of the feedback term w. The other parameters, including T , τ1, τ2, and τ3, are

kept fixed during simulations, after having chosen a priori values that can lead to

robust latching dynamics in the two regimes.

4.1 Slowly adapting regime

In the slowly adapting regime, over a (short) time of order τ1 the network, if

suitably cued, may reach one of the global attractors, and stay there for a while;

whereupon, after an adaptation time of order τ2, it may latch to another attractor,

or else activity may die [5]. But how distinct is the convergence to the new attractor?

One may assess this as the difference between the two highest overlaps the network

activity has, at time t, with any of the memory patterns, m1(t) −m2(t): ideally,

m1 ≃ 1 and m2 is small, so their difference approaches unity. A summary measure of

memory pattern discrimination can be defined as d12 ≡ ⟨∫ dt(m1(t)−m2(t))⟩initial cue,

where of course the identity of patterns 1 and 2 changes over the sequence.

As discussed in [5], by looking at the latching length, how long a simulation runs

before, if ever, the network falls into the global quiescent state, one can distinguish

several ‘phases’. Depending on the parameters, the dynamics exhibit finite or infinite

latching behaviour, or no latching at all. Typically, when increasing the storage

load p the latching sequence is prolonged and eventually extends indefinitely, but

at the same time its distinctiveness decreases, since memory patterns cannot be

individually retrieved beyond the storage capacity; and even before, each acquires

neighbouring patterns, in the finite and more crowded pattern space, with which it
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is too correlated to be well discriminated.
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Figure 4.1: Trade-off between latching sequence length (solid lines) and retrieval

discrimination (dashed lines). Different colors indicate different S values, while

C = 400 throughout. The latching length l is in time steps (not in the number of

transitions), normalized by the time of the simulation, Nupdate = 6 ⋅ 105.

In Fig.4.1 we see that for each S = (2,3,4), as p is increased beyond a certain

value, latching dynamics rapidly picks up and extends eventually through the whole

simulation, but in parallel its discriminative ability decreases and almost vanishes

– the p-range where d12 is large is in fact when there is no latching, and d12 only

measures the quality of the initial cued retrieval. For S = 1 no significant latching

sequence is seen, whereas for higher values, at fixed p, its distinctiveness increases

with S but its length decreases from the peak value at S = 2.

Since the latching length l is not itself sufficient to characterize latching and has

to be complemented by discriminative ability, we find it convenient to quantify the

overall quality of latching with a new quantity Q defined as

Q = d12 ⋅ l ⋅ η, (4.1)

where η is introduced to exclude cases in which the network gets stuck in the

initial cued pattern, so that no latching occurs, however high d12 and l are:

η =

⎧⎪⎪
⎨
⎪⎪⎩

1 ∶ if at least one transition to a second memory pattern occurs

0 ∶ otherwise.
(4.2)

Q is therefore a positive real number between 0 and 1, and we report its color-

coded value to delineate the relevant phases in phase space.

Thus, low quality latching with small Q may result from either small d12 or short

l, or both. The parameters that determine Q which we focus on are S, C and p, after

having suitably chosen all the other parameters, which are kept fixed. Their default

values in the slowly adapting regime are N = 1000, a = 0.25, U = 0.1, T = 0.09,

w = 0.8, τ1 = 3.3, τ2 = 100.0, τ3 = 106, unless explicitly noted otherwise. If activity

does not die out before, simulations are terminated after Nupdate = 6 ⋅ 105 steps, the

total number of updates of the entire Potts network, and are repeated with different
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cued patterns. Re the values of S, C and p, we use the following notation, for

simplicity:

Q = Q (S,C, p) =

⎧⎪⎪
⎨
⎪⎪⎩

Q (S, p) ∶ C = 150 fixed,

Q (C,p) ∶ S = 5 fixed.
(4.3)
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Figure 4.2: Phase space for Q(S, p) in (a) and Q(C,p) in (b) with randomly cor-

related patterns in the slowly adapting regime. The parameters are C = 150 and

S = 5, if kept fixed, and w = 0.8. The red spots in (a) mark the parameter values

used in the following analyses.

Fig.4.2 shows that there are narrow regions in the S − p and C − p planes, which

we call bands, where relatively high quality latching occurs. The values of p with

the ‘best’ latching scale almost quadratically in S, and sublinearly in C. Moreover,

one notices that below certain values of S and C no latching is seen, i.e. the band

effectively ends at S ∼ 2, p ∼ 90 in Fig.4.2a and at C ∼ 50, p ∼ 70 in Fig.4.2b.

Importantly, the band in Fig.4.2a is confined in the area delimited by the cyan

solid and dashed curves above and below it. The dashed curve is for the onset of

latching, i.e. the phase transition to finite latching [5], while the solid curve above is

the storage capacity curve in a diluted network, given by the approximate relation

pc ≃
CS2

4a ln 2S

a
√

ln S
a

, (4.4)

beyond which retrieval fails [5]. It should also be noted that overall Q values are

not large, in fact well below 0.5 throughout both S −p and C −p planes. The reason

is, again, in the conflicting requirements of persistent latching, favoured by dense

storage, high p, and good retrieval, allowed instead only at low storage loads (in

practice, relatively low p/S2 and p/C values).

In Fig.4.3 we show representative latching dynamics at three selected points in

the (S, p) plane, in terms of the time evolution of the overlap of the states with the

stored activity patterns (see (2.8)). The three points, marked in red, span across
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Figure 4.3: Latching behaviour for (S, p) equal to, respectively, (5,250), (6,200), and

(7,150) in Fig.4.2a.

the band in Fig.4.2a, and we see that latching is indefinite but noisy in the example

at (5,250), which is apparently too close to storage capacity, while memory retrieval

is good at (7,150) but the sequence of states ends abruptly, as the network is in

the phase of finite latching [5]. The two trends are representative of the two sides

of the band, while in the middle, at (6,200), one finds a reasonable trade-off, with

relatively good retrieval combined with protracted latching.

We use two statistical measures, the asymmetry of the transition probability

matrix and Shannon’s information entropy [22, 55, 83] to characterize the essential

features of the dynamics in different parameter regions. For that, we take all five red

points from Fig.4.2a, such that they cut across the latching band in the S −p plane,

and extend further upwards. We first compile a transition probability (or rather,

frequency) matrix M from all distinct transitions observed along many latching

sequences generated with the same set of stored patterns, as in [55]. The dimension

of the matrix M is (p + 1) × (p + 1), as it includes all possible transitions between

p patterns plus the global quiescent state. M is constructed from the transitions

between states having both overlaps above a given threshold value, e.g. 0.5, in a

data set of 1,000 latching sequences, by accumulating their frequency between any

two patterns into each element of the matrix and then normalizing to 1 row by row,

so that Mµ,ν reflects the probability of a transition from pattern µ to ν. A, the

degree of asymmetry of M , is defined as

A =
∣∣M −MT ∣∣

∣∣M ∣∣
, (4.5)

where MT is the transpose matrix of M and ∣∣M ∣∣ = ∑µ,ν ∣Mµ,ν ∣. Note that A is

small for unconstrained bi-directional dynamics and large for simpler stereotyped

flows among global patterns, attaining its maximum value A = 2 for strictly uni-

directional transitions. Note also that if the average had been taken over different

realizations of the memory patterns, given sufficient statistics A would obviously

vanish.

Another measure we apply to the transition matrix M is Shannon’s information

entropy, defined as
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Iµ = ⟨
1

log2(p + 1)

p+1

∑
ν=1

Mµ,ν log2 (
1

Mµ,ν

)⟩
µ

. (4.6)

Iµ takes positive real values from 0 (deterministic, all transitions from one state

are to a single other state) to 1 (completely random), since it is normalized by

log2(p + 1), which corresponds to a completely random case.

We use these two measures, A and Iµ, on the points, marked red in Fig.4.2a

(3,350) − (4,300) − (5,250) − (6,200) − (7,150)

that lie on a segment going through the latching band observed in the slowly adapt-

ing regime.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

(3,350) (4,300) (5,250) (6,200) (7,150)

A

mc=0.3
mc=0.4
mc=0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

(3,350) (4,300) (5,250) (6,200) (7,150)

I
µ

mc=0.3
mc=0.4
mc=0.5

(a) (b)

Figure 4.4: (a) Asymmetry A of the transition matrix and (b) Shannon’s information

entropy, Iµ along the (3,350)−(4,300)−(5,250)−(6,200)−(7,150) parameter series from

Fig.4.2. Different curves correspond to different thresholds for the overlap of the two

states between which the network is defined to have a transition. The error bars

report the standard deviation of either quantity for each of 1,000 sequences.

If we focus on transitions between states reaching at least a threshold overlap of

0.5, Fig.4.4 appears to show two complementary, almost opposite U-shaped curves

as the two measures, asymmetry and entropy, are applied to the 5 points along

the segment. One branch of each U shape extends over the range that includes

the high-Q latching band: these are the right branches of the two curves, in which

asymmetry decreases from a large value A ≃ 1.6 at (7,150) to a smaller one A ≃ 0.6

at (5,250), while concurrently the entropy increases from Iµ < 0.5 at (7,150) to

Iµ > 0.8 at (5,250). As Fig.4.3 indicates, at (7,150) latching sequences are distinct

but very short, and few entries are filled in the transition matrix: generally either

Mµν = 0 or Mνµ = 0, so that asymmetry is high and entropy relatively low. This

holds irrespective of the number of sequences that are averaged over. The opposite

happens at (5,250), where many transitions are observed, and in filling the transi-

tion matrix they approach the random limit. The point with the highest Q-value,

(6,200), is characterized by intermediate values of asymmetry and entropy which,

we have previously observed, may be seen as a signature of complex dynamics [55].
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Extending the range upwards, it seems as if the asymmetry, with threshold 0.5,

were to eventually increase again, reaching its maximum A = 2 at (3,350), with a

decreasing entropy, vanishing at the same point (3,350). These left branches are,

however, dependent on the threshold values used, as Fig.4.4 shows, and do not imply

that transitions become more deterministic, because in this region there are simply

fewer and fewer distinct transitions, discernible above the noise (Fig.4.3). The left

branches merely reflect the increasing arbitrariness with which one can identify

significant correlations with memory states in the rambling dynamics observed at

higher storage loads.
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Figure 4.5: Latching quality Q(S, p) with increasing local feedback, w =0,37, 0.55,

0.8, and 1.0 in the slowly adapting regime. Randomly correlated patterns are used,

with C = 150 as in Fig.4.2a.

In Fig.4.5 we see that the effect of the local feedback term, w, is first to enable

latching sequences of reasonable quality, and then to also shift the latching band to

higher values of S, effectively pushing this behaviour away from the storage capacity

curve representing the retrieval capability of the Potts associative network. Hence, if

one were to regard S as a structural parameter of the network, and w as a parameter

that can be tuned, there is an optimal range of w values which allows good quality

latching for higher storage. This argument has to be revised, however, by considering

also the threshold U , since increasing w can be shown to be functionally equivalent,

in terms of storage capacity, to decreasing U [24]. Also for U , in fact, one can find

an optimal range for associative retrieval to occur, in the simple Potts network with

no adaptation and with w = 0 [20]. This near equivalence between U and −w does

not hold anymore in the fast adapting regime, to which we turn next.

4.2 Fast adapting regime

We characterize the fast adapting regime by the alternative ordering of time

scales τ3 < τ1 ≪ τ2, such that the mean activity in each Potts unit is rapidly regulated

by fast inhibition, at the time scale τ3. (2.6) stipulates that ∑
S
k=1 σ

k
i (t), the total

activity of each unit, is followed almost immediately, or more precisely at speed τ−13 ,

by the generic threshold θ0i (t). Extensive simulations, with the same parameters as

for the slowly adapting regime, except for w = 1.37, τ1 = 20, τ2 = 200 and τ3 = 10,

show that, similarly to the slowly adapting regime, there are latching bands in the

Q(S, p) and Q(C,p) planes, see Fig.4.6. With these parameters, in particular the

larger value chosen for the feedback term w, the bands occupy a similar position as
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Figure 4.6: Phase space for Q(S, p) in (a) and Q(C,p) in (b) with randomly corre-

lated patterns in the fast adapting regime. The parameters are identical to those in

the slowly adapting regime, with the exception of w = 1.37, τ1 = 20, τ2 = 200, τ3 = 10.

The red spots in (a) mark, again, the parameter values used in the Figures below.

in the slowly adapting regime. Again, they appear to vanish below certain values of

S and C, more precisely around S ∼ 3, p ∼ 120 in Fig.4.6a and around C ∼ 50, p ∼ 90

in Fig.4.6b, and to scale subquadratically in S and sublinearly in C. The band in

the S − p plane is again confined by the storage capacity (solid cyan curve) and by

the onset of (finite) latching (dashed curve). The storage capacity curve, which is

independent of threshold adaptation, follows the same (4.4).
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Figure 4.7: Latching behaviour for (S, p) equal to, respectively, (5,350), (6,300), and

(7,250) in Fig.4.6a.

Examples of latching behaviour outside and inside the band are presented in

Fig.4.7, at the same values for S but shifted by ∆p = 100, i.e. at the “red” points

(5,350), (6,300), and (7,250) in the S − p plane. Again, we see from Fig.4.6a that

(5,350) lies just above the band, while (6,300) is right on the centre. To the right

of the band, e.g. at (7,250), the transitions are distinct but latching dies out very

soon, while on the left, e.g. at (5,350), the progressively reduced overlaps are a
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manifestation of increasingly noisy retrieval dynamics. In all three examples we

observe that latching steps proceed slowly, even slower than the doubled time scale

τ2 = 200 would have led to predict. This appears to be because often a significant

time elapses between the decay of the overlap of the network with one pattern and

the emergence of a new one.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

(4,400) (5,350) (6,300) (7,250) (8,200)

A

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(4,400) (5,350) (6,300) (7,250) (8,200)

I
µ

(a) (b)

Figure 4.8: (a) Asymmetry A of the transition matrix and (b) Shannon’s information

entropy, Iµ along the (4,400)−(5,350)−(6,300)−(7,250)−(8,200) parameter series from

Fig.4.6a, using only a threshold 0.5 for the overlaps before and after each transition.

Fig.4.8 shows the asymmetry and entropy measures, A and Iµ, along the points

(4,400) − (5,350) − (6,300) − (7,250) − (8,200),

in Fig.4.6a, where, again, we have chosen a series shifted by ∆p = 100 upwards in

order to centre it better on the high quality latching band. Only an overlap threshold

of 0.5 is considered. What one can see, in contrast with the slowly adapting regime,

is that now the two measures are not quite complementary. The point (6,300) that

lies inside the band, very much at its quality peak, shows again an intermediate

value for the asymmetry, but the highest value, given the overlap threshold, for the

entropy. The discrepancy may be ascribed to the different prevailing type of latching

transition observed in the fast adapting regime, Fig.4.7. As discussed in [21], in a

Potts network latching transitions with a high cross-over, which can only occur

between memory patterns with a certain degree of correlation, can be distinguished

from those with a vanishing cross-over, which are much more random. In the fast

adapting regime, as indicated by the examples in Fig.4.7, all transitions tend to be

of the latter type. A more careful analysis indicates, in fact, that they are quasi-

random, in that they avoid a memory pattern in which largely the same Potts units

are active as in the preceding pattern. In fact, the value of the entropy at (6,300)

implies that on average from each of the 300 memory patterns there are transitions to

at least 190 other patterns (to 190 if they were equiprobable, in practice many more);

therefore only the few patterns which happen to be more (spatially) correlated are

avoided.

Towards the left, the curves do not vary much depending on the threshold chosen
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for the overlaps, but the asymmetry eventually becomes maximal and the entropy

vanishes simply because sequences of robustly retrieved patterns do not last long,

so in this particular case it would take more than 1000 sequences to accumulate

sufficient statistics.
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Figure 4.9: Latching quality Q(S, p) with increasing local feedback, w =1.33, 1.37,

1.41, and 1.45 in the fast adapting regime. Randomly correlated patterns are used,

with C = 150 as in Fig.4.6a.

The effects of increasing the w term in the fast adapting regime are shown in

Fig.4.9, where one notices two main features. First, there is heightened sensitivity

to the exact value of w, so that relatively close data points at w =1.33, 1.37, 1.41,

and 1.45 yield rather different pictures. Second, although again increasing w shifts

the latching band rightward, by far the main effect is a widening of the band itself.

This is because in the presence of rapid feedback inhibition a larger w term ceases to

be functionally similar to a lower threshold, which in the slowly adapting regime was

leading in turn to noisier dynamics and eventually indiscernible transitions. In the

fast adapting regime, the increased positive feedback can be rapidly compensated by

inhibitory feedback, so that in the high-storage region overlaps remain large, until

they are suppressed by storage capacity constraints (the cyan curve, which remains

at approximately the same distance from the larger and larger latching band).

We now turn to more explicit comparison of the transition dynamics in two

regimes.

4.3 Comparison of the two regimes

To look more closely at latching dynamics in the slowly and fast adapting

regimes, we take the following points from Figs.4.2a, 4.6a, which allow us to cut

through the bands at two different storage levels

⎧⎪⎪
⎨
⎪⎪⎩

p = 200 S = (4,5,6,7)

p = 400 S = (6,7,8,9)
(4.7)

Fig.4.10 shows in different colors the overlaps of the state of the network with the

global patterns, for sample sequences along the points (4.7), in the slowly adapting

regime. For both p = 200 and 400, latching length is observed to decrease with S,

unlike the discrimination between patterns, as measured by d12, in agreement with

Fig.4.1. Note that the two rows in the figure are similar, indicating that the shift

∆p = 200 is approximately compensated by the rightward shift ∆S = 2.
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Figure 4.10: Latching behaviour in the slowly adapting regime. A sample of points

(4.7) from Fig.4.2a.
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Figure 4.11: Latching behaviour in the fast adapting regime. A sample of points

(4.7) from Fig.4.6a.
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The fast adapting regime shows the same trends, again one sees in Fig.4.11

the approximate compensation between the two shifts ∆p = 200 and ∆S = 2, but

latching appears in general less noisy.

The main difference between the two regimes, however, is in the distribution of

crossover values, those when the network has equal overlap with the preceding and

the following pattern: their distribution (PDF, or probability density function) is

shown in Figs.4.12 and 4.13.
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Figure 4.12: Probability density function (PDF) of crossover values in the slowly

adapting regime.

We see that in the fast adapting regime most transitions occur at very low

crossover, i.e. the correlation with the preceding memory has to decay almost to

zero before the next memory pattern can be activated. Only in regions of the (S, p)

plane where latching sequences are very short, a few transitions only, we begin to

see a small fraction of them with crossover values above 0.2. In most cases, the

inhibitory feedback conveyed by the variable θ0i is so fast as not to allow transitions

to be carried through by positive correlations, i.e. by the subset of Potts units

which are in the same active state in the preceding and successive pattern. The

choice of the next pattern is not completely random, as indicated by the relative

entropy values still below unity, but is determined essentially by negative selection,

as mentioned above: the next pattern tends to have few active Potts units that

coincide with those active in the preceding pattern.

In the slowly adapting regime, instead, due to the slow variation of the non-

specific threshold, active Potts units can remain active, but they are encouraged by

the variables θki to switch between active states if they have been in the same for too
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Figure 4.13: Probability density function (PDF) of crossover values in the fast

adapting regime.

long. This can produce, particularly in the center of the latching band, sequences

of patterns succeeding each other at high crossover, as shown by the distribution in

Fig.4.12c. Even when latching is very noisy and approaches randomness, as in panels

Fig.4.12a,e, crossover values are consistently above 0.2, indicating a preference for

patterns insisting on the same set of active Potts units, unlike the fast adapting

regime. Finally, when the number of states S is too large or, equivalently, that

of patterns p too low, we observe some transitions with minimal crossover and a

majority with very large crossover, as if occurring only with those patterns that

were already partially retrieved when the network had still the largest overlap with

the preceding pattern; but the main observation is that there are very few transitions

at all, so that to plot a probability density distribution we need to use wide bins, in

panels Fig.4.12d,h (and in Fig.4.13d).

This difference between the two regimes is confirmed by an analysis of the cor-

relations between successive patterns in latching sequences. In the Potts network,

at least two types of spatial correlation between patterns are relevant: how many

active Potts units the two patterns share, and how many of these units are active

and in the same state. We quantify them with C1, the fraction of the units active

in one pattern that are active also in the other, and in the same state; and with C2,

the fraction that are also active, but in a different state. In a large set of randomly

determined patterns, the mean values are ⟨C1⟩ = a/S and ⟨C2⟩ = a(S − 1)/S. The

full distribution, among all pairs, is scattered around these mean values. But do

transitions occur between any pair of patterns?
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Figure 4.14: Scatterplots of the fractions C1 and C2 of Potts units active in one

pattern that are active also in another, and in the same state or, respectively, in

another active state. The panels show the full distribution between any pattern

pair, in the slowly (a) and fast adapting (b) regimes, in blue; and the distribution

between successive patterns in latching transitions, in red. The blue distribution for

the fast adapting regime (for which a = 0.25, S = 6, p = 300 and w = 1.32) is similar

to the one for the slowly adapting regime (for which again a = 0.25, S = 6, but

p = 200 and w = 0.65), except that it is slightly wider, because of the higher storage

load; while the red distributions are markedly different. Vertical lines indicate mean

values.
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Fig.4.14 shows that relative to the full distribution, in blue, transitions tend

to occur, in the slowly adapting regime on the left, only between patterns with

C1 above and C2 below (or at most around) their average values. Thus when the

network has retrieved a memory representation it looks for correlated ones, as it

were, where to jump. In the fast adapting regime this is not the case: transitions

are almost random, except there appears to be a slight tendency to avoid those with

C1 well above its mean value. Note that the values of p and w are different in the

two panels, and are chosen so as to be in roughly equivalent positions within the

respective latching bands.

The analysis of the crossover points, therefore, affords insight into the rather

different transition dynamics prevailing in the fast and slowly adapting regimes, in

particular in the center of their latching bands; suggesting that in a more realistic

cortical model, which combines both types of activity regulation, there should still be

a significant component of ‘slow adaptation’ for interesting sequences of correlated

patterns to emerge. The preceding simulations, however, were all carried out with

randomly correlated patterns, in which the occasional high or low correlation of a

pair is merely the result of a statistical fluctuation. Does the insight carry over to

a more stuctured model of the correlations among memory patterns? This is what

we ask next.

4.4 Analysis with correlated patterns

Correlated patterns were generated according to the algorithm mentioned by [8]

and discussed in detail in [57]. The multi-parent pattern generation algorithm works

in three stages. In the first step, a total set of Π random patterns are generated to

act as parents. In the second step, each of the total set of parents are assigned to

ppar randomly chosen children. Then a ”child” pattern is generated: each pattern,

receiving the influence of its parents with a probability ap, aligns itself, unit by unit,

in the direction of the largest field. In the third and final step, a fraction a of the

units with the highest fields is set to become active. In this way, child patterns

with a sparsity a are generated. In addition, another parameter ζ can be defined,

according to which the field received by a child pattern is weighted with a factor

exp (−ζk) where the index k runs through all parents. This is meant to express a

non-homogeneous input from parents.

It is clear that such patterns however, cannot be considered as independent and

identically distributed, as in (2.9), because their activity is drawn from a common

pool of parents. In fact, they are correlated, in the sense that those children receiving

congruent input from a larger number of common parents will tend to be more

similar. All of these observations are studied in more detail in [57], and here we only

focus on how correlations affect the phase diagrams. In the following simulations,

the parameters pertaining to the patterns are ap = 0.4, Π = 100, ζ = 0.1 while ppar/p,

the probability that a pattern be influenced by a parent is kept constant to 0.277.

Simulations with correlated patterns were carried out across the same S − p and

C −p planes in phase space, in the slowly adapting regime, as shown in Fig.4.15. We

focused on the slowly adapting regime based on the results of the crossover anal-
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ysis. All other simulation parameters were kept at the values used with randomly

correlated patterns.
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Figure 4.15: Phase space, cut across the Q(S, p) plane in (a) and Q(C,p) in (b), with

correlated patterns in the slowly adapting regime. Red dots represent the quality

peaks in the the same planes, with randomly correlated patterns. The parameters

are C = 150 and S = 5, if kept fixed, and w = 0.8.

We see from the figure that the presence of non-random correlations among the

memory patterns, albeit weak, shifts the bands to the left and upward in phase

space, keeping approximately the dependence of the viable storage load p on S and

C, but at somewhat higher values. It is as if more memories could ‘fit’, if correlated,

into the same latching dynamics.
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Figure 4.16: Comparison of S − p phase spaces along p = 200 with random (red

dotted line) and correlated (blue dotted) patterns in the slow adapting regime.

Fig.4.16 shows the S − p plane cut along p = 200, to better compare the cases

with correlated (blue) and random (red) patterns. It is apparent that there is a
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leftward shift, in the case of correlated patterns, from the red curve applying to the

random case, but the dependence on S remains very similar.



Chapter 5

Trying to give latching

instructions

In the previous chapter, we have studied spontaneous latching dynamics. Al-

though the analysis was largely limited to the case of randomly correlated memory

patterns, we have seen in Fig.4.14 that, particularly along the critical line where

infinite latching arises and is of good quality, in the slowly adapting regime, it is

the (random) positive fluctuations in the degree of correlation between memory pat-

terns that determine which transitions occur. One may ask to what extent one may

superimpose on such spontaneous dynamics explicit instructions, that is, a list of

transitions that the network is instructed or encouraged to go through, by encoding

them in the connection weights. Following [39], in this chapter we introduce therefore

a hetero-associative additional component to the previously purely auto-associative

Hebbian weights, and we focus on how effectively are these instructed transitions,

encoded in the learning rule, followed during latching, and on how much these in-

structions alter the spontaneous behaviour of the network, i.e., the one determined

by the correlational structure of its memories.

5.1 Associative learning rule

The tensor connection between unit i in state k and unit j in state l is generalized

by adding a hetero-associative component of strength λ, to

Jklij =
cij

Ca(1 − a/S)

p

∑
µ=1

(δξµi ,k −
a

S
){(δξµj ,l −

a

S
) + λ

D

∑
d=1

(δξνdj ,l −
a

S
)}(1 − δk0)(1 − δl0),

(5.1)

where the λ term effectively guides or instructs each pattern in the direction of D

other patterns. At each stage in the latching sequence, the network may follow one

of the D instructions, or proceed of its own to a different transition (or the sequence

may stop)

We provide the network with a table in which each memory pattern ({ξµ∣µ=1,2,⋯,p})

is associated with its own set of D instructed patterns ({ξν ∣ν=1,2,⋯,D}) that are se-

lected randomly among the p that are stored auto-associatively.
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Figure 5.1: An example of latching sequence (1-5-3-7-⋯-15-⋯) and the correspond-

ing instructions ((4, 5, 7) to 1, (2, 3, 8) to 5, (9, 14, 15) to 3, ⋯). Instructed

transitions are denoted by dashed lines, while solid lines denote those, instructed or

not, occurring in the latching sequence.

An example of latching partially governed by instructions is shown in Fig.5.1.

A latching sequence 1-5-3-7-⋯-15-⋯ is indicated by solid lines while the patterns

hetero-associated to each pattern in the sequence are denoted by dashed lines. In

the example, patterns (4,5,7) are associated to pattern 1 and latching proceeds

towards pattern 5. For patterns 1, 5, 7, 15, dynamics flows along the associated

patterns. Only for pattern 3 spontaneous latching occurs.

It should be noted that the unambiguous identification of which patterns occur at

distinct stages in the sequence is only possible when latching is of sufficient quality.

If not, it may for example happen that an instructed transition does occur, but is

masked by a spontaneous transition to a different pattern, occurring simultaneously

and with slightly larger overlap. It is therefore appropriate to first assess the quality

of latching dynamics, in the presence of instructions.

5.2 The effect of hetero-associative instructions

on latching dynamics

As mentioned in previous chapters, the character of latching dynamics in a Potts

network may be quantified in terms of several different measures, including the

latching length, l, the difference between the two highest overlaps, d12, and the

crossover in overlap between two successive patterns, mcross [5, 21–23]. The quality

of latching, Q, combines the first two of these measures to give a visual impression

of where robust latching occurs in phase space.

We first address the question of what is the effect on latching behavior, in

terms of the above quantities, when hetero-associations supplement the original

auto-associative learning rule, with relative strength λ.

We keep the parameters N = 600, C = 90, p = 200, S = 7, a = 0.25, U = 0.1,

β = 12.5, w = 0.45, τ1 = 3.3, τ2 = 100.0 and τ3 = 106, corresponding to the slowly

adapting regime, throughout the chapter. Simulations are terminated after 6 ⋅ 105

updates and repeated over 1000 cued patterns. To see the influence of instructions

on latching, we focus on the D = 2 case, where each pattern is hetero-associated

with two other patterns at the learning stage.
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Figure 5.2: Retrieval dynamics with λ = 0, 0.1 and 0.3 in (a), (b) and (c). Numbers

indicate the patterns with the highest overlap that compose the retrieved sequence,

and those in red denote instructed patterns. In these examples, D = 2.
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Figure 5.3: (a) Phase space of Q(S, p) with hetero coupling strength λ = 0.0, 0.2

and 0.4. D = 2; (b) λ dependence of d12 (solid line) and l (dashed line), with S = 7

and p = 200. Red, green and blue stand for D = 1,2,3.
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We show examples of latching behavior with and without the λ term in Fig.5.2a,b,c.

Fig.5.2b shows that adding a small hetero-associative component to the connection

weights has the main effect of lengthening the latching sequence, which however

also becomes less distinct. In the next panel, with larger λ, retrieval quality has

deteriorated much further, and one begins to notice collective instabilities, or bursts

of nearly simultaneously retrieved patterns, that stand in marked contrast to the

relatively clean sequence of the purely spontaneous latching in Fig.5.2a.

Numbers on top of the largest overlaps comprise the sequence, and those in

red indicate instructed transitions. Even before a quantitative analysis, the panel

suggest that tripling the λ value does not succeed in eliminating spontaneous tran-

sitions. In fact, we show below that the opposite is the case.

The bright regions, or bands, where relatively high-Q latching occurs are shown,

for different values of λ (0.0, 0.2 and 0.4) in Fig.5.3a. The number of hetero-

associative instructions at each stage is still D = 2. As already discussed in the

previous chapter and [23], the area right to the band, with relatively large S and

small p, shows good quality retrieval, measured by relatively high d12 (and mcross),

but short latching length. Instead, in the area left to the band, with relatively small

S and large p, latching extends indefinitely but is very noisy, and the values of d12
and mcross become very low. The band decreases gradually in peak values as λ

grows, as illustrated in Fig.5.3a.

To afford a closer look at phase space, a point (S=7, p=200) is chosen and the

values of d12 (solid line) and l (dashed line) are shown as a function of λ for D = 1,2,3

(red, green, blue) in Fig.5.3b. For all three D values retrieval quality as measured

by d12 gradually deteriorates, while latching duration rapidly reaches the length of

the simulations, with increasing λ. As a function of D, the λ value offering the

best compromise between d12 and l shifts to the left with more instructed options,

indicating that in the large D limit only very gentle instructions (small λ values)

can be effective.

We can interpret these observations in following way. For a given value of D, a

strong hetero-associative coupling λ enhances the network tendency to latch, result-

ing in prolonged sequences, but it also disrupts auto-associative retrieval, making

the process noisier, and d12 lower. These effects are amplified for larger D values,

since it becomes easier to latch in one of many instructed directions, but noise is

also larger and it becomes difficult to retrieve any clean pattern. As a result, λ and

D produce similar effects, in the sense that they both degrade latching quality while

increasing latching length.

5.3 Instructed versus spontaneous latching tran-

sitions

How often does the Potts network follow the instructions it is given?

To measure the fraction of transitions that comply with the instructions given

at the learning stage, we introduce a quantity f as

f =
Tinstruct
Ttot

, (5.2)
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where Tinstruct is the number of transitions, i.e. pairs of successively retrieved pat-

terns, with overlap above 0.5, that follow the instructions, and Ttot is the total

number of pairs of successive patterns in the latching sequence. f is 1 if the network

completely follows the instructions it is given, and 0 if it never does.

For convenience, we introduce some abbreviations; FP denotes a pair of patterns

that follows the instructions, SP a spontaneous transition, LP a generic latching

pair, spontaneous or instructed, and AP any possible pair, whether occurring in a

latching sequence or not.

Simulations are run with the same parameters as in the previous section.
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Figure 5.4: λ dependence of f for D = 1,2,3 (red, green, blue).

The fraction of FPs, f , is shown for D = 1,2,3 (red, green, blue) in Fig.5.4.

From the figure we see that the network initially follows the instructions to an

extent proportional to λ, but it quickly reaches a maximum degree of compliance,

around λ = 0.15, at values f > 0.5 (which increase mildly with D). For larger values

of λ, the compliance f drops, al the more rapidly the larger is D.

This may be because the network is effectively accompanied towards an in-

structed pattern only with a gentle fillip, i.e., at small enough λ, whereas larger

values of λ push the network with a shove that perhaps drives it to the instructed

pattern, but then often also past it and onward to an immediate further transition,

that steps beyond the instructed path. For larger values of D, the concurrent shove

in several directions accelerates the decrease in compliance f .
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Figure 5.6: Cumulative density of pattern pairs (AP in blue, FP in green, SP in

red) for increasing values of correlation, as measured by C1 and C2. Solid lines with

circular dots are for C1 and dashed lines with cross dots are for C2. λ = 0.1, S = 7

and p = 200.

The correlations between latching pairs in the absence of the hetero-associative

term are shown in Fig.5.5. C1 and C2 are the fractions of units that are active in the

same (different) states in the two patterns of a pair. As discussed in [5], [23], latching

occurs mostly for positively correlated pattern pairs, i.e., when C1 is larger than its

mean value, while C2 is smaller. Indeed, in the scatterplot LPs (red dots) are printed

on top of APs (blue dots) around the bottom right portion of the distribution of the

latter in the C1 −C2 plane. The vertical and horizontal lines which cross the figure

represent ⟨C1⟩ ≡ a/S and ⟨C2⟩ ≡ a(S − 1)/S, the average values of C1 and C2.

As soon as we introduce the λ coupling term, the group of red dots begins to

diffuse towards the centre of the blue distribution, but in order to understand the

change we need to separate FPs from SPs, among the full set of LPs. In Fig.5.6, the

cumulative density of APs, FPs and SPs (in blue, green and red) are shown with

respect to C1 (solid lines with circular dots) and C2 (dashed lines with cross dots).

λ = 0.1, S = 7, p = 200 and both D = 2 and D = 10 cases are considered. The number

of APs, FPs and SPs are of course normalized by their own total numbers in the

latching sequence.

In Fig.5.6a, for D = 2, there is a clear separation of FPs and SPs from APs along

both C1 and C2 axes. Moreover, we see that SP (red) is distributed towards larger

C1 and lower C2 values, as already shown in Fig.5.5. FPs (green) are closer to APs

(blue) in their scatter of correlation values, but still their cumulative density does

not coincide with theirs. This is because at D = 2 there two options to follow at each

stage and, even though the instructions are imparted at random, when the network

does follow one of the two it tends to choose one with the correlations that more
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resemble those of SPs. The separation between SPs and APs is less marked when D

is high (D = 10 in Fig.5.6b), because at fixed λ increasing D increases the noise, and

spontaneous transitions tend to occur more randomly; but even more imperceptible

is the separation between SPs and FPs since, among the many options, the network

apparently picks the instruction that moves it in a direction it would take anyway,

spontaneously.



Conclusion

In the thesis, we studied the Potts associative memory network, a model for

semantic memory storage in the cortex and possibly for recursive dynamics.

After two introductory chapters, in chapter 3 we elaborated on the correspon-

dence between a multi-modular neural network and a coarse grained Potts network,

by grounding the Hamiltonian of the Potts model in the multi-modular one. Units

are taken to be threshold-linear, in the multi-modular model, and they are fully

connected within a module, with Hebbian synaptic weights. Sparse connectivity

links units that belong to different modules, via synapses that in the cortex impinge

primarily on the apical dendrites, after their axons have travelled through the white

matter. We related Potts states to the overlap or correlation between the activity

state in a module and the local memory patterns, i.e., to weighted combinations of

the activity of its threshold-linear units. The long range interactions between the

modules then roughly correspond, after suitable assumptions about inhibition, to

the tensorial couplings between Potts units in the Potts Hamiltonian. It becomes

apparent how the w-term, which was initially introduced by [5] to model positive

state-specific feedback on Potts units, arises from the short range interactions of

the multi-modular Hamiltonian. Keeping the w-term in the Potts Hamiltonian, we

applied the replica method to derive analytically the storage capacity for the fully

connected Potts model. A simplified derivation was applied also to the highly diluted

connectivity network, while the case with intermediate connectivity was studied by

a self-consistent signal-to-noise analysis. The intermediate results smoothly inter-

polate the limit cases of fully and high diluted networks, but the two limit cases

themselves are in fact very similar in capacity, if measured by α ≡ p/cm, in the

sparse coding limit a → 0, a limit which is approached very rapidly in the Potts

model, because the relevant parameter is in fact ã ≡ a/S. The effect of the w-term

is effectively, in the vicinity of the memory states, reduced to altering the threshold,

which leads to the storage capacity being suppressed by this term, if the threshold

was close to its optimal value, to a more pronounced extent in the sparse coding

regime. If one assumes that the threshold is set close to its optimal value after tak-

ing the feedback term into account, the value w becomes irrelevant for the storage

capacity, while it still affects network dynamics, as briefly mentioned in [23] and

chapter 4. Future studies are needed to more thoroughly characterize the dynam-

ical properties of the Potts network, as they are modulated by the strength of the

w-term.

In chapter 4 we have found the region, in the Potts network phase space spanned

by the number of Potts states S, the number of connections per unit C and the stor-

age load p, where latching dynamics occur, and we have described their character,
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comparing and contrasting the slowly and fast adapting regimes. In relation to [8],

where the possibility of such a latching region was pointed out on the basis of lim-

ited simulations, we have now a firmer basis to extrapolate to regions of parameter

space of relevance to the human cortex, possibly a step toward quantitatively study-

ing human specific capacities, including creative behaviour. A common hallmark

in both regimes is that good quality latching occupies a band which scales almost

quadratically in the p−S plane, while it is sublinear in the p−C plane. These bands

are bounded by the storage capacity line, above, and by the boundary between no

latching and finite latching, below. If, as discussed in the previous chapter, we were

to take C ≈ 102 and S ≈ 102 as the orders of magnitude of interest for the human

brain, we would conclude that the relevant storage load, or semantic depth, is in the

region p ≈ 105, in both regimes. At the center of the band in the slowly adapting

regime, asymmetry and entropy take intermediate values, pointing at maximally

complex and potentially useful dynamics, intermediate between the deterministic

and the random extremes. High crossover values indicate that many transitions

occur between highly correlated patterns. Using correlated patterns shifts the posi-

tion of the band in phase space, but preserving the features observed with random

patterns, still in the slowly adapting regime. In the fast adapting regime, instead,

in the center of the band, which can be made wider and more robust, the entropy is

higher, and correspondingly only low crossover transitions are observed, indicating

that the network latches most of the time from one pattern to any other among

the many with which it is weakly or anti-correlated, avoiding only those few with

which it is highly correlated. Therefore, we can conclude that the fast adapting

regime, modelling rapid inhibitory feedback, offers a robust framework for latching

dynamics, but of an essentially random, not very useful nature; whereas in the slowly

adapting regime, modelling slow inhibition or local fatigue, correlations can drive

latching transitions, potentially enabling semantic content in a stream of thoughts

or linguistic productions, but with fragile dynamics, living at the very edge between

memory overload and sequence termination because of the inability of the network

to jump forward. This suggests the opportunity of considering models that inte-

grate both fast and slowly adapting dynamics in their non-specific thresholds, so

as to combine the useful features of both regimes. In the end, we acknowledge the

inherent limitation of considering a simple homogeneous Potts network, with no dif-

ferentiation among its units and no internal structure. In order to make contact with

cognitive processes, of any kind, this limitation has to be overcome, as perhaps at-

tempted, with one first step among many possible ones, by arranging Potts units on

a ring [84]. Nevertheless, even in its crudest form the Potts network with its latching

dynamics can be used to explore e.g. novel theories as to the evolutionary origin

of complex cognition [85]. It establishes a quantitative framework to understand

phase transitions [5], complementary to the perspective offered by other modelling

approaches to sequence generation in cortical networks [86]. At the most abstract

level, it can be considered an implementation of a fuzzy logic system [87, 88], but

with the critical advantage that its parameters can eventually be related to cortical

parameters.

In chapter 5, finally, we have assessed the possibility of adding to the spontaneous

dynamics expressed by the Potts network considered in previous chapters, a set of
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specific instructions, i.e., transitions that the network is encouraged to take when

it is in or near one of its memory states. The instructions are encoded, following a

suggestion by Kanter and Sompolinsky, in a hetero-associative term parametrized

by a factor λ. Another important parameter is the number of instructed transitions

per memory pattern, D. The main conclusion of the study is that combining what

is effectively a supervised learning of transitions with the spontaneous expression

of latching sequences works only to a limited extent. As either λ or D grow in

value, latching quality deteriorates, and in fact large values of either parameter end

up adding noise to the dynamics. Further, the network follows the instructions

most of the time only over a λ range that narrows down around λ = 0.15 as D

increases, while the transitions are increasingly indistinct. The ultimate reason for

the difficulty of imparting instructions, in the model, is that these are arbitrary,

while latching dynamics in the Potts network, especially in the critical band studied

above, in the slowly adaptive regime, favors transitions between correlated pairs of

patterns. If D is large, the network can choose among many options the ones that

are more correlated to its current state, but even then the presence of all the other

options, with a sufficient λ factor, generates noise.

In conclusion, the Potts network offers an interesting simple model of com-

plex spontaneous dynamical behaviour, that it is difficult to harness to externally-

determined goals via supervised learning. To explore the capability of the model to

approach concrete problems where latching dynamics may be relevant, it is critical

of course to include structure in the so far unstructured homogeneous network, and

to allow the dynamics to harmoniously reflect such structure, whether explicit or

implicit, without attempting to force it to follow a prescribed course.



Appendix A

Generation of correlated patterns

In this appendix we sketch one way of generating correlated patterns and for

more details we refer to [57].

A conventional way of generating the correlated patterns is mentioned in [89] by

Gutfreund.

Random assortments of patterns which are called parents are taken following

probability distribution

P (ξπi ) = aδ(ξ
π
i − 1) + (1 − a)δ(ξπi ), (A.1)

where a is sparsity of the pattern.

A “child” pattern µ is descended from a parent π following the distribution.

P (ξπµi ) = {a + b (ξπi − a)} δ(ξ
πµ
i − 1) + {1 − a − b (ξπi − a)} δ(ξ

πµ
i ), (A.2)

where b takes the value between 0 and 1 and measures kinds of influence to be born

out from their single parent. For instance, children patterns become randomly cor-

related with each other regardless of their parent when b = 0, but they are correlated

in a same degree when b = 1. Probability distributions above are identical for any

unit i, we drop the index for convenience.

The average activity of parent and child patterns is computed as

⟨ξπ⟩ = a,

⟨ξπµ⟩ = a.

Children have more similarity to their parent than to other parents.

⟨ξπµξπ
′µ⟩ = {

a2 + ba − ba2 ∶ π = π′

a2 ∶ π ≠ π′.

The correlation between children from different parents reads

⟨ξπµξπ
′µ′⟩ = {

a2 + a(1 − a)b2 ∶ π = π′

a2 ∶ π ≠ π′.
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“Children” descended from a same “parent” have a higher correlation than they

have when “children” descend from different “parents’,’ and this is the main aspect

we would like to point to.

⟨ξπµξπ
′µ′⟩ − ⟨ξπµξπµ

′

⟩ = ab2(1 − a).

It is instructive to consider an example. In Fig.(A.1), three nodes (children) x,

y, z at the same level of the hierarchy satisfy the ultrametric inequality d(x, z) ≤

max(d(x, y), d(y, z)). d refers to the distance to the nearest common forefather.

When the three nodes are altogether in the same branch or all in branches different

from each other, they become equidistant from one another. The situation in which

two belong to the same branch and the third to the other yields always an isoscles

triangle with two long sides (see A.2).

(a) (b) (c)

Figure A.1: Diagrammatic view of correlated parent pattern generation from single

parent.

Figure A.2: Correlation distances between children generated by single parent pat-

tern generation algorithm.

This algorithm to generate correlated patterns by single parent hierarchy seems

simple and insightful. However, in reality it is likely to happen that there are cases

with two short sides and a long side which in principle can not be realized.

For example, in Fig.A.3, “whale” is correlated to “tiger” more than “shark”, but

in fact, it has loosely speaking, similar correlation with both “tiger” and “shark”,

which is the typical case that can not be resolved within this frame of algorithm.

One of the solution is to have several randomly chosen parents contributing to each

pattern with a certain weight, as suggested by Treves ( [8]). What is expected is to

have larger correlations between patterns sharing more parents, reflecting what is

semantically relevant between similar concepts.
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Figure A.3: Example of single parent pattern generation algorithm.

A new algorithm of multi parent pattern generation is proposed. Factors Π

which are intended to be the parents for the correlated patterns are generated as

the random subsets of patterns. “Children” patterns are generated from the factors.

Each child pattern listens instructions from multiple factors with some noise, to

eventually decide to align itself in the direction to which the factor with the largest

field points, keeping that a fraction a of the units in a given pattern are set to be

active.

Consider the simplest case with ζ = 0 and S = 1. We define the occupation

number nf as the number of parents acting on each child. The probability that a

child pattern is assigned to a single parent follows a Bernoulli trial with probability
pfact
p . Therefore, the probability that a given child pattern is generated from nf

parents out of Π reads

P (n̂fµ = nfµ) = B [nf ; Π,
pfact
p

] . (A.3)

apf is another parameter tuning the degree of correlation between children pat-

terns. apf ∼ 0 corresponds to the case in which children patterns are never affected

by the parents. Whereas apf ∼ 1 implies that all the parent patterns try to influence

each child pattern.

The probability distribution of the field h with nf becomes

P (h∣nf) = (1 − apf)
nf δ(h)+

nf

∑
k=1

k

∑
j=0

(−1)jnf !akpf (1 − apf)
nf−k

(nf − k)!(k − j)!j!(k − 1)!
(h−j)k−1θ(h−j). (A.4)

The first term implies the situation in which all the nf factors contribute zero

field with probability (1−apf)nf . The field of each unit in the child pattern is drawn

by this distribution.

A fraction a of the units in the pattern are set to be active. Units experiencing

the fields that satisfies h > hm are determined to be active.

P (h′ < hm∣nf) = 1 − a.
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For the child pattern µ, we define

P (ξµi = 1∣hµi ) = θ (h
µ
i − hm) . (A.5)

It is trivial to generalize the results to arbitrary S, in the same way. Having

obtained hm, we have

P (ξµik = 1∣hµik) = θ (h
µ
ik − hm) , (A.6)

where k denotes the active and inactive states of Potts unit. hµik follows the distri-

bution P (hik∣nk), where nk is the number of parent patterns acting on the state k

of pattern µ.



Appendix B

Derivation of the replica

symmetric free energy

In this appendix, we derive the replica symmetric free energy (3.33), starting

from

f = lim
n→0

fn = lim
n→0

⎧⎪⎪
⎨
⎪⎪⎩

a (1 − ã)

2n
∑
νγ

(mγ
ν)

2
+

α

2nβ
Tr ln [a (1 − ã) (1 − βãq)] +

αβã2

2n
∑
γλ

rγλqγλ

+
ã

n
[
α

2
+ S (U −

w (S − 1)

2S
)]∑

γγ

qγγ −
1

nβ
⟨ ln Tr{σγ} exp [βĤξ] ⟩

ξv

⎫⎪⎪
⎬
⎪⎪⎭

(B.1)

by using

mν
γ =m

qγλ =

⎧⎪⎪
⎨
⎪⎪⎩

q γ ≠ λ

q̃ γ = λ

rγλ =

⎧⎪⎪
⎨
⎪⎪⎩

r γ ≠ λ

r̃ γ = λ.

The terms in ( B.1) are evaluated as follows;

�

a(1−ã)
2n m2n = a(1−ã)

2 m2 ;

�
α

2nβ Tr ln [a (1 − ã) (1 − βãq)] ;

this matrix has n−1 eigenvalues of a (1 − ã) [1 − (q̃ − q)βã] and one eigenvalue

of a (1 − ã) [1 − βãq̃ − (n − 1)βãq]. With the definition C ≡ β (q̃ − q) and the

relation ln (1 + x) ∼ x for small x, it becomes

α

2nβ
Tr ln [a (1 − ã) (1 − βãq)] = +

α

2nβ
{(n − 1) ln [a (1 − ã) (1 − ãC)]

+ ln [a (1 − ã) [1 − βãq̃ − (n − 1)βãq]]}

= +
α

2nβ
{n ln [a (1 − ã) (1 − ãC)]

+ ln [1 −
nβãq

1 − ãC
]}

n→0
ÐÐ→ +

α

2β
[ln (a (1 − ã)) + ln (1 − ãC) −

βãq

(1 − ãC)
]
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� the third term

αβã2

2n
∑
γλ

rγλqγλ =
αβã2

2n

⎛

⎝
∑
γ=λ

rγλqγλ +∑
γ≠λ

rγλqγλ
⎞

⎠

=
αβã2

2n
(r̃q̃n + n (n − 1) rq)

n→0
ÐÐ→

αβã2

2
(r̃q̃ − rq) ;

�
ã
n [α2 + S (U −

w(S−1)
2S )]∑γγ qγγ = ãq̃ [

α
2 + S (U −

w(S−1)
2S )] ;

� the exponent of the Hamiltonian Ĥξ in the last term is expanded using the

Hubbard Stratonovich transform as

exp [Ĥξ] = exp [nmvξσ +
αβ

2S (1 − ã)
(nr̃ + n (n − 1) r)∑

k

Pkv
2
kσ]

= exp [nmvξσ +
αβa

2S2
n (r̃ − r) (1 − δσ0) −

αβn2r

2S (1 − ã)
∑
k

Pkv
2
kσ]

=∫ dzk exp
⎡
⎢
⎢
⎢
⎣
−
z2k
2
+ nmvξσ +

αβa

2S2
n (r̃ − r) (1 − δσ0) + n∑

k

√
αβPk

2S (1 − ã)
zkvkσ

⎤
⎥
⎥
⎥
⎦
,

and therefore

− 1
nβ

⟪ln Tr{σγ} exp [βĤξ]⟫ξv = −
1
β
⟪∫ Dz ln (1 +∑σ≠0 exp [βĤξ

σ])⟫.

Finally, we get the replica symmetric free energy

f =
a (1 − ã)

2
m2 +

α

2β
[ln (a (1 − ã)) + ln (1 − ãC) −

βãq

(1 − ãC)
] +

αβã2

2
(r̃q̃ − rq)

+ ãq̃ [
α

2
+ S (U −

w (S − 1)

2S
)] −

1

β
⟨∫ Dz ln(1 +∑

σ≠0
exp [βĤξ

σ]) ⟩ .

(B.2)
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Saddle point equations in limit

case

We consider (3.41)-(3.44) in the limit of ã≪ 1.

Using

∫ Dw = ∫
dw
√

2π
exp (−w2/2) = 1,

q ≈
1 − a

ã ∫

∞

x
DzφS(z)+∫

∞

x−y
DzφS(x+y)+(S−1)∫ Dw∫

∞

x
Dzφ(z−y)φ(S−1)(z).

Notice that φ(z) is like a Heaviside step function for real z values. Moreover,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(z) = (1 +Erf( z√
2
)) /2 = (1 + 1√

2π ∫
z/

√
2

0 exp (−t2/2)dt) /2

dφ = Dz

φS ∼ O(1).

The first term in q then becomes

1 − a

ã ∫

∞

x
DzφS(z) ≈

1 − a

ã ∫

∞

x
dφ(z) =

1 − a

ã
(1 − φ(x)) =

1 − a

ã
φ(−x)

and the second term is

∫

∞

x−y
DzφS(x + y) ≈ ∫

∞

x−y
dφ ≈ φ(y − x).

The last term can be neglected since it is much smaller than the first two terms.

Therefore, we get expressions for q and m

q =
1 − a

ã
φ(−x) + φ(y − x) (C.1)

and

m = ∫

∞

x−y
DzφS(z + y) ≈ 1 − φ(x − y) = φ(y − x). (C.2)

C
√
r is treated in the same way, as

C
√
r ≈

1
√
ã
{

1 − a

ã ∫

∞

x
Dzz ⋅ φS(z) + ∫

x−y
Dzz ⋅ φS(z + y) + (S − 1)∫

∞

x
Dzz ⋅ φ(z − y)φ(S − 1)} .
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The first term in curly bracket above is

1 − a

ã ∫

∞

x
Dzz⋅φS(z) ≈

1 − a

ã ∫

∞

x
Dz⋅z =

1 − a

ã ∫

∞

x

dz
√

2π
exp (−z2/2)⋅z =

1 − a
√

2πã
exp (−x2/2)

while for the second term,

∫
x−y

Dz ⋅ z =
1

√
2π
∫ dz exp (−z2/2) ⋅ z =

1
√

2π
exp (−(y − x)2/2). (C.3)

We finally get the expression for C
√
r

C
√
r ≈

1
√

2πã
{

1 − a

ã
exp (−x2/2) + exp−(y − x)2/2} . (C.4)



Appendix D

Self consistent signal to noise

analysis

There are p − 1 ≫ 1 terms in (D.1), so that the ansatz remains valid also when

taking one of these many contributions out.

∑
ν>1

vξνi ,km
ν
i = vξµi ,km

µ
i + ∑

ν≠1,µ
vξνi ,km

ν
i = vξµi ,km

µ
i + γ

k
i ⟨σ

k
i ⟩ +∑

n

vn,k ρ
n
i z

n
i , (D.1)

where γki and ρni are independent of µ. The contribution from the non-condensed

pattern µ ≠ 1 is assumed to be small, so that we can expand Gk
i to first order in

vξµi ,km
µ
i :

σlj = Gl[{vξ1j ,km
1
j +∑

n

vn,kρ
n
j z

n
j −U(1 − δk,0)}

S

k=0
]

+∑
n

vξµj ,nm
µ
j

∂Gl

∂yn
[{vξ1j ,km

1
i +∑

n

vn,kρ
n
j z

n
j −U(1 − δk,0)}] . (D.2)

Reinserting the expansion into the r.h.s of (3.53) we recognize a relation of the form

mµ
i = L

µ
i +∑

j

Kµ
ijm

µ
j (D.3)

where

Kµ
ij ≡

1

cma(1 − ã)
∑
l,n

cijvξµj ,lvξ
µ
j ,n

∂Gl
j

∂yn
,

Lµi ≡
1

cma(1 − ã)
∑
j

∑
l

cijvξµj ,lG
l
j .

The overlap mµ
i can be found by iterating (D.3),

mµ
i = L

µ
i +∑

j1

Lµj1{K
µ
ij1
+∑

j2

Kµ
ij2
Kµ
j2j1

+∑
j2

∑
j3

Kµ
ij2
Kµ
j2j3

Kµ
j3j1

+ ...} . (D.4)

Therefore, the noise term can be written explicitly as

∑
µ>1

vξµi ,km
µ
i = ∑

n

vn,k∑
µ>1

⎧⎪⎪
⎨
⎪⎪⎩

∑
j

∑
l

1

cma(1 − ã)
cijδξµi ,nvξ

µ
j ,l
Gl
j +

+ ∑
j1

∑
j

∑
l

1

cma(1 − ã)
cj1jδξµi ,nvξ

µ
j ,l
Gl
j

⎛

⎝
∑
l1,n1

1

cma(1 − ã)
cij1vξµj1 ,l1

vξµj1 ,n1

∂Gl1
j1

∂yn1
+ ...

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

.
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In order to obtain the expression for γki , in (D.1) we consider only the terms with

j = i and l = k, and take the average over the connectivity and the patterns:

γki =
α

S
λ⟨

1

S

1

N
∑
j1

∑
l1

∂Gl1
j1

∂yl1
+ ...⟩ (D.5)

=
α

S
λ{Ω/S + (Ω/S)2 + ...}

=
α

S
λ

Ω/S

1 −Ω/S

where we use the fact that cii = 0, α = p/cm, ⟨⋅⟩ indicates the average over all patterns

and where we have defined

Ω = ⟨
1

N
∑
j1

∑
l1

∂Gl1
j1

∂yl1
⟩ . (D.6)

By virtue of the statistical independence of units, the average over the non-condensed

patterns for the i ≠ j terms vanishes. From the variance of the noise term one reads

(ρni )
2 =

αPn
S(1 − ã)

q{1 + 2λΨ + λΨ2} , (D.7)

where

q = ⟨
1

Na
∑
j,l

(Gl
j)

2⟩ (D.8)

and

Ψ =
Ω/S

1 −Ω/S
. (D.9)

The mean field received by a unit is then

H
ξ
k = vξ,km +

α

S
λΨ(1 − δk,0) +∑

n

vn,kz
n

√
αPn

S(1 − ã)
q{1 + 2λΨ + λΨ2} − Ũ(1 − δk,0) .

(D.10)
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[12] Désiré Bollé, Patrick Dupont, and Jort van Mourik. Stability properties of potts

neural networks with biased patterns and low loading. Journal of Physics A:

Mathematical and General, 24(5):1065, 1991.
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