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NUT-like generalization of axisymmetric gravitational fields * 
C. Reina and A. Treves 

Istituto di Fisica dell'Universita di Milano. 20133 Milano. Italy 
(Received 5 October 1974) 

The complex potential formulation of the axisymmetric problem discussed by Ernst enables us to 
construct new solutions from a given one, by mUltiplying the corresponding potential by a unit 
complex number. This rotation introduces naturally the NUT parameter in the metric. The 
generalized Kerr, Weyl, and Tomimatsu-Sato solutions are explicity constructed. 

I. INTRODUCTION 

In 1963 Newman, Tamburino, and UntP found a family 
of solutions of the Einstein equations, which contains as 
a special case the Schwarzschild solution. The interest 
in the NUT fields is mainly mathematical, since the 
only member of the family which is flat at infinity is the 
Schwarzschild solution itself. 

A generalization of the Kerr field, analogous to that 
proposed by NUT, was obtained by Demianski and New­
man2 by means of a mathematical trick, involving a 
complex coordinate transformation. 

In this paper it is shown that the complex potential 
formalism introduced by Ernse leads naturally to the 
NUT and to the Demianski and Newman solutions, the 
NUT parameter being related to an arbitrary phase con­
stant in the Ernst potential ~o. The generalization can 
be extended to any axisymmetric solution, and in partic­
ular it is given here for the Tomimatsu-Sato field. 

II. NUT AND DEMIANSKI-NEWMAN FIELDS 

In canonical cylindric coordinates the most general 
axisymmetric electrovac line element reads4 

ds 2 = rl[e21' (dp2 + dz2) + p2 dq>2] - j(dt - w dq»\ (1) 

where the potentialsj, Y,w are functions of p, z. It was 
shown by Ernse that the potentials can be derived from 
a complex function ~o, satisfying the equation, 

(2) 

where 'V 2 is the flat space three-dimensional operator. 
The equations relating j, w, Y to ~o are 

~ -1 
/= Re ~oo + 1 ' 

Vw= (~o~;P-l)2 Im[(~ci -1)2nxV~o], 

where n is the azimuth direction. 

(3) 

(4 ) 

(5) 

(6) 

It was noted by Ernst5 that from a given solution ~o of 
Eqo (2), one can generate in a number of ways new solu­
tions, which, however, in general are not phySically 
meaningful. In particular we show that the transformation 
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(7) 

yields the NUT and Demianski-Newman fields for ~o 

corresponding to the Schwarzschild and Kerr solutions 
respectively. 

In prolate spheroidal coordinates (x, y) [p = k (x2 _ 1)1/2 
X (1 - y2)1 12; Z = kxy, k being a scale factor] the Kerr 
solution corresponds to 

~o=px+iqy, 

with p2 + q2 = 1. The transformation (7) together with 
Eqs. (3) and (4) gives 

-1-2 pcosO!x-qsinO!y+l (8) 
j - (px + 1)2 + q2y 2 + 2p (cos O! - l)x - 2q sinO!y' 

2 ~ sinay. (9) 
p 

Since Eqs. (5) and (6) are independent of O!, the potential 
y is unchanged by the transformation (7), and therefore, 

By the coordinate transformation 

x= (r - m )/k, Y= cos,,) 

the metric is mapped into the form 

ds2 = ~2 ~ (a COS'')2 -l): rlr2 + [r2 + (a cos,,) -l )21 
r - mr+a -l 

x (rl,'!2 + r2 - 2mr + a 2 
_l2 dcp2\ 

r2 _ 2mr + a2 cos2,,) _ l2 } 

_ (1 _ 2 mr + l (l - a cos,,!») 
r2 + (a cos,') - Z)2 

(10) 

2 

x [rlt _ (2a sin2,<J[mr+l(l-a cos,,)] _ 2l cos'))rlcpl 
r2 _ 2mr - F +a 2cos2,'} J ' 

where m, l» and a are related to p, q, O!, and k by 

k 2 = m 2 + l2 _a2 , 

p=k/(m2+F)1/2, q=a/(m2+l2)1 /", 

cosO! = m/(m2 + l2)1 12, sinO! = l/(m 2 + [Z)1 12. 

(11) 

The line element (11) coincides with the Demianski­
Newman uncharged metriC, which reduces to the usual 
Boyer and Lindquist form of the Kerr metric for l = 0 
and to the NUT generalization of the Schwarzschild 
metric for a = 0, 
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III. GENERALIZED WEYL AND TOMIMATSU-SATO 
FIELDS 

The transformation (7) can be applied to algebraically 
general fields as welL We consider the special family 
of Weyl solutions 

~o==[(X+1)6+(X_1)6]/[(x+1)6_(x-1)6], (12) 

which for 6 == 1 is the Schwarzschild solution and for 
6 == 2, 3, 4 are the static counterparts of the 
Tomimatsu-Sato solutions. 

Applying the transformation (7) and solving for the 
potentials /, w, Y, we have 

/== 2(X2 _ 1 )6j[(cosO! + 1)(x + 1)26 + (cosO! - 1)(x - 1 )26], (13) 

w == 2M sinO! y, (14) 

exp(2 Y)== (x2 _ 1 )62 /(x2 _ y2)62• 

For 6 == 1 this reduces to the NUT field. 

The Tomimatsu-Sato complex potential for 6 == 2 
reads6 

~o== (u + iv)/(m + in), 

where 

U==p2X4 +q2y4 -1, v == _ 2pqxy(x2 _y2), 

m ==2px(x2 -1), n== _ 2qy(1- y2). 

The rotation (7) yields 

~==[cos(J u-sinO! v+i(sinO! u+cOSO! v)]/(m+in) 

and therefore 

/==Ao/B, 

where 

B==Bo+ 2(cosO! -1)1) - 2 sinO! E, 

Bo== (u + m)2 + (v +n)2, 

1)==mu+nv, E==mv -nu. 

(Hereinafter a subscript 0 indicates the quantities 

(15) 

which are unchanged with respect to the Tomimatsu­
Sato case 0 ) The potential Y is that given by Tomimatsu­
Sato, 

exp(2yo) ==AoIp4(X2 - y2)4 0 

Equations (4) in prolate spheroidal coordinates yield 

o (1- y2) r. /, OE (1)) 
ox (w - cosO! wo)== -k ~ e(1 - cosO!) \1)oy - E oy 

(16) 
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. IB (1) ~\J + SinO! , 0ox-1) ox} , (17) 

where Wo reads 

Wo == - 2mq (1 ~ y2) {p3X(X2 _ 1)[2 (x4 _ 1) + (x3 + 3)(1 _ y2)] 
o 

+ p2(X2 _ 1)[ 4x2(X2 - 1) + (3x2 + 1)(1 - y2)] 

_q2(px+1)(1_ y2)3]}. (18) 

From Eqs. (16) and (17) it can be easily shown that w 
must be of the form, 

(1 _ 2) 
w == cosO! Wo +kQ+[2(cosO! -1)C + sinO! D] + h sinO! y, 

o 

(19) 

where C, D are polynomials of x, y and h is a constant 
independent of o!. The presence of the last term in Eq. 
(19) and the condition that it must reduce to the form 
(14) for q == 0 is sufficient to show that also this metric 
is not asymptotically flat. It does not seem therefore 
very interesting to work out the explicit form of w. 

IV. CONCLUSIONS 

We have shown that the Ernst formulation of the 
axisymmetric problem leads directly to the generaliza­
tions of Schwarzschild and Kerr fields given originally 
by NUT and Demianski and Newman. An advantage of 
this derivation is that it can be extended to algebraically 
general fields as the Weyl and Tomimatsu-Sato fields. 

It is obvious that the method can be applied also to 
electrovac solutions. In fact, by using the results of 
ErnsF it is clear that, multiplying ~o by a complex num­
ber with modulus different from 1, one obtains the 
charged NUT-like generalization of any given solution. 

*Work partially supported by Laboratorio di Fisica Cosmica 
e Tecnologie Relative del C. N.R., Milano. 
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