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ABSTRACT 

Some properties of accretion disks about Kerr naked singularities are deduced by studying 
circular orbits of test particles. It is found that for a¡M » 1 the inner radius of the disk and the 
corresponding energy increase with ö/M. For 1 < ajM < (32/27)1/2 there is a pathology related 
to the definition of positive and negative energy states. For a¡M = (32/27)1/2 the entire mass- 
energy of the test particle can be extracted. 
Subject headings: black holes — relativity — stars: accretion 

I. INTRODUCTION 

The occurrence of singularities is a common feature 
of many physical theories, and general relativity is no 
exception. In the case of black holes the singularity is 
surrounded by an event horizon, and in the region of 
spacetime external to this surface the physics is not 
directly affected by the pathologies connected with the 
singularity itself. However, solutions of the Einstein 
equations are known without horizons (naked singu- 
larities), and up to now no general argument has been 
given which definitely excludes their actual existence 
(cosmic censor, Penrose 1969). 

Although the basic characteristics of black holes 
have been clear since the late 1930s, astrophysical 
applications appeared only recently, when it was 
realized that accretion by a black hole in a binary 
system could be a powerful source of energy, possibly 
explaining the emission of some X-ray sources. In 
particular the interaction of the accretion disk with the 
hole must be treated in accordance with general 
relativity. For instance, one can deduce that the inner 
extension of an accretion disk around a static black 
hole must be r = 6GMjc2 since that is the radius of the 
last stable orbit, and by the same argument the shear 
stress is taken null at that radius (see, e.g., Pringle and 
Rees 1972; Shakura and Sunyaev 1973). 

It is therefore natural, although unconventional, to 
inquire if by the same methods applied to black holes 
it is possible to deduce the appearance of naked 
singularities interacting with an external medium. The 
problem is by no means simple to handle, even in 
principle, because of the existence of closed timelike 
curves which violate causality, as shown by Carter 
(1968). However, we shall neglect the astrophysical 
implication of this possibility, and limit ourselves to 
sketching the structure of disk accretion by examining 
the stable circular orbits of a test particle in a Kerr 
background. 

The study of equatorial orbits is a direct generaliza- 
tion of the black hole case. However, one finds that 
for singularities with angular momentum parameter a 

in the interval 1 < a¡M < (32/27)1/2 there is a region 
where positive and negative energy states are mixed 
and a classical interpretation of the energy of the test 
particle becomes inadequate. Another interesting 
feature is that the radius of the last stable orbit is an 
increasing function of a/M, and therefore one can 
derive that, for extreme naked singularities (a/M > 1), 
the energy produced in the disk becomes negligible. 

II. ORBITS 

Orbits in a Kerr manifold are easily studied since 
three constants of the motion can be derived: the 
angular momentum L, the total energy E, and the 
Carter constant Q (Carter 1968). The literature on 
orbits about black holes is extensive (e.g., Bardeen, 
Press, and Teukolsky 1972; Rees, Ruffini, and Wheeler 
1975, and references therein), and some contributions 
consider specifically the naked singularity case (De 
Felice 1974). We refer in particular to the paper by 
Bardeen, Press, and Teukolsky (1972), whose notation 
is followed here. 

The conditions giving circular orbits for a particle 
of mass P, which are the most relevant in the study of 
accretion disks, read 

p.er = 0, p*er = 0 , (1) 

where p is the four-momentum of the particle, p its 
derivative with respect to an affine parameter, and er 
is a unit vector in the radial direction for an observer 
at rest at infinity. The first of the conditions (1) is 
equivalent to saying that the observer does not see any 
radial momentum for the particle, and the second one 
ensures that the radial momentum will remain null 
during the whole history of the particle itself. 

Writing the equation p*p = —p2 in terms of the 
constants of motion, one gets the two equations 

nO = 0, (2) 
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Fig. 1.—Energy of a particle of mass /a = 1 in a circular orbit as a function of radial distance for different values of a/M. Note 
that for a/M = 1.03 there is a region of space where E~> E+. 

where 

and 

V=T2 - A[/jb2r2 + (L - aE)2], (4) 

T = E(r2 + a2) - La (5) 

for equatorial orbits. 
Boyer-Lindquist (1967) coordinates are used, A = 

r 2 — 2Mr + a2, and M is the mass and a is the density 
of angular momentum of the naked singularity. It is 
apparent that equations (2) and (3) are invariant under 
the exchange E->—E,L->—L. Therefore, one can 
generalize the solutions of the system (2), (3) given by 
Bardeen, Press, and Teukolsky (1972) by considering 
also negative energy states. The need for the general- 

ization will be clear in the following. We have then 

,, +/ r312 - 2Mr112 ± aM112 
L± If* r3/4(r3/2 _ 3Mr112 ± 2aM112)112 ’ ^ 

r +/ ±Mll2(r2 + 2aM1,2r112 + a2) 
L± ,lL ~ r3l\r312 - 3Mr112 ± 2aM112)112' ^ } 

(8) 

(9) 

E±~ =-E± + 

L±~ =—L±
+ 

The subscript plus or minus signs correspond to co- 
rotating or counterrotating particles at infinity. 

The condition for the existence of a circular orbit 
is that E and L be real; this is always satisfied by 
choosing the plus sign (i.e., corotating orbits) and 

Fig. 2.—Angular momentum of a particle of mass /x = 1 in a circular orbit for different values of a/M 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

9A
pJ

. 
. .

22
7.

 .
59

6R
 

598 REINA AND TREVES Vol. 227 

taking the naked singularity case. Counterrotating 
circular orbits do not exist for small values of r as in 
the black hole case. 

In Figures 1 and 2 we give the functions £'+:fc, L + + 

for various values of ajM. For a¡M < (32/27)1/2, E+ ± 

becomes null and there is a region where E+~ > E+ + . 
Note that in the special case a/M = 1 the functions E+ 

are discontinuous at r/M = 1 ; however, the dis- 
continuity is hidden from an external observer by the 
horizon. In fact, for a/M = 1 equation (6) reads 

E±+ (ri/2 T Mll2)(r ± M1/2r1/2 - M) , 

H - \r112 + Mll2\r3l\r112 ±2M112)112' 

to be compared with equation (2.14) of Bardeen, Press, 
and Teukolsky (1972) which is valid only for r/M > 1. 
It is apparent that the discontinuity at r/M = 1 equals 
2/V3. For any a/M, E+ is diverging for r = 0, and 
asymptotically increasing. The location of the minima 
and their values are given as a function of a/M in 
Figure 3. 

Equation (6) indicates that for a < (27/16)1/2 the 
angular momentum of the test particle changes sign 
before the last stable orbit is reached, which means 
that the corotating or counterrotating nature of a test 
particle should be defined at infinity. 

Photon circular orbits are possible only for values 
of r which make null the denominator of equation (6). 
For a/M < 1 this occurs for both rotating and counter- 
rotating orbits at a radius given by (Bardeen, Press, 
and Teukolsky 1972) 

r = rph = 2M{1 + [f cos"1 ( +a/M)]} . (10) 

For a/M > 1, one finds that photon orbits exist only 
in the counterrotating case and are located at 

r = rph = (aM1/2)2/3{[l + (1 - M2/a2)]1/3 

4* [1 — (1 — M2/a2]1/3}2 . (11) 

For a-> M, one has rph^4M; and for a/M^oo, 
r-+(2aM112)213. Therefore, for counterrotating orbits 
rph is a continuous function at a/M = 1. Note that 
within this approach it is impossible to examine the 
special case a/M = 1 for corotating orbits, since, as 
indicated above, function (6) is discontinuous at r = 1. 

The condition of stability of an orbit, V" < 0, gives 
for both signs of the energy 

where r is the radius of the orbit and the “marginal 
stability radius” rms turns out to be (Bardeen, Press, 
and Teukolsky 1972) 

rms = M[3 + Z2 + (3 - ZiXS + Zi + 2Z2)
1/2], 

Zi = 1 + (1 — a2/M2)1/3(l + a/M)1/3 + (1 - a/M)1/3, 

Z2 = (3a2/M2 + Zi2)1'2 . 

The values of rms and the corresponding values of is + * 
obtained from equation (6) are given in Figure 3 versus 
a/M. For a/M ~ oo, rmJM ~ 3ll2alM. The function 
rms is continuous at a/M = 1, while E++ and E+~ 
are discontinuous. The discontinuity derives from that 
described in equation (6a). 

HI. DISCUSSION 

A self-consistent model of disk accretion requires 
that the hydrodynamics equation including viscosity 
be solved on the background spacetime, with a suitable 
inner boundary condition (see, e.g., Novikov and 
Thorne 1973). 

On the other hand, as in the black hole case, the study 
of the orbits can help one understand the energetics of 
the disk even if this approach ignores the transfer of 
energy and angular momentum from the singularity to 
the disk itself, which is described by an inner boundary 

Fig. 3.—Marginal stability radius for different values of a/M. The corresponding positive and negative energies {dotted lines) 
are also reported. 
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condition that, at the present stage, is completely 
unknown. 

Since we are interested in the accretion problem, 
we postulate that at large radii there is a mechanism 
(e.g., viscous stress) which disperses energy, and 
transfers angular momentum outward and mass in- 
ward while keeping the flow on quasi-geodesic circular 
orbits. 

Let us now follow a test particle starting from a 
circular orbit at r » Af. Independent of ajM and for 
large values of r, the orbit shrinks and E and L decrease, 
until the last stable circular orbit is reached. This 
radius corresponds to the minimum of the curve shown 
in Figure 1. Within this radius circular orbits are 
unstable and lie on the maxima of the effective poten- 
tials. This radius and the energy of the last stable orbit 
increase as ajM increases (see Fig. 3), indicating that 
the disk becomes less extended and luminous. 

The energetics of the disk for a/m > 1 requires a 
detailed discussion. In fact, for ajm < (32/27)1/2 there 
is a region where the energy E+ becomes negative. 
This could suggest that one can extract more energy 
than the mass of the particle, as in a generalized ergo- 
sphere, at the expense of the background field. 

However, where £+ < 0 one has that E~ > 0, and 
therefore there is an ambiguity in the definition of the 
energy of the orbit. Moreover, the occurrence of 
regions of spacetime where E+~ > £’+ + poses serious 
problems of interpretation. In quantum theory the 

only physically meaningful states are those which 
satisfy the condition E > E+ or E > E~. Here we 
have an example where the two conditions are satisfied 
at the same time. Martellini and Treves (1977) have 
shown that the occurrence of such regions is strictly 
connected with the existence of causality-violating sets 
in the sense discussed by Carter (1968, 1978). Because 
of the existence of timelike closed geodesics, any 
distinction between particles and antiparticles becomes 
impossible. 

For a/m > (32/27)1/2 these pathologies are not 
present and the efficiency of energy extraction can be 
directly computed. Note that for a/M = (32/27)1/2 the 
entire mass of the particle is released. 

This discussion of the energetics refers only to an 
equatorial disk. It is possible that the largest energy 
release occurs within rms, or that everything is 
dominated by a spontaneous emission from the 
singularity itself. 

Of course, if there are astrophysical objects giving 
rise to exterior gravitational fields of the type discussed 
here, both the uncertainty of the inner boundary con- 
dition for the disk and the pathologies for a/m < 
(32/27)1/2 are possibly removed by the presence of the 
source of the field, but the external disk would still 
have the characteristics given here. 

We understand that Dr. F. De Felice is working on 
a subject similar to that treated here. 
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