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Abstract: We introduce the technically simple approach to the determination of the abrupt change of the unknown 

dispersion of the high-frequency fast-fluctuating Gaussian random process against white noise with an unknown 

spectral density. For this purpose, we determine new approximations of the decision statistics for various 

hypotheses, we carry out their maximization on unknown parameters, and we develop the block diagrams for the 

corresponding detector and measurer in the form of the comparatively simple single-channel units. For the 

analytical analysis of the performance of the synthesized algorithms, the asymptotically exact expressions for their 

characteristics, specifically - type I and type II error probabilities (when an abrupt change point is detected) and 

conditional biases and variances of the estimates (when measuring the parameters of the analyzed random 

process), are obtained by means of local Markov approximation method. We also illustrate a new procedure for 

determining the distribution law and the central moments of the estimate of the discontinuous parameter (abrupt 

change point), with an allowance of anomalous effects. The experimental testing of the presented theoretical 

results is implemented by the methods of statistical computer simulation. 

Keywords: Random process, abrupt change, maximum likelihood method, parametrical prior uncertainty, 

discontinuous parameter, local Markov approximation method, detection and estimation characteristics, statistical 

simulation. 

1. INTRODUCTION 

The problem of the statistical analysis of the abrupt change (i.e., instantaneous jumping) of the mean power of 

the random process is of a great importance in the fields of technical and medical diagnostics, the control 

theory, in data processing, etc. [1-3]. In certain publications, the statement of this problem is accompanied by 
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the assumption that the observable data realization has a normal distribution. As a rule, the additional 

restrictions are also imposed. Thus, in [1] it is presupposed that the processed samples are statistically 

independent, in [2, 3] the autoregressive models of the information process are mainly studied, etc. Besides, 

in many cases the synthesis of detection and estimation algorithms for the abrupt change is usually conducted 

in the conditions of complete prior certainty regarding spurious parameters of the analyzed random process 

and its random distortions. In the relative few papers on the statistical analysis of the abrupt change of 

Gaussian processes with unknown parameters, there are described comparatively complex iterative 

algorithms only operable in case of very high signal-to-noise ratios (SNRs) [1, etc.]. 

In the present study, we consider the problem of the analysis of the abrupt change in the power 

parameter of the random process, presupposing that its fluctuations are fast (strong condition) and that its 

spectral density is approximately uniform within the specified bandwidth (weak condition). We illustrate how 

to effectively overcome the parametrical prior uncertainty under arbitrary SNRs. We then suggest a 

technically simple approach to the determination of the moment of the stepwise change in the unknown 

dispersion of the band high-frequency Gaussian random process [4, 5]. That approach allows us to obtain the 

processing algorithms invariant to the average power value of the background noise with flat spectrum. 

Analytically studied information process can be presented as follows 

         ttt     0 . (1) 

In Eq. (1) the designations are:   0 t , if 0t , and   1 t , if 0t  – Heaviside function, 0  – the 

moment of possible stepwise change,  ,    – mean square deviations of the  t  under 0t  and 

0t , accordingly, and  t  – stationary centered Gaussian random process possessing spectral density 

  















.2  or  2  ,0

,22      ,1
G  (2) 

Here ϑ is the band center, and Ω is the bandwidth of the process  t . 

We believe that the process (1) is observed against additive Gaussian white noise  tn  with one-sided 

spectral density 0N . As a result, the mix 

      tnttx  ,  Tt ,0 , (3) 

can now be observed. The fluctuations of the process  t  are now considered as “fast”, so the following 

condition is satisfied 

 12minmin  T , (4) 

where  00min ,min  TT . With the observable realization (3), it is necessary to detect the stepwise 

change point and to estimate the parameters  210 , ,  ,   . 

2. DETECTION OF THE RANDOM PROCESS DISPERSION STEPWISE CHANGE 

For the solution of the problem of detection of the process  t  dispersion stepwise change, we separate three 

possible cases (three hypotheses): 1)  , i.e. jumping is absent ( 0H  hypothesis); 2)    ( 1H  
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hypothesis); 3)    ( 2H  hypothesis). Then, taking into account the condition (4), we present the initial 

process  t  (1) when implementing 0H , 1H , 2H  hypotheses in the form of 

0H :    tt 1 , 1H :         tttt 201   1  , 2H :        tttt 201   . 

Here  ti , 2,1i  are the stationary centered statistically independent Gaussian random processes 

with dispersions  20
2

ii d  and spectral densities     GG ii
2 , and id0  is the intensity of the 

process  ti . Parameters  ,    and 1 , 2  are bound by the relationships 1   under 0H  

hypothesis, by 2
2

2
1  , 1   under 1H  hypothesis, and by 1 , 2

2
2
1    under 

2H  hypothesis. 

The problem of the specified hypotheses testing is solved by means of the maximum likelihood method. 

For this purpose, with the results of the previous studies [4-6] in mind, the expressions for decision statistics 

(logarithms of the functionals of likelihood ratio) for hypotheses 0H , 1H , 2H  against alternative H: 

   tntx   are written down as 

 
 

 21 1
0 0 1

0 0 1 00

:  ln 1
2

T
d dT

H L d y t dt
N N d N

 
      

 , 

 
   

 
 

 2 22 1
1 1 1 2

0 1 0 1 2 0 0 10 0

1 1 2 1

0 0 0

: , ,   

ln 1 ln 1 ln 1  ,
2 2

T
d d

H L d d y t dt y t dt
N d N d d N N d

d d d dT

N N N



   
   

       
                  

 
 (5) 

 
   

 
 

 

 

2 22 1
2 2 1 2

0 1 0 1 2 0 0 1 0

1 1 2 1

0 0 0

: , ,   

ln 1 ln 1 ln 1  .
2 2

T T
d d

H L d d y t dt y t dt
N d N d d N N d

Td d d dT

N N N



   
   

        
                  

 
 

Here      



 tdtthtxty    is the output signal of the filter with the transfer function  H  

satisfying the condition      GH
2  (2), and λ, 1d , 2d  are current values of the parameters 0 , 

01d , 02d , accordingly. The choice is made in favor of the hypothesis for which the value of an absolute 

maximum of decision statistics is the greatest. 

Under unknown parameters 0 , 01d , 02d , the maximization of the functionals (5) on variables 1d , 

2d  can be performed analytically. As a result, it is found that 

0H :      











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1H :  
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 
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2H :  
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
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1
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1

 
1

ln
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,,max

2

0

2

2

0

2

max0212
,

max2
21

. 

From Eqs. (6) it follows that the maximum likelihood detection algorithm of the stepwise change in the 

dispersion of Gaussian random process takes a form of 

 
 

  0max

0

21

21

 or 

,
H

HH

M






,             2123 lnln MMTMMM . (7) 

and it is an invariant to the spectral density of the white noise and to the direction of variation, be it increasing 

or decreasing, of the dispersion value of the random process. In Eq. (7) it is designated as: 

    





0

2
1  

1
dttyM ,    






T

dtty
T

M  
1 2

2 ,  

T

dtty
T

M

0

2
3  

1
. (8) 

It should be noted that instead of algorithm (7) it is possible to use the generalized detection algorithm 

[6, 7], based on the comparison of the greatest maximum of the functional  M  with a particular (nonzero, 

generally) threshold c, calculated according to the specified optimality criterion. 

Detection quality is characterized by type I (false alarm) and type II (missing) error probabilities, 

designated as α and β, respectively [6, 7]. In order to determine α and β, we present the functionals  1M , 

 2M , 3M  as the sums of signal and noise components [7] 

      lNlSM iii  , 2,1i , 333 NSM  , (9) 

Here    i iS l M  , 3 3S M  are signal,      i i iN l M M    , 3 3 3N M M   are 

noise components, l T  is current value of the normalized parameter 0 0l T  , and the averaging   is 

performed in terms of the all possible realizations  x t  with fixed values for the all unknown parameters 0 , 

 ,  . While executing the ratio (4), we get 

  1S l  =    01  max 0,NE q q q l l l        ,    3 01  1NS E q q q l         , 

  2S l  =       01  1 max , 1NE q q q l l l         , (10) 

   1 1 1 2N l N l  =             22
1 2 1 2 1 2 0 1 min ,  2 max 0,min ,NE l l q l l q q q q l l l           

 
, 
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   2 1 2 2N l N l =               22
1 2 1 2 0 1 21 1  1 1 max ,  2  1 max , ,NE l l q l l q q q q l l l                  

, 

 
2
3N  =          

22
0 1  2 1NE q q q q q l           

 
. 

where NEq 2 , NEq 2  ,  2T , and  20NEN  is the noise  tn  mean power 

within the bandwidth of the process  t . 

Let us introduce the value 

 21 , (11) 

which is a small parameter, if the condition (4) holds. Then, taking into account Eqs. (9)-(11), we can present 

the functional (7) in the form of 

  
   

   

   

































lNlS

lNlS
l

lNlS

NS
M

22

11

22

33
~~

~~

ln~~

~~

ln . (12) 

Here     Nii ElSlS 
~

,     Nii ElNlN 
~

, 2,1i  are normalized functions, and NESS 33

~
 , 

NENN  33

~
 are normalized values. 

Firstly, let us assume that stepwise change in the dispersion of the process  t  (1) is absent, i.e. 

qq  . In this case, for false-alarm probability α, we have 

    
1 2[ , ]

 [ max ] 1 NP M c P c
 

      , (13) 

where     cMPcPN  ,  21, . 

Applying Eqs. (9)-(11), we overwrite the functional  M  (12) like that 

  
 

 
 

























lN

lN
l

lN

N
M

20

10

20

30

1

1
ln

1

1
ln ,  21

~
,

~
l . (14) 

Here the functions      qlNlN ii  1
~

0 , the variable  qNN  1
~

330  and the values 

Tii 
~~

, 2,1i  are introduced. 

Taking into account Eq. (4), we develop Eq. (14) into Maclaurin series on  (11) and focus on the first 

two terms of expansion depending on the realization of the observable data  tx  (3). As a result, for 0  

we have 

          2   1
2

2010
2 lNlNllM  ,  21

~
,

~
l . (15) 

Within Eq. (15) we execute the change of variables: 

   ll  1ln ,  21, ,    ~
1

~
 ln iii  , 2,1i , (16) 

Then, the probability (13) can be defined as 
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    2 2NP c P c       ,  1 2,   , (17) 

where     is Gaussian random process with zero mathematical expectation and correlation function 

     1 2 2 1exp 2        . The problem of determining the greatest maximum characteristics for 

non-Gaussian random processes is considered, for example, in [8]. Consequently, with the results from [8] in 

mind, we can write down that 

  
    












.21                                                      , 0

,21  ,  expexp 12

c

ccc
cPN  (18) 

Then the expression for the false-alarm probability (13) gets the form 

 
    












.21                                                            , 1

,21  ,  expexp1 12

c

ccc
 (19) 

Accuracy of the formula (19) increases with c and ratio 

    2112

~
1

~~
1

~
m . (20) 

Now let us assume that qq  . In this case, the stepwise change missing probability is written down 

as 

 
1 2

1 2
, ,

 [ max ]  [ ]P M c P M c . (21) 

Similarly to Eq. (15), we expand the functional  M  (12) into Maclaurin series on  and focus on the 

first term of expansion depending on the realization of the observable data  tx  (3). As a result, for 0  

we have 

      lNlSM  , (22) 

where 

           ~~
 ln 

~~
 ln 2123 lSlSllSSlS   (23) 

– signal and 

            lSlNllSlNlSNlN 112233

~~~~
1

~~
  (24) 

– noise components of the functional  M . 

Let us introduce the output SNR as [7] 
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

q

q
l

q

lqqq

qqll

qqlq

lN

lS
z . (25) 

From Eq. (25) it follows that SNR z , if qq   and  . Therefore, meeting the condition 

(4) secures the greater SNR value, if the difference qq   is not too small. 
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With z , the maximum position of the functional  M   converges to the value 0  in mean 

square [7]. As a result, under great SNR z (25), in order to define the missing probability (21), it is sufficient 

to study the behavior of the functional  M   in a near neighborhood of the point 0  ( 0l ) [4, 7]. For that 

purpose we introduce the designation  1 0 2 0 1 2max ,  ,  l l l l l l     . Then, if 0 , for the signal 

component (23) and correlation function of the noise component (24), the following asymptotic 

representations are valid: 

  
 

     0
0 0

1 1
ln ln min 0, max 0,

1 1 1 1

q l q q q q q q q
S l l l l l l

q q q q

             
                   

, (26) 
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                     
    

 

where, 0

~
lll ii  , 2,1i . 

Approximations (26) will be consistent mathematically, if the signal component  lS  and dispersion 

 lN 2
 of the noise component  lN  of the functional  M  (22) reach their maximum values in the point 

0ll  . As follows from Eq. (26), the condition    lSlS max0   is fulfilled for any values q , q  , 0l , 

while to satisfy the condition    lNlN 2
0

2 max  the following is necessary: 
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. if   ,1 21 

, if           , 11 

00

00

qqllqq

qqllqq
 (27) 

Hereinafter we will presuppose that the inequalities (27) hold. 

We introduce the differential functional 

        Sx xMlMl  , l,x . (28) 

Here      20
2

00
2 11 qqlqqqllS  ,   00 , ll , and δ is fixed and it is 

chosen so small that, under  , the expressions (26) can be approximated by the dominant terms of the 

asymptotic expansions with the required accuracy. Then, for 1z  (25), it is possible to present the missing 

probability (21) in the form of 

  
 

 
0

0 0

0

,

 [ ]l S S S

l l l

P l c P c

  

        , (29) 

where,  0 0 SM l   . 
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By applying the Doob’s theorem in the wording [9], similarly to [10], it is easy to show that, within the 

interval   and under  , the process  lx  is the asymptotic Gaussian Markov random process of the 

diffusion type, for which the drift 1K  and diffusion 2K  coefficients are defined by the following expressions 
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where, 

 


















q

q

q

qq
a

1

1
ln

1
1 , 



















q

q

q

qq
a

1

1
ln

1
2 , 

 

 2

2

1
1 q

qq
b




 , 

 

 2

2

2
1 q

qq
b




 , (31) 

At the same time, as follows from Eq. (26), the realizations of the process  
0l

l  within the intervals 

 0 0,l l ,  0 0,l l   are not correlated, and therefore they are statistically independent, as being 

asymptotic Gaussian ones. Then, for probability  SP   (29) we have 

      1 0 2 0 SP F F      ,    
0

0 0

1
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     ,    
0

0 0

2  [ ]l

l  l l

F P l

  

     . (32) 

The random variable 0  in Eq. (29) is, under , asymptotic Gaussian random value with 

mathematical expectation z (25) and unit dispersion. In view of the latter remark, the probability (32) is 

determined as 

        
2

1 2

1
  exp 2  

2
SP F y F y y z dy





        
 

 , (33) 

The probabilities  1F ,  2F  can be found using the Markovian properties of the process  ll0
 . As 

a result, following [10], for the functions  1F ,  2F  we obtain 

           1111111   2exp bababaF SSS
, (34) 

           2222222   2exp bababaF SSS , 

where,     


x
dttx

 2 2 2exp  is the probability integral [11], and 1a , 2a , 1b , 2b  are defined 

from Eqs. (31). 

Substituting Eqs. (34) into Eq. (33) and using the asymptotic formula [12] for the function  x  under 

z :     xxx
x

 


22exp1 2

 
 and then neglecting higher-order infinitesimal terms on z, 

after carrying out the integration, we get for the missing probability β (29): 
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1 exp 1 .
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 
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        
                             

 (35) 

Here 1 12 Sa zb   , 2 22 Sa zb   . The accuracy of the formula (35) increases with μ and z. 

3. ESTIMATING THE STEPWISE CHANGE POINT AND THE DISPERSION OF THE 

RANDOM PROCESS 

Let us suppose now that the stepwise change of the dispersion of the random process  t  (1) is realized with 

the probability 1 within the interval  21, . And let us state that it is necessary to measure the change-

point time 0  jointly with the values of the power parameters 2 , 2  . The synthesis of the joint 

estimation algorithm is to be conducted by means of maximum likelihood method. Using Eqs. (5), for 

maximum likelihood estimates (MLEs) m , 2
m , 2

m   of the unknown parameters 0 , 2 , 2 , we obtain 

 
 

 

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21,

suparg
,   Nmm EM  1

2 ,   Nmm EM   2
2 . (36) 

Let us determine the characteristics of the estimates (36). We presuppose that the condition 1z  (25) 

is satisfied and thus the normalized estimate Tl mm   (36) is situated in a near δ-neighborhood   of 

the point 0l  (28) with the probability tending to 1. Then, the conditional distribution function  00 lxF  of the 

estimate ml  can be presented in the form of 

        





 


llPx lPlxF x
xl

x
xl

m maxmax00 , xl, , (37) 

where,  lx  is the Markov random process of the diffusion type (28) with drift and diffusion coefficients 

(30). 

Using the representation from (37) and referring to the results of the studies [10, 12], for the conditional 

probability density  00 llw , bias   000 llllb mm   and variance    2000 llllV mm   of the 

estimate ml  (36), in the conditions of high posterior accuracy, we obtain: 
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  0 0mb l l  =      
22 2 2 2

1 2 2 1 1 22 2 1 2 1a b R R a b R a a R     
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  0 0mV l l  =      
34 2 2 4 2 2 4 4

1 2 2 1 1 22 6 5 5 6 2 2 1a b R R R a b R R a a R      
 

. 

Here              2121  1 exp1212, xyyyxyxyx  , 1221 babaR  , 

and 1a , 2a , 1b , 2b  are defined from Eqs. (31). From this, it particularly follows that the estimate of the 
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stepwise change time ml  is conditionally biased under finite SNR, generally. The accuracy of the formulas 

(38) increases with min  (4) and z (25). 

Under small values z ( 0z ), the decision statistics  M  (7), (12) can be approximately presented in 

the form of (15). In Eq. (15) we make the change of variables (16) and move from the normalized estimate 

ml  (36) to the estimate 

 
 

 


2

, 21

maxargm , (39) 

Here    is determined in the same way as in Eq. (17). 

According to [7], the position of the maximum of the stationary random process is described by the 

uniform probability density. Then, for conditional probability density  0w  of the random variable m  

(39), where   000 1ln ll  , we can write down:    120 1 w ,  21, . Hence, taking 

into account the transformation (16), under small z for the conditional probability density  0llwa , bias 

 0llb ma  and variance  0llV ma  of the normalized MLE ml  (36), we get 

     0 1 1 lnaw l l l l m  , 1 2,l      , (40) 

    0 0 2 11 ln lna mb l l l m     ,  

          2
0 0 0 1 2 1 21 2 ln 1 1 lna mV l l l l m       

 
, 

where, m is defined from Eq. (20). 

For the arbitrary values of z, the distribution of the estimate ml  is found in the form of 

        000000 1 llwPllwPllw a , (41) 

where,  0 0w l l ,  0aw l l  are defined from Eqs. (38), (40),  0 S NP P H H  , and NH , SH  are 

the random variables corresponding to the maxima of the functional  M   (7) when normalized MLE ml  

(normalized maximum position) is subject to the distribution law  0 0w l l  (38), or of  0aw l l  (40), 

accordingly. 

The probability 0P  can be determined by applying either the two-dimensional probability density 

 2 ,w u v , or the distribution function      2 2
0 0

, , ,  
u v

S NF u v P H u H v w u v du dv          of the 

random variables NH , SH  as 
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u
,

  ,  2
20 . (42) 

As it follows from Eqs. (15) and (22)-(24), the random variables NH , SH  are uncorrelated. Then Eq. 

(42) can be approximately presented in the form of 
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    




0

0  udPuPP SN , (43) 

where,  uPN ,  uPS  are determined according to Eqs. (18), (35). Substituting the explicit form of the 

functions  uPN ,  uPS  into Eq. (43), for the probability 0P  we obtain 
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
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  
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 (44) 

By means of Eqs. (41), (44), we can write the analytical expressions for the conditional bias  0llb m  

and the variance  0llV m  of the estimate ml  in case of the arbitrary SNR z values as follows: 

        0 0 0 0 0 01  m m a mb l l P b l l P b l l   ,        0 0 0 0 0 01  m m a mV l l PV l l P V l l   , (45) 

where,  0 0mb l l ,  0 0mV l l ,  0a mb l l ,  0a mV l l  are determined from Eqs. (38), (40). The accuracy of 

the formulas (44), (45) increases with min  (4), m (20), z (25). 

Now let us determine the characteristics of the estimates 2
m , 2

m   (36). In the study [13], it is shown 

that the accuracy of the MLEs of the regular parameters (in the present case – dispersions) does not 

asymptotically (with increasing SNR) depend on the presence of the unknown discontinuous parameter (in 

the present case – stepwise change point). It means that, in case of the greater values of min  (4), the 

conditional biases and variances of the MLEs 2
m , 2

m   (36) coincide asymptotically with the conditional 

biases and variances of the estimates of the dispersions of the random process  t  with a priori known 

stepwise change point. Then, supposing that 0llm   in Eq. (36), directly averaging over all the possible 

realizations of the observable data  tx  (3) at the fixed values 2 , 2  , and taking into account Eq. (4) for 

the characteristics of the estimates (36), we now find 

  2 2 2 2
0 0m mb          ,      

2 22 2 2 2 2
0 02 1m m NV E q             , (46) 

 2 2 2 2
0 0m mb          ,        

2 22 2 2 2 2
0 02 1m m NV E q T              . 

The accuracy of the formulas (46) increases with min  (4) and z (25). 
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4. RESULTS OF THE STATISTICAL SIMULATION 

In order to establish the borders of applicability for the found asymptotically exact formulas for detection and 

estimation characteristics, we demonstrate the statistical computer simulation of the algorithms (7), (36), 

using a procedure presented in [10]. For the reduction of the computer time expenditure, it has been supposed 

that the process  t  (1) is narrowband [4], i.e. the condition   is satisfied. It allows us to apply 

representation of the function  ty  (5) through their low-frequency quadratures [10] and to form the 

functionals  1M ,  2M  (8), as the sum of the two independent random processes, as well as the 

functional 3M  (8), as the sum of the two independent random variables: 

        212111 MMM ,   TMMM 232313  , (47) 

              TMMMMTMTMM 212113231132 . 

Here 

   




0

2
1  dttyM ii ,  

T

ii dttyM

0

2
3  ,      





 tdtthtxty ii   0 , 

              tntttx iii       0 , 2,1i , 

 ti  and  tni  are statistically independent centered Gaussian random processes with the spectral 

densities         222 G  and   0NGn  , respectively;  th0  is the function 

whose spectrum  0H  fulfils the condition       GH 2
2

0 , while   ,  ,    is defined in 

the same way as in Eq. (1). 

During modeling within the period  1,0  of the normalized time Ttt 
~

, with discretization step , the 

samples   nyy iin
~~

 are formed of the normalized random process realizations     0
~~ NTtyty ii  , 

2,1i  (47). This allows obtaining the stepwise approximations for the normalized functionals 

    011

~
NTMlM  ,     022

~
NTMlM  , 033

~
NTMM   (8) and decision statistics  lM  (7) in 

the form of 

    








1

0

2
2

2
11

~~

2

~ N

n

kk yy
l

lM ,       llMlMlM  1
~~~

132 , (48) 

        1
~~

13 MM  ,          lMlMllMMlM 2123

~~
ln

~~
ln  . 

Here   lN int , int  is an integer part, and l is the normalized current value (9) of the abrupt 

change point. When we choose the discretization step equal to 410 , the mean square error of 

approximations (48) of the functionals (47) does not exceed 10 %. Samples of the processes iny~ , 2,1i , 

  1int,0n  are generated in terms of the sequence of the independent Gaussian random numbers by a 

moving summation method [4, 10]: 
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 

















1
~~

pn

pnk

nk
ik

ikin Hy , 






p

m

kimmp
k

ik H
q 2

0

1~
. (49) 

Here ik , ik  are the independent Gaussian random numbers with zero mathematical expectations and 

unit dispersions,     knknHnk  sin , qqk  , if   0int lk , and qqk  , if 

  0int lk , while q , q  , 0l  are defined in the same way as in Eqs. (10). 

In the sums (49), the number of summands corresponds to the value 200p . It provides a relative 

deviation of the generated sample dispersion from the modeled process dispersion to be not greater than 5 % 

[10], under 500 . Formation of the independent Gaussian numbers with parameters (0,1) is implemented 

using the standard generator of independent random numbers, uniformly distributed within the interval [0,1], 

by means of the Cornish-Fisher method [10]. 

By realizations of the processes  lM1

~
,  lM 2

~
,  lM  derived from formulas (48), (49), according to 

Eqs. (7) (in case of the generalized threshold c), (36) the normalized estimates ml  (37), Nmm Eq 2 , 

Nmm Eq 2   are defined, and also the decision on the presence, or the absence of the stepwise change of 

the process  t  dispersion is made. Further, the detection and measurement experimental characteristics are 

found. 

Some results of the statistical simulation are presented in Figures 2-5 where corresponding theoretical 

dependences are also shown. Each experimental value is obtained by processing no less than 4103  

realizations of  tx  (3) under 75.00 l , 05.0
~

1  , 95.0
~

2  . Thus, with the probability of 0.9, the 

confidence intervals boundaries deviate from the experimental values no greater than by 10 %. 

In Figure 1, by solid lines, the theoretical dependences (19) of the false-alarm probability α from a 

threshold c are drawn. The curve 1 is calculated for 50 , 2 – 100, 3 – 200, 4 – 500. Experimental values 

for 50 , 100, 200, 500 are designated by squares, crosses, rhombuses and circles. In Figure 2 solid lines 

represent the theoretical dependences of the missing probability  q  (35). Here qqq   is the 

magnitude of stepwise change of the process  t  dispersion. For certainty it is supposed that 1.0q . The 

threshold c is determined from Eq. (19) by Neumann-Pirson criterion according, to the level of the false-

alarm probability set equal to 0.01. 

In Figure 3 by solid lines the dependences of the conditional variance    0llVqV ml   (45) are 

plotted, and by dashed lines – the conditional variance    000 llVqV ml   (38) of the normalized estimate 

of the stepwise change point ml , as the functions of the variable q  under 1.0q . Finally, in Figures 4 

and 5 we deal with the theoretical dependences (46) of the normalized conditional variances 

  222
0 Nmq EVV  ,   222

0 Nmq EVV     of the estimates 2
m , 2

m   (36) from the values 

q , q  . 
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 Figure 1: False-alarm probability Figure 2: Missing probability 

 

Figure 3: Variance of the normalized estimate of the stepwise change point 

   

 Figure 4: Normalized variance of the estimated dispersion Figure 5 Normalized variance of the estimated dispersion 

 before stepwise change after stepwise change 
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In Figures 2-5 the curves 1 are calculated for 100 , 2 – 200, 3 – 500. Experimental values of the 

detection and measurement characteristics corresponding to the curves 1-3 are designated by squares, crosses, 

rhombuses. 

From the conducted analysis and Figures 1-5, it follows that the theoretical dependences for the 

probabilities α (19), β (35) and the variance  0mV l l  (45) already agree quite successfully with the 

experimental data, at least, under 100 , 0q  , 1 0.05 , 2 0.95 . And if 3.5 4z  (25), then the 

simpler formula (38) can be used for calculating the variance of the estimate of the stepwise change point. 

When 3q , the deviation of the experimental values of the variance  0mV l l  is observed from the 

corresponding theoretical dependences obtained while using Eqs. (38) or (45). It is the result of the formulas 

for the functional  M   and its characteristics (26) having been found on the assumption that the sizes of 

order of the correlation time of the process  t  are negligible. Hence, when MLE ml  variance decreases to 

the size of order 2
min  (4), the calculation errors in Eqs. (38), (45) becomes considerable. Formulas (46) for 

the variances of the estimates 2
m , 2

m  satisfactorily approximate the experimental data under 3.5 4z  

(25), when the distribution and the characteristics of the estimate of the stepwise change point ml  are 

described by the expressions (38). 

5. CONCLUSION 

In order to detect the stepwise change point in the fast-fluctuating Gaussian process and to measure its 

jumping and constant parameters, the maximum likelihood method can be effectively applied. This approach 

allows us to obtain the algorithms for determining stepwise change in the statistical characteristics of the 

random process in the conditions of the parametrical prior uncertainty, while neglecting the values of the 

order of the correlation time of the analyzed random process. These algorithms are technically the simplest 

ones in comparison with the common analogues. We apply the local Markov approximation method to write 

down the closed analytical expressions for the efficiency characteristics of the specified algorithms. 

We used the statistical simulation to established that the obtained theoretical results successfully agree 

with the corresponding experimental data in a wide range of the observable data realization parameters 

values. Additional researches show that the detectors and the measurers synthesized by means of the 

introduced approach can also be used in the analysis of the stepwise changes of the statistical characteristics 

of the non-Gaussian high-frequency random processes and bring no great losses in performance. 
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