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ABSTRACT 
 

In vivo optical trapping is a novel prospective area of application for cell optical manipulation, which enables one to 
measure mechanical properties of cells and tissues in living organisms noninvasively. However, actual application of the 
approach is limited because of strong light scattering in most of biological tissues. Optical clearing enables to decrease 
the scattering and therefore increases depth of light penetration, reduces distortion of light beam, and improves image 
contrast and resolution. A novel trend in the study of optical clearing mechanisms and impact is its cellular level. In this 
paper, we present a novel method of evaluation of optical clearing agent concentration that is based on the measurement 
of optical trap stiffness. We studied optical trap stiffness on concentration of optical clearing agent (glucose) for 1.5 µm 
polystyrene beads and red blood cells (RBCs).  

1. INTRODUCTION  

In vivo optical trapping of a RBC demonstrated a possibility of noninvasive manipulations of cells and force 
measurements of cellular interactions in living animals.1,2 Optical trapping was applied for manipulation of injected 
nanoparticles and bacteria; and for analysis of adhesion properties and membrane deformation of endothelium and 
macrophages in living animals.3 Basics of optical trapping were developed by Arthur Ashkin4,5 and this technique has 
been called optical tweezers.6 Optical tweezers are widely used in microbiology: for example, study of molecular motors 
at the single-molecule level and mechanical properties of biopolymers,7,8 study of RBC aggregation,9 etc. Basic 
limitations of in vivo optical trapping are caused by strong scattering of many biological tissues10,11 and the use of a 
microscope objective (MO) with a high numerical aperture (NA). Therefore, optical trapping is possible only within 
superficial blood capillaries since a MO with a high NA has a relatively short working distance. Optical trapping with a 
small NA can be still possible when a cell is pressed against a vessel wall, however this trapping is not informative for 
estimation of cell mechanical properties. 
 
The strong scattering of biological tissues can be significantly reduced by application of optical clearing agents 
(OCAs).12 This is a so called immersion optical clearing when tissue or cell impregnation by an agent is used for 
matching of refractive indices of tissue fibers and cell organelles against interstitial fluid and cytoplasm. Some other 
mechanisms, such as reversible dehydration and destruction of hydrated shell of collagenous molecules, are also 
important.  The major measurement techniques of degree of optical clearing are used at macroscopic level:13 integrating 
sphere technique; collimated transmittance, backscattering spectroscopy, fluorescence spectroscopy, optical coherence 
tomography (OCT); confocal microscopy; nonlinear microscopy, etc.12,13 Recently, optical clearing had been studied at 
cellular level by direct measurement of the scattering phase function of a single cell.14 Contrast-enhanced imaging of 
cellular structures using digital holographic microscopy15 and hyperspectral dark-field microscopy at nanoparticle 
labeling16 was also demonstrated by applying of optical clearing technology. In this paper, we are presenting a further 
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development of a single-cell concept in optical clearing, in particular, we are studying optical trap stiffness for 1.5 µm 
polystyrene beads and red blood cells in dependence of OCA concentration. Potentially, these studies could be applicable 
for in vivo measurements of concentration of different agents, such as metabolic substances, drugs, contrast agents, etc. 
 
There are two basic categories of stiffness measurement of single beam traps:17 1) by analyzing thermal fluctuations of a 
trapped particle and 2) by application of an external force (for example, viscous drag force). The first category is not 
applicable for particles in flows, especially in blood flow. The second category is divided into two basic subgroups: 1) a 
particle moves relative to the optical trap (OT) and 2) the OT with a trapped particle moves relative to an environment. 
In this paper, we are using a technique from the second basic subgroup for estimation of OT stiffness dependence on 
OCA concentration. 
 
 

2. MATERIALS AND METHODS 
 
2.1. Experimental setup 
 
A scheme of experimental setup is presented in Fig. 1. A part of this instrument is presented in a simplified linear 
scheme in Fig. 2. A light source is a CW diode laser (650 nm, 65 mW). The OT is provided by a laser beam focused by a 
microscope objective (MO; 70x, NA 1.23, water immersion, achroplan, a focal length is 2.52 mm, LOMO, Russia).  
 

 
Figure 1. The scheme of our experimental setup. GM – galvanometer scanning mirror; L1, L2 – lenses; DM – dichroic mirror; MO – 

microscope objective; CF – coloured filter; TL – tube lens. 
 
The galvanometer scanning mirror (GM; 6210H, Cambridge Technology), lenses (L1, L2) are used simultaneously as a 
beam expander and a position controller of the OT. The beam expander is used to fill by light exit aperture (AMO) of the 
microscope objective (Fig. 2). A magnification of the beam expander is determined by a ratio of focal lengths of lenses 
L1 and L2. The position controller of the OT is a quasi 4F-optical system. An afocal system (lenses L1, L2) images pivot 
of GM into a center of AMO (Fig. 2). Therefore, light beam equally fills exit aperture AMO, thus light intensity and 
correspondingly stiffness of the OT are constant for various angles of the GM. An angle of the GM is controlled by a 
driver (The MicroMax 677XX, Cambridge Technology) and a multifunction data acquisition device (PCIe-636, NI). The 
angle of GM determines lateral position of the OT. Parallel axial displacement of the laser, the GM, the L1 relative to the 
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L2 causes axial displacement of the OT. A relative ratio of these displacements is determined by ratio of focal length of 
the L2 and the MO. Images are registered by the tube lens (a focal length is 250 mm; AC254, Thorlabs) and the CMOS 
sensor (CMOS camera; DCC1545M, Thorlabs). 
 

 
Figure 2. The simplified linear scheme of the part of the experimental setup (Fig.1). L1, L2 – lenses; MO – microscope objective; AMO 
– aperture of the microscope objective; F1, F1’, F2, F2’, FMO, FMO’– focal points and focal length of lens L1, L2 and MO respectively. 

 
 
2.2 Optical trap stiffness calibration 
 
A particle experiences the viscous drag force when it moves in a viscous medium. The drag force can be derived from 
Stokes’ law18 for slowly moving small spherical particles (i.e. at low Reynolds number)  
 = 6πη , (5) 
 
where η is the dynamic viscosity of a fluid, r is the radius of a particle, V is the velocity of a particle. A trapped particle 
is in the OT until the trap force is greater than the drag force. Then, 
 = = 6πη , (6) 
 
where Vcritical is the velocity by which a trapped particle leaves the OT. 
 
 
2.3 Dynamic position control 
 
In this work, the measurement technique of trap stiffness is based on use of an externally applied force. This force is a 
viscous drag force produced by a motion of a trapped particle relative to environment. A mobile trap enables one to 
regulate simpler and precisely velocity of a trapped particle and to move this particle with the accelerated velocity. The 
accelerated velocity enables one to reduce considerably amount of measurements.  
 
A lateral optical trap position is linearly associated with an angle of the GM. Angle of GM is controlled by the driver and 
the mDAQ device. Angle of GM is linearly dependent on the signal of the mDAQ device (linearity is 99.9%) which is 
used as a digital-to-analog converter (DAC) (resolution of 16 bits and time response of 10 ns). 
 
A calibration of a lateral OT position with mDAQ signal is realized by microscope image with the working MO. A 
lateral OT position is defined as a lateral position of OT image achieved by focusing of the microscope on any plane 
surface. Rotating of the GM moves OT along x-axis. The calibration is realized by two various mDAQ signals. Then a 
lateral position of the OT is determined as 
 = ∙ + , (1) 
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where 
 = − / − ; (2) 
  = − ∙ ; (3) 
 
U is the voltage of mDAQ; P1, P2 are the lateral positions of OT corresponding to various voltage of mDAQ (U1, U2), 
respectively. 
 
Stiffness of the OT is determined by a critical velocity Vcritical when the trapped particle leaves the OT. Velocity of the 
OT and a trapping particle is 
 = / . (4) 
 
If an OT position is linearly changed (Fig. 3) acceleration of particles is quasi infinite at the moments t0 and t1. Thus, the 
particle may leave at initial or final moments of the movement. Therefore we are proposing to change the OT position as 
it is shown in Fig. 4, where OT position is parabolically changed in the first (t0 to t0') and the third (t1 to t1') stages of the 
movement. In this case, the trapped particle is accelerated linearly. 
 

(a) (b) 
Figure 3. The temporal dependences of mDAQ device signal (a) and trap velocity (b) by linear increase of the signal. 

 

(a) (b) 
Figure 4. The temporal dependences of mDAQ device signal (a) and trap velocity (b) by linear increase of the velocity. 
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3. RESULTS 

 
3.1 The optical clearing for 1.5 µm beads 
 
The calibrating graph of OT force is presented in Fig. 5 for 1.5 µm polystyrene beads (np = 1.57) in distilled water (n = 
1.3305) at 20ºC.  

Figure 5. The dependence of OT force on light power incident on MO aperture. 
 
The dependence of Vcritical on refractive index of the medium (nm) is presented in Fig. 6 for 1.5 µm polystyrene beads for 
distilled water (n = 1.3305); physiological solution (saline) (n = 1.3318); isotonic solution with 5% concentration of 
glucose (n = 1.3382). Vcritical is used instead of OT force presentation since at refractive index change there are two 
processes involved, such as optical clearing and change of medium viscosity, which are not separated. Vcritical is increased 
around 18% for isotonic solution of 5%-glucose instead of saline. 
 

Figure 6. The dependence of Vcritical on refractive index nm for 1.5 µm polystyrene beads in distilled water (n = 1.3305); saline (n = 
1.3318) and isotonic solution of 5%-glucose (n = 1.3382). 
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