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Spin structures and entanglement of two disjoint

intervals in conformal field theories

Andrea Coser, Erik Tonni and Pasquale Calabrese

SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy.

Abstract. We reconsider the moments of the reduced density matrix of two disjoint

intervals and of its partial transpose with respect to one interval for critical free fermionic

lattice models. It is known that these matrices are sums of either two or four Gaussian

matrices and hence their moments can be reconstructed as computable sums of products

of Gaussian operators. We find that, in the scaling limit, each term in these sums is in

one-to-one correspondence with the partition function of the corresponding conformal

field theory on the underlying Riemann surface with a given spin structure. The

analytical findings have been checked against numerical results for the Ising chain and

for the XX spin chain at the critical point.
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1. Introduction

The entanglement measures for extended quantum systems have attracted a lot of

interest during the last decade in the theoretical research of condensed matter, quantum

information, quantum field theory and quantum gravity (see [1] for reviews). Recently,

interesting results have been obtained in the experimental detection of entanglement [2].

Given a quantum system in a pure state (e.g. the ground state |Ψ〉) whose Hilbert

space is spatially bipartite, i.e. H = HA ⊗ HB at some fixed time, in order to quantify

the bipartite entanglement a crucial quantity to introduce is the reduced density matrix

ρA = TrBρ = TrB|Ψ〉〈Ψ|. In this case, a good measure of entanglement from the quantum

information perspective is the entanglement entropy

SA = −TrρA log ρA , (1)

i.e. the Von Neumann entropy for the reduced density matrix. A very useful trick to

compute the entanglement entropy is to take the replica limit SA = limn→1 S
(n)
A , where
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Figure 1. The subsystem A = A1 ∪ A2 considered in this manuscript is given by

two disjoint spin blocks A1 and A2 embedded in a spin chain of arbitrary length. The

reminder of the system is denoted by B and it is also made by two disconnected pieces

B1 and B2.

S
(n)
A are the Rényi entropies

S
(n)
A =

1

1− n
log TrρnA , (2)

being TrρnA the n-th moment of the reduced density matrix. When the low energy regime

properties of the critical extended system is described by a 1 + 1 dimensional conformal

field theory (CFT) and the subsystem A is a continuous interval, the entanglement

entropy diverges logarithmically with the size of the subsystem and the coefficient of

such divergence is proportional to the central charge c of the model [3, 4, 5, 6].

In this manuscript we will be interested in the case of a subsystem A = A1∪A2 made

by two disjoint intervals. The whole system is in the ground state and the Hilbert space

is tripartite H = HA1 ⊗HA2 ⊗HB. Tracing out the degrees of freedom in B, we are left

with the reduced density matrix ρA and SA measures the entanglement between A1 ∪A2

and B. On the lattice, we will consider the configuration shown in Fig. 1: a spin chain

divided in two complementary parts A and B, where each of them is composed by two

disconnected blocks. In the scaling limit, A is given by two disjoint intervals A1 and A2 on

the infinite line separated by the interval B1, while B2 has infinite length. A very useful

quantity to introduce in this case is the mutual information IA1,A2 = SA1 + SA2 − SA1∪A2 ,

which is UV finite in quantum field theories.

When the extended quantum system is in a mixed state, evaluating the bipartite

entanglement is more complicated. A natural situation is the bipartite entanglement for

a system in the thermal state, but an interesting setup to consider is also the one described

above, where the reduced density matrix ρA characterises a mixed state and one looks

for the entanglement between A1 and A2. In this manuscript we will consider only the

latter case. A useful way to address the bipartite entanglement for ρA is to consider its

partial transpose with respect to one of the disjoint intervals. The occurrence of negative

eigenvalues in its spectrum indicates the presence of bipartite entanglement [7]. This

led to introduce the negativity (or the logarithmic negativity E) as follows and it has

been proved that it is a good measure of bipartite entanglement for mixed states [8, 9].

Denoting by |e(1)
i 〉 and |e(2)

j 〉 two arbitrary bases in the Hilbert spaces corresponding to

A1 and A2, the partial transpose of ρA with respect to A2 degrees of freedom is defined as

〈e(1)
i e

(2)
j |ρ

T2
A |e

(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρA|e

(1)
k e

(2)
j 〉 . (3)
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Then, the logarithmic negativity is given by

E ≡ log ||ρT2A || = log Tr|ρT2A | , (4)

where the trace norm ||ρT2A || is the sum of the absolute values of the eigenvalues of ρT2A .

A method to compute the negativity in quantum field theories based on a replica

trick has been developed in [10, 11]. By observing that the integer moments Tr(ρT2A )n of

the partial transpose admit different analytic continuations from even and odd integer n’s

(here denoted by ne and no respectively), the logarithmic negativity can be computed as

the following replica limit

E = lim
ne→1

log Tr
(
ρT2A
)ne
, (5)

taken on the sequence of moments characterised by even n’s.

In the scaling limit of a critical lattice model, the moments TrρnA of the reduced

density matrix for two disjoint intervals can be computed as the four point function of

peculiar fields (twist fields) or, equivalently, as the partition function of the CFT model

on a particular genus n− 1 Riemann surface Rn obtained through the replica procedure

[12, 13, 14, 15] (in Fig. 2 below we shown an example of R4). The final result for TrρnA
when A = A1 ∪ A2 encodes all the information about the underlying model, namely the

central charge, the conformal dimensions of all the primaries and all the OPE coefficients

[13, 16].

The expressions for TrρnA for any n are known analytically only for few CFT models:

the free fermion [17], the compactified (and non compactified) free boson [12] and the Ising

model [13]. The moments for the modular invariant Dirac fermion can be found from the

ones of the compactified free boson at a specific value of the compactification radius.

These results have been confirmed by many numerical checks through the corresponding

lattice models [15, 18, 19, 20, 21, 22]. For the models mentioned above, TrρnA have

been written also for a generic number of disjoint intervals [23]. Since performing the

replica limit n → 1 of the Renyi entropies (2) for these analytic expressions is a very

difficult task, in [24] numerical extrapolations of the CFT analytic expressions have been

done by employing the method suggested in [25], finding excellent agreement with the

corresponding lattice results.

In this manuscript we focus on the CFT fermionic models given by the modular

invariant Dirac fermion and the Ising model, which are the scaling limit of the XX spin

chain and of the Ising model at the critical point, respectively. The modular invariant

partition functions on the genus n− 1 Riemann surface Rn providing the moments TrρnA
for these models are written as sums over all the possible boundary conditions for the

underlying fermion (either periodic or antiperiodic) around the cycles of a canonical

homology basis on Rn. Each term in these sums is the partition function of the model

on Rn with a fixed set of boundary conditions, i.e. with a given spin structure. This is

well known from the old days of string theory, where the bosonization on higher genus

Riemann surfaces has been studied [26].

As for the negativity, the replica limit approach of [10, 11] has been employed to study

one-dimensional conformal field theories (CFT) in the ground state [10, 11, 27, 28, 29, 30],
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in thermal state [31, 32], in non-equilibrium protocols [32, 33, 34, 35] and for topological

systems [36, 37, 38]. It is worth remarking that performing the replica limit (5) for

the logarithmic negativity is usually more difficult than the replica limit providing

the entanglement entropy from the Rényi entropies. Besides these analytical studies,

the negativity has been computed numerically in several papers for various systems

[39, 40, 41, 42, 43, 44].

In this manuscript we are interested in the entanglement between two disjoint

intervals both on the lattice and in the scaling limit. According to [10, 11], the moments

Tr(ρT2A )n in 1 + 1 quantum field theories can be evaluated as four point functions of

the twist fields mentioned above in a particular order or, equivalently, as the partition

functions of the model on a particular genus n− 1 Riemann surface R̃n which is different

from Rn when n > 3. Analytic expressions for Tr(ρT2A )n are known for few simple models:

the compactified (and non compactified) free boson [11], the Ising model [27, 28] and the

free fermion [45]. Again, the moments Tr(ρT2A )n for the modular invariant Dirac fermion

can be found by specialising the ones of the compact boson to a particular value of the

compactification radius. Restricting our attention to the fermionic systems given by the

modular invariant Dirac fermion and the Ising model, Tr(ρT2A )n are written as sums over

all the possible spin structures, similarly to the moments of the reduced density matrix.

As for the corresponding expressions on the lattice for the XX critical spin chain, the

critical Ising model and the free fermion, they have been computed in [46, 45] by employing

the results of [47] about the partial transpose of Gaussian states. These moments can be

written as sums of computable terms. Nevertheless, this can be done for any given n and

a closed expression which holds at any order is not known.

In this manuscript we investigate the terms entering in TrρnA or Tr(ρT2A )n for the

fermionic systems mentioned above, both on the lattice and in the scaling limit. Our

main goal is to identify the scaling limit of the various terms entering in the lattice

formulas for the n-th moment, finding that it is given by the partition function of the

underlying fermionic model on Rn or R̃n with a given spin structure. This analysis allows

us also to recover the corresponding results for the free fermion [17, 45].

The manuscript is organised as follows. In §2 we introduce the spin chain models on

the lattice that we are going to consider, namely the critical XX spin chain and the Ising

spin chain at criticality, reviewing also the corresponding results for the moments TrρnA
[20] and Tr(ρT2A )n [46]. In §3 the CFT expressions for the moments of the reduced density

matrix and of its partial transpose are briefly reviewed [11, 13, 23, 27]. In §4 we employ

the fermionic coherent states formalism to identify the scaling limits of the various terms

entering in the lattice expressions for TrρnA and Tr(ρT2A )n. In §5 we provide numerical

evidences of our results for n = 2 and n = 3. In §6 we draw some conclusions and in

§A we show that the results for TrρnA and Tr(ρT2A )n for the free fermion, found in [17]

and [45] respectively, can be recovered from the corresponding expressions for the critical

XX spin chain on the lattice or for the modular invariant Dirac fermion in the scaling limit.



Spin structures and entanglement of two disjoint intervals in CFT 6

2. Review of the lattice results

In this manuscript we consider the lattice models given by the XX spin chain at criticality

and by the critical Ising spin chain. Given a subsystem A made by two disjoint blocks,

in this section we review the lattice computations of the moments of the reduced density

matrix TrρnA [20] and of its partial transpose Tr(ρT2A )n [46].

2.1. Hamiltonians

The Hamiltonians of the XX spin chain at the critical point and of the critical Ising spin

chain read respectively

HXX = −1

4

L∑
j=1

(
σxj σ

x
j+1 + σyjσ

y
j+1

)
, HIsing = −1

2

L∑
j=1

(
σxj σ

x
j+1 + σzj

)
, (6)

where σαj (with α ∈ {x, y, z}) are the Pauli matrices at the j-th site of the chain with

L sites and periodic boundary conditions σαL+1 = σα1 have been assumed. It is well

known that the Hamiltonians (6) can be diagonalized by employing the Jordan-Wigner

transformation

cj =
(∏
m<j

σzm

)σxj − iσzj
2

, c†j =
(∏
m<j

σzm

)σxj + iσzj
2

, (7)

which maps the spin variables into anti-commuting fermionic variables (i.e. {ci, c†j} = δij).

In terms of the latter fermionic variables, the Hamiltonians in (6) become respectively

HXX =
1

2

L∑
i=1

(
c†ici+1 + c†i+1ci

)
, (8a)

HIsing =
L∑
i=1

(
1

2

[
c†ic
†
i+1 + ci+1ci + c†ici+1 + c†i+1ci

]
− c†ici

)
, (8b)

where boundary and additive terms have been discarded. Since the Hamiltonians in (8a)

and (8b) are quadratic, they can be easily diagonalised in the momentum space through

a Bogoliubov transformation.

In order to study the reduced density matrices associated to spin blocks, it is very

useful to introduce also the following Majorana fermions [4]

axj = cj + c†j , ayj = i(cj − c†j) , (9)

which satisfy the anticommutation relations {aαr , aβs} = 2δαβδrs. Moreover, given a block

C of contiguous sites, a crucial operator we need in our analysis is

PC =
∏
j∈C

i axja
y
j . (10)

This string of Majorana operators satisfies P−1
C = PC .
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2.2. Moments of the reduced density matrix

In a spin 1/2 chain, the reduced density matrix ρA = TrB|Ψ〉〈Ψ| of A = A1 ∪ A2 can be

computed by summing all the operators in A as follows [4]

ρA =
1

2`1+`2

∑
νj

〈∏
j∈A

σ
νj
j

〉∏
j∈A

σ
νj
j , (11)

where νj ∈ {0, 1, 2, 3}, being σ0 = 1 the identity matrix and σ1 = σx, σ2 = σy, σ3 = σz the

Pauli matrices. For a generic chain, the correlators in (11) are very difficult to evaluate.

Nevertheless, when the state can be written in terms of free fermions, the Wick theorem

can be employed to find them.

For the single interval case, the Jordan-Wigner transformation (7) sends the first

` spins into the first ` fermions, hence the spin and fermionic entropy coincide [4].

Unfortunately, this is not the case when A is made by two disjoint blocks because also

the fermions in the block B1 separating them (see Fig. 1) contribute to the spin reduced

density matrix of A1 ∪ A2 [19, 18, 20].

Focussing on the models we are interested in, since the Hamiltonians (6) commute

with
∏L

j=1 σ
z
j , the expectation values of operators containing an odd number of fermions

vanish in (11). Thus, since the total number of fermions in A1 ∪ A2 must be even, the

numbers of fermions in A1 and A2 are either both even or both odd. This means that the

spin reduced density matrix ρA of A = A1 ∪ A2 can be written as follows [20]

ρA = ρeven + PB1 ρodd , (12)

where PB1 is the string of Majorana operators (10) associated to the block B1 and

ρeven ≡
1

2`1+`2

∑
even

w12O1O2 , w12 ≡ 〈O†2O
†
1〉 , (13a)

ρodd ≡
〈PB1〉
2`1+`2

∑
odd

wB1
12 O1O2 , wB1

12 ≡
〈O†2PB1O

†
1〉

〈PB1〉
, (13b)

being Ok (with k ∈ {1, 2}) an arbitrary product of Majorana fermions in Ak, namely

Ok =
∏

j∈Ak(a
x
j )
µx
[j](ayj )

µy
[j] with µα[j] ∈ {0, 1}. The notation

∑
even (

∑
odd) indicates that

the sum is restricted to operators Ok containing an even (odd) number of Majorana

fermions.

In order to compute the moments TrρnA for the ground state |Ψ〉〈Ψ| of the spin models

defined in (6), it is convenient to introduce both the fermionic reduced density matrix of

A = A1 ∪ A2, namely‡
ρ1
A ≡

1

2`1+`2

∑
even
odd

w12O1O2 , (14)

‡ The superscript 1 distinguishes the fermionic density matrix from the spin density matrix ρA.
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(we recall that 〈O1O2〉 vanishes when the numbers of fermionic operators in O1 and O2

have different parity) and the following auxiliary density matrix

ρB1
A ≡

TrB
(
PB1|Ψ〉〈Ψ|

)
〈PB1〉

=
1

2`1+`2

∑
even
odd

wB1
12 O1O2 , (15)

which satisfies the normalisation condition TrρB1
A = 1. It is worth remarking that ρA = ρ1

A

for the free fermion [48], as one can easily observe by setting PB1 = 1 in (12).

By using that PA2a
α
j PA2 gives either −aαj or aαj , depending on whether j ∈ A2 or

j /∈ A2 respectively, for (14) one finds that

PA2ρ
1
APA2 =

1

2`1+`2

∑
even
odd

(−1)µ2w12O1O2 , (16)

where µ2 =
∑

j∈A2
(µx[j] + µy[j]) is the total number of Majorana operators occurring in O2.

An expression similar to (16) can be written also for (15) and, from these results, it is

straightforward to conclude that the operators in (13a) and (13b) can be written as [20]

ρeven =
ρ1
A + PA2ρ

1
APA2

2
, ρodd = 〈PB1〉

ρB1
A − PA2ρ

B1
A PA2

2
. (17)

Considering the four fermionic Gaussian operators occurring in the r.h.s.’s of (17), let us

introduce the following notation

ρ1 ≡ ρ1
A , ρ2 ≡ PA2ρ

1
APA2 , ρ3 ≡ 〈PB1〉 ρB1

A , ρ4 ≡ 〈PB1〉PA2ρ
B1
A PA2 . (18)

In terms of these four matrices, from (16) one finds that the reduced density matrix (12)

can be written as

ρA =
1

2

[
ρ1 + ρ2 + PB1

(
ρ3 − ρ4

)]
. (19)

In [20] it has been shown that

TrρnA = Tr(ρeven + ρodd)n =
1

2n
Tr
(
ρ1 + ρ2 + ρ3 − ρ4

)n
, (20)

where in the last step (17) and (18) have been employed. Eq. (20) tells us that TrρnA is

a sum of 4n terms, where each term is characterised by a string q made by n elements

qi ∈ {1, 2, 3, 4}. Once the explicit expressions (18) are plugged into such sum, the terms

with an odd number of 4’s in q occur in TrρnA with a minus sign. By using the cyclic

property of the trace and the fact that P 2
A2

= 1, it is straightforward to observe that

a term characterised by q is equal to the one characterised by q′, with q′ obtained by

exchanging 1 ↔ 2 and 3 ↔ 4 in q. Moreover, a term associated to a q with an odd

total number of 3’s and 4’s will have opposite sign with respect to the corresponding one

characterised by q′, and they cancel out. Instead, a term having a q with an even total

number of 3’s and 4’s has the same sign of the corresponding one given by q′, and this

provide a factor 2 that can be collected.
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After these simplifications, the net result is

TrρnA =
1

2n−1

∑
q

(−1)#4 Tr

[ n∏
k=1

ρqk

]
, (21)

where the sum is over all q’s with an even total number of 3’s and 4’s and modulo the

exchange 1↔ 2 and 3↔ 4. It is not difficult to realize that the sum (21) contains 22(n−1)

terms and the ones having an odd number of ρ4’s occur with a minus sign.

Each term in the sum (21) enjoys a Zn × Z2 symmetry (dihedral symmetry). The

Zn symmetry comes from the fact that we can permute cyclically the n factors within

the trace. The Z2 invariance occurs because each term in (21) is real and every factor

ρqk is hermitian. These observations imply that every term in (21) can be written by

taking all the factors within the trace in the opposite order. Taking into account the

dihedral symmetry, many terms in the sum (21) coincide and therefore the moments TrρnA
can be written as linear combinations with integer coefficients of a minimal number of

representative terms belonging to different equivalence classes identified by the dihedral

symmetry.

Explicit expressions of (21) for 2 6 n 6 5 have been written in [20, 46] in terms of

the correlators. By employing the matrices (18), the simplest cases of n = 2 and n = 3

are given by

Trρ2
A =

1

2

[
Tr(ρ2

1) + Tr(ρ1ρ2) + Tr(ρ2
3)− Tr(ρ3ρ4)

]
, (22)

Trρ3
A =

1

4

[
Tr(ρ3

1) + 3 Tr(ρ2
1ρ2) + 3 Tr(ρ1ρ

2
3) + 3 Tr(ρ2ρ

2
3)− 6 Tr(ρ1ρ4ρ3)

]
. (23)

In [46] the partial transpose ρT2A for (12) has been studied by employing the previous

analysis for ρA and the prescription for the partial transpose of a fermionic Gaussian

operator introduced in [47].

2.3. Moments of the partial transpoe

Given a Gaussian density matrix written in terms of Majorana fermions in A = A1 ∪A2,

the partial transposition with respect to A2 acts only on the modes in A2, leaving invariant

the ones in A1. Furthermore, also the operator PB1 is left unchanged. Since the partial

transposition is linear, from (12) we have

ρT2A = ρT2even + PB1 ρ
T2
odd . (24)

Considering the operator O2 made by Majorana fermions in A2, its partial

transposition is given by [47]

OT
2 = (−1)τ(µ2)O2 , (25)

where

τ(µ2) =

{
0 (µ2 mod 4) ∈ {0, 1} ,
1 (µ2 mod 4) ∈ {2, 3} .

(26)
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The partial transposition can be defined also in another way, which is related to (25)

through a unitary transformation [45].

By applying (25) to (13a) and (13b), we find respectively

ρT2even =
1

2`1+`2

∑
even

(−1)µ2/2w12O1O2 , ρT2odd =
〈PB1〉
2`1+`2

∑
odd

(−1)(µ2−1)/2wB1
12 O1O2 . (27)

Plugging these expressions into (24), one gets the partial transpose of the spin reduced

density matrix in terms of the Majorana fermions. Both ρT2even and ρT2odd in (27) can be

written as a sum of two Gaussian matrices. Indeed, by introducing

ρ̃1
A ≡

1

2`1+`2

∑
even
odd

iµ2 w12O1O2 , ρ̃B1
A ≡

1

2`1+`2

∑
even
odd

iµ2 wB1
12 O1O2 , (28)

the matrices in (27) become respectively

ρT2even =
ρ̃1
A + PA2 ρ̃

1
APA2

2
, ρT2odd = 〈PB1〉

ρ̃B1
A − PA2 ρ̃

B1
A PA2

2i
. (29)

While ρT2even and ρT2odd in (29) are Hermitian, the matrices in (28), which are used to build

them, are not. Indeed, (ρ̃1
A)† = PA2 ρ̃

1
APA2 and (ρ̃B1

A )† = PA2 ρ̃
B1
A PA2 .

Mimicking the analysis performed above for the reduced density matrix, we find it

convenient to introduce the following four fermionic Gaussian operators

ρ̃1 ≡ ρ̃1
A , ρ̃2 ≡ PA2 ρ̃

1
APA2 , ρ̃3 ≡ 〈PB1〉 ρ̃B1

A , ρ̃4 ≡ 〈PB1〉PA2 ρ̃
B1
A PA2 . (30)

In terms of these matrices, from (24) and (29) we have that the partial transpose of the

reduced density matrix can be written as

ρT2A =
1

2

[
ρ̃1 + ρ̃2 − iPB1

(
ρ̃3 − ρ̃4

)]
. (31)

The moments of the partial transpose can be computed as follows [46]

Tr
(
ρT2A
)n

= Tr
(
ρT2even + ρT2odd

)n
=

1

2n
Tr
(
ρ̃1 + ρ̃2 − i ρ̃3 + i ρ̃4

)n
, (32)

where in the last step (29) and (30) have been used. Thus, Tr
(
ρT2A
)n

in (32) turns out

to be a linear combination of 4n terms, where each term is specified by a string q̃ made

by n elements q̃i ∈ {1, 2, 3, 4}. This result is similar to (20) obtained for the moments

of the reduced density matrix. An important difference between (18) and (30) is the

occurrence of the imaginary unit in (32), which implies that the sign in front of each term

is (−1)#3 i#3+#4, being #3 and #4 the number of 3’s and 4’s respectively occurring in q̃.

The analysis of the various terms occurring in the sum given by (32) is very similar

to the one performed for TrρnA. In particular, a term characterised by a vector q̃ is equal

to the one associated to the vector q̃′ obtained by exchanging 1 ↔ 2 and 3 ↔ 4 and

therefore the terms whose q̃ has an odd total number of ρ̃3’s and ρ̃4’s cancel out because
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of the opposite relative sign between ρ̃3 and ρ̃4 in (32), while the ones having an even

total number of ρ̃3’s and ρ̃4’s sum pairwise and a factor of 2 can be collected out. Since

#3 + #4 is even, all the non vanishing coefficients in Tr
(
ρT2A
)n

are real and their overall

sign is (−1)
#3+#4

2
+#3.

These observations allow us to write the moments of the partial transpose ρT2A as

Tr
(
ρT2A
)n

=
1

2n−1

∑
q̃

(−1)
#4−#3

2 Tr

[ n∏
k=1

ρ̃q̃k

]
, (33)

where, like in (21), the sum is assumed to be over all q̃ with an even total number of 3’s

and 4’s and modulo the exchange 1↔ 2 and 3↔ 4. Thus, the sum (33) contains 22(n−1)

terms.

Each term in the sum (33) enjoys the dihedral symmetry Zn×Z2. The Zn invariance

comes from the cyclic permutation of the factors within each trace, like for the terms in

(21), while the Z2 symmetry is related to the reality of each term. As already pointed out

below (29), the four terms in (30) are not separately hermitian. The hermitian conjugation

exchanges ρ̃1 ↔ ρ̃2 and ρ̃3 ↔ ρ̃4, and any term in the sum (33) is left invariant under such

exchange, as already remarked above. By employing the above behaviour of the matrices

ρ̃j under hermitian conjugation and the fact that PB1 is hermitian, one concludes that

also the matrix ρT2A in (31) is hermitian.

We find it useful to report explicitly (33) at least in the simplest cases of n = 2 and

n = 3. They read respectively [46]

Tr
(
ρT2A
)2

=
1

2

[
Tr(ρ̃2

1) + Tr(ρ̃1ρ̃2) + Tr(ρ̃3ρ̃4)− Tr(ρ̃2
3)
]
, (34)

Tr
(
ρT2A
)3

=
1

4

[
Tr(ρ̃3

1) + 3 Tr(ρ̃2
1ρ̃2) + 6 Tr(ρ̃1ρ̃4ρ̃3)− 3 Tr(ρ̃1ρ̃

2
3)− 3 Tr(ρ̃2ρ̃

2
3)
]
. (35)

The formulas written in [46] for n = 4 and n = 5 can be also expressed in terms of the

matrices (30), but the number of terms to deal with significantly increases with respect

to (34) and (35).

3. Review of the CFT results

The scaling limit of the lattice models considered in the previous section are described by

two dimensional conformal field theories. In particular, the scaling limit of the critical XX

spin chain is the modular invariant Dirac fermion, whose central charge is c = 1, while for

the critical Ising chain is the Ising model (c = 1/2). In this section we review the CFT

results for the Rényi entropies and the moments of the partial transpose for the modular

invariant Dirac fermion and the Ising model.

When the subsystem A is an interval of length ` on the infinite line, the moments of

the reduced density matrix for a CFT with central charge c can be written as [3, 5, 6]

TrρnA = cn

(
`

a

)−c(n−1/n)/6

, (36)
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where a is the inverse of an ultraviolet cutoff (e.g. the lattice spacing) and cn is a non

universal constant. For the Dirac fermion c = 1 and [49]

cXX
n = 2−

1
6(n− 1

n) exp

{
in

∫ ∞
−∞

log

(
Γ
(

1
2

+ iz
)

Γ
(

1
2
− iz

))[ tanh (πz)− tanh (πnz)
]
dz

}
, (37)

while for Ising model c = 1/2 and [50, 51]

cIsing
n = 2−

1
12(n− 1

n)
√
cXX
n . (38)

The expression (36) can be found by realising that TrρnA is the partition function on a

sphere obtained by attaching cyclically the n replicas [5]. It can also be interpreted as the

two-point function of some twist operators acting at the endpoints u and v of the interval

A [5, 51], namely TrρnA = 〈Tn(u)T̄n(v)〉. The twist fields Tn and T̄n behave like spinless

primary operators whose scaling dimensions read

∆n =
c

12

(
n− 1

n

)
. (39)

From the moments TrρnA one can find information about the full spectrum of the reduced

density matrix [52].

When A is made by two disjoint intervals A = A1∪A2 = [u1, v1]∪[u2, v2] on the infinite

line whose endpoints are ordered as u1 < v1 < u2 < v2, the moments TrρnA are given by

the four point function 〈Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)〉 [5, 14, 15, 12, 13]. Global conformal

invariance allows to write TrρnA as follows (hereafter we will drop the dependence on the

UV cutoff a)

TrρnA = c2
n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(v1 − u2)

)2∆n

Fn(x) , (40)

where cn is the same non-universal constant introduced in (36), x is the four point ratio

x =
(u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
∈ (0, 1) , (41)

and the normalization Fn(0) = 1 has been imposed. The universal function Fn(x) encodes

all the information about the operator content of the CFT and it has been largely studied

during the last years [12, 13, 14, 17, 15, 53, 16, 54, 23, 19, 21, 55, 56] (see also [57, 16, 58]

for the holographic viewpoint and [59] for higher dimensional conformal field theories).

The expression (40) for the moments TrρnA of two disjoint intervals can be interpreted also

as the partition function of the underlying model on the Riemann surface Rn of genus

n−1. The Riemann surface Rn can be constructed by attaching cyclically the n sheets on

which the n copies of the model are defined (we remark that each sheet has the topology

of a cylinder) [13]. Since Rn has been obtained through a replica method, it does not

represent the most generic genus n − 1 Riemann surface. In Fig. 2 and Fig. 3 we show

two representations of R4, whose genus is equal to three. In Fig. 3 the sheets should be
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thought as attached in a cyclic way along the edges of the slits: the lower edge (blue) of

each slit should be identified with the upper edge (red) of the slit just above.

The genus n−1 Riemann surface Rn can be defined as the complex curve in C2 given

by yn = (z − u1)(z − u2)[(z − v1)(z − v2)]n−1 [12, 60], being (y, z) ∈ C2. A crucial object

for our analysis is the period matrix, which is a g × g complex symmetric matrix with

positive definite imaginary part for a generic genus g Riemann surface [26]. In order to

write the period matrix τ of the Riemann surface Rn, one needs to introduce a canonical

homology basis, namely a set {ar, br ; 1 6 r 6 n−1} of closed oriented curves on Rn such

that ai ∩ aj = bi ∩ bj = ∅ and, for any fixed i, the cycle ai crosses only the cycle bi in such

way that the cross product of the tangent vectors at the intersection points either inward

or outward. In this manuscript we choose the canonical homology basis shown in Figs. 2

and 3, which has been discussed in [23].

For fermionic models, it is also crucial to specify the boundary conditions (either

periodic or antiperiodic) along all the cycles of a canonical homology basis [26]. The set

of such boundary conditions provides the spin structure of the fermionic model on the

underlying higher genus Riemann surface.

The function Fn(x) entering in (40) is known explicitly only for very few models.

One of the most important ones is the free boson compactified on a circle of radius rcircle.

In this case, Fn(x) is [12]

Fn(x) =
Θ
(
0|ητ

)
Θ
(
0|τ/η

)
[Θ
(
0|τ
)
]2

, (42)

where the parameter η = 2r2
circle is related to the compactification radius and τ is the

(n− 1)× (n− 1) period matrix of the Riemann surface Rn, whose elements read [12]

τi,j = i
2

n

n−1∑
k=1

sin(πk/n)
2F1(k/n, 1− k/n; 1; 1− x)

2F1(k/n, 1− k/n; 1;x)
cos[2π(k/n)(i− j)] . (43)

This period matrix can be written by employing the canonical homology basis shown in

Figs. 2 and 3 [12, 23]. It is worth remarking that, since x ∈ (0, 1), the period matrix τ(x)

is purely imaginary. In (42) the Riemann theta function Θ [61, 62] is given by

Θ(z|M) ≡
∑

m∈Zn−1

e iπmt·M ·m+2πimt·z , (44)

as function of the n− 1 dimensional complex vector z and of the (n− 1)× (n− 1) matrix

M , which must be symmetric and with positive imaginary part.

For the CFTs we are interested in, namely the modular invariant Dirac fermion and

the critical Ising model, the scaling functions Fn(x) are also known [13]. In particular,

for the modular invariant Dirac fermion the function Fn(x) reads

FDirac
n (x) =

1

2n−1

∑
e

(−1)4ε·δ
∣∣∣∣Θ[e](0|τ)

Θ(0|τ)

∣∣∣∣2, (45)
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Figure 2. The Riemann surface R4 and the canonical homology basis considered in this

manuscript (see also [13, 23]).

and for the Ising model it is given by

F Ising
n (x) =

1

2n−1

∑
e

(−1)4ε·δ
∣∣∣∣Θ[e](0|τ)

Θ(0|τ)

∣∣∣∣ , (46)

being the period matrix τ is (43). In these cases Fn(x) is written in terms of the Riemann

theta function with characteristic, which generalises (44) as follows [61, 62]

Θ[e](z|M) ≡
∑

m∈Zn−1

e iπ(m+ε)t·M ·(m+ε)+2πi (m+ε)t·(z+δ) , e ≡
(
ε

δ

)
, (47)

where z and M are defined as in (44). The characteristic e of the Riemann theta function

is given by the n − 1 dimensional vectors ε and δ, whose entries are either 0 or 1/2.

Notice that (47) becomes (44) when ε = δ = 0. The characteristic e specifies the set
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Figure 3. The Riemann surface R4 represented through the cyclic joining of four sheets.

For a given slit, the upper edge (red) should be identified with the lower edge (blue) of

the slit below, in a cyclic way. The canonical homology basis is the same one shown in

Fig. 2, with the same colour code.

of boundary conditions along the a and b cycles, providing the spin structures of the

fermionic model [26]. In particular ε gives the boundary conditions along the a cycles

(εk = 0 for antiperiodic b.c. around ak and εk = 1/2 for periodic b.c.), while δ is fixed

through the boundary conditions along the b cycles (δk = 0 for antiperiodic b.c. around

bk and δk = 1/2 for periodic b.c.).

The expressions (45) and (46) tell us that the moments of the reduced density matrix

can be computed as a sum of fermionic partition functions on Rn with all possible choices

of fermionic boundary conditions.

As function of z, the parity of the Riemann theta function (47) is given by the

parity of the integer number 4ε · δ (indeed Θ[e](−z|M) = (−1)4ε·δ Θ[e](z|M)), which

is, by definition, also the parity of the characteristic e. Among the 22(n−1) possible

characteristics, 2n−2(2n−1+1) are even and 2n−2(2n−1−1) are odd. Thus, in the expressions

for Fn(x) given above, where z = 0, only the Riemann theta functions with even
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characteristics are non vanishing. This implies that the terms with odd characteristics

can be multiplied by arbitrary functions. In (45) and (46) we have introduced a minus

sign in front of all the terms with odd characteristics because this choice facilitates the

identification of their lattice counterparts, as it will be discussed in §4.2.

The formulas (45) and (46) have been found by employing old results about the

bosonization on higher genus Riemann surfaces [26]. In particular, we remark that

FDirac
n (x) in (45) comes from (42) for a specific value of the compactification radius

(η = 1/2 in the notation of [12]).

Plugging (45) and (46) into (40) with the proper choice of the central charge c and

the coefficient cn, one finds the moments of the reduced density matrix for the modular

invariant Dirac fermion and for the Ising model respectively. We find it convenient to split

the various terms occurring in the resulting sums by introducing the following notation‖

Jn ≡
c2
n[

`1`2(1− x)
]2∆n

, Ωn[2e] ≡
∣∣∣∣Θ[e](0|τ(x))

Θ(0|τ(x))

∣∣∣∣ . (48)

In terms of these expressions, TrρnA for the Dirac fermion and the Ising model can be

written respectively as TrρnA = 1
2n−1 J

Dirac
n

∑
e Ωn[2e]2 and TrρnA = 1

2n−1 J
Ising
n

∑
e Ωn[2e],

where Jn is different in the two models because of the central charge and the non-universal

constant cn.

Performing the replica limit for these expressions in order to get the entanglement

entropy SA or the mutual information is still an open problem (see [24] for numerical

extrapolations).

The moments of the partial transpose Tr(ρT2A )n in a conformal field theory can be also

computed as the four point function of twist fields given by 〈Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)〉
[10], where u1 < v1 < u2 < v2 are the endpoints of the disjoint intervals. Thus, they

admit the following universal scaling form

Tr
(
ρT2A
)n

= c2
n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(u2 − v1)

)2∆n

Gn(x) , (49)

being cn the non-universal constant defined in (36), Gn(x) a new universal scaling function

and x the cross ratio (41). The scaling functions Fn(x) and Gn(x), introduced in (40) and

(49) respectively, are related as follows [10, 11]

Gn(x) = (1− x)4∆n Fn
(

x

x− 1

)
, (50)

where it is worth remarking that x/(x− 1) ∈ (−∞, 0) when x ∈ (0, 1). This means that

the function Fn(x) defined for x ∈ (0, 1) in (40) has to be properly extended to a function

Fn(x, x̄) defined on the whole complex plane. Then, its restriction to the real negative

axis provides the function Gn(x) defined for x ∈ (0, 1) according to (50). Notice that in

the ratio Tr(ρT2A )n/TrρnA = (1 − x)4∆nFn( x
x−1

)/Fn(x) the non universal constants cn and

the dimensionfull factors simplify, leaving only a universal scale invariant quantity.

‖ In order to enlighten some forthcoming expressions, in (48) and (54) we have slightly changed the

notation for Ωn and Ω̃n with respect to the one adopted in [45].
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Figure 4. The i-th b cycle for the Riemann surfaces Rn (left) and R̃n (right): the solid

part of the curve belongs to the i-th sheet and the dashed part to the (i + 1)-th sheet.

As for the a cycles, they coincide for both Rn and R̃n and in Fig. 3 they are shown

explicitly for n = 4.

Since (49) is obtained by joining n replicas of the model in a proper way [10, 11],

also the n-th moment Tr(ρT2A )n can be evaluated as the partition function of the model

on a particular Riemann surface R̃n. Such Riemann surface has genus n − 1 and it is

genuinely different from Rn when n > 2. Instead, R̃2 and R2 are the same torus because

their moduli are related by a modular transformation [11].

The Riemann surface R̃n is defined by the complex constraint yn = (z − u1)(z −
v2)[(z − v1)(z − u2)]n−1 in C2, which has been obtained by exchanging u2 ↔ v2 in the

equation defining Rn. The surface R̃n can be constructed by joining properly the n

replicas [10, 11] and this procedure is different from the one employed to define Rn. In

particular, since we are considering the partial transpose with respect to A2, the edges of

the slits along the n copies of A1 are attached cyclically like in Rn, but the edges along A2

are attached in the opposite way: if along A1 the upper edge in the i-th sheet is identified

with the lower edge in the (i+1)-th sheet, along A2 the lower edge in the i-th sheet should

be merged with the upper edge of A2 in the (i+ 1)-th sheet. We refer to Fig. 4 of [11] for

an explicit representation.

As for the canonical homology basis {ãr, b̃r ; 1 6 r 6 n − 1} for R̃n, since R̃n and

Rn differ only for the joining of the sheets along A2, it is natural to choose ãr = ar (see

Fig. 3), while the generic cycle b̃r is shown in the right panel of Fig. 4. This basis has been

already employed in [11, 45] and the period matrix τ̃(x) of R̃n reads

τ̃(x) = τ
(
x/(x− 1)

)
= R+ i I , R =

1

2
Q , (51)

where the generic element of τ(x) is given by (43). The symmetric matrices R and I are

the real and imaginary part of τ̃ respectively. It is worth remarking that R is independent

of x and its form is particularly simple: it is an integer symmetric matrix Q multiplied

by 1/2, where Q is a tridiagonal matrix having 2’s along the principal diagonal and −1’s

along the secondary ones [45].

We find it convenient to write explicitly the functions Fn( x
x−1

) entering in (50) for

the CFT models we are dealing with. For the modular invariant Dirac fermion it reads

FDirac
n

(
x

x− 1

)
=

1

2n−1

∑
e

(−1)4ε·δ
∣∣∣∣Θ[e](0|τ̃)

Θ(0|τ̃)

∣∣∣∣2, (52)
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and for the Ising model it is given by

F Ising
n

(
x

x− 1

)
=

1

2n−1

∑
e

(−1)4ε·δ
∣∣∣∣Θ[e](0|τ̃)

Θ(0|τ̃)

∣∣∣∣ , (53)

Let us stress again that the minus sign in front of the terms with odd characteristics

(which are identically zero) has been introduced to simplify the identification of the lattice

quantities which vanish in the scaling limit (see §4.4).

Plugging (52) and (53) into (50) first and then into (49) with the corresponding

central charges and coefficients cn, one obtains the moments Tr(ρT2A )n for the modular

invariant Dirac fermion and the Ising model. We find it convenient to introduce

expressions similar to (48) as follows

J̃n ≡ c2
n

(
1− x
`1`2

)2∆n

, Ω̃n[2e] ≡
∣∣∣∣Θ[e](0|τ̃(x))

Θ(0|τ̃(x))

∣∣∣∣ . (54)

By employing (54), the moments of the partial transpose for the Dirac fermion and

the Ising model become respectively Tr(ρT2A )n = 1
2n−1 J̃

Dirac
n

∑
e Ω̃n[2e]2 and Tr(ρT2A )n =

1
2n−1 J̃

Ising
n

∑
e Ω̃n[2e], where J̃n is model dependent as explained above for Jn.

The replica limit (5) giving the logarithmic negativity from these expressions of the

moments is still an open problem. Even numerical extrapolations like the ones performed

successfully in [24] to get the mutual information are problematic for the replica limit (5)

because, since only the sequence of even integers is required, one needs higher values of n to

get a stable extrapolation and computing the Riemann theta functions is computationally

hard for high orders.

3.1. The dihedral symmetry of the Riemann surfaces

The dihedral symmetry Zn × Z2 has been discussed in [54, 23] for Rn and in [45] for R̃n.

The Zn symmetry comes from the fact that both Rn and R̃n have been obtained

through a replica construction, and therefore they enjoy the Zn invariance under the

cyclic permutation of the n sheets. Instead, the Z2 symmetry originates from the fact

that the endpoints of the intervals are located along the real axis. Indeed, since the

complex equations defining Rn and R̃n are invariant under complex conjugation, both

these Riemann surfaces remain invariant by taking the sheets in the reversed order and

reflecting all of them with respect to the real axis.

The modular transformations of a genus g Riemann surface can be identified with

the group of the integer symplectic matrices Sp(2g,Z) [26]. These transformations act on

the period matrix and reshuffle the characteristics. In particular, they do not change the

parity of a given characteristic. The transformations of the dihedral symmetry can be

identified with a subgroup of the symplectic matrices which leave the functions in (48) and

(54) separately invariant. The symplectic matrices implementing the dihedral symmetry

have been written explicitly in [54, 23] for Rn and in [45] for R̃n (notice that the matrices

for the Z2 symmetry are different in the two surfaces). Thus, beside the vanishing terms
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with odd characteristics in the sums (45), (46), (52) and (53), the dihedral symmetry

leads to further degeneracies among the non vanishing terms. Indeed, the terms whose

even characteristics are related by one of the modular transformations associated to the

dihedral symmetry are equal. This implies that the sums for the moments can be written

in a simpler form by choosing a representative term for each equivalence class, whose

coefficient is the cardinality of the corresponding equivalence class. By implementing the

dihedral symmetry in (45), (46), (52) and (53), one can slightly reduce the exponentially

large (in n) number of terms occurring in these sums.

We find it instructive to write explicitly Fn(x) for the Ising model in the simplest

cases of n = 2 and n = 3. By specialising (46) to these values of n and implementing the

dihedral symmetry discussed above, the results are respectively

F Ising
2 (x) =

1

2

(
1 + Ω2

[
0

1

]
+ Ω2

[
1

0

]
− Ω2

[
1

1

])
, (55)

F Ising
3 (x) =

1

4

(
1 + 3 Ω3

[
0 0

0 1

]
+ 3 Ω3

[
0 1

0 0

]
+ 3 Ω3

[
0 1

1 0

]
− 6 Ω3

[
0 1

1 1

])
, (56)

where we have written also the vanishing terms with odd characteristics, which occur

with a minus sign [63]. The corresponding expressions for the Dirac model can be easily

obtained from (45), or by simply replacing each Ωn[2e] in (55) and (56) with Ωn[2e]2.

As for the moments of the partial transpose (49) and (50) for the Ising model, by

specialising (53) to n = 2 and n = 3 and implementing the dihedral symmetry we find

F Ising
2

(
x

x− 1

)
=

1

2

(
1 + Ω̃2

[
0

1

]
+ Ω̃2

[
1

0

]
− Ω̃2

[
1

1

])
, (57)

F Ising
3

(
x

x− 1

)
=

1

4

(
1 + 3 Ω̃3

[
0 0

0 1

]
+ 6 Ω̃3

[
0 1

1 0

]
− 3 Ω̃3

[
0 1

0 1

]
− 3 Ω̃3

[
0 1

1 1

])
.(58)

As above, the corresponding expressions for the Dirac fermion can be written

straightforwardly by substititung each Ωn[2e] in (57) and (58) with Ωn[2e]2.

4. Spin structures in the moments of the reduced density matrix and its

partial transpose

In this section we employ the coherent states formalism to identify the analytic expressions

giving the scaling limit of the terms occurring in the sums for TrρnA and Tr(ρT2A )n on the

lattice discussed in §2. These are the partition functions of the corresponding fermionic

model on the underlying Riemann surface with a specific spin structure.

4.1. Reduced density matrix

In this subsection we provide a representation of the reduced density matrix on the lattice

in terms of the fermionic coherent states [64, 65]. The generalisation to a continuum spatial

dimension is straightforward.
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In the fermionic representation let us consider the local Hilbert space of the j-th

fermion, whose basis is given by the two vectors |1〉 and |0〉, telling whether the fermion

occurs or not respectively. The operators cj and c†j act as the creation and annihilation

operators on these vectors, namely cj |0〉 = c†j |1〉 = 0, while c†j |0〉 = |1〉 and cj |1〉 = |0〉.
Given the Majorana operators (9), let us define the following single site operators

axj = Σx
j , ayj = −Σy

j , i axja
y
j = Σz

j , (59)

which satisfy the algebra of the Pauli matrices. Nevertheless, it is worth remarking that,

since they anticommute at different sites, they are not spin operators and should not be

confused with the σαj in (6).

For the j-th site, it is useful to introduce also the following unitary operator

U (k)
α = eiα

2
Σkj = cos (α/2) I + i sin (α/2) Σk

j , (60)

whose action on the operators in (59) can be obtained from the following relation

U
(k)
−α Σb

j U
(k)
α =

[
δkb + (1− δkb cosα)

]
Σb
j + (sinα)εkb` Σ`

j , (61)

where εkb` is the totally antisymmetric tensor such that εxyz = 1.

Considering a real Grassmann variable θ, since θ2 = 0, a generic function of such

variable can be written as f(θ) = f0+f1θ, where fi are real or complex numbers. Given two

real Grassmann variables θ1 and θ2, we have that θ2
i = 0 for i ∈ {1, 2} and θ1θ2 = −θ2θ1.

A complex Grassmann variable ζ can be built from two real Grassmann variables as

ζ = (θ1 + i θ2)/
√

2 and its complex conjugate reads ζ∗ = (θ1 − i θ2)/
√

2. Integrating over

a complex Grassmann variable is like taking the derivative; indeed∫
dζ∗dζ =

∫
dζ∗dζ ζ =

∫
dζ∗dζ ζ∗ = 0 ,

∫
dζ∗dζ ζ ζ∗ = 1 . (62)

The coherent states for a single site are defined as follows

|ζ〉 = |0〉 − ζ |1〉 , 〈ζ| = 〈0|+ ζ∗ 〈1| , (63)

where |0〉 e |1〉 have been introduced above. The peculiar property of these states is that

c |ζ〉 = ζ |ζ〉 and 〈ζ| c† = 〈ζ| ζ∗, as one can easily check by employing that ζ commutes

with |0〉 and anticommutes with c, c† and |1〉. The coherent states in (63) do not form an

orthonormal basis. A completeness relation and a formula for the trace of an operator O

are given respectively by

I =

∫
dζ∗dζ e−ζ

∗ζ |ζ〉 〈ζ| , TrO =

∫
dζ∗dζ e−ζ

∗ζ 〈−ζ|O |ζ〉 . (64)

In the following we will also need

〈ζ|η〉 = 1 + ζ∗η = eζ
∗η . (65)
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Figure 5. Path integral representation in the coherent state basis of the terms occurring

in TrρnA (see §4.1 and §4.2).

Another useful property to remark is iaxay |ζ〉 = |−ζ〉, which can be easily derived from

(9), (63) and the above definition of the operators c and c†.

A coherent state for the whole lattice is constructed by simply taking the tensor

product of the single site coherent states just discussed, i.e. |ζ(x)〉 = ⊗i |ζ〉i (here we

have restored the lattice index and x is a discrete variable labelling the chain). When

the whole system is in the ground state, the density matrix is ρ = |Ψ〉 〈Ψ| and its matrix

element with respect to two generic coherent states reads

ρ(ζ(x), η(x)) = e−ζ
∗η 〈ζ(x)|Ψ〉 〈Ψ|η(x)〉 , (66)

where ζ∗η =
∑

x ζ
∗(x) η(x) and e−ζ

∗η is the normalization factor obtained through (65).

It is worth remarking that the above formulas are given for a discrete system, but they

can be easily adapted to a continuum system.

The reduced density matrix of A = A1 ∪A2 is obtained by separating the degrees of

freedom in A and the ones in B first and then tracing over the latter ones. Denoting by

|ζA(xA)〉 and |ζB(xB)〉 the coherent states on A and B respectively, the coherent state on

the full system can be written as |ζ(x)〉 = |ζA(xA)〉 ⊗ |ζB(xB)〉 = |ζA(xA), ζB(xB)〉, where

in the last step we have introduced the notation that will be adopted hereafter.

In §2.2 it has been discussed the spin reduced density matrix ρA, finding that its n-th

moment TrρnA can be computed by taking the trace over the fermionic degrees of freedom

of a combination made by the four Gaussian fermionic operators (18). In the following we

study matrix elements of these four matrices with respect to two generic coherent states

|ζA(xA)〉 and |ηA(xA)〉.
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Considering the density matrix ρ1
A first, its matrix element reads

ρ1(ζA, ηA) = e−ζ
∗
AηA

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA1 , ζA2 ;−χB1 ,−χB2|Ψ〉 〈Ψ|ηA1 , ηA2 ; χB1 , χB2〉 ,
(67)

where ζA = ζA(xA), ηA = ηA(xA) and, for later convenience, within the matrix

elements the contributions of the various blocks have been separated to highlight the

boundary conditions and the joining conditions. In the exponent occurring in (67)

we have χ∗B χB = χ∗B1
χB1 + χ∗B2

χB2 . As for the integration measure, it is given

by Dχ∗BDχB =
∏

x∈B dχ∗B(x) dχB(x), which can also be written as Dχ∗BDχB =∏
x∈B1

dχ∗B(x) dχB(x)
∏

x∈B2
dχ∗B(x) dχB(x). The minus sign within the matrix element

in (67) comes from the trace over B, according to (64).

The formula (67) is given for a lattice system but it can be easily generalised to

a continuum spatial dimension by interpreting the discrete product in the integration

measure as a path integral along the spatial direction and the discrete sum ζ∗AηA as an

integral over A. The braket 〈Ψ|ηA1 , ηA2 ; χB1 , χB2〉 in the continuum corresponds to the

fermionic path integral on the upper half plane where the boundary conditions ηAj and

χBj (with j = 1, 2) are imposed in Aj and Bj respectively, just above the real axis. In a

similar way, 〈ζA1 , ζA2 ;−χB1 ,−χB2 |Ψ〉 is a fermionic path integral on the lower half plane

with the proper boundary conditions explicitly indicated. Performing the trace over B

corresponds to set the fields along B equal (but with opposite sign) and summing over

all the possible field configurations. The net result is a path integral over the whole

plane with two open slits along A1 and A2, where the boundary conditions ηA and ζA
are imposed along the lower and the upper edges of A respectively. This is represented

pictorially in the top left panel of Fig. 5.

The matrix element of ρ2 in (18) can be easily obtained once the role of PA2 is

understood. From the observation below (65) and since PA2 occurs on both sides of ρ1,

it is not difficult to realise that the net effect of PA2 is the change of sign for the fermion

both above and below the cut along A2, namely

ρ2(ζA, ηA) = e−ζ
∗
AηA 〈ζA1 , ζA2|PA2ρ1PA2 |ηA1 , ηA2〉 = ρ1(ζA1 ,−ζA2 ; ηA1 ,−ηA2) (68)

= e−ζ
∗
AηA

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA1 ,−ζA2 ;−χB1 ,−χB2|Ψ〉 〈Ψ|ηA1 ,−ηA2 ; χB1 , χB2〉 .

As above, also this expression can be easily adapted to the case of a continuum spatial

dimension (see the top right panel of Fig. 5).

As for the term ρ3 = TrB(PB1|Ψ〉〈Ψ|) in (18), the role of PB1 within the trace over

B is crucial. Since for every single site we have iaxay |ζ〉 = |−ζ〉, the effect of PB1 is

implemented during the integration along B by taking the field above and below B1 with

the same sign (while keeping a relative minus sign above and below B2), namely

ρ3(ζA, ηA) = e−ζ
∗
AηA

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA1 , ζA2 ;χB1 ,−χB2 |Ψ〉 〈Ψ|ηA1 , ηA2 ; χB1 , χB2〉 .
(69)

It is useful to compare this matrix element with the corresponding one for ρ1 in (67).
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Finally, the matrix element ρ4(ζA, ηA) of ρ4 in (18) is obtained by applying to

ρ3(ζA, ηA) the same considerations about the effect of PA2 done to get ρ2(ζA, ηA) from

ρ1(ζA, ηA). The result reads

ρ4(ζA, ηA) = e−ζ
∗
AηA 〈ζA1 , ζA2 |PA2ρ3PA2 |ηA1 , ηA2〉 = ρ3(ζA1 ,−ζA2 ; ηA1 ,−ηA2) (70)

=

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA1 ,−ζA2 ; χB1 , −χB2|Ψ〉 〈Ψ|ηA1 ,−ηA2 ; χB1 , χB2〉 ,

The matrix elements ρj(ζA, ηA) discussed above in the continuum have been represented

pictorially in Fig. 5.

In the continuum limit, the operator PC in (10) should be identified with the following

operator

PC = (−1)
∫
C dx ψ̄(x)ψ(x) ≡ (−1)FC , (71)

where FC is the fermionic number operator in the interval C [63]. The operator (71)

is placed along the interval C and it changes the fermionic boundary conditions (from

antiperiodic to periodic or viceversa) on any cycle crossing the curve C.

In ρ2 and ρ4 (see (18)) PA2 occurs both before and after ρ1
A and ρB1

A respectively. This

means that, in their continuum limit, the operators (−1)FA2 must be inserted both along

the upper edge and the lower edge of A2. As for ρ3 and ρ4, which are defined in (18),

the crucial difference with respect to ρ1 and ρ2 is that PB1 occurs through (15); therefore

their continuum limits contain also the operator (−1)FB1 applied once along B1. Thus,

for instance, in the path integral representation of ρ4(ζA, ηA) the operator (−1)F occurs

both around A2 and along B1.

4.2. Moments of the reduced density matrix

In this subsection we discuss the scaling limit of the lattice quantities defined by the terms

of the sum (21), finding that the scaling limit of the term characterised by the vector q

in such sum is the term associated to a particular spin structure characterised by e in the

sums (45) and (46).

In §2.2 we have seen that the n-th moment of the reduced density matrix is given

by (21), which contains 22(n−1) terms. In terms of the coherent state representation

discussed above, (20) tells us that TrρnA = Trρn+, where ρ+ is an operator whose generic

matrix element reads

ρ+(ζA, ηA) =
1

2

[
ρ1(ζA, ηA) + ρ2(ζA, ηA) + ρ3(ζA, ηA)− ρ4(ζA, ηA)

]
, (72)

being ρj(ζA, ηA) with 1 6 j 6 4 the matrix elements discussed in §4.1. The expression

(72) is meaningful also in the continuum limit and therefore also in this regime the n-th

moment of the reduced density matrix reads TrρnA = 2−n
∑
q(−1)#4 Tr

[∏n
k=1 ρqk

]
, which

is a sum containing 4n terms. Each of these terms is characterised by a vector q made by

n integers qi ∈ {1, 2, 3, 4} and has the following form

Tr

[ n∏
k=1

ρqk

]
=

∫ n∏
k=1

Dζ∗k Dζk ρq1(−ζn, ζ1)
n∏
k=2

ρqk(ζk−1, ζk) , (73)
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where in the r.h.s. the first expression in (64) has been employed n − 1 times, while the

trace according to the second expression in (64) has been taken only once. The expression

(73) provides the scaling limit of the lattice term in (21) characterised by the same q.

At this point, it is straightforward to adapt to the continuum case the same symmetry

considerations done to get (21) on the lattice. In particular, two terms characterised by

q and q′ are equal if they are related by the exchange 1 ↔ 2 and 3 ↔ 4. Furthermore,

because of the relative minus sign in front of ρ3 and ρ4 in (72), terms with an odd total

number of ρ3’s and ρ4’s cancel out in the sum for Trρn+, while terms with an even total

number of ρ3’s and ρ4’s survive and they are pairwise equal. The final result for TrρnA
has the same structure of (21) and its terms contain the operator (−1)F along non trivial

closed curves on Rn. These closed curves are around A2 whenever ρ2 or ρ4 occur in

(73) and along B1 on two different sheets if (73) contains a couple of ρ3’s, or a couple

of ρ4’s or the mixed combination (the latter closed curves are easier to visualise on the

representation of the multisheet Riemann surface given e.g. in Fig. 2 for the case n = 4).

The 22(n−1) terms in TrρnA correspond to all the inequivalent insertions of the operator

(−1)F around the cut in A2 or along two B1’s on different sheets. Indeed TrρnA is given

as a sum over all possible characteristics, or, equivalently, over all possible boundary

conditions (either periodic or antiperiodic) along the homology cycles.

Since the occurrence of (−1)F on Rn influences the fermionic boundary conditions

along the basis cycles, it is natural to look for a relation between the generic term (73)

characterised by q and the partition function of the corresponding fermionic model on the

Riemann surface Rn with a given spin structure, namely with the proper set of boundary

conditions imposed along the a and b cycles.

As for the modular invariant Dirac fermion, the contribution characterised by a fixed

set of boundary conditions reads

Tr

[ n∏
k=1

ρqk

]
=

(
cXX
n

)2[
`1`2(1− x)

]2∆n

∣∣∣∣Θ[e](0|τ(x))

Θ(0|τ(x))

∣∣∣∣2, (74)

where c = 1, ∆n is given by (39) and cXX
n by (37); while for the Ising model we have

Tr

[ n∏
k=1

ρqk

]
=

(
cIsing
n

)2[
`1`2(1− x)

]2∆n

∣∣∣∣Θ[e](0|τ(x))

Θ(0|τ(x))

∣∣∣∣ , (75)

where c = 1/2 and cIsing
n is given by (38).

In order to complete the identifications (74) and (75), in the following we provide a

rule to associate the spin structure e in the r.h.s.’s of (74) and (75) to the vector q in the

l.h.s.’s. Such rule depends on the canonical homology basis chosen to write the period

matrix of Rn and in our case it is given by the cycles shown in Figs. 2 and 3 for the case

n = 4 [23]. A vector q allows us to find the closed curves where the operator (−1)F must

be inserted on Rn as explained above. The operators (−1)F occurring in our analysis

can be distinguished in two types: (−1)FA2 and (−1)FB1 , depending on whether they

come from PA2 or PB1 . Considering the cycles {ar, br ; 1 6 r 6 n − 1} of the canonical
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homology basis, we have to count how many times they cross the curves where (−1)F

occurs. The parity of these numbers provide the characteristic corresponding to q as

follows: if ak crosses the curves where (−1)F is inserted an even number of times, then

εk = 0 (antiperiodic b.c. along ak), otherwise εk = 1/2 (periodic b.c. along ak). Notice

that the a cycles can meet only operators (−1)FB1 , i.e. the ones along the B1’s of the

various sheets. Similarly, if bk crosses the curves along which (−1)F is placed an even

number of times, we have δk = 0 (antiperiodic b.c. along bk), otherwise δk = 1/2 (periodic

b.c. along bk). We remark that the b cycles cross only operators (−1)FA2 , namely the ones

placed along the edges of the slits in A2.

The map between q and the corresponding characteristic e just discussed can be

written more explicitly. Considering the j-th sheet (1 6 j 6 n), let us introduce

pB1
j =

{
0 if (−1)FB1 does not occur

1 if (−1)FB1 occurs,
pA2
j =

{
0 if (−1)FA2 does not occur

1 if (−1)FA2 occurs,
(76)

which can be expressed also in a closed form as pB1
j = b(qj−1)/2c and pA2

j = (1+(−1)qj)/2,

where qj is the j-th element of q and we denoted by bxc the integer part of x. Then, the

characteristic e associated to q in (74) or (75) is given by

2 εk =

( k∑
`=1

pB1
`

)
mod 2 =

[
1− (−1)

∑k
`=1 p

B1
`

]
/2 ,

2 δk =
(
pA2
k + pA2

k+1

)
mod 2 =

[
1− (−1)p

A2
k +p

A2
k+1

]
/2 ,

(77)

where 1 6 k 6 n− 1. This relation between the vector q and the spin structure e shows

that each term (74) or (75) is the scaling limit of the term characterised by the same q

in the expression (21) for TrρnA for the lattice.

Since a Riemann theta function with odd characteristic vanishes identically in the

expressions (45) and (46), an interesting consequence of this analysis is that the scaling

limit of the terms in (21) associated to odd characteristics through the rules discussed

above is zero identically. These terms turn out to be the ones with an odd number of

ρ4’s, namely the ones occurring in (21) with a minus sign. This observation about the

odd spin structures is independent of the choice of the homology basis on Rn. Indeed,

two canonical homology basis are related by a modular transformation and this kind of

maps leaves invariant the parity of the characteristics.

4.3. Partial transpose of the reduced density matrix

In this subsection we represent the matrix elements of the matrices (30) through the

coherent states, as done in §4.1 for the matrices (18). Again, their generalisation to the

continuum regime is straightforward.

In [45] the path integral representation of ρ̃1 and ρ̃2 in (31) has been discussed in
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Figure 6. Path integral representation in the coherent state basis of ρ1(ζ, η) (left panel

and top left panel of Fig. 5) occurring in TrρnA and of ρ̃1(ζ, η) occurring in Tr(ρT2

A )n. The

joining conditions along B are the same ones shown top left panel of Fig. 5. The path

integral representations of ρ̃j(ζ, η) for j ∈ {2, 3, 4} can be depicted starting from the

remaining panels of Fig. 5 and performing the same change in the boundary conditions

along the edges of A2 shown here.

detail, finding that the coherent states matrix element ρ̃1(ζA, ηA) reads

ρ̃1(ζA, ηA) = e−ζ
∗
AηA 〈ζA1 , η

∗
A2
|V2 ρ1V

†
2 |ηA1 ,−ζ∗A2

〉 (78)

= e−ζ
∗
AηA

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA1 , η
∗
A2

;−χB1 ,−χB2|V2|Ψ〉 〈Ψ|V †2 |ηA1 ,−ζ∗A2
; χB1 , χB2〉 ,

where V2 is the unitary operator V2 ≡ U
(y)
−π U

(z)
−π/2 (see (60) for the definition of U

(k)
α ), which

sends axj → −a
y
j and ayj → −axj , for j ∈ A2. In order to compute the matrix element

ρ̃2(ζA, ηA), the effect of PA2 discussed in §4.1 must be taken into account first (we recall

that iaxay |ζ〉 = − |ζ〉) and then (78) can be employed. The result is

ρ̃2(ζA, ηA) = e−ζ
∗
AηA 〈ζA1 , ζA2|PA2 ρ̃1PA2 |ηA1 , ηA2〉 = e−ζ

∗
AηA 〈ζA1 ,−ζA2| ρ̃1 |ηA1 ,−ηA2〉 (79)

= e−ζ
∗
AηA

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA1 ,−η∗A2
;−χB1 ,−χB2|V2|Ψ〉 〈Ψ|V †2 |ηA1 , ζ

∗
A2

; χB1 , χB2〉 .

The first step in (79) is just the definition, in the second one the effect of PA2 has been

implemented and in the last one (78) has been applied. Equivalently, we can observe that

ρ̃2(ζA, ηA) = ρ̃1(ζA1 ,−ζA2 ; ηA1 ,−ηA2).

As for the matrix element ρ̃3(ζA, ηA), from (28) it is clear that the difference between

ρ̃1 and ρ̃3 is the occurrence of the string PB1 in the coefficients wB1
12 (see (13a) and (13b)).

Since all the steps done in [45] to compute ρ̃1(ζA, ηA) involve only the fermions in A2 and

they are independent of the values of the coefficients w12, we can perform the same kind

of computations for ρ̃3(ζA, ηA), finding that

ρ̃3(ζA, ηA) = e−ζ
∗
AηA 〈ζA1 , η

∗
A2
|V2ρ3V

†
2 |ηA1 ,−ζ∗A2

〉 (80)

= e−ζ
∗
AηA

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA1 , η
∗
A2

;χB1 ,−χB2|V2|Ψ〉 〈Ψ|V †2 |ηA1 ,−ζ∗A2
; χB1 , χB2〉 .

The matrix element ρ̃4(ζA, ηA) can be computed like in (80), by taking into account also
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the occurrence of the string PA2 , as done in getting (79) from (78). The result reads

ρ̃4(ζA, ηA) = e−ζ
∗
AηA 〈ζA1 , ζA2|PA2 ρ̃3PA2 |ηA1 , ηA2〉 = e−ζ

∗
AηA 〈ζA1 ,−ζA2| ρ̃3 |ηA1 ,−ηA2〉 (81)

= e−ζ
∗
AηA

∫
Dχ∗BDχB e

−χ∗B χB 〈ζA1 ,−η∗A2
;χB1 ,−χB2|V2|Ψ〉 〈Ψ|V †2 |ηA1 , ζ

∗
A2

; χB1 , χB2〉 ,

which can be obtained also from (80), since ρ̃4(ζA, ηA) = ρ̃3(ζA1 ,−ζA2 ; ηA1 ,−ηA2).

The continuum version of (78), (79), (80) and (81) can be found exactly as discussed

in §4.1 to get continuum version of (67), (68), (69) and (70). Besides the occurrence of

the operator V2, the main difference between ρj(ζA, ηA) and ρ̃j(ζA, ηA) is given by the

fact that the fermionic fields above and below the cut in A2 must be exchanged. This is

represented pictorially in Fig. 6 for ρ̃1(ζA, ηA).

The presence of V2 turns out to be irrelevant. Indeed, in [45] it was found that it can

be written in terms of the fermionic operators as V2 = exp
{∑

j∈A2
[−iπ

2
(eiπ

4 c†j + e−iπ
4 cj)]

}
.

When taking the continuum limit of (78), (79), (80) and (81), the presence of V2 translates

into a contribution to the action which is linear in the fermionic field and localized both

above and below A2. Such term can be eliminated by a redefinition of the field. This

fact reflects the freedom in defining the partial transposition of a fermionic operator on

the lattice (25) modulo some unitary transformation [47]. Indeed, an equivalent way to

define the partial transposition could have been easily introduced in order to cancel the

contribution of V2.

4.4. Moments of the partial transpose

In this subsection we adapt the analysis performed in §4.2 for the moments TrρnA to the

moments Tr(ρT2A )n, finding that the scaling limit of the term associated to the vector q̃ in

the sum (33) is the term characterised by a specific spin structure e in the sums (52) and

(53).

In §2.3 we have seen that Tr(ρT2A )n = Tr(ρT2+ )n (see (32)). In terms of coherent states,

the generic matrix element of the operator ρT2+ reads

ρT2+ (ζ, η) =
1

2

[
ρ̃1(ζ, η) + ρ̃2(ζ, η)− i ρ̃3(ζ, η) + i ρ̃4(ζ, η)

]
, (82)

where ρ̃j(ζA, ηA) have been written explicitly in §4.3. Thus, the n-th moment becomes

Tr(ρT2A )n = 2−n
∑
q̃(−i)#3 i#4 Tr

[∏n
k=1 ρ̃q̃k

]
, where the sum contains 4n terms and each of

them is identified by the n dimensional vector q̃ whose elements are q̃i ∈ {1, 2, 3, 4}. The

term characterised by the vector q̃ in the above sum providing the moments of the partial

transpose can be written as follows

Tr

[ n∏
k=1

ρ̃q̃k

]
=

∫ n∏
k=1

Dζ∗kDζk ρ̃q̃1(−ζn, ζ1)
n∏
k=2

ρ̃q̃k(ζk−1, ζk) , (83)

which resembles the generic term of TrρnA given in (73). As discussed after (73), also in this

case it is immediate to adapt the symmetry considerations discussed for the corresponding

lattice formula (33). Again, two terms characterised by q̃ and q̃′ are equal if they are
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related by the exchange 1 ↔ 2 and 3 ↔ 4. The same cancellations of the terms with an

odd total number of ρ3’s and ρ4’s happen, and the remaining terms are the ones where

the operator (−1)F is inserted along non trivial closed curves on R̃n, either above and

below the cut in A2 or along B1 on two different sheets. The final result for Tr(ρT2A )n has

the same form of (33), and the sum is performed over all the inequivalent insertions of

the operator (−1)F on the different sheets. This is equivalent to a sum over all possible

boundary conditions along the basis cycles of R̃n.

Mimicking the analysis performed in §4.2 for TrρnA, we want to interpret the generic

term (83) as the partition function of the fermionic model on the Riemann surface R̃n

with the proper spin structure, that can be determined uniquely from the vector q̃. For

the CFT models we are considering, the moments of the partial transpose Tr(ρT2A )n have

been written in (49) and (50), with the functions Fn( x
x−1

) given by (52) and (53) as sums

over all possible spin structures. Thus, for the modular invariant Dirac fermion, we have

Tr

[ n∏
k=1

ρ̃q̃k

]
=
(
cXX
n

)2
(

1− x
`1`2

)2∆n
∣∣∣∣Θ[e](0|τ̃(x))

Θ(0|τ̃(x))

∣∣∣∣2, (84)

where ∆n is given by (39) with c = 1 and the non universal constant cXX
n is (37). Similarly,

for the Ising model, we find

Tr

[ n∏
k=1

ρ̃q̃k

]
=
(
cIsing
n

)2
(

1− x
`1`2

)2∆n
∣∣∣∣Θ[e](0|τ̃(x))

Θ(0|τ̃(x))

∣∣∣∣ , (85)

where c = 1/2 and cIsing
n is given by (38). In order to complete the identifications (84) and

(85), in the following we provide a bijective relation between the vector q̃ in the l.h.s.’s

and the characteristic e in the r.h.s.’s, namely a map between the terms in the sum (33)

and the set of the possible spin structures.

The relation between q̃ and the characteristic e is similar to the one discussed

for TrρnA in §4.2. The vector q̃ contains all the information to place the operator

(−1)F along some closed curves on R̃n. Then, considering the canonical homology basis

{ãr, b̃r ; 1 6 r 6 n−1}, in order to find the characteristic associated to q̃ we have to count

how many times each cycle of the basis intersects the closed curves supporting the operator

(−1)F . The parity of this number for the cycle ãk provides εk (where 1 6 k 6 n − 1)

as discussed in §4.2 (an even number of times corresponds to εk = 0, i.e. to antiperiodic

b.c. along ak, while εk = 1/2, meaning periodic b.c. along ak, when this number is odd),

while the parity of the number associated to the cycle b̃r determines δr in a similar way.

This relation between q̃ and e can be written more explicitly. By introducing p̃B1
j

and p̃A2
j in terms of q̃j exactly as shown in (76) for the corresponding untilded quantities,

the characteristic e associated to q̃ in (84) and (85) reads

2 εk =

( k∑
`=1

p̃B1
`

)
mod 2 =

[
1− (−1)

∑k
`=1 p̃

B1
`

]
/2 ,

2 δk =
(
p̃B1
j + p̃A2

j + p̃A2
j+1

)
mod 2 =

[
1− (−1)p̃

B1
k +p̃

A2
k +p̃

A2
k+1

]
/2 .

(86)
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Also in the case of Tr(ρT2A )n we find that the terms on the lattice occurring in the sum (33)

with a minus sign correspond via (84) or (85) to terms whose Riemann theta functions

have odd characteristics; hence they vanish in the scaling limit.

Since the two Riemann surfaces Rn and R̃n are different, also the ways to associate

a characteristic e to the vectors q and q̃ are different, despite the fact that the underlying

principle is the same. An important distinction to remark between TrρnA and Tr(ρT2A )n is

that in the latter case the cycle b̃k crosses B1 on the k-th sheet (see Fig. 4, right panel).

Thus, according to the rule relating q̃ and e explained above, we have that δ is determined

also by the occurrence of (−1)F along B1, and not only around the cut in A2, like in the

case of TrρnA (compare the formulas for δj in (77) and (86)).

An analysis similar to the one presented here has been carried out in [45] for the free

fermion. The main difference between the free fermion and the critical XX model on the

lattice is the occurrence of the string of Majorana operators PB1 along the sites of B1

separating the two blocks A1 and A2, which corresponds to the operator (−1)FB1 in the

scaling limit. This implies that for the modular invariant Dirac fermion the boundary

conditions along the a cycles of R̃n may be periodic or antiperiodic, while for the free

fermion the boundary conditions along the a cycles are all antiperiodic.

By eliminating the operator PB1 (or (−1)FB1 in the scaling regime) from the results

for the critical XX model one gets the corresponding ones for the free fermion. This can

be done both on the expressions on the lattice and on the ones in the scaling limit. In

the appendix §A we briefly illustrate this procedure for both TrρnA and Tr(ρT2A )n.

5. Numerical checks

The CFT predictions for TrρnA and Tr(ρT2A )n given in (45), (46), (52) and (53) have been

already checked for n = 3, 4, 5 through lattice computations on the XX spin chain and

Ising chain at criticality [20, 23, 28, 46].

In [45] the moments of the partial transpose for the free Dirac fermion have been

studied starting from the lattice formulation and by employing the corresponding coherent

state path integral for the continuum limit. In this case, the most important factor in the

final formula for Tr(ρT2A )n is similar to the r.h.s. of (52): the generic term in the sum is the

same but the sum is performed over the characteristics with ε = 0 and the coefficients

of the various terms are different. The procedure developed for the free Dirac fermion

in [45] shows how each term in the scaling formula for Tr(ρT2A )n can be recovered as the

continuum limit of its lattice counterpart. In this paper we have extended this term-by-

term correspondence to the case of TrρnA and Tr(ρT2A )n for the modular invariant Dirac

fermion and the Ising model. In this section we provide explicit numerical evidence of

these term-by-term relations in the simplest cases of n = 2 and n = 3.

Each term in (21) and (33) is the trace of the product of n matrices taken among

the ones in (18) and (30) respectively. In order to evaluate these terms, we employ the

techniques developed in [20] for TrρnA and then generalised in [46] to compute Tr(ρT2A )n. In

[45] this analysis has been done for the free fermion. Since the Hamiltonians in (8a) and
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(8b) are quadratic in the fermionic operators, the ground state fermionic reduced density

matrix ρ1
A = ρ1 in (18) is Gaussian. As for ρ̃1

A, from (28) one can easily observe that it is

also Gaussian. It is worth remarking that the operator PC (in our problem only PA2 and

PB1 occur) does not spoil Gaussianity; indeed, it can be written as the exponential of a

quadratic operator. This implies that also the other matrices ρk and ρ̃k for k ∈ {2, 3, 4}
in (18) and (30) respectively are Gaussian. Unfortunately, neither the four matrices ρk’s

nor the ρ̃k’s can be simultaneously diagonalized, and therefore the reduced density matrix

(19) and its partial transpose (31) are not Gaussian. This fact does not allow us to get

the spectrum of ρA and ρT2A , which would have provided the entanglement entropy and

the logarithmic negativity respectively. Nevertheless, in principle we can compute their

moments for any value of n. Similar considerations apply to the partial transpose for

the free Dirac fermion as well [47]. On the contrary, for bosonic models considered in

the literature, both ρA and ρT2A are Gaussian [66, 67, 68, 69] and this simplifies a lot the

analysis.

In (22), (23), (34) and (35) the moments of ρA and ρT2A on the lattice have been

written explicitly for n = 2 and n = 3. Since for Gaussian states all the information

of the system is encoded in the correlation matrices, the moments of ρA and ρT2A can be

evaluated in a polynomial time in terms of the total size of the subsystem. In particular,

in our case the correlation matrices of the ρk’s and the ρ̃k’s can be obtained from the ones

corresponding to subsystems A and B1 as explained in [20, 46].

The lattice computations have been performed in an infinite chain. Equal size disjoint

blocks A1 and A2 have been chosen (`1 = `2 ≡ `), separated by the block B1 whose size

is denoted by d. The scaling regime, where the CFT predictions hold, is approached by

taking configurations with increasing `, while the ratio `/d is kept fixed. Thus, the four

point ratio (41) becomes x = [`/(` + d)]2 and configurations with the same value of `/d

correspond to the same x.

Let us introduce the following lattice quantities associated to the moments of the

reduced density matrix (21) for the XX spin chain

J lat
n = Trρn1 , Ωlat

n [q]2 =
(−1)#4

Trρn1
Tr

[ n∏
k=1

ρqk

]
, (87)

and for the Ising spin chain

J lat
n = Trρn1 , Ωlat

n [q] =
(−1)#4

Trρn1
Tr

[ n∏
k=1

ρqk

]
. (88)

This notation has been introduced to make a direct comparison with the corresponding

quantities (48) in the continuum. However, let us stress that, despite the notation,

different correlators occur in (87) and (88). In particular, the r.h.s. of the second

expression in (87) is not the square of the r.h.s. of the second equality in (88).

Analogous quantities can be defined for the terms occurring in the formula (33) for
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Figure 7. The terms occurring in Trρ2A (left panels) and Tr
(
ρT2

A

)2
(right panels) for

the critical XX model (see (22) and (34) respectively). The extrapolated points (red

crosses) are obtained through a fit of the data according to the scaling function (91) and

they agree very well with the CFT predictions (74) (solid lines).
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Figure 8. The terms in Trρ3A (left) and Tr
(
ρT2

A

)3
(right) for the critical XX model (see

(23) and (35) respectively). For each group of identical terms, only one representative is

shown. Further details are given in the caption of Fig. 7.
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the moments of the partial transpose, namely

J̃ lat
n = Trρ̃n1 , Ω̃lat

n [q̃]2 =
(−1)

#4−#3
2

Trρ̃n1
Tr

[ n∏
k=1

ρ̃q̃k

]
, (89)

J̃ lat
n = Trρ̃n1 , Ω̃lat

n [q̃] =
(−1)

#4−#3
2

Trρ̃n1
Tr

[ n∏
k=1

ρ̃q̃k

]
, (90)

for the XX spin chain and the Ising model respectively, which are suitable to make contact

with the continuum quantities in (54).

All these lattice quantities can be evaluated as explained in [46]. The main result

of this paper is to show that the scaling limit of (87), (88), (89) and (90) gives the

corresponding CFT expressions (48) and (54), where the non universal factor cn in Jn
and J̃n is (37) for the XX model and (38) for the Ising model. The expressions of Jn and

J̃n depend on the model also through the value of the central charge c in ∆n.

In the sums (21) and (33), many terms are equal because of the properties of the

trace discussed in §2.2 and §2.3. In the continuum, this degeneracy is due to the dihedral

symmetry of the underlying Riemann surfaces (see §3.1). Despite the implementation of

the dihedral symmetry allows to restrict our attention to one element for each equivalence

class, the number of terms to deal with increases very fast with n.

The numerical results for the XX model are reported in Figs. 7 and 8 for n = 2 and

n = 3 respectively; while in Figs. 9 and 10 the same quantities are plotted for the Ising

model. As for the prefactor, the ratios J lat
n /Jn and J̃ lat

n /J̃n have been plotted in order to

eliminate the residual ` dependence. As for the remaining terms, only one representative

for each equivalence class has been considered. We have not shown the case n = 4

because there are too many terms to consider. The analysis of the latter case, which

is more complicated and not very illuminating, can be done by considering the explicit

formulas of Trρ4
A and Tr(ρT2A )4 for the lattice written explicitly in [20] and [46] respectively.

The points computed on the lattice tend to the corresponding CFT predictions as the

subsystem size increases. This conclusion can be drawn only once the finite size effects

have been taken into account through an accurate scaling analysis. Such analysis has been

performed in [20] for TrρnA, in [46] for Tr(ρT2A )n and in [45] term by term in the formula

found for the free Dirac fermion. It is well established [70, 71, 72] that the scaling in ` of

these quantities is a power law governed by some unusual exponent δn = 2h/n. In [73] it

has been found through general CFT arguments that such unusual corrections come from

the insertions of the relevant operator with smallest scaling dimension h at the branch

points.

In the XX model the terms of the form `−2m/n occur for any positive integer m. Since

these terms converge slower and slower as n increases, we have to include many of them

in the scaling function. The most general ansatz for Ω̃lat
n of the XX model at finite ` in

(87) takes the following form

Ω̃lat
n [q̃]2 = Ω̃2

n[2e] +
ω

(1)
n (x)

`2/n
+
ω

(2)
n (x)

`4/n
+
ω

(3)
n (x)

`6/n
+ . . . , (91)
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Figure 9. The terms occurring in Trρ2A (left panels) and Tr
(
ρT2

A

)2
(right panels) for

the critical Ising chain (see (22) and (34) respectively). The extrapolated points (red

crosses) are obtained through a fit of the data according to the scaling function (92) and

they agree very well with the CFT predictions (75) (solid lines).
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Figure 10. The terms in Trρ3A (left) and Tr
(
ρT2

A

)3
(right) for the critical Ising chain (see

(23) and (35) respectively). For each group of identical terms, only one representative is

shown. Further details are given in the caption of Fig. 9.
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where q̃ and e are related as explained in §4.4. A scaling function similar to (91) can be

studied also for the term J̃ lat
n /J̃n. Expressions analogous to (91) can be defined for the

terms in the formula of the moments TrρnA of the reduced density matrix. Fitting the data

with (91), the more terms we include, the more precise the fit could be. Nevertheless,

since we have access only to limited values of `, by employing too many terms overfitting

problems may be encountered, leading to very unstable results. The number of terms to

include in (91) has been chosen in order to get stable fits. We find that every term Ω̃2
n[e]

follows the scaling (91) and the extrapolated value agrees with the corresponding CFT

prediction.

As for the Ising model, also the Majorana fermion operator with conformal dimension

h = 1/2 must be taken into account [20]. This leads to a modification of the scaling

function which includes more severe contributions of the form `−m/n. Thus, the most

general ansatz for Ω̃lat
n of the Ising model at finite ` in (88) reads

Ω̃lat
n [q̃] = Ω̃n[2e] +

ν
(1)
n (x)

`1/n
+
ν

(2)
n (x)

`2/n
+
ν

(3)
n (x)

`3/n
+ . . . , (92)

and analogously for J̃ lat
n /J̃n and the corresponding terms in the Rényi entropies. Also

in this case the agreement with the CFT predictions is very good. From the analysis of

the terms (88) and (90), we find a peculiar and unexpected feature. It turns out that in

the sum (21) only the terms whose continuum limit corresponds to odd characteristics,

and therefore vanishes identically, follow the scaling (92). Instead, all the terms whose

continuum limit corresponds to even characteristics follow a milder scaling, as can be

qualitatively seen from the figures. It turns out that the scaling of the latter terms is

governed by the same exponents `−2m/n occurring for the XX model (see (91)). This

behaviour has been observed for both the terms in TrρnA and the ones in Tr(ρT2A )n.

6. Conclusions

We have considered the reduced density matrix of two disjoint intervals and its partial

transpose with respect to one interval for the fermionic systems given by the Ising model

and the modular invariant Dirac fermion, which are the scaling limit of the critical Ising

chain and of the critical XX spin chain respectively.

The CFT expressions of the moments TrρnA and Tr(ρT2A )n for these model are

known for arbitrary order [13, 27, 28, 23] and they are written as sums over all the

possible combinations of boundary conditions (either periodic or antiperiodic) along the

homology cycles of a canonical homology basis for the underlying Riemann surface (spin

structures). The moments of the reduced density matrix and of its partial transpose for

the corresponding spin models on the lattice, whose scaling limit provide the conformal

field theory formulas recalled in §3, are also written as sums of computable terms at a

given order n [20, 46].

In this manuscript, we have described a systematic method to get the scaling limit

of any term occurring in the lattice expressions for TrρnA and Tr(ρT2A )n as the partition
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function of the fermionic model on the underlying Riemann surface with a specific spin

structure (see (77) and (86)). Numerical checks have been performed to support our

conclusions, where the proper finite size scaling corrections have been taken into account.

Our analysis allows also to recover the moments of the reduced density matrix and of the

moments of its partial transpose for the free fermion, which have been found in [17] and

[45] respectively.
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A. Recovering the free fermion

In this appendix we discuss a procedure to recover TrρnA and Tr(ρT2A )n for the free fermion

from the corresponding expressions for the critical XX spin chain, whose scaling limit is

the modular invariant Dirac fermion. This method has been first employed in [46] on the

lattice and here we extend it to the scaling formulas.

The c = 1 free Dirac fermion is the scaling limit of the tight binding model at half

filling on the lattice, whose Hamiltonian reads

H =
1

2

L∑
i=1

[
c†ici+1 + c†i+1ci

]
, (93)

where periodic boundary conditions have been assumed. In the scaling limit, the CFT

formula for TrρnA is (40) with Fn(x) = 1 identically [17], while Tr(ρT2A )n is given by (49)

where Gn(x) has been found in [45] and we do not find useful to report it here.

Since the peculiar feature of the critical XX spin chain with respect to the tight

binding model is the occurrence of the string PB1 of Majorana operators, our prescription

to recover the moments for the latter model from the ones of the former one is to replace

the operator PB1 with the identity operator 1 in the lattice expressions of TrρnA and

Tr(ρT2A )n for the XX model, which have been found in [20] and [46] respectively.

In the scaling regime, according to the discussions reported in §4.2 and §4.4, replacing

the string PB1 with the identity operator corresponds to remove all the operators (−1)FB1 ,

which have been placed on the Riemann surfaces Rn and R̃n to identify the scaling limit

formulas of the various terms in (21) and (33).
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A.1. Moments of the reduced density matrix

Let us consider the moments TrρnA of the reduced density matrix for the XX spin chain.

Replacing the string PB1 with the identity operator 1, from (15) we have that ρB1
A becomes

ρ1
A and therefore (18) tells us that every ρ3 and ρ4 must be replaced by ρ1 and ρ2

respectively. Performing these substitutions in (20), we are left with Trρn1 , as expected

from [48].

In the scaling limit, we have to consider FDirac
n (x) for the modular invariant Dirac

fermion [13, 23] reported in (45). Let us focus on a fixed spin structure characterised by

the vectors ε and δ. Since the a cycles only intersect B1 and do not intersect A2, removing

all the operators (−1)FB1 means that the boundary conditions along all the a cycles are

fixed to antiperiodic ones. Being the vector ε determined by the boundary conditions

along a cycles (see (77)), we conclude that replacing PB1 with the identity corresponds

to replace ε with the vector 0 in the scaling limit formula. As for the b cycles, since

they do not intersect B1, the boundary conditions along them do not get modified and,

consequently, the vector δ is left untouched. By replacing every vector ε with 0 in the

sum occurring in (45), it becomes∑
ε,δ

(−1)4ε·δ Θ

[
0

δ

]
(τ)2 = 2n−1

∑
δ

δδ,0 Θ

[
0

δ

]
(τ)2 = 2n−1 Θ

[
0

0

]
(τ)2 , (94)

Combining this result with (45), one finds that Fn(x) = 1 identically, which is the expected

expression for the free fermion found in [17].

We find it worth remarking the following peculiar feature of the procedure described

above. The terms in the sum (45) with odd characteristics, which vanish identically, get

an even characteristic once ε is replaced by 0, and therefore they become non vanishing

after such replacement. Thus, the choice of introducing minus signs in front of the terms

with odd characteristic in (45) is crucial to get the correct result for the free fermion

through the method described here.

A.2. Moments of the partial transpose

Considering the moments Tr(ρT2A )n of the partial transpose for the critical XX spin chain,

the effect of replacing all the PB1 ’s with the identity operators has been discussed in [46],

where it has been first observed that the matrix ρT2A becomes the sum of two Gaussian

matrices given in [47] for the free fermion and then its moments have been studied.

In the scaling limit, considering the canonical homology basis {ãr, b̃r ; 1 6 r 6 n−1}
introduced in [23] and adopted in this manuscript for R̃n (see Fig. 3 for ãr and the right

panel of Fig. 4 for b̃r), let us remark that both the a cycles and the b cycles of R̃n intersect

B1 on one sheet at least. Similarly to §A.1, since all the cycles ãr intersect B1 and do

not cross A2, removing all the operators (−1)FB1 means that all the ε’s in (52) must be

replaced by 0. Nevertheless, differently from Sec. A.1, now the removal of the (−1)FB1 ’s

affects also the boundary conditions along the b cycles of R̃n (see (86)). In particular, the

vector δ in (52) should be replaced by δ′ ≡ (δ−P ·ε) mod 2, where P is a (n−1)×(n−1)
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matrix with 1’s on the main diagonal, −1’s on the lower diagonal and 0’s elsewhere. As

further consistency check, we notice that, by setting p̃B1
j = 0 into (86), we recover the

corresponding formula written for the free fermion in Eq. (53) of [45].

By applying the above substitutions, the sum over characteristics in (52) becomes

∑
ε,δ

(−1)4ε·δΘ

[
0

δ′

]
(τ̃)2 =

∑
ε,δ′

(−1)4ε·(δ′+P·ε) Θ

[
0

δ′

]
(τ̃)2 =

∑
δ′

tn(δ′) Θ

[
0

δ′

]
(τ̃)2 , (95)

where in the first step we have just changed the summation variable and in the second

one we have introduced

tn(δ) ≡
∑
ε

(−1)4(ε·δ+ε·P·ε) , (96)

which is the same expression given in Eq. (60) of [45]. It is not difficult to observe that

ε · P · ε = ε · Q/2 · ε, where Q has been defined below (51). Plugging the last step

of (95) into (52), it is straightforward to recover the result of [45] for the free fermion.

Let us stress that the introduction of the minus signs in front of the terms with odd

characteristics in (52) is crucial to obtain the result for the free fermion.
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J. Igusa, Theta Functions, Springer-Verlag (1972).

[62] J. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics 352, Springer-Verlag,

1973.

[63] P. Ginsparg, Applied Conformal Field theory, Les Houches lecture notes (1988), arXiv:hep-

th/9108028.

[64] S. Bravyi, Quant. Inf. Comp. 5, 216 (2005).

[65] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial

Markets, World Scientific, 5th ed., (2009).

[66] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner, Phys. Rev. A 66, 042327 (2002).

[67] A. Botero and B. Reznik, Phys. Rev. A 70, 052329 (2004).

[68] I. Peschel and V. Eisler, J. Phys. A 42, 504003 (2009).

[69] S. Marcovitch, A. Retzker, M. B. Plenio and B. Reznik, Phys. Rev. A 80, 012325 (2009).

[70] P. Calabrese, M. Campostrini, F. Essler and B. Nienhius, Phys. Rev. Lett 104, 095701 (2010).

[71] P. Calabrese and F. H. L. Essler, J. Stat. Mech. P08029 (2010).

[72] J. C. Xavier and F. C. Alcaraz, Phys. Rev. B 83, 214425 (2011);

M. Fagotti and P. Calabrese, J. Stat. Mech. P01017 (2011);

M. Dalmonte, E. Ercolessi, L. Taddia, Phys. Rev. B 84, 085110 (2011);

M. Dalmonte, E. Ercolessi, L. Taddia, Phys. Rev. B 85, 165112 (2012);

P. Calabrese, M. Mintchev, and E. Vicari, J. Stat. Mech. P09028 (2011).

[73] J. Cardy and P. Calabrese, J. Stat. Mech. P04023 (2010).

http://arxiv.org/abs/1303.7221
http://arxiv.org/abs/1303.6955
http://arxiv.org/abs/1510.03664
http://arxiv.org/abs/1406.1161
http://arxiv.org/abs/hep-th/9108028
http://arxiv.org/abs/hep-th/9108028

