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Abstract: In the context of warped extra-dimensional models which address both the

Planck-weak- and flavor-hierarchies of the Standard Model (SM), it has been argued that

certain observables can be calculated within the 5D effective field theory only with the

Higgs field propagating in the bulk of the extra dimension, just like other SM fields. The

related studies also suggested an interesting form of decoupling of the heavy Kaluza-Klein

(KK) fermion states in the warped 5D SM in the limit where the profile of the SM Higgs

approaches the IR brane. We demonstrate that a similar phenomenon occurs when we

include the mandatory KK excitations of the SM Higgs in loop diagrams giving dipole

operators for SM fermions, where the earlier work only considered the SM Higgs (zero

mode). In particular, in the limit of a quasi IR-localized SM Higgs, the effect from summing

over KK Higgs modes is unsuppressed (yet finite), in contrast to the naive expectation that

KK Higgs modes decouple as their masses become large. In this case, a wide range of KK

Higgs modes have quasi-degenerate masses and enhanced couplings to fermions relative

to those of the SM Higgs, which contribute to the above remarkable result. In addition,

we find that the total contribution from KK Higgs modes in general can be comparable

to that from the SM Higgs alone. It is also interesting that KK Higgs couplings to KK

fermions of the same chirality as the corresponding SM modes have an unsuppressed overall

contribution, in contrast to the result from the earlier studies involving the SM Higgs. Our

studies suggest that KK Higgs bosons are generally an indispensable part of the warped 5D

SM, and their phenomenology such as signals at the LHC are worth further investigation.

Keywords: Phenomenology of Field Theories in Higher Dimensions

ArXiv ePrint: 1412.6468
CERN-PH-TH-2014-238, UMD-PP-014-020

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)196

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/287444978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kagashe@umd.edu
mailto:Aleksandr.Azatov@cern.ch
mailto:ycui@perimeterinstitute.ca
mailto:randall@physics.harvard.edu
mailto:minho.son@epfl.ch
http://arxiv.org/abs/1412.6468
http://dx.doi.org/10.1007/JHEP06(2015)196


J
H
E
P
0
6
(
2
0
1
5
)
1
9
6

Contents

1 Introduction 1

2 The model 6

3 Semi-analytic estimates I: profiles, masses and couplings 9

3.1 Fermion field profiles and masses 9

3.1.1 Zero-mode: SM fermion 9

3.1.2 KK fermion modes 10

3.2 Higgs field profiles and masses 10

3.2.1 Zero mode: SM Higgs 11

3.2.2 KK Higgs modes 11

3.3 Couplings of various fermion- and Higgs- modes 12

3.3.1 SM Yukawa coupling and SM fermion mass 12

3.3.2 SM-KK fermions to SM Higgs 13

3.3.3 KK-KK fermions to SM Higgs 13

3.3.4 SM-KK fermions to KK Higgs 14

3.3.5 KK-KK fermions to KK Higgs 14

3.3.6 SM-SM fermions to KK Higgs 15

4 Semi-analytic estimates II: coefficient of dipole operator 15

4.1 SM Higgs in the loop 16

4.1.1 Correct chirality 16

4.1.2 Wrong chirality 18

4.2 KK Higgs in the loop 20

4.2.1 Correct chirality 20

4.2.2 Wrong chirality 22

5 Toward calculation in the 5D model 24

5.1 Setting up 4D simplified model 24

5.2 SM Higgs in the loop 25

5.3 Effects from KK Higgs modes in the loop 27

6 Numerical evaluation in a complete 5D model 30

7 Conclusions 34

A Solutions for bulk Higgs 37

B Solutions for bulk fermions 40

C Relevant couplings 41

– i –



J
H
E
P
0
6
(
2
0
1
5
)
1
9
6

D Loop functions 43

E Cutoff contribution: comparison to models with (strictly)

brane-localized Higgs 48

1 Introduction

The Randall-Sundrum (RS1) warped extra-dimensional framework [1], coupled with a

suitable radius stabilization mechanism (for example, [2, 3]), provides a solution to the

Planck-weak hierarchy problem of the standard model (SM). It requires the Higgs field

to be localized on the TeV/infrared (IR) brane of the extra dimension. In the original

model, it was assumed that the rest of the SM, i.e., gauge and fermion fields, were also

TeV-brane-localized. However, with SM gauge and fermion fields propagating in the extra

dimension [4–9], it was soon realized that the same framework can also address the flavor hi-

erarchy in the SM [8–11]. In this “SM in the bulk” version of the warped extra-dimensional

framework, there are contributions to various SM precision tests from massive Kaluza-Klein

(KK) excitations of SM particles, which in the four-dimensional (4D) effective theory are

essentially the manifestation of SM fields propagating in the extra dimension. However,

custodial symmetries [12, 13] ameliorate the resulting constraints from electroweak preci-

sion tests (EWPT), such that a KK mass scale as low as ∼ 3 (or a few) TeV might be

allowed [14–16]. As far as consistency with flavor changing neutral currents (FCNC’s) and

CP-violating processes is concerned, in spite of a built-in analog of GIM mechanism of the

SM [9–11, 17], a KK mass scale of at least ∼ 10 TeV seems necessary [18–21].1 However,

a few TeV mass scale might still be allowed if the model is supplemented by appropriate

flavor symmetries (see [22–24] for recent work in a “simplified” version of the 5D model).

In this paper, we consider contributions to dipole operators of the SM fermions in this

framework, which induce various radiative processes involving either the photon or the

gluon. In turn, they arise from loops of KK particles and the resulting sizes give interest-

ing constraints or signals for this framework. Some of the most stringent bounds on this

framework from flavor/CP violation — both in the lepton sector, e.g. µ → eγ and in the

quark sector, e.g. neutron electric dipole moment (EDM) — originate from dipole opera-

tors. More specifically, for dipole operators leading to flavor- and/or CP-violation, it turns

out that the dominant contribution comes from loops with Higgs boson modes and KK

fermions. Henceforth, we focus solely on these effects. In passing, we would like to mention

that loops with gauge and fermion KK modes tend to be “aligned” (in generation space)

with SM fermion Yukawa couplings/masses term. Hence, such effects do not contribute to

the above types of processes, but are still relevant for (g − 2)µ, for example.

As already indicated above, detailed computations of dipole operators arising from the

Higgs-KK fermion loops have been performed before. We contextualize our contribution

here by first giving a brief recap of the literature as follows.

1For a nice summary of estimates done in the conformal field theory (CFT) picture [which dual to the

warped/anti-de Sitter (AdS) space model], see, for example, table 1 of [21].
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• Naive dimensional analysis (NDA) estimates show that for a strictly brane-localized

Higgs, the dipole effect from a 5D cutoff is actually comparable to the lowest KK

mode’s contribution [17, 25]. However, these references also showed that such UV

sensitivity is suppressed for the alternative case of a Higgs field propagating in the

extra dimension [26–28].

At first sight such a bulk Higgs might seem to be a radical departure from the localization

on the TeV brane as considered in the original models. However, the Planck-weak hierarchy

problem is still solved as long as the profile of the Higgs VEV peaks near the TeV brane.

By a mild tuning, it is also possible to obtain a physical mode of this 5D Higgs field

which is much lighter than the typical KK scale and which has approximately the same

profile as the Higgs VEV. This could then be identified with the SM-like Higgs boson of

mass 126 GeV discovered at the LHC. The localization of the SM Higgs boson and the

Higgs VEV is controlled by a 5D mass parameter in such a way that one can even take

the TeV brane-localized limit. A bulk Higgs is thus a more general possibility than the

brane-localized one, with the former encompassing the latter.

Explicit calculations of dipole operators have been performed for a bulk Higgs (even

if eventually the brane-localized limit is taken). However, while the 5D Higgs field also

manifests itself as KK excitations of the SM Higgs boson, the earlier work has considered

only the SM Higgs in the loop, along with KK fermions. From a 5D viewpoint, the inclusion

of the KK Higgs bosons is mandatory for consistency with 5D covariance. The main goal

of this paper is to conduct a comprehensive study of the effects from KK Higgs bosons on

dipole operator calculations.

Naively speaking, the KK Higgs contribution decouples in the brane-localized limit,

since it turns out that its mass is roughly proportional to the 5D mass parameter, which

becomes larger as the Higgs profile gets narrower. However, the previous dipole calculations

(and some others involving fermion-Higgs couplings [38–40]) for such models involve further

subtleties of significance beyond the NDA expectations, especially in the brane-localized

limit, including the realization that the (very) heavy modes are still relevant in some

cases. Therefore, there is a potential for similar “surprises” in the KK Higgs calculation as

well; indeed we will find that this is the case. In order to set the stage for our new analysis

including the KK Higgs modes, it is then necessary to first give a more extensive summary of

the various related results from earlier literature as follows (we do it roughly in time order).

• NDA estimates for the contribution to these dipole operators from the SM Higgs

boson-KK fermion loops first performed in [17] gave

L4D 3 mSM
e (yKK)2

16π2M2
KK

ψLσµνψRF
µν , (1.1)

where ψ is a SM fermion, Fµν is the photon field strength, MKK is the typical lightest

mass scale of the KK excitations and yKK is the Yukawa coupling of the SM Higgs

boson to the two KK fermions.

– 2 –
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• The first actual calculation of these effects (at one-loop order) was done in [25] in 2006

(followed by essentially a similar one in 2009 [31]). It only considered the contribution

from the lowest/fixed KK level.

Note also that, for later use the 4D loop momentum cutoff was taken to be infinity

from the start, since the loops can be shown to be convergent, corresponding to a

higher dimensional operator in the 4D effective theory. At this point, it is convenient

to differentiate two kinds of couplings of the Higgs boson to the KK fermions (which

are taken to be in the weak/gauge eigenstate basis, i.e., treating the Higgs VEV as

an insertion). Namely, the Higgs boson can couple a left (L) chirality SU(2) doublet

fermion to a right (R) chirality singlet, which is the same assignment of chiralities as

in the SM and thus has been dubbed “correct” chirality coupling in the literature on

this subject; whereas, a separate coupling involves the opposite choice, i.e., “wrong”

chirality. Only for the massive KK fermions do both types of couplings exist, since

the KK modes are vector-like. References [25, 31] then showed that:

– The contribution of the correct chirality KK fermions has an extra suppression

∼ (mh/MKK)2 relative to the above NDA estimate (mh here is the SM Higgs

boson mass). We will neglect this contribution. However, note that no symmetry

argument was found for this feature, so we expect other previously neglected

contributions will not necessarily be similarly suppressed.

– The contribution of the wrong chirality does not have such a factor, but it is

instead suppressed (again, for fixed KK level) as we make the profile of the SM

Higgs boson narrower, for the following reason. The profile of the wrong chirality

KK fermion always vanishes exactly at the TeV brane, which is precisely the

location of the SM Higgs boson in the brane-localized limit and thus the wrong

chirality coupling is negligible in this case (while the correct chirality is not).

Naively speaking, it seems then that the dipole operator vanishes for the brane-

localized limit of the SM Higgs boson.

– These references then focused instead on the case of a more spread-in-the-bulk

Higgs boson, but which is still peaked near the TeV brane. For this case, a dipole

operator of size similar to the above NDA estimate of eq. (1.1) was found. Again,

this effect is from the wrong chirality, but the point is that this coupling is not

small for such a profile of the SM Higgs boson.

• [32, 33] in 2010 (and follow-up in 2012) studied these dipole operators from an al-

ternate angle. First, they used strictly brane-localized (i.e., δ-function-like) Higgs

throughout (cf. such a limit obtained from a bulk Higgs discussed above). This

implies that the wrong chirality coupling does not come into play at all. More rele-

vantly, they took a 5D covariant approach, where one appropriately coordinates the

4D loop momentum cutoff with that of the KK sum (clearly, [25] in 2006 did not fol-

low this prescription). Using the 5D propagators, but also sketching the equivalent

KK picture, [32, 33] went on to show that

– 3 –
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– the correct chirality of KK fermions does contribute a similar size to the above

NDA estimate for such a brane-localized Higgs.

As we outline later on, this dipole effect is finite. Nonetheless we argue that it is

UV-sensitive, since the KK modes up to the 5D cutoff seem to be relevant for it.

• [34] in 2012 returned to the bulk Higgs calculation (again, only with the SM Higgs

boson in the loop). This work established more firmly the “need” for wrong chirality

as advocated in [25] (but still no symmetry argument!). They took the brane-localized

limit more carefully (for the wrong chirality effect), in particular, performing the KK

sum (which was not done in [25]).

– They showed that the summed-up effect of wrong chirality of the KK fermions is

actually unsuppressed even in this brane-localized limit (unlike what was stated

in [25]), which can be dubbed a “non-decoupling” effect.

Namely, an individual KK level contribution is suppressed by the Higgs profile’s

width in this limit (as in [25]), in turn, due to the dependence on the wrong chirality

coupling. However, this coupling simultaneously grows with the KK level, which

tends to compensate the expected suppression due to the increase of the KK fermion

mass, in such a manner that the effect is of roughly similar size for a large range

of KK levels, namely up to the mass comparable to the inverse of the Higgs profile

width. Then the KK sum does indeed give a contribution of size of the above NDA

estimate.2 We emphasize that the result in [34] applies when Higgs width is at least

as large as the (inverse of) the 5D cutoff, and that still leaves room for it to be

(much) smaller than the width of a typical KK mode: the authors called it “quasi

IR-localized” (it has also been dubbed “narrow bulk Higgs” [41]). Similar results

have been obtained by [35–37] over the past two years, but using 5D propagators (for

fermions only) instead. Of course, as the Higgs profile’s width actually approaches

the inverse of the 5D cutoff (which can be thought of as the “width” of the TeV

brane itself), the O(1) factors in the above KK result are not quite reliable, since KK

modes up to the 5D cutoff should be included. This finding is consistent with the

UV sensitivity of a (strictly) brane-localized Higgs which was obtained simply using

NDA estimates.

We summarize these past works in table 1.

In spite of all this body of work on dipole operators, we felt that a puzzle still remained:

for a bulk Higgs (including its quasi IR-localized limit), why is the dominant contribution

arising from the wrong chirality (again, this seemed to be an accident), as discussed in [25,

34–37] above? On the other hand, if we simply start with a δ-function brane-localized

Higgs boson, the correct chirality seems to be enough, as in [32, 33].

2Other instances of such (apparent) non-decoupling of the effects of heavy KK modes have been discussed

previously: in the tree-level coupling of SM fermions to Higgs boson [38] and in gluon couplings to Higgs

boson [39, 40].
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refs.year → [25] in 2006 [32, 33] in 2010 [34–37] in 2012 new in 2014

Features ↓ (this paper)

Higgs mode SM SM SM KK

(thus 5D covariant)

KK fermion wrong correct wrong correct (and wrong)

chirality chirality chirality chirality chirality

Higgs profile bulk brane-localized bulk bulk

considered (including narrow) (including narrow)

KK modes only 1st mode KK sum KK sum KK sum

included included

Size vs. NDA 1 1 1 1

(even for narrow) (even for narrow )

Table 1. A summary of various features (top to bottom) of dipole effects considered in the literature

before (middle three columns) vs. our contribution (last column). “correct” (“wrong”) in the row

labelled “KK fermion chirality” refers to whether the assigned chirality is same as (opposite to)

that of the SM fermions.

In light of the dominant dipole effect in [32, 33] coming from the correct chirality

whereas all the other analyses get the dominant effect from the wrong chirality, we wanted

to check if any effects have been omitted. Our main contribution is to include for the first

time the effects from KK excitations of the SM Higgs boson. In addition to rendering the

dipole result complete and 5D covariant, the details of the KK Higgs effect are also very

interesting. We give a preview of our main findings as follows.

• The KK Higgs contribution has a significant part coming from the correct chirality,

in contrast to the SM Higgs boson effect which is dominated by the wrong one. In

other words, the suppression factor for the correct chirality contribution with the

light SM Higgs boson, namely ∼ m2
h/M

2
KK, is clearly absent for the KK Higgs (it

becomes O(1) with mass ∼MKK instead).

Moreover, we show that:

• The summed-up of the KK Higgs effect in general is parametrically comparable to

the NDA estimate in eq. (4.3) (and hence to the wrong chirality one from the SM

Higgs), although our numerical results show that it is accidentally somewhat smaller.

In some sense, our result then resolves the above-mentioned puzzle, i.e., the wrong

and correct chiralities are on a similar footing now (at least parametrically).

Most strikingly, we demonstrate that:

• The summed-up of KK Higgs effect retains the above size even in the limit where

the bulk Higgs profile becomes very narrow. This result looks counter-intuitive, since

(as already mentioned earlier) the KK Higgs naively decouples in this case. Roughly

– 5 –
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speaking, this unexpected result arises as follows. The suppression of any individual

KK level’s contribution by the KK Higgs mass in the brane-localized limit is partially

compensated by the Yukawa couplings of the KK Higgs being enhanced compared to

those of the SM Higgs. Furthermore, there is a large range of KK Higgs modes with

nearly degenerate masses, so that when we sum over the whole tower of KK Higgs

bosons, the effect is unsuppressed.

Our work on the KK Higgs effect is also included in table 1. Indeed, our finding of the

apparent “non-decoupling” behavior of the summed-up KK Higgs effect bears some resem-

blance to earlier results mentioned above [34, 38–40], but those involved the multiplicity

of KK fermion modes only (vs. focus on Higgs here). Also, given that our result derives

from the KK fermions with the correct chirality and the KK Higgs (again, inclusion of the

latter is required by 5D covariance), it is in spirit similar to (i.e., shares features with) the

approach of [32, 33]. However, it is clear that it is a different effect from that in [32, 33],

since the latter was from SM Higgs instead. Furthermore, we will argue detail that the

contribution in [32, 33] is actually relevant only in the brane-localized limit, whereas the

KK Higgs effect is important even for the bulk case. While our KK Higgs computation does

not change the order of magnitude result for the dipole operator, it is important to include

it for better precision. In this paper we do not re-compute the signals associated with

specific processes. Independent of its practical implications, the KK Higgs effect is also of

theoretical interest as mentioned above (namely, respecting 5D covariance; the particular

chirality structure and the apparent “non-decoupling” feature) which is the main focus of

the current work.

Here is the outline of the rest of the paper. We begin in section 2 with a description

of the model, mainly to explain our notation. In section 3, we present a “cartoon” of the

profiles, masses and couplings of the KK modes arising from the 5D model. Based on this

picture, we then discuss the semi-analytic estimates for dipole operators in section 4. In

section 5, we present a “simplified” model which is amenable to a semi-analytic (actual)

calculation, followed by detailed numerical results in the full 5D model in section 6. We

conclude in section 7. More technical details and formulae are relegated to the appendices.

2 The model

The metric is given by

ds2 =
1

(kz)2

(
ηµνdx

µdxν − dz2
)

equivalently, with kz = exp (ky) ,

= exp (−2ky) ηµνdx
µdxν − dy2,

(2.1)

where k is the AdS curvature scale and z = R = 1/k (y = 0) and z = R′ = exp (kπrc) /k

(y = πrc ) correspond to the UV and IR branes (often called Planck and TeV branes),

respectively. rc denotes the size of the extra-dimension. The KK masses are quantized in

units of k exp (−kπrc), denoted by MKK henceforth, which sets the mass scale of the first

KK mode.

– 6 –
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All the SM fields (including the Higgs boson) are assumed to propagate in the bulk.

We neglect brane-localized kinetic terms for bulk fermions, gauge and Higgs fields. We

also take the EW gauge symmetry to be simply SU(2)L × U(1)Y in the bulk, i.e., we do

not invoke the custodial symmetric extensions [12, 13]. We make the above assumptions

mainly for simplicity, but also because we do not expect our results for dipole operators

to change significantly even in the presence of such variations. Another scenario, which is

well-motivated by considerations of naturalness (i.e, addressing the problem of the little

hierarchy between v and MKK), is to realize the SM-like Higgs boson as a pseudo-Nambu-

Goldstone boson (PNGB) from the dual 4D strong dynamics viewpoint [42]. The general

such framework involves extending the bulk EW gauge symmetry (minimally) to SO(5)

which is then broken to SO(4) ∼ SU(2)L × SU(2)R [43] by a bulk scalar, with the VEV

profile being peaked near the TeV brane. A SM-like Higgs emerges as an admixture of this

bulk scalar and part of the bulk gauge field, A5 (see, for example, reference [44]). In this

case, we will also have KK Higgs bosons arising from this bulk scalar making it possible

that the KK Higgs effect that we study in this paper might be relevant in such a framework.

However, a detailed calculation would be necessary in order to confirm this expectation.3

The Higgs field is described by

SHiggs =

∫
dzd4x

(
R

z

)3 [
|DMH|2 −

µ2

z2
|H|2

]
−VUV(H)δ(z−R)−VIR(H)δ(z−R′) , (2.2)

where VUV (VIR) corresponds to the potential localized at the UV (IR) brane. By a suitable

(but not fine-tuned) choice of UV and IR brane potentials, this can give a Higgs VEV profile

which is localized near the IR brane, as needed to solve the hierarchy problem:

h(z) ∼ z2+β , (2.3)

where β =
√

4 + µ2 (equivalent to the 5D Higgs mass parameter) controls the localization

of the profile. The brane Higgs scenario can be recovered by an appropriate limit, β →∞.
We then perform a KK decomposition of the 5D Higgs field. This KK decomposition

gives the masses and profiles in the extra dimension of the various 4D physical Higgs

boson modes. The full details of the KK decomposition for the bulk Higgs are given in

appendix A, with the qualitative features being discussed in the section 3.2. Here we just

mention that a mild tuning — of order ∼ (v/MKK)2 — gives a mode which is lighter than

the typical KK scale (often referred to as the zero-mode) and which is then identified with

the observed SM Higgs boson. Its profile is approximately the same as that of the VEV in

eq. (2.3) up to corrections of order ∼ (v/MKK)2. In addition, there are KK Higgs modes

with masses quantized in units of the typical KK scale: their profiles also peak near the

IR brane, but with a degree of localization which can be very different from that of the

zero-mode (more details will be shown later).

3Note that a limiting case of this idea is when the VEV of the bulk scalar is δ-function localized on the

TeV brane and simultaneously becomes large in size, when is equivalent to the breaking of the bulk gauge

symmetry by a boundary condition. Then, the SM-like Higgs boson becomes purely A5 (more precisely,

the Wilson line) [42] and there are no KK Higgs bosons below the 5D cut-off.

– 7 –
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The bulk fermion fields are described by

SFermion =

∫
d4xdz

(
R

z

)5[ i
2

(
Q̄ΓADAQ−DAQ̄ΓAQ

)
+
cq
R
Q̄Q+(Q, cq ⇔ U, cu and D, cd)

+ Y u
5DQ̄HU + Y d

5DQ̄HD

]
, (2.4)

where Q, U/D are the five-dimensional Dirac fermions (SU(2)L doublet and singlets re-

spectively) and their corresponding 5D masses are cq, cu/d (in units of the AdS curvature

scale, k = 1/R). Here we focus on the quark sector for simplicity, but an analogous anal-

ysis applies for the lepton sector. The masses and profiles of the 4D modes are obtained

via KK decomposition. The details of the KK decomposition for the bulk fermion are

given in appendix B, with a sketch outlined in section 3.1. We will discuss briefly only the

zero-mode fermions arising from this compactification here, obtained by imposing the ap-

propriate Z2 boundary conditions. These modes are to be identified with the chiral SU(2)

doublet (singlet) SM fermions. The behavior of the fermion zero modes are very different

from that of the heavy KK modes. In particular, the profile of the SM left chiral fermions

is given by

q0
L(z) = f(cq)

R′−
1
2

+cq

R2
z2−cq , (2.5)

where the f(c) =
√

1−2c
1−(R/R′)1−2c . The profiles of SM right chiral fermions are obtained

by the same equation with c → −c. Thus, similarly to the Higgs zero-mode/VEV, the

localization of the SM fermion profile is controlled by the five-dimensional mass parameter

c. However, the crucial point is that in the case cq < 0.5 the profile of the zero-mode

fermion is localized near the IR brane, whereas for cq > 0.5 it is near the UV brane. In

contrast, KK fermion modes (like all KK modes) are always localized near the IR brane.

Here we are setting the Higgs VEV to be zero when dealing with the fermion fields, and

we treat the Higgs VEV as an insertion. The fermion zero mode and KK modes undergo

mass mixing after EWSB which corresponds to a higher order correction to our results (it

is suppressed by powers of v/MKK).4

In the resulting 4D effective theory, these modes (zero and massive KK) are then used

as part of loop diagrams in order to calculate the dipole operators. The KK mode contribu-

tions to dipole operators are dictated not just by their masses, but also by their couplings

between the particles. These couplings depend on the overlap in the extra dimension of

the profiles of the particles involved. These overlap integrals are done numerically: the

exact formulae are not so enlightening and thus are given in appendix C, with estimates

being discussed in section 3.3. As an alternative to the KK approach involving a sum

over modes, one can compute the same dipole operator by a 5D approach (independent of

whether Higgs VEV is treated as an insertion or not), using 5D propagators where the KK

sum is implicitly done to begin with.

4One could have instead worked directly with the resulting mass eigenstates (i.e., included effect of EWSB

from the beginning in the mode decomposition). This latter approach should of course be equivalent to the

one that we actually use.
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3 Semi-analytic estimates I: profiles, masses and couplings

Armed with the masses and couplings of KK modes (from the appendices), it is rather

straightforward to perform the full calculation of the dipole operator in the 5D model.

However, such a procedure tends to be mostly numerical and so we defer it to section 6.

In the intervening sections, we perform an approximate, semi-analytic study, which will

be more insightful and indicate to us what results to expect from the full analysis. We

begin with making naive dimensional analysis (NDA)-type estimates for the all parts of the

dipole operator calculation involving both the 4D loop and the genuine 5D effects, such as

couplings, masses of KK modes and their KK sum. In this section, we outline a cartoon of

the profiles, their couplings, and masses of the KK particles. This is a rough sketch of the

exact results given in the appendices (or in [9, 17, 45, 46], for example). In the next section,

we will use these couplings and masses in order to provide semi-analytic estimates for the

relevant effects on dipole operators. Such estimates, based on an NDA approach, although

not accurate, provide the quickest understanding of and intuition for the full results.

We now start the process of NDA estimates of profiles and masses of KK modes. We

will use the y coordinate (which is more transparent for this purpose), although it is simple

to switch to the z coordinate instead (see eq. (2.1)). Regarding the mass scales used in our

NDA estimates: for O(1) bulk masses, we will approximate the lightest KK mass by the

standard unit

MKK ≡
1

R′
= k exp (−kπrc) . (3.1)

The actual lightest KK mass is typically an O(1) factor different from MKK, mostly de-

pending on its spin and bulk mass. For example, the mass of the lightest gauge KK mode

is actually ≈ 2.45 MKK. We will neglect such factors in this section.

As far as all the profiles (whether zero or KK modes) are concerned, we choose them to

include the warp factor in such a way that the overlap integrals (relevant for computation

of the normalization and couplings) do not have the explicit warp factor dependences (i.e.,

à la flat extra dimension). The profiles are normalized to 1, with above convention for the

warp factors, ∫ πrc

0
dy (profile)2 = 1 . (3.2)

3.1 Fermion field profiles and masses

These depend on the 5D fermion mass c (in units of k). In our estimates, we assume

c ∼ O(1). The exact formulae are in appendix B.

3.1.1 Zero-mode: SM fermion

The profile of the zero-mode (which is massless before EWSB) is very sensitive (exponen-

tially for a certain range) to the c parameter (see eq. (2.5)). Small variations in c can result

in localization either near the Planck brane, which is suitable for 1st- and 2nd-generation

fermions with small Yukawa couplings to the SM Higgs boson, or near the TeV brane as

for the top quark. For simplicity in our estimates we consider a (quasi-)flat profile for the

zero-mode (strictly flat corresponds to c = 1/2) for both chiralities.
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The zero-mode fermion profile is explicitly given by

fSM(y) ' 1√
πrc

for 0 ≤ y ≤ πrc . (3.3)

In the following, we will use the notation f in profile and mass to denote a fermion.

3.1.2 KK fermion modes

The masses and profiles of KK fermions are not sensitive to c in contrast with the zero

mode. We neglect c dependence, assuming c ∼ O(1). The masses are quantized in units of

∼MKK and they are approximately given by (n being the mode-number):

mf
KK ' n MKK . (3.4)

The profile is localized within ∼ 1/k away from the TeV brane and the nth (� 1) mode

has ∼ n oscillations (roughly uniformly spread) inside this width. Here and henceforth,

‘width’ refers to that of the profile in the extra dimension (not to be confused with decay

width). As a rough approximation, we simply take it to be

f±KK(y) ∼


√
k for πrc −O

(
1

k

)
≤ y ≤ πrc, with ∼ n nodes

0 for 0 ≤ y ≤ πrc −O
(

1

k

) (3.5)

where (and henceforth) we use alternatively ± symbols for notational simplicity in equa-

tions. “+” and “−” denotes correct or wrong chiralities of KK fermions, namely, SU(2)

doublet L (plus singlet R) and doublet R (plus singlet L), respectively.

However, the wrong chirality profile vanishes exactly at the TeV brane, i.e., behaving

like ∝ sin
{
n
[
1− ek(y−πrc)

]}
close to it (see discussion around eq. (C11) in appendix

of [38]). Within the width of the SM Higgs, given by ∼ 1/ (βk) (which is relevant for

couplings: see details below), we have (assuming β � 1)

f−KK(y)

(
for πrc −O

(
1

βk

)
≤ y ≤ πrc

)
∼


√
k
n

β
for n

<∼ β
√
k for n� β,with ∼ n

β
nodes.

(3.6)

Eq. (3.6) implies that the profile is suppressed and not oscillating for the case of (large)

fermion mode-number n, which is still . β (this is not the case for n� β).

3.2 Higgs field profiles and masses

Just like for the fermion case above, these depend on the 5D mass of the Higgs field, in units

of k (denoted by β). Note that in the literature β often denotes
√

4 + (5D Higgs mass/k)2.

However, we will be especially interested in the β � 1 case, in which case the two definitions

are equivalent and so henceforth we will neglect this difference. The exact formulae are in

appendix A.
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3.2.1 Zero mode: SM Higgs

By a suitable choice of parameters such as β and the TeV brane-localized Higgs potential,

one can obtain a mode which is much lighter than MKK and which will be identified with

the SM Higgs boson with the usual VEV. This mode will aquire a mixing with the massive

modes after EWSB which is typically small as is discussed in appendix A. Its profile (both

for the VEV and the physical Higgs boson within our insertion approximation) is monotonic

and peaked near the TeV brane, that too localized within ∼ 1/ (βk) of it (see eq. (2.3)). It

can be approximately given by

φlight(y) ∼


√
βk for πrc −O

(
1

βk

)
≤ y ≤ πrc

0 for 0 ≤ y ≤ πrc −O
(

1

βk

)
.

(3.7)

We will use φ to denote Higgs mode in general. Based on the above profile, we see that

• a quasi-localized [34] (or narrow [41]) bulk Higgs corresponds to the choice β � 1,

but still β . Λ/k, where Λ is the cutoff of the 5D non- gauge/Yukawa theory.

(Henceforth, we will call it the ‘narrow limit’ of a bulk Higgs.) A reason for not taking

even larger β, corresponding to a width smaller than ∼ 1/Λ, is that inclusion of higher-

dimensional operators will effectively give a width to even a (supposedly) brane-localized

Higgs of ∼ 1/Λ (see discussion around eq. C13 in appendix of [38]). In any case, a 5D mass

for Higgs field larger than cutoff might not make sense to begin with.

We can then define

• the brane-localized Higgs limit of the bulk Higgs to be β → Λ/k (cf. δ-function

localization would correspond to β →∞).

3.2.2 KK Higgs modes

The masses are quantized in units of ∼MKK . Unlike the case of the KK fermion, the 1st

mode is much heavier than the typical KK scale in the limit β � 1, namely for a narrow

bulk Higgs:

mφ
KK ∼ (β + n)MKK . (3.8)

We would like to highlight the above degeneracy of the KK Higgs modes up to ∼ βth mode

which implies that masses of the first ∼ β number of modes (n = 1 to n ∼ β) are ∼ β MKK.

This degeneracy is one crucial property that leads to our new result.

The profiles roughly look like

φheavy(y) ∼


√
k for πrc −O

(
1

k

)
≤ y ≤ πrc, with ∼ n nodes

0 for 0 ≤ y ≤ πrc −O
(

1

k

)
.

(3.9)

Note that the width of the KK Higgs (and the number of nodes - roughly uniformly

spread - within it) is similar to that of KK fermions. In particular, the KK Higgs width is

much larger than that of the SM Higgs for the case β � 1.
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3.3 Couplings of various fermion- and Higgs- modes

Loop contributions of KK excitations depend on their masses and couplings, the latter

being determined by their profiles. Based on the above choice of the inclusion of the warp

factor in profiles (and taking into account that they are already normalized), it is clear

that the coupling of two fermions and one Higgs modes is given by

yφf f ′ =

∫ πrc

0
dy
(
Y
√
k
)
f(y)f ′(y)φ(y) , (3.10)

where Y
√
k is the 5D Yukawa coupling (recall it has mass dimension −1/2 which implies

that Y here is dimensionless). Throughout this paper, we will use the superscript in the

Yukawa coupling y to indicate the Higgs mode, and two subscripts in y to indicate fermion

modes. The index φ can be either light or heavy which refers to the SM or KK Higgs.

Similarly, f and f ′ can refer to either the SM or KK fermion.

We emphasize here that relations between couplings are crucial for estimating the

final result, especially for doing the KK sum and, in this process, for understanding the

dependence of the result on the Higgs boson width, which is set by the 5D mass of the Higgs

field, β. In particular, as already mentioned, we would like to study the brane-localized

limit (β � 1). So, we prefer not to leave these couplings as free parameters in this section,

i.e., we insist on estimating their sizes (even if crudely).

Our NDA estimates for couplings between various modes that will be discussed in

detail in subsequent sections are summarized in table 2 for the convenience. The exact

formulae for couplings and the wave functions, corresponding to our NDA estimate in the

approximation are given in appendices A–C.

3.3.1 SM Yukawa coupling and SM fermion mass

Plugging in the relevant profiles, eqs. (3.7) and (3.3), into eq. (3.10), it is straightforward

to see that

ylight
SM SM '

Y√
β

1

kπrc
,

≡ ySM ,

(3.11)

where ySM denotes the SM Yukawa coupling (see eq. (C.1) for the exact formula being

valid for any c parameter). SM fermion mass is approximately, up to mixing of zero and

KK fermion modes after EWSB, given by

mSM ≈ ySMv . (3.12)

Note that for fixed SM fermion profiles (whether flat or not), this Yukawa coupling

decreases as we take the brane-localized Higgs limit (β � 1), if we also keep the 5D Yukawa

coupling (Y ) constant in this process. One has to keep the Yukawa coupling of zero-mode

fermions at the SM value. To this end, one could compensate for this effect by either (i)

localizing SM fermions closer to the TeV brane or (ii) rescaling the 5D Yukawa coupling

appropriately (i.e., roughly by
√
β). However, various precision tests would disfavor the

– 12 –
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former option and rescaling is the standard practice in the literature (starting with [25]).5

Here, we instead keep explicit the factor of
√
β as above (instead of absorbing it in the

5D Yukawa coupling), just for clarity and — more importantly — for contrasting with the

couplings of the KK Higgs (see below).

3.3.2 SM-KK fermions to SM Higgs

Here, we focus on fermion mode-number, n . β, so that it does not oscillate (at least,

not significantly) within the SM Higgs width. As we will argue later, higher fermion

mode-numbers are not really relevant for estimates of dipole operators. Following a similar

procedure to above, we then have:

ylight
SM KK (for n . β) ∼ Y√

β

1√
kπrc

,

∼ ySM

√
kπrc .

(3.13)

In particular, KK-number conservation is badly violated for these fermion modes with

n . β, i.e., the overlap of the corresponding profiles is not suppressed, since the two fermion

profiles are roughly monotonic with in Higgs width. On the other hand, profiles of KK

fermion modes with n� β will oscillate within the Higgs width so that the corresponding

overlap integral will be (highly) suppressed, resulting in a negligible coupling.

3.3.3 KK-KK fermions to SM Higgs

The coupling of two KK fermions with correct chirality (denoted by “+”) to SM Higgs is

estimated to be

ylight,+
KK KK (for n, p . β) ∼ Y√

β
,

∼ ySM (kπrc) .

(3.14)

For convenience of later estimates, we take the couplings in eq. (3.14) as the standard unit

for KK Yukawa coupling:

yKK ≡ ySM (kπrc) . (3.15)

Just like the above coupling, for n, p . β, we do not have KK number conservation here,

but we will recover it for n, p � β, i.e., coupling will be significant, i.e., ∼ yKK, only

for n ∼ p in this case, and finally, coupling will be negligible for n � β, but p . β (or

vice versa).

For wrong chiralities (denoted by “−”) with mode numbers, n, p . β, we get (in

particular, using eq. (3.6))

ylight,−
KK KK (for n, p . β) ∼ n p

β2

Ỹ√
β
,

∼ n p

β2
yKK .

(3.16)

The couplings will be similar to the correct chirality ones when mode-numbers exceed β.

In general, 5D covariance requires Y = Ỹ , but we would like to keep them as separate

parameters, just as reminders of the chiralities involved.

5We will return to this issue when we present estimates for other couplings and when we show the results

of the full 5D calculation (see an exact treatment of this issue at end of appendix C).
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The Yukawa coupling in eq. (3.16) is suppressed (compared to the correct chirality) by

the Higgs width in the brane-localized limit, i.e., β � 1 (as had already been anticipated

in the introduction), but “enhanced” by fermion mode-number. This feature is crucial for

the non-decoupling effect of the wrong chirality fermions in the brane-localized limit (see

below). Moreover, for fixed 5D Yukawa coupling, the KK Yukawa seems to decrease as we

increase β. However, as discussed in section 3.3.1, in practice, we need to rescale Y by
√
β

in order to keep the SM Yukawa coupling fixed (for fixed SM fermion profiles) as we take

β � 1, in such a manner that the KK Yukawa also stays (roughly) constant in this limit.

3.3.4 SM-KK fermions to KK Higgs

Taking into account that the KK Higgs profile looks quite different from the SM one

(compare eqs. (3.7) and (3.9)), we get for the coupling of the KK fermion to the KK

Higgs boson

yheavy
SM KK ∼


Y√
kπrc

∼
√
β
(
ySM

√
kπrc

)
for similar mode-numbers
of KK Higgs and fermion

0 otherwise

(3.17)

where
√
β is orginated by the width of the heavy Higgs being larger than the SM one, as

was indicated in eqs. (3.7) and (3.9).

The enhancement by
√
β in the Yukawa coupling of the KK Higgs (which is more

pronounced in the brane-localized limit of β � 1) relative to that of the SM Higgs is

another crucial property leading to our new result. Unlike for the case of the SM Higgs,

there is (approximate) KK number conservation, since the KK profiles of fermion and Higgs

must oscillate similarly within their widths (being ∼ 1/k for both modes) in order for their

overlap not to be suppressed.

3.3.5 KK-KK fermions to KK Higgs

For both wrong and correct chiralities of KK fermions, we get the following coupling to

the heavy Higgs:

yheavy, ±
KK KK ∼

 Y ∼
√
β yKK for KK-number conserving combination

0 otherwise.
(3.18)

The point is that, even if the wrong chirality vanishes exactly at the TeV brane, it is

obviously unsuppressed away from it (within its width of ∼ 1/k), where the heavy Higgs

also lives, so that the wrong chirality coupling is similar in size to the correct chirality one.

In particular, wrong chirality coupling of the KK Higgs is not suppressed as β increases

(i.e., the width of the SM Higgs decreases), unlike the similar coupling of the SM Higgs

(see eq. (3.16)). In fact, it is enhanced compared to the correct chirality coupling of the

SM Higgs, yKK (of course, the correct chirality coupling of the heavy Higgs to two KK

fermions also has a similar enhancement by ∼ √β, compared to yKK).

Finally, note that this coupling also features approximate KK number conservation

(based on oscillating profiles, just like the one above). It involves something like nth KK

Higgs coupled to the pth and (p+ n)th KK fermions. For the exact formula, see eq. (C.5)

by setting nH ≥ 1.
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Couplings of

fermion modes → SM-SM SM-KK KK-KK (correct) KK-KK (wrong)

to Higgs modes ↓ (KK mass ∼ nMKK)

SM
Y√
β

1

kπrc
≡ ySM ySM

√
kπrc ySM (kπrc) ≡ yKK

n p

β2
yKK

: KK # not conserved (for n, p . β)

KK
√
β ySM

√
β
(
ySM

√
kπrc

) √
β yKK

√
β yKK

(mass ∼ (β + n)MKK)

: KK # conserved

Table 2. NDA estimates for couplings between various modes: fermion ones (assuming n, p . β)

are indicated from left to right, whereas Higgs are top and bottom. β is the 5D mass of the Higgs

field and sets the profile of the SM Higgs and the masses of KK Higgs modes. Y is the dimensionless

5D Yukawa coupling in (appropriate) units of the AdS curvature scale. “correct” and “wrong” at

the top of last two columns refer to the chirality of the KK fermion. It is convenient (as done here)

to express other couplings in terms of those of the SM Higgs to two SM fermions (ySM) or to 2 KK

fermions of correct chirality (yKK). For simplicity, the SM fermion profile is taken to be flat: in

general, 1/
√
kπrc factor should be replaced by the profile evaluated at the TeV brane.

3.3.6 SM-SM fermions to KK Higgs

Although this coupling will not be used in our estimates since its effects are suppressed,

we give it here for the sake of completeness:

yheavy
SM SM ∼

Y

kπrc
only for 1st few KK Higgs ,

∼
√
β ySM .

(3.19)

4 Semi-analytic estimates II: coefficient of dipole operator

We focus on the 4D Lagrangian for the chromomagnetic dipole operator

L4D ⊃ mSM
gQCDCdipole

16π2M2
KK

ψLT
aσµνψRG

a
µν , (4.1)

and estimate the coefficient Cdipole arising from KK fermion and Higgs boson modes in

loops. We will only consider contributions which can be similar in size to the NDA estimate

of eq. (1.1). A similar estimate applies for photon field strength, with gQCD → e, and our

analysis here can be easily applied to the electromagnetic dipole operator.

Before proceeding with this section, we point out a few important properties that

simplify our estimate. The NDA estimates show that dipole operators for a bulk Higgs

are UV-insensitive whereas this is not the case for the brane limit, i.e., β ∼ 5D-cutoff. We

expect that KK modes with mode-number well above β will give a suppressed effect, i.e.,

decouple, which is partly due to the heaviness of these modes. In addition, the structure

of the couplings of the SM Higgs to such KK fermion modes is different from that in the

case of smaller fermion mode numbers. For example, KK number conservation is recovered

for these heavy KK fermions as discussed in section 3.3. Hence, for simplicity, we restrict
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SM Higgs

KK(p)
KK(n)

SM SM

SM Higgs

KK(p)KK(n)
SM SM

p MKKn MKK

Figure 1. Left: NDA estimate for SM Higgs-KK fermion loop. Right: wrong chirality with SM

Higgs and Higgs VEV insertion inside loop. The “×”’s on the KK fermion line denote chirality

flips. For both diagrams, the “⊗” on the scalar line denotes a Higgs VEV insertion. There is a

similar diagram with a gluon being emitted on the “other” side of the Higgs VEV insertion.

the sum over KK modes only up to mode-numbers ∼ β in our estimates. However, in our

numerical computation, the KK sum is performed up to mode-numbers well above β.

We will only consider diagrams with KK fermion modes as internal lines (inside and

outside the loop), since SM fermion modes will give contributions which are suppressed by

the associated SM Yukawa couplings. As we will see, each contribution based on our NDA

estimates here matches well with the corresponding exact loop-function, unless there is an

accidental suppression or enhancement, which of course NDA cannot quite capture.

4.1 SM Higgs in the loop

This part is mostly a review of earlier work, but it sets the stage for the newer results on

the KK Higgs we present later on.

4.1.1 Correct chirality

The relevant diagram is shown on the left side of figure 1. We use the couplings given

in the section above (and summarized in table 2) at the vertices, and masses given there

in the propagators. For estimating the size of the loop momentum integral here (and

henceforth), we basically invoke simple dimensional analysis or power counting, namely,

the operator in eq. (4.1) is dimension-6 (before replacing the Higgs field with its VEV) and

thus we should get 1/(mass)2. Equivalently, we can consider powers of loop momenta in

propagators and in the integration measure, including that we have to extract one power

of (external) gluon momentum. Assuming that the masses of the two KK fermions are

comparable, we expect the overall mass dimension for NDA estimates to be given roughly

by adding the masses of all particles in the loop in quadrature.6 Note that here we are

not considering chirality flips on KK fermion lines. This 4D loop diagram is convergent

(eq. (4.1) being a higher-dimensional operator) and so we take the 4D loop momentum

cutoff to infinity to begin with (whether this procedure is consistent with 5D covariance is

discussed later in appendix E, and it does not affect the results here with finite β).

6Of course, in the general case of a (large) hierarchy between the two KK fermion masses in this loop,

there can be a logarithm of the ratio of these two KK masses: we neglect such a factor here, for simplicity

and because as we will see soon, there is an accidental suppression factor of m2
h/m

2
KK present.
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It is then rather straightforward to see that we expect (for fixed KK fermion mode-

numbers, denoted by n and p, as shown in figure):

(
C light, NDA

dipole

)
(n, p)

∼ 1

n2 + p2

(
ylight

SM KK

)2
ylight,+

KK KK

ySM
,

∼ y2
KK

n2 + p2
,

(4.2)

where
(
n2 + p2

)
in the denominator arises from the KK fermion masses (we neglect the SM

Higgs mass). The loop factor of 16π2 and overall KK mass scale has already been factored

out in the definition of Cdipole in eq. (4.1). ySM in the first line of eq. (4.2) is due to mSM

out front in eq. (4.1). Finally, as mentioned in sections 3.3.2 and 3.3.3, KK number is not

conserved (even approximately) at the SM Higgs vertices, i.e., n and p are allowed to be

large and quite different.

The KK sum then gives:

C light, NDA
dipole ∼

n∼β∑
n=1

p∼β∑
p=1

y2
KK

n2 + p2
,

∼ y2
KK log (β) ,

(4.3)

which is essentially the same as the estimate given in the introduction, i.e., eq. (1.1), modulo

the log-factor. Naively one would expect that the above estimate is “log-divergent” in the

brane-localized limit, i.e., β → Λ/k.

However, explicit calculations [25, 31, 34] show that,

• even though there is no symmetry argument for it, the correct chirality effect is

actually suppressed by a factor ∼ (mh/MKK)2 compared to the above estimate.7

There are actually two diagrams here, namely, with a gluon attached to the left or the right

of the Higgs VEV insertion: they are not shown separately in figure 1 for simplicity (see

instead figure 8). It turns out that each is separately suppressed (again, as far as we know,

accidentally): see eqs. (5.4) and (D.12) and discussion around them for the actual loop

function. This suppression applies to the physical Higgs boson loop by itself (and similarly

for the associated would-be Nambu-Goldstone bosons, equivalently the longitudinal W/Z).

Also, as an aside, diagrams with a Higgs VEV insertion on an external leg (outside the

loop) are also suppressed for the correct chirality case: see section 5 for more details.

We will return to the correct chirality contribution in section 4.2.1, where we consider

it instead for a KK Higgs in the loop and in section E, where we go back to the SM Higgs,

but being more careful about cutoff on 4D loop momentum (and KK sum).

7This is (strictly speaking) valid for each KK level, but the KK sum does not change the result, since it

is now ∝∼ 1/M4
KK vs. ∼ 1/M2

KK in the NDA estimate above.
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4.1.2 Wrong chirality

In this case, the diagrams with a Higgs VEV insertion inside and outside the loop both

need to be considered, and they end up contributing similarly. We discuss these two

contributions separately in order.

The relevant diagram with a Higgs VEV insertion inside the loop is seen in the right

side of figure 1. Using profiles and masses from above (but being careful with chiralities),

it is easy to estimate this effect. As before, we start with fixed KK fermion modes (the

superscript “int” denotes a Higgs VEV insertion inside the loop):

(
C light, wrong, int

dipole

)
(n, p)

∼ n p

n2p2

(
ylight

SM KK

)2
ylight,−

KK KK

ySM
,

∼ n2 p2

n2p2

y2
KK

β2

Ỹ

Y
.

(4.4)

We must use the correct chirality for the external, zero-mode couplings, but the wrong

chirality coupling for Higgs VEV insertion involving only KK fermions. This requires

chirality flips on KK fermion propagators, giving factors of KK masses (i.e., mode-numbers,

since MKK has been factored out) in the numerator of the first line in eq. (4.4). Simple

power-counting then suggests four powers of KK mass in the denominator here; that this

factor is n2p2 in this case is based on the estimate that (in the general case of the two KK

fermion masses being hierarchical) the largest contribution to the loop integral comes from

a gluon attached to the lighter of these modes, as can be inferred from the diagram at the

right side of figure 1. The above net estimate is confirmed by the exact loop function given

in eq. (D.13). In the 2nd line in eq. (4.4), we have used the previous result that the wrong

chirality coupling increases with KK fermion mode-number.

Of course, the wrong chirality effect is naively (rather per KK level) still proportional

to the Higgs width (due to the wrong chirality vanishing at the TeV brane), and is thus

negligible in the narrow bulk Higgs limit (β � 1). However, we see that this contribution

is roughly independent of (rather, not quite decoupling with) KK fermion mode-number,

for instance, if we increase both n and p. This feature comes from the growth of the wrong

chirality coupling with mode-number compensating the KK mass suppression of the loop

integral, cf. NDA estimate above (where heavier KK modes were indeed suppressed, as per

the naive expectation).

Consequently, we find that

• the double sum over KK fermion modes compensates the above suppression due to

the Higgs width

giving

C light, wrong, int
dipole ∼ y2

KK

β2

Ỹ

Y

n∼β∑
n=1

p∼β∑
p=1

1 ,

∼ y2
KK

Ỹ

Y
,

(4.5)
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KK(p)

p MKK

KK(p)

SMSM

n MKK

KK(n)

Figure 2. Wrong chirality with SM Higgs and Higgs VEV insertion outside the loop. The “×”’s

on KK fermion line denote chirality flips.

which is indeed similar to the NDA estimate above (assuming Y ∼ Ỹ ). This total con-

tribution is roughly constant even as we take β � 1 (due to the above mentioned non-

decoupling feature). Recall that yKK remains roughly fixed in this process, contrary to the

naive impression from the estimate in eq. (3.14), in turn, due to the rescaling of Y that

was mentioned earlier (see discussion in section 3.3.3).

If we are sufficiently away from the narrow bulk Higgs limit, e.g., we consider β ∼ O(1),

then the wrong chirality coupling is unsuppressed to begin with, which implies that even

the 1st KK level contribution is sizeable. In other words, it is only in the narrow bulk Higgs

limit that we stumble upon the apparent “non-decoupling” effect. However, in the brane-

localized limit as β → 5D cutoff (in units of curvature scale), the result is UV-sensitive

(even if finite, cf. NDA estimate in eq. (4.3)), since KK modes up to the 5D cutoff give

significant contribution.

The relevant diagram with a Higgs VEV insertion outside the loop is seen in figure 2.

In this case, the Higgs VEV insertion involves correct chirality, but one of the physical

Higgs vertices (in the loop part of the diagram) comes with wrong chirality. However, it

turns out to give the same combination of couplings as above, i.e., (ylight
SM KK)2ylight,−

KK KK ∼
ySM y2

KK (n p) /β2 (Ỹ /Y ). On the other hand, the dependence on KK fermion masses

starts out looking different for fixed KK fermion modes,

(
C light, wrong, ext

dipole

)
(n, p)

∼ 1

n

1

p

(
n p y2

KK

β2

Ỹ

Y

)
, (4.6)

where the superscript “ext” denotes a Higgs VEV insertion outside the loop. In eq. (4.6), we

have already incorporated the estimate for the couplings which is same as for the case with

a Higgs VEV insertion inside. Note that the 1st mass factor, 1
n , in eq. (4.6) (again, MKK

is already factored out in the definition of the dipole operator) comes from the external

propagator (with chirality flip), while the 2nd one, 1
p , is from the loop integral (where, as

usual, we simply used dimensional analysis/power-counting). Once again, the exact loop

function in eq. (D.11) can be shown to match the above NDA estimate. However, the
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KK Higgs (n)

KK(n)
KK(n)

SM SM

KK Higgs (n)

KK(n)KK(n)
SM SM

n MKKn MKK

Figure 3. Left: correct chirality with the KK Higgs. Right: wrong chirality with the KK Higgs

and Higgs VEV insertion (denoted by “⊗”) inside loop. The “×”s on KK fermion line denote

chirality flip.

(double) KK sum gives similar estimate as for Higgs VEV insertion inside,

C light, wrong, ext
dipole ∼ y2

KK

β2

Ỹ

Y

n∼β∑
n=1

p∼β∑
p=1

1 ,

∼ y2
KK

Ỹ

Y
.

(4.7)

4.2 KK Higgs in the loop

This part leads to our new contribution, mainly driven by the different couplings and

masses for the SM and KK Higgs. It follows a procedure similar to the above discussion.

4.2.1 Correct chirality

To begin with, we revisit the (purely) correct chirality diagram shown on the left of figure 3,

but with a KK Higgs instead of a light Higgs. Based on the (accidental) suppression factor

for the SM Higgs in the correct chirality contribution, as mentioned in section 4.1.1), we

expect that there is no such suppression for KK Higgs modes, as mh → (at least) MKK.

Said another way, the suppression of the diagrams on the left side of figure 1 was an artifact

of neglecting the SM Higgs mass in the propagator (again, we are keeping track of only

further suppressions here, i.e., beyond the 2 powers of KK mass from the loop integral).

Furthermore, it is clear that the mode-number of the KK fermion has to roughly match

that of the KK Higgs in this diagram to give an unsuppressed contribution. As already

mentioned in section 3.3.4, this expectation is based on the profiles, in particular, their

oscillations within the widths of their overlapping regions. In reality, a (small) range of

KK fermion mode-numbers around the Higgs one contributes, but such an effect is within

O(1) here and so we simply equate the KK fermion and KK Higgs mode numbers for the

NDA estimates we made. For the case of n � β, i.e., a (large) hierarchy between the

KK Higgs and KK fermion masses, it is easy to estimate that the contribution from loop

momenta throughout this hierarchy gives the dominant effect, in the form of a logarithm

factor of this hierarchy. This factor multiplies ∼ 1/(β+n)2 from the KK Higgs propagator

inside the loop. Whereas, loop momenta comparable to the KK Higgs mass — which

are the only ones relevant for n ∼ β (i.e., KK fermion as heavy as KK Higgs) — give a

contribution with this log → O(1). Combining these two cases, for fixed KK fermion and
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Higgs modes, n (. β), we can then write

(
Cheavy, correct

dipole

)
(n)
∼ 1

(β + n)2

(
log

β

n
+ 1

) (yheavy
SM KK

)2
ylight,+

KK KK

ySM
. (4.8)

This form of the estimate agrees with the exact loop function given in eq. (D.12). Note that

we get one factor of the SM Higgs Yukawa coupling due to a Higgs VEV insertion. It is clear

here and similarly in the diagrams below that the mass scale suppression from the loop is

dominated by that of the KK Higgs so that naively, the contribution is (highly) suppressed

in the narrow bulk Higgs limit (β � 1), i.e., the KK Higgs decouples. However, we have

the following two mitigating effects: as we saw in the previous section (see eq. (3.17)),

• the heavy Higgs coupling is larger than that of the SM Higgs, giving a partial com-

pensation of the KK Higgs mass.

Thus, the above estimate is really(
Cheavy, correct

dipole

)
(n)
∼ β

{
y2

KK

(β + n)2

}(
log

β

n
+ 1

)
. (4.9)

Of course, naively, this is still vanishing in the narrow bulk Higgs limit (again, due to

the heavy KK Higgs mass, in spite of its coupling being larger). However, we notice

that the above contribution is (roughly) independent of KK mode-number, n (up to ∼ β),

similar to the case of wrong chirality discussed above (and unlike the NDA estimate above).

As a result,

• the KK fermion-Higgs (again, coordinated, i.e., not double) sum compensates the

residual suppression due to the heaviness of the KK Higgs (in the brane-localized

limit)

giving

Cheavy, correct
dipole ∼ y2

KK β

n∼β∑
n=1

(
log

β

n
+ 1

){
1

(β + n)2

}
,

∼ y2
KK .

(4.10)

Note that we do not get ∼ log β in the end result after the KK sum, even though it was

present at individual mode-level.

Note that each individual contribution is 1/β-suppressed in the narrow Higgs limit.

Adding up the log-independent contributions which are roughly comparable for ∼ β states

gives a contribution which once again does not decouple with large β. The log contributions

are different for the different states, so there is no log β enhancement in the final answer.

The KK Higgs degeneracy for the modes with n . β is crucial in this argument for no

suppression in the brane-localized limit. Recall that yKK is roughly held constant as we

take β � 1 by a rescaling of Y (see discussion in section 3.3.3). Such apparent “non-

decoupling” of heavy KK modes is reminiscent of what was found for the wrong chirality

effect above, but note that the particles which are more relevant are different, i.e., Higgs

vs. fermion, in the two cases and the couplings of the KK Higgs being enhanced compared

to that of the SM Higgs played an equal role here. Once again, as β → 5D cutoff (in units of

the curvature scale), we encounter UV sensitivity (even if there seems to be no divergence).
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Just like for the wrong chirality effect, for a more spread-out Higgs, the KK Higgs

(correct chirality) effect is clearly significant even for the 1st KK level. For the sake of

completeness, we mention that the diagrams with a Higgs VEV insertion outside of the loop

(again, for correct chiirality) is suppressed for the KK Higgs just like for the SM Higgs case.

4.2.2 Wrong chirality

Finally, we consider wrong chirality couplings in diagrams involving the KK Higgs, again

separating a Higgs VEV insertion inside and outside the loop. These are essentially the

corresponding diagrams for the SM Higgs discussed above, but with the physical SM Higgs

replaced by KK Higgs in the loop, while keeping the Higgs VEV insertion the same.

The corresponding Feynman diagram for a Higgs VEV insertion inside the loop is given

on the right side of figure 3. As above, we use here approximate KK number conservation

(at KK Higgs vertices); include factors from chirality flips (∼ n) in the numerator and

the dimensional analysis/power-counting to obtain the denominator. We also consider the

cases n� β, i.e., KK Higgs much heavier than KK fermion vs. n ∼ β (the two masses being

comparable). The former loop integral is dominated by loop momenta comparable to the

(much smaller) KK fermion mass, i.e., there is no logarithm here, unlike the case of correct

chirality above, in such a way that the factors of n from the chirality flip cancel against the

same KK fermion masses from the loop integral. And, as before, the KK Higgs propagator

simply gives ∼ 1/(β + n)2. Whereas in the n ∼ β case, loop momenta comparable to the

KK Higgs mass are the relevant ones.

However, the chirality flip factors still (roughly) cancel the combination of KK Higgs

and fermion masses from the loop integral, thus giving a similar estimate to the earlier

one. Combining these two cases, it is straightforward to estimate this effect, starting with

fixed KK modes:

(
Cheavy, wrong, int

dipole

)
(n)
∼ 1

(β + n)2

(
yheavy

SM KK

)2
ylight,−

KK KK

ySM
. (4.11)

(See eq. (D.13) for the exact loop-function.) Next, we use the couplings estimated earlier:

in particular, the wrong chirality SM Higgs coupling has a suppression (compared to yKK)

for large β, but simultaneously an enhancement due to large mode-number, whereas there is

a large β enhancement for the correct chirality, KK Higgs coupling. So, the above estimate

becomes (
Cheavy, wrong, int

dipole

)
(n)
∼ Ỹ

Y

y2
KK

β

n2

(β + n)2
, (4.12)

which up to the KK sum, gives an estimate similar to correct chirality one:

Cheavy, wrong, int
dipole ∼ Ỹ

Y

y2
KK

β

n∼β∑
n=1

n2

(β + n)2
,

∼ Ỹ

Y
y2

KK ,

(4.13)

in particular, it is unsuppressed even for β � 1.
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KK Higgs (n)

KK(n)

n MKK

KK(n)

SMSM

2nMKK

KK(2n)

Figure 4. Wrong chirality with the KK Higgs and Higgs VEV insertion (denoted by “⊗”) outside

loop. The “×”s on the KK fermion line denote chirality flip.

For the case with a Higgs VEV insertion outside the loop shown in figure 4, approximate

KK number conservation at the KK Higgs vertices (but not for Higgs VEV insertion)

implies that for Higgs mode-number n, the KK fermion inside the loop has the same mode-

number, but the external KK fermion has mode-number ∼ 2n.8 In this case, we can write

the estimate as(
Cheavy, wrong, ext

dipole

)
(n)
∼
{

1

2n

n

(β + n)2

(
log

β

n
+ 1

)}
yheavy

SM KK yheavy, −
KK KK ylight

SM KK

ySM
, (4.14)

where as before we have used chirality flip factors in the numerator and dimensional analysis

for the denominator, including the logarithm of the ratio of KK Higgs and KK fermion

masses, like for the correct chirality contribution. This estimate is borne out by the exact

loop function in eq. (D.11). We see that the dependence on KK masses (for fixed mode-

number), and combination of couplings are different from that for the diagram with a Higgs

VEV insertion inside. The situation is different as well from the case of the SM Higgs

in section 4.1.2 where the contributions from insertion inside and outside the loop were

identical. The reason is that the wrong chirality is now in the coupling of the KK Higgs and

it is unsuppressed even for β � 1, being actually enhanced compared to yKK, just like for

the correct chirality, KK Higgs coupling. Note that the Higgs VEV insertion (obviously of

the SM Higgs) involves correct chirality. Based on our earlier estimates of these couplings,

it is easy to see that the combination of couplings for a Higgs VEV insertion outside is

actually parametrically different (it is larger for large β), giving for the above estimate:(
Cheavy, wrong, ext

dipole

)
(n)
∼ Ỹ

Y
y2

KK β
1

2n

n

(β + n)2

(
log

β

n
+ 1

)
. (4.15)

However, upon KK mode summation, the final estimate is the same as for a Higg VEV

insertion inside (and thus not suppressed for β � 1):

Cheavy, wrong, ext
dipole ∼ Ỹ

Y
y2

KKβ

n∼β∑
n=1

(
log

β

n
+ 1

)
(β + n)2

,

∼ Ỹ

Y
y2

KK .

(4.16)

8This fermion is also allowed to be the zero-mode/SM by KK number conservation, but as already

mentioned, we neglect such effects, since they involve suppressed Yukawa couplings.
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Finally, we also considered the potential contribution to the above effects from modes at

the 5D cutoff scale Λ running in the loops, which is found to be suppressed by
(
βMKK

Λ

)2
.

This is in contrast to the corresponding results in the case of a δ-function brane-localized

Higgs, where such an effect is significant as found in [32, 33], but is UV-sensitive: see

appendix E for details.

5 Toward calculation in the 5D model

The above discussions in sections 3 and 4 involved only rough estimates. Here we add

one more layer of semi-analytic estimate that we aim to capture actual calculations of

O(1) factors, while postponing the full numerical computation in a complete 5D model to

section 6. The full computations of the dipole coefficients from loops require the precise

spectrum of KK fermions and Higgs, their couplings, and the appropriate KK sum, in

addition to the loop functions. The loop functions capture purely 4D factors which are

more robust, whereas the other ingredients that capture more 5D effects are subject to

the modifications due to brane-localized kinetic terms or the warp factor being modified

from pure AdS near the TeV brane etc. Keeping track of these two effects separately will

provide us with better insight on what we are dealing with. In this section, we focus on the

calculation of the former contribution, namely, 4D loop functions. To this end, we consider

the 4D effective field theory (what we call the 4D simplified model), describing the SM

fields and just the first KK excitations of fermions and Higgs.

5.1 Setting up 4D simplified model

The 4D simplified model, where we only show what is relevant for a dipole operator for

SM up-type quark for simplicity, is given by

L4D
Simplified = H light

(
yuSMqLuR + ylight, u

SM KKqLUR + ylight, u
SM KK QLuR + ylight, u+

KK KK QLUR

)
+ h.c.

+ H̃ light
(
ylight, d

SM KK qLDR + ylight, d
KK KK QLDR

)
+ h.c.

+H lightylight, u−
KK KK QRUL + H̃ lightylight, d−

KK KK QRDLh.c.

+Hheavy
(
yheavy, u

SM KK qLUR + yheavy, u
SM KK QLuR + yheavy, u+

KK KK QLUR

)
+ h.c.

+ H̃heavy
(
yheavy, d

SM KK qLDR + yheavy, d+
KK KK QLDR

)
+ h.c.

+Hheavyyheavy, u−
KK KK QRUL + H̃heavyyheavy, d−

KK KK QRDLh.c.

+MQQ̄Q+MDD̄D +MU ŪU +M2
HH

heavy †Hheavy . (5.1)

Here, the superscript “±” on the coupling denotes correct/wrong chirality. qL (uR, dR)

are SU(2)L doublet (singlet) SM fermions. Q, U and D are vector-like KK fermions and

their masses are denoted by MQ, MU , MD. H light corresponds to the (complex) SM Higgs

doublet with mass mh (although it will be mostly neglected) whereas Hheavy is a KK Higgs

with the mass MH . Even though we focus on the up-type quark dipole operator, we need

down-type quark Yukawa couplings as well, which are (in general) different from that in the

up-type quark sector and so the two are denoted by superscripts “u” and “d”, respectively.
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The Higgs doublets for the down-type quark Yukawa couplings (for both light and KK

modes) are given by the relation, H̃ = iσ2H
∗. We will use the same notation for couplings

as in above estimates: in particular, L and R chiralities of SM have same size of coupling, in

turn, from the assumption of identical profiles in extra dimension (and similarly for all the

correct chiralities of KK fermions and separately for all the wrong ones). These parameters

are related to each other in the full 5D model, but this part of the calculation must be done

numerically in order to do better than the O(1) estimates of the previous section. We defer

this step to the next section. Instead, here, for a semi-analytic calculation, we prefer to leave

these couplings and masses as independent parameters (as far as we can afford to do so).

We calculate the coefficient of the chromomagnetic dipole operator using similar no-

tation as in earlier eq. (4.1),

L 3 mSM
gSCdipole

16π2M2
KK

uLσµνuRG
µν . (5.2)

Note that in contrast to the electromagnetic (EM) dipole, we can attach gluons only to

fermion lines, while photons can attach to either fermions or charged Higgses for EM

dipoles, making the latter calculation a bit more involved (though equally straightforward).

Here, MKK is the standard KK mass unit as defined earlier in eq. (3.1).

This warm-up example will be a reasonable approximation to the full 5D model for the

mass of the 5D Higgs field with β ∼ O(1) or smaller. Recall that in this case, the above

estimates show that most of the KK effect comes from the lowest modes. The multiplicity

of either fermion or Higgs fields is not really relevant here. In contrast, for the case of

β � 1, the contributions from higher KK modes (up to mode number n ∼ β) are crucial,

and cannot be captured at all by our simplified model. Thus one needs to do the full 5D

calculation (numerically). This will be done in section 6.

5.2 SM Higgs in the loop

The results and discussion in this section have a large overlap with recent work in [34]. We

adopt similar notations as [34].

First, we consider the case where a Higgs VEV is attached to the internal quark lines

only inside the loop (see figure 8 which are detailed versions of figures 1 and 3). Irrespective

of whether wrong or correct chirality coupling is involved, there is a cancellation in the

neutral Higgs sector for this class of diagrams, namely, between the contributions of the

physical Higgs boson and the would-be Nambu-Goldstone boson (which would be eaten

by the longitudinal Z). Both the SM Higgs and Z-boson masses are negligible compared

to the KK scale and we drop them in our calculation, (see appendix B.2 of 1st reference

in [32, 33] for the details). This cancellation can be understood as due to a Peccei-Quinn-

like symmetry (see discussion above eq. (A3) in [34]). Therefore, for this type of insertion

we focus instead on the contribution from the (unphysical) charged Higgs (i.e., longitudinal

W ), which involves both up- and down-type Yukawa couplings. We drop its mass in our

calculation. Similar to the procedure we followed for estimates of dipole operators in

the previous section, we use couplings at vertices and masses in propagators as given in

eq. (5.1), but calculating the loop integrals now.
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The resulting general formula for the dipole operator is then given by (see appendix D)

Cφ, int
dipole

M2
KK

=


(
yφ, uSM KK

)(
ylight, d+ ∗

KK KK

)(
yφ, dSM KK

)
yuSM


(
I int
a + I int

b

2

)

+


(
yφ, uSM KK

)(
ylight, d− ∗

KK KK

)(
yφ, dSM KK

)
yuSM


(
J int
a + J int

b

2

)
,

(5.3)

where the superscript φ collectively denotes both the SM and KK Higgses (i.e., φ =

{“light”, “heavy”}), as both can propagate in the loop. The first and second terms in

eq. (5.3) clearly correspond to the correct and wrong chirality coupling of KK fermions,

respectively. Note that the middle factor in the Yukawa couplings corresponds to the Higgs

VEV insertion and thus always involves a SM Higgs, i.e., regardless whether it is the heavy

or light Higgs propagating in the loop. We drop the complex conjugate symbol in Yukawa

couplings in the remainder of this section. The detailed expression of the loop functions

I int
a , I int

b (for the correct chirality), and J int
a ,J int

b (for the wrong chirality) in eq. (5.3) are

found in appendix D.

The result for the light Higgs in the loop is obtained by setting MH → 0 in the loop

functions. As we mentioned before, the correct chirality contribution is negligible. They

are suppressed by ∼ (mh/MKK)2 for an individual light Higgs (whether or not it is physical)

in the loop, i.e., the suppression holds for each of the would-be Nambu-Goldstone boson

contributions (charged and neutral) as well as the contribution from the physical (neutral)

Higgs boson. We see this explicitly in our formula for loop-functions in the light Higgs

limit (see appendix D for more details), i.e.,

I int
a, b (MH → 0) ∼ O

(
M2
H/M

4
Q,D

)
. (5.4)

Eq. (5.4) actually tells us more than what we just mentioned above. It implies that the

suppression holds separately for the loop functions where the gluon attaches to the right/left

of Higgs VEV insertion (see discussion before eq. (15) in [34] for a different approach). We

reiterate that this is independent of the above-mentioned cancellation within the neutral

Higgs sector. On the other hand, the loop-functions for the wrong chirality in the light

Higgs limit become

J int
a + J int

b (MH → 0) ≈ 1

2

1

MQMD
. (5.5)

Combining the above two features, we get

C light, int
dipole ≈ 1

4


(
ylight, u

SM KK

)(
ylight, d−

KK KK

)(
ylight, d

SM KK

)
yuSM


(

M2
KK

MQMD

)
, (5.6)

which means that the contribution from the wrong chirality dominates (see eq. (A7) of [34]

for similar discussion).

The Higgs VEV can also be attached to the external quark line outside the loop (see

figure 9 which are more detailed versions of figures 2 and 4). In this case, both the neutral
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and charged Higgses contribute (i.e., the former does not encounter the cancellation of the

earlier case and involves only up-type Yukawa couplings). However, only the wrong chirality

coupling is relevant here. The correct chirality effect is suppressed by the external KK

fermion propagator between the Higgs VEV insertion and the loop, reducing to ∼ p/M2
KK

(where p is the external quark momentum) by the requirement of no chirality flip (again,

since only the correct chirality is chosen to couple). We emphasize that this suppression

has nothing to do with the loop function unlike for the case of the SM Higgs contribution

with the Higgs VEV insertion inside.

The general formula for this case is (see appendix D for the details)

Cφ, ext
dipole

M2
KK

=


(
ylight, u

SM KK

)(
yφ, u−KK KK

)(
yφ, uSM KK

)
yuSM


(
Jext
u, e + Jext

u, f

2

)

+


(
ylight, u

SM KK

)(
yφ, d−KK KK

)(
yφ, dSM KK

)
yuSM


(
Jext
d, e

2

)
,

(5.7)

where φ again collectively denotes both the light SM and KK Higgs, φ = {“light”, “heavy”}.
Note that only the wrong chirality coupling (yφ, u− or d−) enters in eq. (5.7). The first factor

in the Yukawa couplings corresponds to the Higgs VEV insertion and thus involves the SM

Higgs (irrespective of whether the Higgs boson propagating in the loop is SM or KK). The

details of these loop functions are given in appendix D, where we see that the 1st term

involving only up-type quark Yukawa couplings actually arises from both the charged and

neutral Higgses, while the 2nd one only comes from the charged Higgs.

For the light SM Higgs, as before, this simplifies as:

Jext
u, e (MH → 0) ≈ Jext

u, f (MH → 0) ≈ 1

2MQMU
, (5.8)

and

Jext
d, e (MH → 0) ≈ 1

2MQMD
. (5.9)

Therefore, eq. (5.7) leads to

C light, ext
dipole ≈ 1

2


(
ylight, u

SM KK

)(
ylight, u−

KK KK

)(
ylight, u

SM KK

)
yuSM


(

M2
KK

MQMU

)

+
1

4


(
ylight, u

SM KK

)(
ylight, d−

KK KK

)(
ylight, d

SM KK

)
yuSM


(

M2
KK

MQMD

)
.

(5.10)

5.3 Effects from KK Higgs modes in the loop

The above discussion involving the KK Higgs in the loops leads to our new results.

First, consider the situation of the diagrams with internal Higgs VEV insertions in

figure 3 where the Higgs in the loop is one of the KK Higgs modes (instead of the SM

Higgs). For the effect from the correct chirality coupling, the individual KK Higgs does
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not have any suppression, as opposed to the light Higgs which gives a suppressed effect, i.e.,

∼ (mW, Z, h/MKK)2. Nonetheless, just like for the SM Higgs, the neutral KK Higgs sector

still has a cancellation between the real and imaginary KK Higgses: note that the latter is

actually physical now, since the KK Z boson (or any KK gauge boson in general) becomes

massive by eating the 5th component of the corresponding 5D gauge field (instead of an

imaginary scalar), whereas for SM modes the imaginary neutral Higgs boson becomes the

longitudinal Z boson. Note that (just like for light Higgs) this is irrespective of whether

we consider the wrong or correct chirality couplings, i.e., holds for both cases (again, only

for the internal Higgs VEV insertion that we are considering in this part). Of course,

this cancellation in the neutral KK Higgs sector is not exact, since the real and imaginary

KK Higgses are indeed split after EWSB, but the net effect is still suppressed by ratio

of the splitting to MKK and so we simply neglect it here. Thus, this class of diagrams

is dominated instead by the physical, charged KK Higgs. This contribution is given by

eq. (5.3) with φ = heavy.

For the case of the diagram in figure 4 with the Higgs VEV insertion outside the loop,

we get the wrong chirality contribution for the KK Higgs by just setting φ = heavy in

eq. (5.7). The KK Higgs effect involving the correct chirality is suppressed for the same

reason as for the SM Higgs as discussed in section 5.2, and it does not originate from the

loop function.

In order to simplify the loop functions for a quick numerical estimate, we set all KK

masses to be equal to MKK. This roughly corresponds to the case where β ∼ O(1) or

smaller in the complete 5D model. We keep track of symbols for wrong vs. correct chirality

and light vs. heavy Higgs as these couplings can in general be different. It is only when

we take various ratios of different contributions that we set these two sets of couplings

equal. With the above assumption for KK masses, the loop functions for the KK Higgs are

approximately

Iheavy, int
a, b M2

KK ≈ −
1

24
, Jheavy, int

a, b M2
KK ≈

1

8
,

Jheavy, ext
d/u, e M2

KK ≈
1

3
, Jheavy, ext

u, f M2
KK ≈

1

3
.

(5.11)

As expected, the loop functions Ia, Ib in eq. (5.11), involving the correct chirality Yukawa

couplings, are not suppressed for the KK Higgs boson. Also, note the negative sign in the

1st formula.

We focus on the terms involving both up and down-type quark Yukawa couplings

(which come from the charged Higgs contribution) in all cases, for a fair comparison.9 We

then get the contribution from the KK Higgs for the correct chirality (internal Higgs VEV

insertion only),

Cheavy, correct
dipole ≈ − 1

24

(
yheavy, u

SM KK

)(
ylight, d+

KK KK

)(
yheavy, d

SM KK

)
yuSM

, (5.12)

9Recall that there is a cancellation in the neutral Higgs sector between real and imaginary components

of Higgs bosons, a subtlety we would like to avoid here, for simplicity.
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whereas the contribution from the KK Higgs for the wrong chirality,

Cheavy, wrong
dipole ≈ 1

8

(
yheavy, u

SM KK

)(
ylight, d−

KK KK

)(
yheavy, d

SM KK

)
yuSM

+
1

6

(
ylight, u

SM KK

)(
yheavy, d−

KK KK

)(
yheavy, d

SM KK

)
yuSM

,

(5.13)

where we included Higgs VEV insertions both inside and outside. We can take the ratio

of the above two dipole coefficients, setting all couplings to be the same for simplicity:

Cheavy, correct
dipole

Cheavy, wrong
dipole

≈ −1

7
. (5.14)

We see that correct chirality loop-function is smaller than the wrong one by 3, an O(1)

factor (considering Higgs VEV insertions inside the loop for both).10 In addition, the wrong

chirality has a factor of ∼ 2 enhancement from the Higgs VEV insertions inside and outside.

The total contribution from the KK Higgs which is the sum of eq. (5.12) and (5.13),

is then (setting all couplings to be the same)

Cheavy
dipole ≈

1

4

(
yheavy, u

SM KK

)(
ylight, d

KK KK

)(
yheavy, d

SM KK

)
yuSM

. (5.15)

Similarly, the loop functions relevant for the SM Higgs boson, dominated by the wrong

chirality, are roughly given by

I light, int
a, b M2

KK ∼ O
(
m2
h

M2
KK

)
∼ 0, J light, int

a, b M2
KK ≈

1

4
,

J light, ext
d/u, e M2

KK ≈
1

2
, J light, ext

u, f M2
KK ≈

1

2
.

(5.16)

The contribution from the SM Higgs, combining Higgs VEV insertions outside and inside

the loop, is given by

C light, wrong
dipole ≈ 1

2

(
ylight, u

SM KK

)(
ylight, d−

KK KK

)(
ylight, d

SM KK

)
yuSM

. (5.17)

The comparison of the two wrong chirality effects from KK Higgs bosons in eq. (5.13)

and the SM Higgs in eq. (5.17) gives a measure of how much suppression is from all particles

in loop being heavy vs. the Higgs being light (the form of the loop-function is the same

here, whereas the masses are different):

Cheavy, wrong
dipole

C light, wrong
dipole

≈ 7

12
, (5.18)

where we set light and heavy Higgs couplings to be the same.11 We see that the heavy

Higgs loop is ∼ 2 (still O(1)) smaller than the SM Higgs (as expected, based on masses of

particles in the loop).

10Perhaps this is some sort of remnant of the cancellation that occurs for (individual) light Higgs contri-

butions, i.e., between gluon attached to either side of the the Higgs VEV insertion. The point is that this

cancellation is, of course, exact only for vanishing Higgs mass, which is a good approximation for the SM

Higgs boson; while it is expected to be violated for the KK Higgs bosons, it might still result in an O(1)

factor suppression.
11This is the case for β ∼ O(1) or smaller in the 5D model: see estimates done earlier or actual calculations

later on.
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To get an idea of how much contribution from KK Higgs modes was missed in the earlier

literature, we can further take the ratio of the two effects in eq. (5.15) and eq. (5.17),

Cheavy
dipole

C light, wrong
dipole

≈ 1

2
. (5.19)

Eq. (5.19) implies that the KK Higgs boson is comparable (even numerically) to the SM

Higgs boson.

Finally, we compare the two net chirality effects by taking ratio of total correct chirality

effect (dominated by the KK Higgs) to the total wrong chirality one (with contributions

from both the SM and the KK Higgses):

Cheavy, correct
dipole

C light, wrong
dipole + Cheavy, wrong

dipole

≈ − 1

19
, (5.20)

i.e., even when we do the calculation consistently including the KK Higgses, the sizes of

the two chiralities are not quite comparable, with the correct chirality effect being smaller

by ≈ 20. However, it boils down to O(1) factors from the evaluations of loop-functions,

and one might still say parametrically they are on similar footing.

6 Numerical evaluation in a complete 5D model

In this section, we carry out full numerical 5D calculations of the dipole operator. The goal

of these exact calculations is to validate the qualitative results presented in the previous

sections. We will report them in terms of the coefficients (C) of the dipole operator

defined in eq. (5.2). To be consistent with the discussion in section 5 we focus on the

chromomagnetic operator of the up-type SM quark and on the terms which depend on

both the up and down-type Yukawa couplings that scale like yUy
2
D.

The procedure for doing the full computation in a complete 5D model is straightfor-

ward. As already hinted above, we can simply re-use the above calculations (of 4D loops) in

the simplified model. First, we plug in exact couplings and masses (listed in appendices A–

D) in the dipole operator coefficients, given in eqs. (5.3) and (5.7), in order to obtain the

contribution from each KK level. Then, we perform the KK sum over both fermion mode

numbers (denoted by nF1,2) and Higgs mode number (denoted by nH). That is,

C light, wrong, int
dipole

M2
KK

=
∑

nF1
,nF2

yu(nF1
,0,0) y

d,− ∗
(nF1

,nF2
,v) y

d
(0,nF2

,0)

ySM
×

(Ja + Jb)(mnF1
,mnF2

,mh)

2
, (6.1)

C light, wrong, ext
dipole

M2
KK

=
∑

nF1
,nF2

yu(nF1
,0,v) y

d,− ∗
(nF1

,nF2
,0) y

d
(0,nF2

,0)

ySM
×
Jd,e(mnF1

,mnF2
,mh)

2
,

Cheavy, wrong, int
dipole

M2
KK

=
∑

nF1
,nF2

,nH

yu(nF1
,0,nH) y

d,− ∗
(nF1

,nF2
,v) y

d
(0,nF2

,nH)

ySM
×

(Ja + Jb)(mnF1
,mnF2

,mnH
)

2
,

Cheavy, wrong, ext
dipole

M2
KK

=
∑

nF1
,nF2

,nH

yu(nF1
,0,v) y

d,− ∗
(nF1

,nF2
,nH) y

d
(0,nF2

,nH)

ySM
×
Jd,e(mnF1

,mnF2
,mnH

)

2
,

Cheavy, correct, int
dipole

M2
KK

=
∑

nF1
,nF2

,nH

yu(nF1
,0,nH) y

d,+ ∗
(nF1

,nF2
,v) y

d
(0,nF2

,nH)

ySM
×

(Ia + Ib)(mnF1
,mnF2

,mnH
)

2
,
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where y’s are the Yukawa couplings, obtained by integrating the 5D Yukawa couplings

with the wave function profiles over the fifth dimension. The first two subscripts in y are

reserved for KK fermion numbers nF1 , nF2 and the zeroth mode SM fermion (explicitly

written as 0). The last subscript denotes either the KK Higgs number nH or the light

SM Higgs (explicitly written as 0, and it is replaced with v in the case of the Higgs VEV

insertion). The exact definitons of the Yukawa couplings y’s and the complete forms of

loop functions I’s, J ’s, are given in appendices C and D.

We take various combinations of the above individual dipole coefficients in eq. (6.1).

To this end, we also define some summed effects:

C light, wrong
dipole ≡ C light, wrong, int

dipole + C light, wrong, ext
dipole ,

Cheavy
dipole ≡ C

heavy, correct
dipole + Cheavy,wrong

dipole ,

Cheavy, correct
dipole ≡ Cheavy, correct, int

dipole ,

Cheavy, wrong
dipole ≡ Cheavy, wrong, int

dipole + Cheavy, wrong, ext
dipole .

(6.2)

However, before presenting the actual results for the dipole operators, we first check that

the patterns of exact couplings and masses are in accord with expectations in section 3. In

particular, we will be interested in the β � 1 limit, where key ingredients were estimated

as follows:

• the wrong chirality light Higgs coupling is suppressed by 1/β2, but grows with KK

fermion mode number, as intuitively shown in eq. (3.16);

• the KK Higgs coupling is enhanced compared to that of the SM Higgs, as shown

schematically in eqs. (3.17) and (3.18);

• the KK Higgs coupling exhibits approximate KK mode number conservation, as men-

tioned below eqs. (3.17) and (3.18);

• the KK Higgs spectrum has a region of quasi-degenerate modes as sketched in

eq. (3.8).

The first bullet point has already been discussed in [34, 38] and so we refer the reader

to those discussions. The second bullet point is illustrated in the left panel of figure 5. It

shows that the couplings of the SM Higgs have an additional suppression of 1/
√
β compared

to the couplings of the KK Higgses. In detail, the ratio plotted is

yd(0,nF =1,nH=1)

yd(0,nF =1,0)

, (6.3)

where the numerator (denominator) corresponds to the Yukawa coupling of the SM Higgs

(the 1st KK Higgs) with the 1st KK and SM fermions (see eq. (C.2) or C.3 for the exact

definitions). The third bullet point, which states the approximate KK number conservation

is illustrated in the right panel of figure 5 where we plot the Yukawa coupling between the

SM fermion, KK fermion and KK Higgs (see eq. (C.2) for the definition), normalized to
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Figure 5. Left: the ratio of two Yukawa couplings (between the SM fermion, KK fermion and

Higgs), differing by whether the Higgs is SM- or KK-type, as a function of the bulk mass parameter

β; for the KK fermion and KK Higgs, we selected the 1st level mode, nF = 1 and nH = 1. Right: the

effective Yukawa couplings of the SM fermion, KK fermion, and KK Higgs; three lines correspond

to three different KK fermion modes: nF = 1 (black), 15 (blue) and 30 (red), nH on x-axis is KK

Higgs mode number. The Yukawa coupling was normalized to f(c), which is the SM fermion profile

on the IR brane.

f(c), which is the value of the fermion zero mode wave function on the IR brane. The

right panel of figure 5 shows the coupling as a function of Higgs mode number nH (with

β = 20 chosen) for three different values of KK fermion mode number, nF =1, 15, 30. For

the numerical illustration, we set the 5D mass parameters of the light quarks to the values,

cq = −cd = −cu = 0.6 and the 5D Yukawa couplings to Y u
5D = Y d

5D = 1/
√
k (these will be

our default values for all numerical studies, unless otherwise specified). One can see the

approximate KK number conservation: the coupling vanishes once we go to the values of

the Higgs KK number, nH , that are very different from the fermion KK numbers, nF . In

more detail, for high KK numbers the wave functions become approximate trigonometric

functions and the overlap integrals follow approximate orthogonality relations. Finally, the

degeneracy in the KK Higgs spectrum mentioned in the fourth bullet point is clearly seen

in (the more exact) eq. (A.17).

Based on the above checks, we expect the results of our full numerical calculation of

dipole operators to roughly agree with the earlier estimates in sections 3, 4. These dipole

coefficients C, multiplied by the factor (1+β) (for the reason explained in section 3.3.1) are

shown in figure 6. The two plots in the upper panel of figure 6 are dipole coefficients from

the KK Higgs in the loop for the correct and wrong chiralities for four different choices of

β. The bottom-left panel shows the SM Higgs loop effect, where only the wrong chirality is

significant. Finally, the bottom-right plot of figure 6 separate the wrong chirality KK Higgs

contributions depending on whether a Higgs VEV insertion is inside or outside the loop,

while the correct chirality has only the former effect. The dipole coefficients are shown as

a function of the cutoff scale Λ (in units of MKK), which is defined as follows: the KK sum

includes only KK fermion and KK Higgs modes whose masses are below Λ. Note that the

numbers of KK fermion modes and KK Higgs modes that are below Λ actually vary with

β, recalling that the KK Higgs masses are roughly ∼ (β + n) MKK whereas KK fermion

masses are ∼ n MKK . In particular, there is no contribution from loops of KK Higgs
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modes as long as the cutoff Λ is below the first KK Higgs mass, roughly given by ∼ βMKK

(up to O(1) difference from the exact values). This explains in figure 6 the difference he

starting point on the x-axis of the curves (i.e., what value of Λ does dipole contribution

kick-in) between the two cases with the SM Higgs and KK Higgs, as far as t is concerned.

We clearly see in figure 6 that in the case of the KK Higgses, the dipole effect saturates

only after summing over modes with masses up to ∼ a few× βMKK . The saturation also

means that the result becomes insensitive to the modes much beyond βMKK (demonstrat-

ing the UV-insensitivity). The underlying reason for this saturation was already discussed

in section 4. A similar saturation is observed for the case with the SM Higgs in the loop, as

seen in the bottom-left plot of figure 6. In this case, the saturation is reached while summing

over KK fermion modes (this result was first calculated in [34]). We see that the KK Higgs

effects (both wrong and correct chirality) are indeed roughly comparable to the SM Higgs

one (see further discussion on this point below). Also, the asymptotic values are roughly

independent of β, up to a small, O(1) growth with β. This observation corresponds to our

central result, i.e., it clearly indicates an “apparent” non-decoupling behavior, against our

naive expectation of the KK Higgs effect dropping with increasing β. From the bottom-

right panel, it appears that the two sub-contributions within the wrong chirality KK Higgs

effect are of the same order, again in agreement with the semi-quantitative discussion in

sections 4.1.2 and 4.2.2

Our finding of the KK Higgs effect is more pronounced in figure 7 where we take

ratios of the various saturated values of the dipole coefficients in figure 6 (i.e., differing by

their main contributors), revealing a different perspective on our results. We do this for

β =5, 10, 20, 40. These ratios are also expected to qualitatively agree with our NDA-type

estimates done in sections 3, 4. In detail, the red line in figure 7 represents the relative

size of the wrong chirality effect between the KK Higgs modes and the SM Higgs, and it

is expected to match our NDA-type estimate in eq. (5.18). This ratio is somewhat smaller

than 1 (although within an order of magnitude), probably reflecting the loop function being

smaller for the former, due to all particles in the loop being heavy. The green line measures

the relative size between the correct and wrong chirality effect for the KK Higgs. The ratio

is somewhat smaller than 1, partly because of the difference in the corresponding loop

functions with different chirality (both containing heavy particles) which were discussed in

section 5.3 (also see eq. (5.14)). The orange curve in figure 7 indicates what fraction of the

total effect was missed in the earlier literature, namely the ratio of total KK Higgs effect

to the SM one. It is seen to be significant (see eq. (5.19) for a related NDA-type estimate).

Finally, we note that the NDA estimates [17, 25] give a log-divergence in the brane-

localized Higgs case, which corresponds to the β → Λ/k (or ∞) limit of the bulk Higgs.

This expectation should have shown up as a log β dependence in the KK summed result

for the bulk Higgs. However, as already mentioned, our semi-analytic estimates (shown in

section 4.2), which are based on exact KK number conservation, do not have such a factor

(of course, we do see a UV-sensitivity in this limit, in agreement with NDA estimates).

Our numerical results do include the (small) violation of KK number conservation present

in the model (see the right panel of figure 5); nonetheless, we do not see a clear log β

dependence here either (see figure 6).
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Figure 6. Our numerical estimates of three coefficients, Cheavy, correct
dipole (upper-left), Cheavy, wrong

dipole

(upper-right), and C light, wrong
dipole (bottom-left). The four lines correspond to β = 5 (blue), 10 (black),

20 (green), 40 (orange). Λ on the x-axis is the cutoff for the mass of all the modes. The circle indi-

cates the mass of the first KK Higgs and it’s contribution. The dipole coefficients are appropriately

rescaled by 1 +β. The Cheavy, wrong
dipole is subdivided into two individual contributions (bottom-right):

Cheavy, wrong, int
dipole (solid) and Cheavy, wrong, ext

dipole (dot-dashed). The definitions of the dipole coefficients

are given in eqs. (6.1) and (6.2).

In summary, the full 5D calculation does agree with estimates of section 4 and the

calculation in the simplified model of section 5. The KK Higgs contribution to dipole

operators is important and interesting. The correct chirality’s effect is significant, and

both chirality effects are unsuppressed even as we take the brane Higgs limit, i.e., make

the KK Higgs heavy.

7 Conclusions

In this paper, we have calculated for the first time the contribution from KK Higgs

bosons (along with KK fermions in the loop diagrams) to dipole operators of SM fermions

in the framework of warped extra dimension models with SM fields, including the Higgs

boson, propagating in the bulk. The previous work on such dipole operators involved only

the SM Higgs boson in the loop diagrams. We found that the KK Higgs effect is in fact

comparable to that from the SM Higgs. Therefore while the new result does not change the

associated phenomenology by more than an O(1) factor, it is clearly important to include

KK Higgses for the sake of completeness in warped 5D models.
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The dipole coefficients in the legend are the same as those in figure 6 (see eqs. (6.1) and (6.2) for

the exact definitions).

In addition, the KK Higgs effect is interesting on several theoretical fronts: first of

all, it is necessary to include for consistency with 5D covariance. Furthermore, it receives

sizeable contribution from the SM-like (what we call “correct”) chirality couplings of the

Higgs boson, as opposed to the SM Higgs effect which is dominated by the wrong chirality

couplings. Finally, when the mass of the 5D Higgs field becomes much larger than the

AdS curvature scale (β � 1 in our notation) (as needed for localizing the zero-mode

Higgs (very) close to the IR brane), the summed KK Higgs modes contribution features an

“apparent” non-decoupling effect: it is unsuppressed even as the mass of the 1st KK Higgs

increases, due to the quasi-degeneracy of the KK Higgs spectrum up to mode number ∼ β,

as well as the enhanced coupling of the KK Higgs relative to the SM Higgs. Ultimately,

we demonstrated the above features of the KK Higgs effect with a numerical analysis in

the full 5D model. To build intuition, we also performed semi-analytic NDA estimates and

an analytic calculation in a simplified model, both of which agree qualitatively with the

numerical computation. The chosen simplified model mimics the lowest-level KK sector

of the 5D model with β ∼ O(1) or smaller, where the 1st KK Higgs boson mass is at the

typical KK scale.

As an aside, we mention another model which is often employed in order to analyze

various effects in this 5D framework, namely the “two-site” model ([47] and its variations),

which is related to the simplified model that we studied here. The two-site model is based

on the deconstruction of the 5D model, combined with the AdS/CFT correspondence. It

consists of elementary and composite sectors which mix (even before EWSB), and the re-

sultant eigenstates (i.e., after diagonalizing this mixing) would roughly correspond to the

particles in our simplified model, including SM/zero and the 1st KK modes.12 However,

12These can further mix due to EWSB, but this is a sub-leading effect.
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in the existing two-site models, there is only the SM Higgs boson on the composite site.

Thus, in this model, clearly the dipole operator arises only from the wrong chirality cou-

plings.13 On the other hand, in this two-site model it is straightforward to “model” the KK

Higgs/correct chirality effect that we calculated in this paper, by simply adding a heavy

Higgs boson on the composite site, with a mass comparable to the gauge and fermion com-

posites there, and with Yukawa couplings similar to the SM Higgs boson. Basically, this

modified 2-site model will then be even more similar to (if not the same as) the simplified

model that we studied.

We close with some remarks on possible directions for follow-up studies related to this

topic. In this paper we focused on general aspects of the dipole calculations. Correspond-

ing detailed analyses for specific dipole observables have more direct phenomenological

implications, which we leave for future work. Another interesting avenue to pursue is the

application of the AdS/CFT correspondence to this KK Higgs effect. In particular, the

limit of β � 1 is dual (on the CFT side) to the scaling dimension of the Higgs operator

becoming large: what then is the dual interpretation of the “apparent” non-decoupling

effect seen on the 5D side for such β? In this context, references [50, 51] might be relevant.

Finally and curiously, as far as we know, this is the first time that the effect of the

KK Higgs on low-energy observables has been found to be significant. Of course, merely

detecting a signal for such a dipole operator will not constitute “evidence” for the KK

Higgs, since not only is it an indirect effect that can be mimicked by other types of new

physics, but the SM Higgs can also give similar effects within this model. Moreover, one

cannot distinguish β . O(1) from β � 1 simply based on observables originating from

dipole operators, since they are of similar size in both cases. Clearly, we need a direct

signal for the KK Higgs, i.e., KK Higgs production and detection at colliders, particularly,

production via gluon fusion and decay to tt̄ pairs. Of course, the cross-section for such a

KK Higgs signal is expected to be small at the 14 TeV LHC, given the loop-level production

channel, and a few TeV mass for the KK Higgs, based on direct and indirect bounds on

other KK particles (and the relation between all of these masses). On the other hand,

recently the possibility of a 100 TeV hadron collider has been widely discussed, which

would allow a better probe of multi-TeV KK Higgs bosons. Such collider searches can

allow distinction between large and small β as well, since the KK Higgs is similar in mass

to other KK particles for small values of β, whereas it is much heavier for larger β. Thus, it

would be timely to further study collider phenomenology of such KK Higgs bosons, which

are “must-have” in warped extra-dimensional models, and yet have been overlooked so far.
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A Solutions for bulk Higgs

The model, including the 5D Lagrangians, was already outlined in section 2. Here, we

present details of the KK decompositions, starting in this appendix with the Higgs field.

The bulk Higgs construction was first suggested in the [26–28] (see [29, 30] for a recent dis-

cussion of the bulk Higgs, especially its massive modes). The five dimensional Lagrangian

is given by

LHiggs =

∫
dzd4x

(
R

z

)3 [
|DMH|2 −

µ2

z2
|H|2

]
−VUV(H)δ(z−R)−VIR(H)δ(z−R′) , (A.1)

where the VUV, VIR are the potentials on the UV and IR branes. The equation of motion

is derived from eq. (A.1) which is

∂z

(
1

z3
∂z

)
H +

p2

z3
H − µ2

z5
H = 0 , (A.2)

and its boundary conditions at the UV and IR branes are given by

∂zH −
∂

∂H∗
VUV = 0 for z = R ,

−
(
R

R′

)3

∂zH −
∂

∂H∗
VIR = 0 for z = R′ .

(A.3)

Solving the equation of motion in eq. (A.2) for massless mode, p2 = 0, we obtain the profile

of the Higgs VEV along the fifth dimension,

v(z) ∼ az2+β + bz2−β , (A.4)

where β =
√

4 + µ2. The second term in the Higgs VEV in eq. (A.4) can be removed by

an appropriate boundary condition at the UV boundary,

VUV = mUV|H|2, mUV =
2 + β

R
, (A.5)

leaving only z2+β term shown in eq. (2.3). The coefficient a in eq. (A.4) is still an xµ-

dependent field and we introduce the usual “Mexican hat”-type potential of the Higgs at

the IR brane,

VIR =

(
R

R′

)4 λR2

2

(
H2 − v2

IR

2

)2

, (A.6)
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to develop a VEV:

v(z) = V (β) z2+β , (A.7)

where V (β) is defined as

V (β) =

√(
v2

IR −
2(2 + β)

λR3

)
1

(R′)2+β
. (A.8)

vIR in the above equation can be replaced by the 4D VEV by the relation

v2
4 =

∫ R′

R
dz

(
R

z

)3

v2(z) . (A.9)

That is, V (β) in terms of v4 is rewritten as

V (β) =

√
2(1 + β)

R3(1− (R/R′)2+2β)

v4

(R′)1+β
, (A.10)

where the v4 = 246 GeV is the usual four dimensional Higgs VEV. Note that we need to

fine-tune the bulk mass β against the IR-brane localized mass term vIR in order to obtain

v4 � 1/R′ ≡MKK.

Next, we consider the fluctuations around the VEV, i.e., modes contained in the real

component of the neutral (but of course still complex) 5D Higgs field, equivalently, the

tower of the CP-even Higgs bosons. After plugging the parameterization of the field around

the VEV in eq. (A.7) into the Lagrangian in eq. (A.1) (and eqs. (A.5) and (A.6) for the

brane-localized potentials), the equation of motion for a mode with p2 = m2 is given by(
z3∂z

1

z3
∂z +m2 − µ2

z2

)
h = 0 , (A.11)

along with the boundary conditions at UV and IR branes:

∂zh−
2 + β

R
h = 0 for z = R ,

∂zh+
R

R′
mTeV h = 0 for z = R′ ,

(A.12)

where the effective mass term at the IR brane is mTeVR = λR3v2(R′)− (2+β). The Higgs

profile that solves eq. (A.11) with the boundary conditions in eq. (A.12) is a basically

Bessel function:

h(z) = Az2 [Jβ(mz) + bβ(m)Yβ(mz)] , (A.13)

where the coefficient bβ(m) is fixed by the boundary condition at the UV brane to be

bβ(m) = −Jβ+1(mR)

Yβ+1(mR)
. (A.14)

The KK spectrum is determined by the boundary condition at the IR brane, that is

R′m
[
Jβ+1(mR′)+bβ(m)Yβ+1(mR′)

]
−λR3v2(R′)

[
Jβ(mR′)+bβ(m)Yβ(mR′)

]
= 0. (A.15)
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We can then study the approximate profiles and masses for v4 � 1/R′ = MKK. Setting

m2 = 0 in eq. (A.11) and simply neglecting the v2 term present in eq. (A.12), we see that

it is the same sets of equations as in eq. (A.2) with p2 = 0 (dropping consistently v2 term

in there as well). Thus, in this approximation, we get a zero-mode Higgs boson, whose

profile is the same as that of the VEV given in eq. (A.7). Similarly, spectrum of KK Higgs

bosons becomes (neglecting v2 term in eq. (A.15)):[
Jβ+1(mR′) + bβ(m)Yβ+1(mR′)

]
= 0 . (A.16)

Furthermore, in the limit when m(n)R′ � β, i.e., the arguments of Bessel functions are

much larger than their indices, we can then approximate the Bessel functions by the

trigonometric functions and the following approximate relation for the KK spectrum can

be derived:

m(n) '
(

1

4
π + πn+

1

2
βπ

)
1

R′
. (A.17)

Note that this is neglecting O
(
v2/M2

KK

)
effects. Even though, strictly speaking, the above

formula cannot be shown analytically to be valid for the Higgs modes with n . β (recall

these are the ones relevant for the dipole calculation), we have checked numerically that it

is actually also good enough for these masses.

Including the O
(
v2
)

terms in the equations of motion above, it is straightforward

to show that the zero-mode is “lifted”, but it still remains (much) lighter than MKK.

This is to be identified with the SM-like 126 GeV Higgs boson, but clearly it now has

a small admixture of the above KK Higgs modes (and vice versa for the much heavier

Higgs bosons). In particular, the SM Higgs profile is then shifted from that of the VEV.

We have checked (both semi-analytically) and numerically that the differences between

these two profiles scale as ∼ m2
HR
′ 2/β [38] (mH is the mass of the SM Higgs) which

becomes negligible in the limit of an IR localized bulk Higgs. Similarly, the masses of

the heavy Higgs receive corrections from eqs. (A.16) and (A.17), i.e., we have to use the

exact eq. (A.15). Comparing the equations eq. (A.15) and eq. (A.16), we can see that their

solutions will be approximately the same and by expanding the Bessel functions for the

small SM Higgs mass we can find that the difference between the two mass eigenvalues will

scale as ∆m(n) ∼ m2
H/(m

(n)β), which tends to be zero for the heavy KK Higgs bosons.

We now move on to similar analysis of charged (and imaginary, neutral components

of 5D Higgs field, i.e., CP-odd Higgs bosons). The equation of motion is the same as in

eq. (A.11), except that the v2 term is absent in the last line. Setting m2 = 0 here, it is easy

to see that these are the same as eq. (A.2) with p2 = 0, at all orders in v2 (i.e, without

having to neglect v2 terms). Specifically, there is then a zero-mode for the charged (and

imaginary, neutral) Higgs bosons. And, clearly the KK modes masses and profiles satisfy

eqs. (A.16), (A.17) and (A.13) (again, no v2 correction here, unlike for real, neutral Higgs

bosons above). So, both these properties for the charged and imaginary, neutral Higgs

bosons are similar to real, neutral Higgs modes, up to O
(
v2/M2

KK

)
effects.

All of the above discussion did not include EW gauging, which we now consider. At

leading order in v2/M2
KK, it is zero-modes of the charged (and similarly imaginary, neutral)

Higgs bosons which are “eaten” by the zero-mode W/Z in order to become massive (but
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obviously they are still lighter than the KK scale), whereas the KK W/Z basically use A5

(extra-dimensional component of gauge field) for this purpose. However, at higher order,

the zero and KK W/Z modes undergo (mass) mixing, i.e., the longitudinal components

of heavy W/Z actually have (small) admixtures of the above zero and KK charged (or

imaginary, neutral) Higgs modes; similarly the longitudinal components of the SM W/Z

now contain bit of A5. In turn, the spectrum (and profiles) of heavy charged (and imaginary,

neutral) mass eigenstate are corrected by powers of
(
M2
W/Z/M

2
KK

)
relative to eqs. (A.16)

and (A.13) in this process. On the other hand, the properties of the real, neutral unchanged

by this gauging.

Note that, in general, in our calculations of dipole operator, we are neglecting all the

effects of O
(
v2/M2

KK

)
, including differences in the masses and profiles of the charged (or

imaginary, neutral) Higgs bosons vs. real, neutral Higgs bosons (which is present even

before the above gauging) and the shift from the gauging.

B Solutions for bulk fermions

Next, we consider the 5D fermion. The five dimensional action for the fermions is given by

SFermion =

∫
d4xdz

(
R

z

)5[ i
2

(
Q̄ΓADAQ−DAQ̄ΓAQ

)
+
cq
R
Q̄Q+(Q, cq ⇔ U, cu and D, cu)

+ Y u
5DQ̄HU + Y d

5DQ̄HD

]
. (B.1)

Performing the KK decomposition for the field Q =
∑
Q(n)(x)q(n)(z) (again, neglecting

the Higgs VEV in 2nd line above) we get

−m(n)q
(n)
L − q(n)

R

′
+
cq + 2

z
qR = 0 ,

m(n)q
(n)
R + q

(n)
L

′
+
cq − 2

z
qL = 0 .

(B.2)

The solution is given by the Bessel functions

q
(n)
L = Nnz

5/2
(
J1/2+cq(m(n)z) + bnY1/2+cq(m(n)z)

)
, (B.3)

for the correct chirality and

q
(n)
R = Nnz

5/2
(
J−1/2+cq(m(n)z) + bnY−1/2+cq(m(n)z)

)
, (B.4)

for the wrong chirality, where the coefficient bn is fixed by the boundary conditions; for

example for the qL with (++) boundary conditions (i.e., Neumann on both branes) it is

given by

bn = −
J−1/2+cq(m(n)zUV)

Y−1/2+cq(m(n)zUV)
= −

J−1/2+cq(m(n)zIR)

Y−1/2+cq(m(n)zIR)
. (B.5)

The KK masses, m(n) are determined by solving the 2nd of eq. (B.5) and (for m(n)R′ � 1)

are given approximately by

m(n) ≈ π
(
n− 1

2
+ 2 cq

)
1

R′
. (B.6)
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The normalization Nn is fixed by requiring∫ (
R

z

)4

|qL|2 =

∫ (
R

z

)4

|qR|2 = 1 . (B.7)

In the case where the fermion qL has (++) boundary conditions, there is a zero mode in

the spectrum with profile given by:

q0
L(z) = f(cq)

R′−
1
2

+cq

R2
z2−cq , (B.8)

where the f(c) =
√

1−2c
1−(R/R′)1−2c is proportional to the value of the wave function of the

zero mode fermion at the IR brane. Similarly if the fermion uL (or dL) has (−−) boundary

conditions then there will be a right handed zero mode with the profile,

u0
R(z), d0

R(z) = f(−cu)
R′−

1
2
−cu

R2
z2+cu or cd , (B.9)

i.e., same as for qL, but with cq → −cu,d And, the corresponding KK profiles are given by

eqs. (B.3), (B.4) and (B.5), with appropriate changes in c parameters.

C Relevant couplings

As already mentioned, the relevant couplings for our work are the Yukawa ones, i.e., be-

tween the Higgs and fermion modes (again, the gauge modes are not used here). These

are to be obtained from the corresponding 5D Yukawa coupling, multiplied by overlap of

profiles. In turn, these couplings are of various types, depending on which the mode of

the Higgs and fermion is involved here. A “master” formula was schematically given in

eq. (3.10) and estimates for individual couplings were also given in that section. Here, we

would like to present the exact formulae for each of these types of couplings, using the

profiles from the earlier appendices.

We begin with the SM Yukawa coupling between the two fermion zero-modes and the

SM Higgs. The up- and down-type SM Yukawa couplings are given by (we collectively call

them ySM as in eq. (3.11))

yuSM =
Y u

5D

vSM

∫ R′

R
dz

(
R

z

)5

u0
R(z)v(z)q0

L(z) ,

ydSM =
Y d

5D

vSM

∫ R′

R
dz

(
R

z

)5

d0
R(z)v(z)q0

L(z) ,

(C.1)

where v(z) is the VEV profile given in eq. (A.7) and u0
R(z), d0

R(z), q0
L(z) are the fermion

zero-modes, given in eqs. (B.8) and (B.9). In eq. (C.1), we used the property that the SM

Higgs profile is (approximately) the same as the profile of VEV. The difference between

the Higgs zero-mode and the Higgs VEV profiles is almost marginal, roughly of order

∼ v2/(β M2
KK).
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Next, we consider the coupling between one SM, one KK fermion and a Higgs (either

the SM Higgs for nH = 0 or KK Higgs modes for nH ≥ 1). For the Yukawa coupling with

the KK Higgs, nH ≥ 1 we get

yd(0, nF , nH) = Y d
5D

∫ R′

R
dz

(
R

z

)5

q0
L(z)h(nH)(z)d

(nF )
R (z) , (C.2)

and

yu(nF , 0, nH) = Y u
5D

∫ R′

R
dz

(
R

z

)5

q
(nF )
L (z)h(nH)(z)u0

R(z) , (C.3)

where the wavefunctions, q
(nF )
L (z) and d

(nF )
R (z) with the correct chirality, are found in

eqs. (B.3) and the KK Higgs wave function h(nH)(z) is given in eq. (A.13). Similarly for

the Yukawa couplings involving u
(nF )
R (z). For the SM Higgs field, corresponding to nH = 0,

one can replace the KK Higgs wave function in eqs. (C.2), (C.3) with the Higgs VEV profile,

namely v(z)/vSM and they are denoted by yd(0, nF , 0) and yu(nF , 0, 0). The Yukawa couplings

with the Higgs VEV insertion involving one SM and one KK fermion are same as those for

the SM Higgs with SM- and KK fermion, and they are

yd(0, nF , v) =
Y d

5D

vSM

∫ R′

R
dz

(
R

z

)5

q0
L(z)v(z)d

(nF )
R (z) ,

yu(nF , 0, v) =
Y u

5D

vSM

∫ R′

R
dz

(
R

z

)5

q
(nF )
L (z)v(z)u0

R(z) .

(C.4)

Even though (as already mentioned) the profiles of the SM Higgs and its VEV are almost

identical (and thus so are the above two sets of overlaps integrals), we will still differentiate

between the Higgs VEV insertions and the Yukawa couplings in order to make explicit the

correspondence with the Feynman diagrams. The NDA-type estimates for these couplings

were given in eqs. (3.13) and (3.17).

Finally, we present the couplings of two KK fermions to Higgs (whether SM or KK),

where we have to distinguish between wrong (−) and correct (+) chiralities. For KK Higgs

modes with nH ≥ 1 they are given by

yd,−(nF1
, nF2

, nH) = Y d
5D

∫ R′

R
dz

(
R

z

)5

q
(nF1

)

R (z)h(nH)(z)d
(nF2

)

L (z) ,

yd,+(nF1
, nF2

, nH) = Y d
5D

∫ R′

R
dz

(
R

z

)5

q
(nF1

)

L (z)h(nH)(z)d
(nF2

)

R (z) ,

(C.5)

where the KK fermion profile with the wrong chirality, q
(nF1

)

R (z) (similarly for d
(nF2

)

L (z)), is

given in eq. (B.4). As before, we replace the KK Higgs wave function in eq. (C.5) with Higgs

VEV profile v(z)/vSM for the case of the Higgs VEV insertions (or SM Higgs for nH = 0)

involving two KK fermions. They are denoted by yd,±(nF1
, nF2

, 0 or v). These correspond to

the our NDA-type estimates in eqs. (3.14), (3.16) and (3.18).

Let us now look now at the brane-localized limit of the bulk Higgs, i.e., β � 1.

In this limit the SM Yukawa coupling can be expressed in terms of the five dimensional
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uR

p p+ k p′ + k

k

H

p′

qL

〈H∗〉g

Q D

(a)

uR

p p+ k p′ + k

k

H

p′

qL

〈H∗〉 g

DQ

(b)

Figure 8. The diagrams contributing to the dipole operators (for SM up-type quark) in the weak

basis with Higgs VEV attached to the internal quark-lines only, i.e., inside loop. The internal quark

lines (here, all are inside the loop) correspond to the heavy KK fermions whereas H line in the loop

can be either SM light Higgs or heavy KK Higgs modes.

parameters as

yuSM =

√
2(1 + β)

(2− cq + cu + β)

Y u
5D√
R
f(cq)f(−cu) , (C.6)

where the f(c) is defined in eq. (2.5). For a fixed Y u
5D (5D Yukawa coupling), we can

see that in the β → ∞ limit the SM coupling will have an additional suppression of

1/
√

1 + β.(One can understand this as originating from the different normalizations of the

bulk and brane Higgs VEVs.) One way to cure this behavior (i.e., in order to have well

defined “brane” limit of the bulk Higgs for fixed fermion profiles) is to rescale 5Dl Yukawa

coupling with the factor ∼ √β. Nonetheless, in our calculations we keep this additional

rescaling factor explicit.

D Loop functions

Recall that in the simplified model calculation of section 5, the result for the dipole oper-

ator coefficient (for up-type quark) was given in terms of certain loop functions. In this

section we provide the complete derivation of these loop functions in the weak basis: this

is essentially a cross-check of a similar calculation done in appendix A of [34], but we still

show it for the sake of completeness. We sub-divide them according to whether the Higgs

VEV is attached inside the loop (i.e., to internal quark lines only) or to the external quark

line (i.e., outside the loop).

We begin with the Higgs VEV attached to the internal quark lines only (i.e., inside

the loop). There are actually two diagrams shown in figure 8 (labelled a and b), depending

on which side of the Higgs VEV is the gluon attached to. As noted earlier (see discussion

just above eq. (5.3)), we consider only the charged Higgs contribution here, since the

neutral sector has a cancellation. Thus, these diagrams have only down-type quarks in the

loop (again, incoming on-shell lines are up-type quark) and are proportional to down-type

Yukawa coupling (in addition to up-type Yukawa coupling). The corresponding amplitudes
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uR

p p+ k p′ + k

k

H,H∗

p′

qL

〈H∗〉 g

D, UQ

(e)

uR

p p + k p′ + k

k

H

p′

qL

〈H∗〉g

Q U

(f)

Figure 9. The diagrams contributing to the dipole operator (for SM up-type quark) in the weak

basis with the Higgs VEV attached to the external quark (on-shell) line, i.e., outside the loop. The

internal quark lines (including the one between VEV insertion and the loop) correspond to the

heavy KK fermions whereas H line in the loop can be either the SM light Higgs or heavy KK Higgs

modes.

are given by

iMa =

∫
d4k

(2π)4
ū(p′)(iydSM KKPR)

i(/k + /p′ +MD)

(k + p′)2 −M2
D

(
iylight, d+ ∗

KK KK PL + iylight, d− ∗
KK KK PR

)
× i(/k + /p′ +MQ)

(k + p′)2 −M2
Q

(igsT
a/ε∗)

i(/k + /p+MQ)

(k + p)2 −M2
Q

(iyuSM KKPR)u(p)
i

k2 −M2
H

,

iMb =

∫
d4k

(2π)4
ū(p′)(iydSM KKPR)

i(/k + /p′ +MD)

(k + p′)2 −M2
D

(igsT
s/ε∗)

i(/k + /p+MD)

(k + p)2 −M2
D

×
(
iylight, d+ ∗

KK KK PL + iylight, d− ∗
KK KK PR

) i(/k+/p+MQ)

(k+p)2−M2
Q

(iyuSM KKPR)u(p)
i

k2−M2
H

,

(D.1)

where PL/R are the projection operators of each chirality fermion and the Yukawa couplings

to both the light Higgs and the heavy KK Higgses are allowed unless explicitly specified,

for instance, ydSM KK =
{
ylight, d

SM KK, y
heavy, d
SM KK

}
(similarly for other types of Yukawa couplings

as well). The εµ denotes the polarization four vector of the gluon. Note that these am-

plitudes simultaneously include two distinctive contributions from the correct (denoted by

superscript “+”) Yukawa and the wrong Yukawa couplings (denoted by “−”).

On the other hand, the diagrams with the Higgs VEV attached to the external quark

line (i.e., outside the loop) are shown in figure 9. Once again, there are two types (labelled

e and f for notational clarity), but now depending on whether the Higgs VEV is on

the incoming (i.e., on-shell) uR or uL line. In the first case, we can easily work out

that the heavy quarks inside the loop are SU(2)L singlets and can be either down or

up-type, corresponding to the Higgs inside loop being charged or neutral and the Yukawa

couplings involved being both up and down-type or only up-type. In particular, the neutral

Higgs contribution does not encounter the cancellation (unlike for insertion inside the loop

mentioned above). Whereas, the second diagram involves SU(2)L doublet quark inside

loop, i.e., either up and down-type here (along with neutral or charged Higgs), but involves
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only up-type Yukawa couplings. The corresponding amplitudes are

iMe =

∫
d4k

(2π)4
ū(p′)(iyd,uSM KKPR)

i(/k + /p′ +MD,U )

k + p′2 −M2
D,U

(igsT
a/ε∗)

i(/k + /p+MD,U )

(k + p)2 −M2
D,U

×
(
iyd+,u+ ∗

KK KK PL + iyd−,u− ∗KK KK PR

) i(/p+MQ)

p2 −M2
Q

(iylight, u
SM KKPR)u(p)

i

k2 −M2
H

,

iMf =

∫
d4k

(2π)4
ū(p′)(iylight, u

SM KKPR)
i(/p′ +MU )

p′2 −M2
U

(
iyu+ ∗

KK KKPL + iyu− ∗KK KKPR
)

× i(/k + /p′ +MQ)

(k + p′)2 −M2
Q

(igsT
a/ε∗)

i(/k + /p+MQ)

(k + p)2 −M2
Q

(iyuSM KKPR)u(p)
i

k2 −M2
H

.

(D.2)

Once again, in principle, this includes both the correct and wrong chirality coupling contri-

butions. In practice, only the wrong chirality is significant in this case, since as mentioned

earlier (see discussion just above eq. (5.7)), the correct chirality is suppressed due to the

form of (heavy) quark propagator in-between Higgs VEV insertion and the loop. Note that

for simplicity in eqs. (D.1), (D.2), the indices for the KK mode numbers in the Yukawa

couplings and masses are not shown.

Based on the Dirac structure and the various types of Yukawa couplings involved, the

amplitudes in eqs. (D.1) and (D.2) can be clearly decomposed as

iMa+b=− i

8π2

[
ydSM KK y

light, d ∗
KK KK yuSM KK(I int

a +I int
b )+ydSM KK y

light, d− ∗
KK KK yuSM KK(J int

a +J int
b )
]

× ū(p′) gsT
a(ε∗ · p)PRu(p) + . . . , (D.3)

and

iMe+f = − i

8π2

[
ydSM KK y

d− ∗
KK KK y

light, u
SM KK Jext

d,e + yuSM KK y
u− ∗
KK KK y

light, u
SM KK Jext

u,e

+2 ylight, u
SM KK y

u− ∗
KK KK y

u
SM KK Jext

u,f

]
ū(p′) gsT

a(ε∗ · p)PRu(p) + . . . ,
(D.4)

where “. . . ” in above amplitudes denotes other Dirac structures, namely, γµ-type. The

J/I’s are loop functions (whose actual expressions are given below). The familar form of

the dipole amplitude can then be obtained by two replacements, (ε∗ · p) → i/2 (σµνε∗µqν)

and i σµνε∗µqν → −(1/2)σµνGµν (the gluon polarization four vector replaced with Gµ).

The factor of 2 in the third term of eq. (D.4) is due to SU(2) multiplicity of the doublet

KK fermion Q inside the loop (see diagram (f) in figure 9), in turn, corresponding to that

of the Higgs bosons (i.e., charged and neutral) in the same loop. It is absent in the case of

diagram (e) (1st and 2nd terms above), where only one type of quark (up or down SU(2)

singlet) propagates in the loop, which is accompanied by either charged Higgs or neutral

Higgs. Matching the above form of the amplitudes to the Lagrangian shown in eq. (5.2)

gives us the coefficient of the dipole operator (Cdipole).

This is how we obtained eqs. (5.3) and (5.7) in section 5. In other words, the various

loop functions (J ’s and I’s) appearing in eqs. (5.3) and (5.7) — which were not specified

in that section — simply correspond to the relevant parts of the amplitudes in eqs. (D.1)

and (D.2), respectively.
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In more detail, we first introduce Feynman parameters in order to combine the denom-

inators of the propagators in eqs. (D.1) and (D.2). Then, we perform the loop momentum

integrals, thus leaving the loop functions as integrations over the Feynman parameters. In

this way, the loop functions for insertion inside lthe oop (i.e., from eq. (D.1)) with the

wrong chirality couplings (i.e., y− terms) are given by

J int
a = MQMD

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

(x+ y + z)

∆2
, (D.5)

where the denominator is given by

∆ = M2
Q(y + z) + xM2

D +M2
H(1− x− y − z) . (D.6)

On the other hand, for the correct chirality contribution (with insertion still being inside

loop), i.e., considering terms without y−, we get

I int
a =

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

[
1− 3(x+ y)

∆
+
zM2

Q

∆2

]
. (D.7)

The Ib, Jb are easily obtained from Ia and Ja by replacing {x,MD} ↔ {z,MQ}.
Similarly, we can obtain the expressions for the loop functions for insertion outside

loop, i.e., from eq. (D.2) (again, only wrong chirality contributions, i.e., terms with y−, are

significant here). We get from the contributions involving (only) up-type Yukawa couplings:

Jext
u, e =

MU

MQ

∫ 1

0
dx

∫ 1−x

0
dy

(x+ y)

∆U
, (D.8)

and

Jext
u, f =

MQ

MU

∫ 1

0
dx

∫ 1−x

0
dy

(x+ y)

∆Q
, (D.9)

where the denominators are given by

∆X = M2
X(x+ y) +M2

H(1− x− y) . (D.10)

Finally, the loop function involving the down type Yukawa coupling (only from part of the

first amplitude in eq. (D.2), corresponding to the down-type heavy quark in the loop) is sim-

ply Jext
d, e = Jext

u, e with MU →MD. In our study, we focus only on the contribution involving

both up and down-type quark Yukawa couplings and thus do not need to consider the loop

function Jext
u e or f . The integrations over Feynman parameters, are straightforward, giving

Jext
d,e =

MD

(
M4
D − 4M2

DM
2
H + 4M4

H log (MD/MH) + 3M4
H

)
2MQ

(
M2
D −M2

H

)3 , (D.11)

which corresponds to the 1st diagram in the figure 9 with the D quark in the loop.
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For the diagrams with the insertion inside the loop we get the following: for the correct

chirality

I int
a + I int

b =

{
4M2

HM
2
Q(M2

H −M2
D)3 log (MQ/MD)

+ (M2
Q −M2

D)

[
(M2

H −M2
Q)
(

3M6
H − (4M2

D +M2
Q)M4

H +M4
DM

2
H +M4

DM
2
Q

)
+ 4M2

H

(
M6
H − 3M2

QM
2
DM

2
H +M4

DM
2
Q +M2

DM
4
Q

)
log (MD/MH)

]}

× M2
H

2(M2
Q −M2

D)(M2
H −M2

Q)3(M2
H −M2

D)3
, (D.12)

and, for the wrong chirality

J int
a + J int

b

=

{
MQMD

(
M2
Q−M2

D

) (
M2
H−M2

Q

) (
M2
H−M2

D

) [
5M4

H−3M2
H

(
M2
Q+M2

D

)
+M2

QM
2
D

]
+ 4M4

HMQMD

[
3M4

H

(
M2
Q −M2

D

)
− 3M2

H

(
M4
Q −M4

D

)
+M6

Q −M6
D

]
log (MD/MH)

− 4M4
HMQMD

(
M2
H −M2

D

)3
log (MD/MQ)

}
× 1

2(M2
Q −M2

D)(M2
H −M2

Q)3(M2
H −M2

D)3
. (D.13)

The above formulae in eqs. (D.11), (D.12), (D.13) were not explicitly given in [34]. We see

explicitly in eq. (D.12) that the loop function involving the correct chirality is proportional

to M2
H . It causes the suppression by ∼ (mh/MKK)2 for the SM Higgs loop where MH

corresponds to the SM Higgs mass, mh. While we do not show the loop functions of Ia and

Ib separately, we emphasize that the individual loop function Ia (similary Ib) is proportional

to M2
H .

In the light Higgs limit where we take MH → 0 (as in section 5.2), we get

Jext
d,e =

1

2MDMQ
, (D.14)

and

I int
a + I int

b = − M2
H

2M2
QM

2
D

, J int
a + J int

b =
1

2MQMD
, (D.15)

On the other hand, for the case of universal KK masses, namely MQ = MD = MH = MKK

(this choice was made in section 5.3) we get

Jext
d,e =

1

3M2
KK

, J int
a + J int

b =
1

4M2
KK

, I int
a + I int

b = − 1

12M2
KK

. (D.16)

The above limiting values were also mentioned in section 5.
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E Cutoff contribution: comparison to models with (strictly)

brane-localized Higgs

Here, we re-consider some of the above dipole effects from the Higgs boson modes, but from

a somewhat different angle. As mentioned in the introduction, the references in [32, 33]

start and stay with the strictly brane-localized (aka δ-function) Higgs and thus they only

have the correct chirality coupling at disposal in the loop diagrams. There is really no

KK Higgses (or they are infinitely heavy) in this case and only the SM Higgs appears in

loop. As discussed in section 4.1.1, if we set the 4D loop momentum cutoff → ∞, i.e.,

MKK is the only scale in the loop, then such a contribution vanishes (again, we neglect

effects suppressed by ∼ m2
h/M

2
KK). Nonetheless, these references showed that respecting 5D

covariance implies that we do get a sizeable contribution (as follows) to the dipole operator.

Their point is that in the KK approach taken by earlier literature one should “coordinate”

the 4D loop momentum cutoff with the KK sum cutoff, denoting both by an appropriately

warped-down of Λ, the scale at which 5D effective field theory (EFT) description breaks

down and the physics of UV completion of 5D model comes in.14 Therefore, for a finite

yet large Λ and for fixed KK levels (n, p . Λ/k), we expect to get instead

(
Ccovariant,extra

dipole

)
(n, p)

∼ M2
KK

Λ2

(
ylight

SM KK

)2
ylight,+

KK KK

ySM
,

∼ M2
KK

Λ2
y2

KK ,

(E.1)

i.e., schematically, we get an extra contribution where it is the finite 4D loop momentum

cutoff (being larger than most of the KK masses) that sets the mass scale for the loop

integral. Strictly speaking, we have not shown that one actually gets such a term, but

just that it is allowed: for example, at the least, it matches the earlier finding of zero

contribution for Λ→∞.15 (See section 6.6 of the 1st reference in [32, 33] and appendix D

of the 2nd reference therein for more discussion about this issue: the effect we sketch here

is similar in spirit.)

For a fixed KK level, the contribution seems suppressed by the cutoff Λ, but the crucial

point is that upon KK double sum (again, up to the same ∼ Λ), we get

Ccovariant,extra
dipole ∼ M2

KK

Λ2

n,p∼Λ
k∑

n,p=1

y2
KK ,

∼ y2
KK .

(E.2)

Note that the brane-localized Higgs coupling does not conserve KK number, no matter how

high, as expected from the β → ∞ limit of the bulk Higgs, and consequently the double-

sum persists up to the cutoff Λ. The subtlety is that the above effect is missed completely

14For example, in order to accomplish this in a 5D gauge-invariant way, one could use the 5D Pauli-Villars

(PV) regularization. In this case, 4D modes of the PV field (with 5D mass ∼ Λ) will also appear in loops.
15Note that the end result of our estimate here will not change even if the leading extra effect from

cut-off is suppressed by higher powers of Λ, for example, it is of the form ∼M4
KK

(
n2 + p2

)
/Λ4 (where we

have again used simple power counting/dimensional analysis and assumed no chirality-flip in order to put

appropriate power of KK masses in numerator), instead of eq. (E.1).
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if one first takes the 4D loop momentum cutoff to infinity for a fixed KK level and only try

do KK sum afterwards, because the latter cannot catch-up with 4D loop cutoff, given this

order of operations! Alternatively, one can use the 5D propagators, as was done for the

actual calculation in the references [32, 33], which of course should be equivalent (since 5D

propagators entail an implicit sum over KK modes after all). In passing, let us note that

even though this contribution is finite (i.e., Λ’s cancel above), it is still UV-sensitive because

KK modes all the way up to the cutoff are relevant. This is perhaps not surprising given

the NDA estimate of the dipole operator being UV-sensitive for a brane-localized Higgs.

The above cutoff contribution is present even for a Higgs field being in the bulk: here

we focus on the case where only the SM Higgs (i.e., not the KK Higgs) and the KK fermions

with the correct chirality appear in the loops, since that effect seems suppressed if the 4D

loop momentum cutoff → ∞ to start with, i.e., there is a chance of missed, subtle effect

here as before. However, as discussed earlier, the KK fermions with mode-numbers above

∼ β, i.e., oscillate within the SM Higgs width, thus respect KK number conservation and

result in a suppressed, single sum. As a result, the double sum which appeared in eq. (E.2)

for this case is instead effectively cutoff by the inverse of the Higgs width:

Ccovariant,extra
dipole (for bulk Higgs) ∼ M2

KK

Λ2

n,p∼β∑
n,p=1

y2
KK ,

∼ y2
KK

(
β MKK

Λ

)2

.

(E.3)

Note that this truncation of KK sum happens automatically, that too within 5D EFT, for

the case of a bulk Higgs. On the other hand, in the earlier case of a brane-localized Higgs,

it had to be done “by-hand”, i.e., via the considerations of going beyond 5D EFT. Thus,

this cutoff effect is now much smaller than the NDA estimate (again, for β � Λ/k, even if

β � 1). In contrast, the correct chirality KK Higgs effect that we calculated in the main

text in this paper is (roughly speaking) independent of the Higgs profile width, and so

clearly is different in size from the effect discussed above, which anyway involves SM Higgs

instead (even though in the brane-localized limit, they have similar size).

Finally, we note that the same 5D covariance principle (i.e., cutting off of the 4D loop

momentum and KK sum hand-in-hand) applies to previous sections’ bulk Higgs calcula-

tions, i.e., the wrong chirality SM Higgs or the correct/wrong chirality effect for the KK

Higgs. There we took the 4D loop momentum cutoff → ∞ to start with, even so finding

unsuppressed contributions (cf. the SM Higgs, correct chirality contribution above). How-

ever, à la 2010 references [32, 33], strictly speaking we should have allowed the 4D loop

momentum and the KK sum to go only till Λ.16 Fortunately, as we now show, implement-

ing the cut-off in this covariant manner does not change our main results. The crucial

point is that, as we already saw, the Higgs width had provided (effectively) a cut-off on

KK sum in those calculations also. This implies that it is 4D loop momenta up to inverse

of Higgs width (i.e.,
<∼ βk) which gave the dominant effect,17 while the contribution from

16Again, we need to take this into account whether we take the brane-localized limit or not.
17There is in a sense an intrinsic “coordination” of these two “cutoffs” within 5D EFT here, so that no

extra carefulness is needed here (cf. the case of brane-localized Higgs as above).
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the 4D loop momenta above ∼ Λ (which were unnecessarily included earlier) is suppressed

by powers of ∼ βk/Λ. In other words, the correction to those results from the actual 5D

cutoff effects of the above type is (very) small provided β � Λ/k, like in eq. (E.3): it was

indeed justified then — at least a posteriori — to take the 4D loop momentum cutoff to

infinity first. These estimates are consistent with the NDA expectation of UV-insensitivity

for the case with a bulk Higgs.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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