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Abstract 

 

Ca2+-activated Cl- currents have been implicated in many cellular processes in different cells, but 

for many years, their molecular identity remained unknown. Particularly intriguing are Ca2+-

activated Cl- currents in olfactory transduction, first described in the early 90s. Well characterized 

electrophysiologically, they carry most of the odorant-induced receptor current in the cilia of 

olfactory sensory neurons (OSNs). After many attempts to determine their molecular identity, 

TMEM16B was found to be abundantly expressed in the cilia of OSNs in 2009 and having 

biophysical properties like those of the native olfactory channel. A TMEM16B knock-out mouse 

confirmed that TMEM16B was indeed the olfactory Cl- channel but also suggested a limited role in 

olfactory physiology and behavior.  

The question then arises of what the precise role of TMEM16b in olfaction is. Here we review the 

long story of this channel and its possible roles.  
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Introduction 

In 1991, a revolution began in the olfactory field with the discovery of olfactory receptors (ORs) by 

Linda Buck and Richard Axel.1 This Nobel Prize discovery fueled rapid progress in our 

understanding how ORs are singly expressed in a given olfactory sensory neuron (OSN), how 

olfactory axons target to the brain and what the logic of olfactory coding might be.  

Coincidentally, at the same time, Kleene and Gesteland discovered,2 in an effort to understand the 

role of Ca2+ in olfactory transduction, a Ca2+-activated current in frog olfactory cilia that was 

almost entirely carried by Cl-. Later, Ca2+-activated Cl- currents were described in olfactory cilia of 

all vertebrates tested, including fish, amphibians, and rodents.3–6 It might seem much easier to 

determine the role of a single ion channel compared to 1000 ORs expressed in the mouse. But the 

quest to understand the role of the Ca2+-activated Cl- channel (CaCC) turned into a longer - at 

times convoluted - tale about olfactory signal transduction and the CaCC. This tale - that we will 

try to keep short - is still being, literally, written 25 years later.  

 

By the mid 90’s, the molecular identity of the olfactory transduction components needed to 

activate an odorant response had been completed, bar one. The identity of the CaCC participating 

in transduction remained elusive, hampering efforts to understand and characterize the role of 

this channel. Historically, the description, cloning, and characterization of Cl- channels, in general, 

have always lagged behind that of Na+, Ca2+ and K+ channels. Although Cl- is the most abundant 

anion in the extracellular fluids and plasma, Cl- currents have long been considered a sort of 

background conductance with a lack of substantial interest by neuroscientists. Additionally, the 

lack of knowledge about natural toxins that target the Cl- conductance certainly has not helped. 

But – as it happens - Cl- channels have received increasing attentions in the last few years. This 

interest has been partly driven by the appreciation that Cl- can be seen as a “free agent”: it is 

unbound by, generally speaking, rather fixed ionic gradients across cell membranes like those for 

Na+ and K+, and thus can be utilized as an inhibitory or an excitatory ion. The increased interest in 

Cl- channels led to a rapid increase in our knowledge of their molecular identity and function. 

Indeed, in 2008 a new family of CaCCs was discovered,7–9 and it was found that one member of 

this family, TMEM16B (also known as Anoctamin 2) is expressed in OSNs and is the long sought 

after CaCC, the main topic of our review.  

We will guide the reader through the numerous twists of CaCCs, from Cl- current characterization 

in native olfactory cilia, up to their cloning and possible role in olfaction. 
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Odorant transduction and its components.  

 

The very first step of odor detection takes place in the olfactory epithelium (OE) in which the 

bipolar OSNs are embedded. OSNs are the first functional unit of the olfactory system; their axons 

leave the epithelium to reach the olfactory bulb (OB) in the brain, and they extend their single 

dendrite to the apical surface of the OE ending with a knob which bears around 10-20 cilia. The 

components of the olfactory transduction machinery are expressed almost exclusively in the cilia 

(Figure 1) and they convert the chemical information of the odorant-OR interaction into an 

electrical signal ultimately triggering action potentials (APs) that are sent to the brain. 

ORs are seven transmembrane G protein-coupled receptors and a single OR can respond to 

several different odorants and may be broadly tuned or more narrowly selective.10 When an 

odorant molecule binds to an OR, the ensuing conformational change triggers the activation of the 

G protein Golf,
11 which in turn favors the enzymatic activity of the adenylyl cyclase 3 (AC3),12 thus 

leading to an increase in intra-ciliary levels of cAMP. cAMP opens cyclic nucleotide-gated (CNG) 

channels,13,14 allowing Na+ and Ca2+ to enter the ciliary lumen. This first series of events is 

necessary and sufficient to depolarize the OSN that will fire APs to be sent to the OB. 

Ca2+ increase inside the cilia is responsible for various mechanisms: among those, the activation of 

CaCCs that leads to Cl¯ exiting the cilia, further depolarizing the cell. The presence of a Na+-K+-2Cl- 

cotransporter, NKCC1, ensures that the Cl¯ concentration inside the cilia is kept high, in the same 

range of that present in the mucus outside the cilia, supporting the depolarizing effect of CaCCs 

activation.15–17 The unusually high Cl- concentration inside the cilia is the interesting feature that 

determines the depolarizing role of the Cl- current. Although its exact value may be species-

specific the measured intracellular Cl- concentration varies from 55 mM up to 69 mM depending 

also on the techniques used to measure it;15,16 those values are close to the Cl- concentration 

measured in the mucus surrounding the knob and cilia of the OSNs. Energy dispersive X-ray micro 

analysis on cryosections of rat OE estimated a Cl¯ concentration of 69 mM inside the cells and 55 

mM in the mucus, with a calculated equilibrium potential for Clˉ of +6 mV.16 In another study, Cl¯ 

concentration was estimated from the intact OE of mice and rats using two-photon fluorescence 

lifetime imaging of the Cl¯ sensitive dye MQAE (Figure 2A & B). A maximal concentration reaching 

up to 70 mM was found within the dendritic knob, decreasing to 55 mM along the dendrite in the 

presence of a high extracellular Cl¯ concentration.15 For a lower extracellular Cl¯ concentration of 
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50 mM the gradient disappeared (Figure 2B), suggesting the presence of an apical Cl¯ uptake 

system.15 This data support the view that a Clˉ accumulation process charges the resting cilia 

prompting an excitatory Clˉ efflux in olfactory transduction.17–19  

Different mechanisms are responsible for the termination of the response. cAMP is hydrolyzed by 

two phosphodiesterases (PDEs), PDE1C in the cilia and PDE4A in the other part of OSNs. Although 

little is known about the fate of ciliary cAMP, recent knockout studies in mice revealed that 

hydrolysis of ciliary cAMP is not a rate-limiting factor for termination kinetics.20,21 Indeed, it is 

most likely that the diffusional escape of cAMP from the ciliary lumen is sufficient to allow a rapid 

response termination.22,23 

However, not only the CNG channels have to close, but also the CaCCs. Their closure kinetics are 

dictated by the rate of ciliary Ca2+ removal, which is mainly due to the activity of Na+/Ca2+ 

exchanger. The role of a Na+/Ca2+ exchanger in OSNs has been suggested since the mid-1990s. 

Preventing Ca2+ extrusion by reducing extracellular Na+, and thus abolishing the driving gradient 

that fuels the exchange, prolongs the odorant-induced receptor current by seconds, generating a 

prolonged Ca2+-activated Cl¯ current.24–26  

More recently it has been shown that the potassium-dependent Na+/Ca2+ exchanger 4 (NCKX4) is 

expressed in the cilia of OSNs and plays the major role in Ca2+ extrusion and therefore, in 

controlling the termination of the odorant response.27–29 A further contribution to Ca2+ dynamics 

inside the cilia of OSNs is given by mitochondria in the dendritic knob. Not only do they contribute 

to the low resting Ca2+ but also they are responsible for its clearance during odorant stimulation. 

Noteworthy is that odorant responses are also affected since pharmacological alteration of the 

inner mitochondrial membrane potential shifts the dynamic range of the OSN stimulus-response 

function.30 

 

cAMP-activated currents 

 

In OSN cilia, cAMP activates a cationic current through CNG channels. First described by Nakamura 

and Gold (1987),13 the cAMP-activated current has been extensively characterized and proven to 

be required for OSN response to most odorants.14 The native olfactory CNG channels are 

composed of three different subunits encoded by CNGA2, CNGA4 and CNGB1b forming a tetramer 

with the stoichiometry of 2 CNGA2, 1 CNGA4 and 1 CNGB1b.31–35 They are expressed in the cilia of 

all canonical OSNs.34,36,37 
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The olfactory CNG channels are slightly more permeable to Na+ than to K+,38 and the current-

voltage relation shows slight outward rectification in divalent free conditions.34,38,39 The relation 

between the concentration of cAMP and CNG current is well fitted by a Hill function with a Hill 

coefficient ranging from 1.3 to 2.3, indicating that the binding of at least 2 cAMP molecules are 

necessary to open the channel. It was shown that binding of the second cAMP molecule brings the 

channel almost to its maximum open probability,40,41 which is just 0.7–0.8.5,39,42,43 Once activated, 

the current does not spontaneously inactivate in the presence of cAMP.39,44,45 Ca2+ has a complex 

effect on CNG channel activity. Under physiological conditions, much of the inward current is 

carried by Ca2+,46 but extracellular Ca2+ and Mg2+ greatly reduce inward CNG current by open-

channel block. Moreover, elevated cytoplasmic Ca2+, together with one or more Ca2+-binding 

factors such as Ca2+–calmodulin, reduces the sensitivity of the channels to cAMP, a mechanism 

relevant for adaptation.47–52  

cAMP activates cationic CNG channels in the ciliary membrane and knockout mice missing the 

CNG channel subunit CNGA2 lacked electro-olfactogram (EOG) responses (which represent the 

recorded summated generator potential from the surface of the OE)53,54 to most odorants 

tested.55 The absence of EOG responses, indicated that CNGA2 KO mice are anosmic. CNGA2 KO 

mice struggle to survive because they are not even able to feed during nursing and weaning. Since 

that initial report, residual responses to some odorants have been demonstrated in mice lacking 

CNGA2.56,57 

 

Ca2+-activated Cl- currents in olfactory cilia 

 

The odorant-induced current is made of two components: a cationic one activated by cAMP and 

an anionic one activated by Ca2+. This could be demonstrated by excising olfactory cilia and 

exposing them to cAMP (Figure 2C). Only at negative holding potentials, which favors Ca2+ influx, 

was a bi-phasic current observed with the second component being absent in Cl--free solution 

(Figure 2D). The latter current, a Cl- current, is gated directly by the Ca2+ that entered through the 

CNG channels. Taking advantage of flash photolysis Boccaccio and Menini showed that upon cAMP 

uncaging in intact OSNs a clearly biphasic current developed at a holding potential of -50 mV 

(Figure 2E & F).19,58 The first and fastest step reached a plateau that in some cases lasted several 

ms and was then followed by a larger component that was absent at +50 mV when, again only 

little Ca2+ entered through the CNG channel not sufficient to activate the Cl- current. Moreover, 
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the second component was strongly reduced by lowering the intracellular Cl¯ concentration and it 

was blocked by niflumic acid (Fig. 2E and F, grey traces), a commonly used Cl¯ channel blocker. 

Single cell electrophysiology of OSNs indicated that the Ca2+-activated Cl- currents constitute up to 

90% of the receptor current in rodents. The relative magnitude of the Cl¯ compared to that of the 

CNG current is probably due to a higher density of CaCC in the olfactory cilia,5 even though this 

phenomenon and the estimated density of CaCC could be species-specific. Despite lacking its 

molecular counterpart at the time, the biophysical characteristics of the current have been 

extensively studied (see below). 

 

Although the high input resistance of OSNs could allow even a small depolarization - stemming 

only from CNG channels - to fire APs, the larger contribution of the Cl¯ current to the transduction 

current serves as a non-linear amplifier of the signal. Lowe and Gold showed in rat OSNs that the 

Ca2+-activated Cl- current boosts the cooperativity of the odorant-induced current.18 While in 

excised patch experiments the apparent cooperativity of the cAMP-induced current is about 1.5,59 

in intact OSNs, with the presence of Ca2+-activated Cl- current, the cooperativity reaches much 

higher values, between 3.5 and 5.4,18,21 clearly indicating that the presence of a secondary Ca2+-

activated Cl- current increases the nonlinear amplification of the receptor current. Such nonlinear 

activation of the Cl¯ current depends on the Ca2+ cooperativity of the conductance. Excised patch 

experiments from OSN cilia/knob show that the dose–response for Ca2+ was well fitted by the Hill 

equation with half-maximal activation between 2.2 and 4.7 μM and Hill coefficient between 2.0 

and 2.8,5 sufficiently steep to support the high odorant-induced cooperativity observed in OSNs. 

Moreover, Ca2+-activated Cl- currents show a Ca2+-dependent inactivation, which is reversible after 

removal of Ca2+, but also an irreversible run-down when recorded from excised patches, indicating 

that some modulatory components of the channel may be lost after the excision of the 

membrane.5,17 The olfactory Ca2+-activated Cl- current is apparently not directly affected by Ca2+–

calmodulin5 and, at present, no modulators of channel activity are known. Another recently 

described property of the native channel is that upon flash photolysis of caged Ca2+, the reversal 

potential for some external large anions changes with time,60 a phenomenon which requires 

further mechanistic and physiological studies.  

Before the molecular identification of the Cl¯ channel, the only genetic approach available to alter 

or investigate the excitatory role of the Ca2+-activated Cl- currents  was by using a knockout mouse 

for the Na+-K+-2Cl¯ cotransporter NKCC1.17 As mentioned earlier, NKCC1 provides for active 
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accumulation of the intracellular ciliary Cl¯ that reaches a concentration close to that of the 

embedding mucus.16 Thus, by knocking out NKCC1, Cl¯ could not accumulate in the cilia, changing 

the Cl¯ reversal potential, and the Ca2+-activated Cl- component of the odorant response was 

largely reduced, leaving only 20% of the total odorant response. The Cl¯ channel, though, was still 

present when excised patch experiments were performed. In summary, although still elusive in its 

identity, the native CaCC was fully biophysically characterized and hypotheses about its 

functionality were possible. 

  

Hunting for the Ca2+-activated Cl- channel 

The elusive molecular nature of Ca2+-activated Cl- currents was an issue not only for olfaction but 

for other fields as well. Different Ca2+-activated Cl- currents have been characterized biophysically 

in various tissues and cell types without establishing their molecular identity.62–66 

In the OE, the first molecular candidate to be proposed was ClCa1 cloned from the rat olfactory 

mucosa in 2003 67, which was then followed by another candidate, Bestrophin2 (Best2).59 

Best2, which belongs to the family of Bestrophin channels, was at the time a promising candidate 

because of several properties: it was cloned from mouse OE, was expressed in the ciliary layer of 

the OE and co-localized with the CNGA2 channel. Best2’s biophysical properties were very similar 

to those of the native channel (anion selectivity, unitary conductance, voltage dependences, 

sensitivity to blockers).59 But there was one obvious difference: Best2 is about 12 times more 

sensitive to Ca2+ than the native olfactory CaCC. Although such differences could simply be due to 

the absence of additional subunits or modulators in the expression system, it called for caution in 

concluding that Best2 was the native olfactory channel. Overall, it was reasonable to propose that 

Best2 might be the olfactory CaCC - or at least a part of it - but later it was shown that mice lacking 

Best2 still had the Ca2+-activated Cl- currents and displayed normal olfactory behavior.68 In 

conclusion, these results eliminated a promising candidate, but sent the search for the molecular 

identity of the olfactory CaCC back to the beginning. 

 

TMEM16B is the cilial Ca2+-activated Cl- channel 

 

Help came from an unexpected side in 2008, when three groups using different approaches found 

that members of the TMEM16 family, a group of proteins with largely unclear functions, encoded 

for CaCCs. It was proposed to change the name of TMEM16 to Anoctamin because of the anion 
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permeability and bioinformatics analysis predicted that they have eight transmembrane domains 

(octamins). The appropriateness of the name has been actively discussed, in particular, because it 

is possible that only two members of this family are Cl- channels and they might actually have 10, 

not 8, transmembrane domains.69–72 

But was one of the newly discovered TMEM16 family members the native olfactory channel? The 

answer came soon after when anoctamin2/TMEM16B was biophysically characterized in axolotl 

oocytes and HEK cells.8,60,73,74  

Not only was it a CaCC but also most of its properties resembled those of the native olfactory 

channel.8,60,73–75 In addition, TMEM16B was found to be a prominent protein in the olfactory ciliary 

proteome with a relative abundance of TMEM16B to CNGA2,75,76 in agreement with 

electrophysiological data showing that CaCCs have a greater density than CNG channels. 

Anecdotally, in 2005, while trying to identify markers for different populations of cell types in the 

OE, it was shown that TMEM16B transcripts were abundantly localized in mature OSNs; 

unfortunately, at the time nobody could tell that TMEM16B was a CaCC.77 When, via adenoviral 

infections, GFP-tagged TMEM16B was expressed in OSNs, it trafficked to the ciliary membrane,75 

and immunohistochemical experiments showed that it was localized in the ciliary layer of the OE 

(Figure 3A).60,78,79  

Several other members of the TMEM16 family (16A, 16F, 16H, 16K) were found in the OE.60,79–81 

Only - TMEM16A and TMEM16F – were further studied by immunofluorescence and only the 

latter was shown to be expressed in the cilia of the OSNs80, while TMEM16A was expressed in 

some supporting cells of the OE.82,83 Whether TMEM16F is part of the native channel requires 

further studies.80,84 

Four different splice variants of TMEM16B are expressed in the OE (Figure 3B). Two variants 

(isoform B, the most abundant, and isoform BΔ4) have the transcription start site in a newly 

identified exon (exon 1b) therefore encoding for a shorter N-terminal region than TMEM16B in the 

retina, whereas the other two, low-abundance variants (isoform A and AΔ4) have the canonical 

start site. Interestingly, in two isoforms (AΔ4 and BΔ4) exon 4 is spliced out and they are not able 

to form functional channels if expressed alone in a heterologous system.85  

A side-by-side comparison of the functional properties measured in excised inside-out patches 

from the native olfactory Cl- channel and the TMEM16B-induced current in HEK 293 cells showed 

remarkable similarities (Figure 3C - F). Both channels showed Ca2+ activated currents (Figure 3C) 

with dose–response relations having half-maximal concentration of Ca2+ of 4.9 μM for TMEM16B 
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very similar to 4.7 μM for native channels at −50 mV (Figure 3D). Moreover, both channels have 

the same anion selectivity: they are more permeable to anions larger than Cl¯ and have little 

permeability for methanesulfonate (Figure 3E–F). In addition, both TMEM16B and native CaCCs 

are similarly blocked by niflumic acid (Figure 3G–I). Moreover, TMEM16B displays a Ca2+-

dependent inactivation and an irreversible run-down similar to native olfactory CaCCs.5,73,75,85 Co-

expression of the two splice variants B and BΔ4 gives rise to a channel that reproduces the native 

voltage-dependent inactivation at positive holding potentials better than isoform B alone. Thus, 

TMEM16B is an important and required component of the olfactory Cl- channel that has been 

confirmed by several labs independently.86 

 

Finally, the TMEM16B KO. 

Since the identification of TMEM16B expression in the OE, the knockout (KO) mouse model was in 

the air: it took 3 years to have the first mouse model where the TMEM16B gene was knocked out. 

In 2011 Billig et al.81 published the TMEM16B KO mouse model in a paper with an unexpected 

title: “Ca2+-activated Cl¯ currents are dispensable for olfaction”. It was shown that the Ca2+-

activated Cl- currents was entirely absent in OSNs from TMEM16B KO mice, confirming that 

TMEM16B is a mandatory part of the Cl- channel. However, KO mice performed indistinguishably 

from WT mice in an olfactory-guided Go/No Go task, suggesting that Ca2+-activated Cl- currents are 

not relevant for near normal olfactory behavior. This result was truly puzzling, considering that the 

Cl- channel is expressed at high levels at a significant metabolic cost and evolutionarily conserved 

across many species. Would this channel only have a merely minor accessory role or none at all? 

 

Using the same animal model (kindly provided by Prof. Jentsch), Pietra et al. (2016)87 re-examined 

the question from a slightly different perspective, starting with a naïve behavioral task, the 

“finding the buried food test” which, unlike the Go/NoGo task, does not involve any animal 

training and pre-learning. Indeed, from the perspective of the mouse, the Go/NoGo task is an 

artificial operant conditioning experiment for which the mouse has to be extensively trained and 

be exposed to the same odorant repeatedly. Our approach, instead, involved odor-guided food-

seeking where mice must use their olfactory ability to locate a food item buried under the bedding 

chips in the cage. This task did not require any learning sessions, making it a very simple and naïve 

task that lets the animals rely more on their innate olfactory abilities. TMEM16B KO mice were 

accomplishing the task significantly slower than wild type mice. Interestingly, when mice were 
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tested once a day for several days, KO mice progressively caught up with WT mice and, after 2-3 

days of testing, they performed equally well. This suggests that once KO mice “learned” the 

identity of the odor, they could perform equally well (Figure 4A and B). If we challenged the KO 

with yet another novel odor, TMEM16B KO again required longer times to locate the food 

compared to WT mice, whereas for odors already known to the mice, e.g., retesting with the same 

food or using their standard chow, their performance was similar to WT (Figure 4C). Thus our 

different behavioral tests gave different results compared to Billig et al.81, although their tests 

aimed at detecting different behavioral aspects. Given that we found that KO mice required longer 

times to identify new odorants, it would be interesting to investigate how, in a Go/No Go 

paradigm, mice trade off accuracy for odorant-sampling duration (meaning the KO mice might 

sample for a longer period to achieve the same accuracy), as WT mice do.81 

Clearly, though, in comparison to CNGA2 KO or AC3 KO mice, which are anosmic, TMEM16B KO 

are not anosmic. But CaCCs are not simply dispensable for all olfactory tasks, they may be 

dispensable for the kind of tasks which require extensive learning and training. Therefore, a 

broader battery of behavioral tests is required to delineate those differences. Also, as afore 

mentioned TMEM16B is expressed in other cell types 62–66 and in particular in brain structures that 

may be linked to the olfactory systems.88–90  

Thus, a future approach to better dissect out the exact contribute of TMEM16B to the olfactory 

system may require conditional KO model where this channel is deleted in a population of mature 

OSNs.  

 

TMEM16B involvement in odorant-induced action potential firing 

The transduction current drives a generator potential that quickly reaches the threshold for AP 

firing to be conveyed to the OB. Since in OSNs, relatively small neurons with a high input 

resistance,91 CNG currents alone are sufficient to generate APs, what is the role of the CaCC?If in 

OSNs CNG currents alone are sufficient to generate APs,18,91 what is then the role of the Ca
2+

-

activated Cl
-
 currents?  

Usually, APs in OSNs are generated at the very onset of an odorant response and by the end of the 

rising phase of the transduction current, their spike amplitude has collapsed into the noise of the 

recording. This is most likely due to the progressive and ultimately complete inactivation of 

voltage-gated Na+ channels during strong and sustained depolarization.92 In addition, the presence 
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of a rapidly inactivating K+ conductance that recovers only slowly from inactivation has been 

suggested to contribute to the generation of short bursts of spike firing.93 

While the transduction current saturates far above the odorant threshold, the number of APs fired 

increases monotonically with stimulus concentration only up to half maximal odorant 

concentrations, then showing a decreasing number of AP (typically 1-2) at higher 

concentrations.24,94–96  

In other words, the number of APs saturates well before that the transduction current saturates. 

In response to IBMX (a phosphodiesterase blocker used as surrogate for odorant stimulation) or to 

an odorant, OSNs fire a train of few APs (Figure 5A and C for WT) with a relatively short duration 

(Figure5F, black). However, when TMEM16B is absent the number of APs in the train increased 

and so did its duration (Figure 5B and D for KO). The number of APs in the KO increased about 10-

fold and the AP train duration about 3-fold (Figure 5E and F). In conclusion, the lack of TMEM16B, 

and thus of any Cl¯ component, affects the firing behavior by prolonging the AP train duration and 

increasing the number of APs in response to a stimulus.  

Therefore, the depolarizing action of CaCCs, although somewhat counterintuitive, is that of 

shortening AP firing by tuning it with the odorant strength, driving in this way the time course of 

the response that causes quick inactivation of voltage dependent Na+ channels. Both the number 

of APs and AP train duration might be required for the appropriate flow of information that 

ultimately is sent to the brain to correctly signal for the right odorant concentration and stimulus 

duration.94,97 

 

While the transduction current saturates far above the odorant threshold, the number of APs fired 

increases monotonically with stimulus concentration only up to half maximal odorant 

concentrations, then showing a decreasing number of AP (typically 1-2) at higher 

concentrations.24,94–96  

In other words, the number of APs saturates well before that the transduction current saturates. 

In response to IBMX (a phosphodiesterase blocker used as surrogate for odorant stimulation) or to 

an odorant, OSNs fire a train of few APs (Figure 5A and C for WT) with a relatively short duration 

(Figure5F, black). However, when TMEM16B is absent the number of APs in the train increased 

and so did its duration (Figure 5B and D for KO). The number of APs in the KO increased about 10-

fold and the AP train duration about 3-fold (Figure 5E and F). In conclusion, the lack of TMEM16B, 
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and thus of any Cl¯ component, affects the firing behavior by prolonging the AP train duration and 

increasing the number of APs in response to a stimulus.  

Therefore, the depolarizing action of Ca2+-activated Cl- currents, although somewhat 

counterintuitive, is that of shortening AP firing by tuning it with the odorant strength, driving in 

this way the time course of the response that causes quick inactivation of voltage dependent Na+ 

channels. Both the number of APs and AP train duration might be required for the appropriate 

flow of information that ultimately is sent to the brain to correctly signal for the right odorant 

concentration and stimulus duration.94,97 

 

TMEM16B involvement in spontaneous action potential firing 

 

Beginning with the early electrophysiological characterization of OSNs, spontaneous electrical 

activity in the form of basal spiking was described. OSNs showed basal membrane voltage 

fluctuations which are able to reach the threshold for spontaneous APs firing. This “noise” is 

caused by cAMP fluctuations generated by the spontaneous activity of an OR which in turn drives 

G protein and AC3 activation to open the CNG channel and then TMEM16B.99 Interestingly, 

different ORs have different constitutive activities that drive cAMP fluctuations, therefore 

spontaneous firing depends on the OR that an OSN expresses.99,100 

An interesting case is that of the I7 OR that has been extensively investigated for its 

pharmacological profile;101,102 it has a very high basal activity resulting in a higher spontaneous 

firing rate when compared with much quieter ORs (i.e. mOR-Eg). When we investigated the 

spontaneous firing rate of I7 OSNs lacking the TMEM16B channels, their spontaneous firing 

dramatically decreased (Figure 6). These results along with the evidence that spontaneous APs 

firing is completely and reversibly blocked by applying the CaCC blocker niflumic acid demonstrate 

that even at very low levels of activity, the CaCC is what drives the AP output.99  

In conclusion, while for odorant responses TMEM16B is involved in controlling the spike train 

duration that may encode stimulus strength, for the spontaneous activity of an OSN expressing an 

OR with high basal activity, the CaCC provides the depolarizing current that amplifies the small 

CNG currents. OSNs expressing other ORs with different basal activity might be affected differently 

by the lack of TMEM16B, though. Forgotten for a long time, we think that spontaneous activity is 

an emerging and interesting aspect of the olfactory system and TMEM16B involvement.  
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TMEM16B-mediated electrical activity has a role in glomerular targeting in the OB 

Basal activity of ORs and basal noise could be considered as an epiphenomenon of a system that 

expresses 1000 different G protein-coupled receptors, but recent evidence suggests that 

spontaneous activity could be more than just noise since, for example, spontaneously generated 

levels of cAMP could set the threshold above which a stimulus could give rise to a meaningful 

response. Additionally, basal activity has been implicated in targeting of OSN axons to the OB.  

In sensory physiology, the notion that “neurons that fire together wire together” is used to 

describe that spiking can determine the fate of the projecting axons to higher areas of the brain. In 

the olfactory system, this notion has been complicated by data showing that the “biochemical 

intrinsic spontaneous activity” (as supposed to electrical activity) is likely to be involved in the 

control of the glomerular formation and targeting.103,104  

The process of OR selection during OSN development is crucial and determines the fate of these 

neurons, not only for their response profile but also for the targeting of their axons to the bulb. 

Each OSN projects to a neuropil-like structure called glomerulus, which groups together axons 

from OSNs expressing the same OR. There are typically two glomeruli per OR, one on the lateral 

and one on the medial side of the OB. The OR identity regulates the expression levels of many 

molecules involved in glomerular positioning and targeting and the development of the olfactory 

map is largely target-independent. The guidance molecule implicated in anterior-posterior 

targeting was proposed to be Neuropilin1 (Nrp1) and recent evidence showed that OR 

spontaneous activity (and not ligand-induced activity), probably via the cAMP-PKA pathway,105–107 

affects its expression level. Genetically swapping an OR of low basal activity with a high activity OR 

in a given OSN caused a posterior shift of the glomeruli. This model, though, has been questioned 

and requires further studies,108–110 but the idea of having an OR-dependent regulation of the 

expression of guidance molecules involved in OB targeting and glomerular formation seems to 

hold because of the mosaic pattern of expression of such molecules in the OB (i.e. Nrp1).94,108,110 

Once the axons of OSNs expressing the same ORs converge in a general area, ligand-dependent 

activity determines the expression of molecules involved in axon sorting into individual glomeruli.  

That the spontaneous AP firing could be important for glomerular formation is also supported by 

results from the TMEM16B KO mouse: additional, supernumerary glomeruli were observed for I7-

expressing OSNs. The number of glomeruli in the OB onto which I7-expressing OSNs converge 

almost doubled in the TMEM16B KO mice.87 As the expression of I7 ORs confers to OSNs a high 

rate of spontaneous firing, I7-expressing OSNs are more sensitive to the reduction of the firing 
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rate as is the case in the TMEM16B KO, while OSNs expressing other more silent ORs might not be 

affected.87,81 Indeed, this might be the case in the two other ORs, M72 and P2, for which 

glomerular targeting has also been studied in TMEM16B KO mice, which appeared to target 

normally to the OB.81 Thus, TMEM16B could play an important role to enable correct glomerular 

targeting, and the role of spontaneous firing in targeting needs to be carefully reconsidered. The 

TMEM16B KO mouse model could be a suitable tool to accomplish the task. 

 Conclusions and Perspectives 

The tale of the olfactory CaCC continues. It is like a journey, and the destination is to determine its 

role in OSNs and in the olfactory system. Since identifying its molecular identity, and hence being 

able to knock it out, TMEM16B has been shown to control the duration of OSN firing in response 

to a stimulus, with KO OSNs displaying a prolonged spike train and also axon mis-targeting to the 

OB. Alteration in AP firing alters the input to glomeruli in the OB where changes in temporal 

patterns could cause a change in how odor quality and intensity are encoded, hence leading to 

problems in performing naïve behavioral tasks and recognizing novel odors. Changes in basal and 

evoked activity could also alter glomerular connectivity to second order neurons in the bulb, such 

as interneurons and mitral/tufted cells. Thus, the Cl- channel in OSNs might have multiple and 

complex effects on the physiology of OSNs themselves, their connectivity to higher order neurons 

and how they contribute to olfactory coding of odorants. This might be only the beginning of the 

journey to understand this complexity.  

  



 

 15 

References 

1.  Axel R., Buck L. A novel multigene family may encode odorant receptors: A molecular 

basis for odor recognition. Cell 1991; 65:175–87.  

2.  Kleene SJ, Gesteland RC. Calcium-activated chloride conductance in frog olfactory cilia. J 

Neurosci 1991; 11:3624–9.  

3.  Kurahashi T, Yau K-W. Co-existence of cationic and chloride components in odorant-

induced current of vertebrate olfactory receptor cells. Nature 1993; 363:71–4.  

4.  Zhainazarov AB, Ache BW. Odor-induced currents in Xenopus olfactory receptor cells 

measured with perforated-patch recording. J Neurophysiol 1995; 74:479–83.  

5.  Reisert J, Bauer PJ, Yau K-W, Frings S. The Ca-activated Cl channel and its control in rat 

olfactory receptor neurons. J Gen Physiol 2003; 122:349–63.  

6.  Sato K, Suzuki N. The contribution of a Ca(2+)-activated Cl(-) conductance to amino-acid-

induced inward current responses of ciliated olfactory neurons of the rainbow trout. J Exp Biol 

2000; 203:253–62.  

7.  Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, 

Zegarra-Moran O, Galietta LJV. TMEM16A, a membrane protein associated with calcium-

dependent chloride channel activity. Science 2008; 322:590–4.  

8.  Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium-

activated chloride channel subunit. Cell 2008; 134:1019–29.  

9.  Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim W-S, Park SP, Lee J, Lee B, Kim B-M, 

et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 2008; 

455:1210–5.  

10.  Malnic B, Hirono J, Sato T, Buck LB. Combinatorial Receptor Codes for Odors. Cell 1999; 

96:713–23.  

11.  Jones DT, Reed RR. Golf: an olfactory neuron specific-G protein involved in odorant signal 

transduction. Science 1989; 244:790–5.  

12.  Bakalyar HA, Reed RR. Identification of a specialized adenylyl cyclase that may mediate 

odorant detection. Science 1990; 250:1403–6.  

13.  Nakamura T, Gold GH. A cyclic nucleotide-gated conductance in olfactory receptor cilia. 

Nature 1987; 325:442–4.  

14.  Firestein S, Zufall F, Shepherd GM. Single odor-sensitive channels in olfactory receptor 

neurons are also gated by cyclic nucleotides. J Neurosci 1991; 11:3565–72.  

15.  Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T. Chloride Accumulation in Mammalian 

Olfactory Sensory Neurons. J Neurosci 2004; 24:7931–8.  

16.  Reuter D, Zierold K, Schröder WH, Frings S. A Depolarizing Chloride Current Contributes 

to Chemoelectrical Transduction in Olfactory Sensory Neurons In Situ. J Neurosci 1998; 18:6623–

30.  

17.  Reisert J, Lai J, Yau K-W, Bradley J. Mechanism of the Excitatory Cl− Response in Mouse 

Olfactory Receptor Neurons. Neuron 2005; 45:553–61.  

18.  Lowe G, Gold GH. Nonlinear amplification by calcium-dependent chloride channels in 

olfactory receptor cells. Nature 1993; 366:283–6.  

19.  Boccaccio A, Menini A. Temporal Development of Cyclic Nucleotide-Gated and Ca2+-

Activated Cl− Currents in Isolated Mouse Olfactory Sensory Neurons. J Neurophysiol 2007; 

98:153–60.  

20.  Cygnar KD, Zhao H. Phosphodiesterase 1C is dispensable for rapid response termination of 

olfactory sensory neurons. Nat Neurosci 2009; 12:454–62.  

21.  Boccaccio A, Lagostena L, Hagen V, Menini A. Fast Adaptation in Mouse Olfactory 

Sensory Neurons Does Not Require the Activity of Phosphodiesterase. J Gen Physiol 2006; 

128:171–84.  

22.  Flannery RJ, French DA, Kleene SJ. Clustering of cyclic-nucleotide-gated channels in 

olfactory cilia. Biophys J 2006; 91:179–88.  



 

 16 

23.  Chen C, Nakamura T, Koutalos Y. Cyclic AMP diffusion coefficient in frog olfactory cilia. 

Biophys J 1999; 76:2861–7.  

24.  Reisert J, Matthews HR. Response properties of isolated mouse olfactory receptor cells. J 

Physiol 2001; 530:113–22.  

25.  Antolin S, Matthews HR. The effect of external sodium concentration on sodium–calcium 

exchange in frog olfactory receptor cells. J Physiol 2007; 581:495–503.  

26.  Reisert J, Matthews HR. Na+-dependent Ca2+ Extrusion Governs Response Recovery in 

Frog Olfactory Receptor Cells. J Gen Physiol 1998; 112:529–35.  

27.  Pyrski M, Koo JH, Polumuri SK, Ruknudin AM, Margolis JW, Schulze DH, Margolis FL. 

Sodium/calcium exchanger expression in the mouse and rat olfactory systems. J Comp Neurol 

2007; 501:944–58.  

28.  Stephan AB, Tobochnik S, Dibattista M, Wall CM, Reisert J, Zhao H. The Na(+)/Ca(2+) 

exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat 

Neurosci 2012; 15:131–7.  

29.  Ferguson CH, Zhao H. Simultaneous Loss of NCKX4 and CNG Channel Desensitization 

Impairs Olfactory Sensitivity. J Neurosci Off J Soc Neurosci 2017; 37:110–9.  

30.  Fluegge D, Moeller LM, Cichy A, Gorin M, Weth A, Veitinger S, Cainarca S, Lohmer S, 

Corazza S, Neuhaus EM, et al. Mitochondrial Ca(2+) mobilization is a key element in olfactory 

signaling. Nat Neurosci 2012; 15:754–62.  

31.  Bradley J, Li J, Davidson N, Lester HA, Zinn K. Heteromeric olfactory cyclic nucleotide-

gated channels: a subunit that confers increased sensitivity to cAMP. Proc Natl Acad Sci U S A 

1994; 91:8890–4.  

32.  Liman ER, Buck LB. A second subunit of the olfactory cyclic nucleotide-gated channel 

confers high sensitivity to cAMP. Neuron 1994; 13:611–21.  

33.  Sautter A, Zong X, Hofmann F, Biel M. An isoform of the rod photoreceptor cyclic 

nucleotide-gated channel beta subunit expressed in olfactory neurons. Proc Natl Acad Sci U S A 

1998; 95:4696–701.  

34.  Bönigk W, Bradley J, Müller F, Sesti F, Boekhoff I, Ronnett GV, Kaupp UB, Frings S. The 

Native Rat Olfactory Cyclic Nucleotide-Gated Channel Is Composed of Three Distinct Subunits. J 

Neurosci 1999; 19:5332–47.  

35.  Zheng J, Zagotta WN. Stoichiometry and assembly of olfactory cyclic nucleotide-gated 

channels. Neuron 2004; 42:411–21.  

36.  Dhallan RS, Yau KW, Schrader KA, Reed RR. Primary structure and functional expression 

of a cyclic nucleotide-activated channel from olfactory neurons. Nature 1990; 347:184–7.  

37.  Ludwig J, Margalit T, Eismann E, Lancet D, Kaupp UB. Primary structure of cAMP-gated 

channel from bovine olfactory epithelium. FEBS Lett 1990; 270:24–9.  

38.  Frings S, Lynch JW, Lindemann B. Properties of cyclic nucleotide-gated channels mediating 

olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol 1992; 100:45–67.  

39.  Kurahashi T, Kaneko A. Gating properties of the cAMP-gated channel in toad olfactory 

receptor cells. J Physiol 1993; 466:287–302.  

40.  Nache V, Schulz E, Zimmer T, Kusch J, Biskup C, Koopmann R, Hagen V, Benndorf K. 

Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative. J Physiol 2005; 

569:91–102.  

41.  Biskup C, Kusch J, Schulz E, Nache V, Schwede F, Lehmann F, Hagen V, Benndorf K. 

Relating ligand binding to activation gating in CNGA2 channels. Nature 2007; 446:440–3.  

42.  Larsson HP, Kleene SJ, Lecar H. Noise analysis of ion channels in non-space-clamped 

cables: estimates of channel parameters in olfactory cilia. Biophys J 1997; 72:1193–203.  

43.  Kleene SJ. High-gain, low-noise amplification in olfactory transduction. Biophys J 1997; 

73:1110–7.  

44.  Kramer RH, Siegelbaum SA. Intracellular Ca2+ regulates the sensitivity of cyclic 

nucleotide-gated channels in olfactory receptor neurons. Neuron 1992; 9:897–906.  



 

 17 

45.  Zufall F, Firestein S, Shepherd GM. Analysis of single cyclic nucleotide-gated channels in 

olfactory receptor cells. J Neurosci 1991; 11:3573–80.  

46.  Dzeja C, Hagen V, Kaupp UB, Frings S. Ca2+ permeation in cyclic nucleotide-gated 

channels. EMBO J 1999; 18:131–44.  

47.  Pifferi S, Boccaccio A, Menini A. Cyclic nucleotide-gated ion channels in sensory 

transduction. FEBS Lett 2006; 580:2853–9.  

48.  Reisert J, Zhao H. Response kinetics of olfactory receptor neurons and the implications in 

olfactory coding. J Gen Physiol 2011; 138:303–10.  

49.  Song Y, Cygnar KD, Sagdullaev B, Valley M, Hirsh S, Stephan A, Reisert J, Zhao H. 

Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response 

termination but not sensitivity to recurring stimulation. Neuron 2008; 58:374–86.  

50.  Menini A. Calcium signalling and regulation in olfactory neurons. Curr Opin Neurobiol 

1999; 9:419–26.  

51.  Kurahashi T, Menini A. Mechanism of odorant adaptation in the olfactory receptor cell. 

Nature 1997; 385:725–9.  

52.  De Palo G, Boccaccio A, Miri A, Menini A, Altafini C. A dynamical feedback model for 

adaptation in the olfactory transduction pathway. Biophys J 2012; 102:2677–86.  

53.  Cygnar KD, Stephan AB, Zhao H. Analyzing responses of mouse olfactory sensory neurons 

using the air-phase electroolfactogram recording. J Vis Exp JoVE 2010;  

54.  Pinato G, Rievaj J, Pifferi S, Dibattista M, Masten L, Menini A. Electroolfactogram 

responses from organotypic cultures of the olfactory epithelium from postnatal mice. Chem Senses 

2008; 33:397–404.  

55.  Brunet LJ, Gold GH, Ngai J. General Anosmia Caused by a Targeted Disruption of the 

Mouse Olfactory Cyclic Nucleotide–Gated Cation Channel. Neuron 1996; 17:681–93.  

56.  Zhao H, Reed RR. X Inactivation of the OCNC1 Channel Gene Reveals a Role for Activity-

Dependent Competition in the Olfactory System. Cell 2001; 104:651–60.  

57.  Lin W, Arellano J, Slotnick B, Restrepo D. Odors Detected by Mice Deficient in Cyclic 

Nucleotide-Gated Channel Subunit A2 Stimulate the Main Olfactory System. J Neurosci 2004; 

24:3703–10.  

58.  Boccaccio A, Sagheddu C, Menini A. Flash photolysis of caged compounds in the cilia of 

olfactory sensory neurons. J Vis Exp JoVE 2011; :e3195.  

59.  Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S, Menini A, Zucchelli S. 

Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. 

Proc Natl Acad Sci 2006; 103:12929–34.  

60.  Sagheddu C, Boccaccio A, Dibattista M, Montani G, Tirindelli R, Menini A. Calcium 

concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse 

olfactory sensory neurons and TMEM16b-transfected HEK 293T cells. J Physiol 2010; 588:4189–

204.  

61.  Kleene SJ. Origin of the chloride current in olfactory transduction. Neuron 1993; 11:123–

32.  

62.  Duran C, Thompson CH, Xiao Q, Hartzell HC. Chloride channels: often enigmatic, rarely 

predictable. Annu Rev Physiol 2010; 72:95–121.  

63.  Yang C, Delay RJ. Calcium-activated chloride current amplifies the response to urine in 

mouse vomeronasal sensory neurons. J Gen Physiol 2010; 135:3–13.  

64.  Kim S, Ma L, Yu CR. Requirement of calcium-activated chloride channels in the activation 

of mouse vomeronasal neurons. Nat Commun 2011; 2:365.  

65.  Dibattista M, Amjad A, Maurya DK, Sagheddu C, Montani G, Tirindelli R, Menini A. 

Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons. J 

Gen Physiol 2012; 140:3–15.  

66.  Amjad A, Hernandez-Clavijo A, Pifferi S, Maurya DK, Boccaccio A, Franzot J, Rock J, 

Menini A. Conditional knockout of TMEM16A/anoctamin1 abolishes the calcium-activated 



 

 18 

chloride current in mouse vomeronasal sensory neurons. J Gen Physiol 2015; 145:285–301.  

67.  Hartzell C, Qu Z, Wei R, Mann W, Fischmeister  R. Molecular Physiology of Calcium-

activated Chloride Channels. Speaker Abstracts. J Gen Physiol 2003; 122:1a–46a.  

Speaker Abstracts. J Gen Physiol 2003; 122:1a–46a.  

68.  Pifferi S, Dibattista M, Sagheddu C, Boccaccio A, Al Qteishat A, Ghirardi F, Tirindelli R, 

Menini A. Calcium-activated chloride currents in olfactory sensory neurons from mice lacking 

bestrophin-2. J Physiol 2009; 587:4265–79.  

69.  Yu K, Duran C, Qu Z, Cui Y-Y, Hartzell HC. Explaining Calcium-Dependent Gating of 

Anoctamin-1 Chloride Channels Requires a Revised TopologyNovelty and Significance. Circ Res 

2012; 110:990–9.  

70.  Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R. X-ray structure of a calcium-

activated TMEM16 lipid scramblase. Nature 2014; 516:207–12.  

71.  Pedemonte N, Galietta LJV. Structure and Function of TMEM16 Proteins (Anoctamins). 

Physiol Rev 2014; 94:419–59.  

72.  Picollo A, Malvezzi M, Accardi A. TMEM16 proteins: unknown structure and confusing 

functions. J Mol Biol 2015; 427:94–105.  

73.  Pifferi S, Dibattista M, Menini A. TMEM16B induces chloride currents activated by 

calcium in mammalian cells. Pflüg Arch Eur J Physiol 2009; 458:1023–38.  

74.  Stöhr H, Heisig JB, Benz PM, Schöberl S, Milenkovic VM, Strauss O, Aartsen WM, 

Wijnholds J, Weber BHF, Schulz HL. TMEM16B, A Novel Protein with Calcium-Dependent 

Chloride Channel Activity, Associates with a Presynaptic Protein Complex in Photoreceptor 

Terminals. J Neurosci 2009; 29:6809–18.  

75.  Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H. ANO2 is the cilial calcium-

activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci 2009; 

106:11776–81.  

76.  Mayer U, Küller A, Daiber PC, Neudorf I, Warnken U, Schnölzer M, Frings S, Möhrlen F. 

The proteome of rat olfactory sensory cilia. Proteomics 2009; 9:322–34.  

77.  Yu T-T, McIntyre JC, Bose SC, Hardin D, Owen MC, McClintock TS. Differentially 

expressed transcripts from phenotypically identified olfactory sensory neurons. J Comp Neurol 

2005; 483:251–62.  

78.  Hengl T, Kaneko H, Dauner K, Vocke K, Frings S, Möhrlen F. Molecular components of 

signal amplification in olfactory sensory cilia. Proc Natl Acad Sci 2010; 107:6052–7.  

79.  Rasche S, Toetter B, Adler J, Tschapek A, Doerner JF, Kurtenbach S, Hatt H, Meyer H, 

Warscheid B, Neuhaus EM. Tmem16b is Specifically Expressed in the Cilia of Olfactory Sensory 

Neurons. Chem Senses 2010; 35:239–45.  

80.  Henkel B, Drose DR, Ackels T, Oberland S, Spehr M, Neuhaus EM. Co-expression of 

Anoctamins in Cilia of Olfactory Sensory Neurons. Chem Senses 2015; 40:73–87.  

81.  Billig GM, Pál B, Fidzinski P, Jentsch TJ. Ca2+-activated Cl- currents are dispensable for 

olfaction. Nat Neurosci 2011; 14:763–9.  

82.  Maurya DK, Menini A. Developmental expression of the calcium-activated chloride 

channels TMEM16A and TMEM16B in the mouse olfactory epithelium. Dev Neurobiol 2014; 

74:657–75.  

83.  Maurya DK, Henriques T, Marini M, Pedemonte N, Galietta LJV, Rock JR, Harfe BD, 

Menini A. Development of the Olfactory Epithelium and Nasal Glands in TMEM16A-/- and 

TMEM16A+/+ Mice. PloS One 2015; 10:e0129171.  

84.  Tien J, Lee HY, Minor DL, Jan YN, Jan LY. Identification of a dimerization domain in the 

TMEM16A calcium-activated chloride channel (CaCC). Proc Natl Acad Sci 2013; 110:6352–7.  

85.  Saidu SP, Stephan AB, Talaga AK, Zhao H, Reisert J. Channel properties of the splicing 

isoforms of the olfactory calcium-activated chloride channel Anoctamin 2. J Gen Physiol 2013; 

141:691–703.  

86.  Pifferi S, Cenedese V, Menini A. Anoctamin 2/TMEM16B: a calcium-activated chloride 



 

 19 

channel in olfactory transduction. Exp Physiol 2012; 97:193–9.  

87.  Pietra G, Dibattista M, Menini A, Reisert J, Boccaccio A. The Ca2+-activated Cl− channel 

TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons. J 

Gen Physiol 2016; 148:293–311.  

88.  Huang WC, Xiao S, Huang F, Harfe BD, Jan YN, Jan LY. Calcium-activated chloride 

channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 

2012; 74:179–92.  

89.  Zhang W, Schmelzeisen S, Parthier D, Frings S, Möhrlen F. Anoctamin Calcium-Activated 

Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex. PLOS ONE 

2015; 10:e0142160.  

90.  Ha GE, Lee J, Kwak H, Song K, Kwon J, Jung S-Y, Hong J, Chang G-E, Hwang EM, Shin 

H-S, et al. The Ca(2+)-activated chloride channel anoctamin-2 mediates spike-frequency adaptation 

and regulates sensory transmission in thalamocortical neurons. Nat Commun 2016; 7:13791.  

91.  Lynch JW, Barry PH. Action potentials initiated by single channels opening in a small 

neuron (rat olfactory receptor). Biophys J 1989; 55:755–68.  

92.  Trotier D. Intensity coding in olfactory receptor cells. Semin Cell Biol 1994; 5:47–54.  

93.  Lynch JW, Barry PH. Inward rectification in rat olfactory receptor neurons. Proc Biol Sci 

1991; 243:149–53.  

94.  Dibattista M, Reisert J. The Odorant Receptor-Dependent Role of Olfactory Marker Protein 

in Olfactory Receptor Neurons. J Neurosci 2016; 36:2995–3006.  

95.  Rospars J-P, Lansky P, Chaput M, Duchamp-Viret P. Competitive and Noncompetitive 

Odorant Interactions in the Early Neural Coding of Odorant Mixtures. J Neurosci 2008; 28:2659–

66.  

96.  Gesteland RC, Sigwart CD. Olfactory receptor units—a mammalian preparation. Brain Res 

1977; 133:144–9.  

97.  Firestein S, Picco C, Menini A. The relation between stimulus and response in olfactory 

receptor cells of the tiger salamander. J Physiol 1993; 468:1–10.  

98.  Ponissery Saidu S, Dibattista M, Matthews HR, Reisert J. Odorant-induced responses 

recorded from olfactory receptor neurons using the suction pipette technique. J Vis Exp JoVE 2012; 

:e3862.  

99.  Reisert J. Origin of basal activity in mammalian olfactory receptor neurons. J Gen Physiol 

2010; 136:529–40.  

100.  Connelly T, Savigner A, Ma M. Spontaneous and sensory-evoked activity in mouse 

olfactory sensory neurons with defined odorant receptors. J Neurophysiol 2013; 110:55–62.  

101.  Araneda RC, Kini AD, Firestein S. The molecular receptive range of an odorant receptor. 

Nat Neurosci 2000; 3:1248–55.  

102.  Kurland MD, Newcomer MB, Peterlin Z, Ryan K, Firestein S, Batista VS. Discrimination of 

saturated aldehydes by the rat I7 olfactory receptor. Biochemistry (Mosc) 2010; 49:6302–4.  

103.  Zou D-J, Chesler A, Firestein S. How the olfactory bulb got its glomeruli: a just so story? 

Nat Rev Neurosci 2009; 10:611–8.  

104.  Lorenzon P, Redolfi N, Podolsky MJ, Zamparo I, Franchi SA, Pietra G, Boccaccio A, 

Menini A, Murthy VN, Lodovichi C. Circuit Formation and Function in the Olfactory Bulb of Mice 

with Reduced Spontaneous Afferent Activity. J Neurosci 2015; 35:146–60.  

105.  Imai T, Suzuki M, Sakano H. Odorant receptor-derived cAMP signals direct axonal 

targeting. Science 2006; 314:657–61.  

106.  Nakashima A, Takeuchi H, Imai T, Saito H, Kiyonari H, Abe T, Chen M, Weinstein LS, Yu 

CR, Storm DR, et al. Agonist-Independent GPCR Activity Regulates Anterior-Posterior Targeting 

of Olfactory Sensory Neurons. Cell 2013; 154:1314–25.  

107.  Takeuchi H, Sakano H. Neural map formation in the mouse olfactory system. Cell Mol Life 

Sci CMLS 2014; 71:3049–57.  

108.  Zapiec B, Bressel OC, Khan M, Walz A, Mombaerts P. Neuropilin-1 and the Positions of 



 

 20 

Glomeruli in the Mouse Olfactory Bulb. eNeuro 2016; 3.  

109.  Movahedi K, Grosmaitre X, Feinstein P. Odorant receptors can mediate axonal identity and 

gene choice via cAMP-independent mechanisms. Open Biol [Internet] 2016 [cited 2016 Dec 24]; 6. 

Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967819/ 

110.  Assens A, Dal Col J, Njoku A, Dietschi Q, Kan C, Feinstein P, Carleton A, Rodriguez I. 

Alteration of Nrp1 signaling at different stages of olfactory neuron maturation promotes glomerular 

shifts along distinct axes in the olfactory bulb. Dev Camb Engl 2016;  

 

  



 

 21 

 

Figure 1. Olfactory signal transduction. The transduction current is generated upon activation of 

the olfactory receptor (OR) by an odorant in the cilia of an olfactory sensory neuron (OSN) that 

trigger a series of events (indicated by green arrows) that lead to action potential firing that is sent 

to the olfactory bulb (OB) in the brain. A series of negative feedbacks (indicated by red arrows) 

brings the situation back to resting levels. Golf, olfactory G protein; CNG, cyclic nucleotide-gated; 

NCKX4, Na+/Ca2+/K+ exchanger 4; PDE1C, phosphodiesterase 1C; AC3, adenylyl cyclase 3. 
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Figure 2. Cl- gradients in olfactory sensory neurons and activation of Ca2+-activated Cl- currents in 

olfactory cilia.  

The depolarizing action of the Ca2+-activated Cl- is possible because the intraciliary Cl- 

concentration is around 60 mM in the knob/cilia region of an OSN (A and B). Modified from 

Kaneko et al. 2004 with permission15. A series of voltage steps in an excised frog cilium showed 

the existence of cAMP-activated current followed by a secondary current (C) that was absent 

when Cl- was removed from the pseudointracellular bath (D) Modified from Kleene 1993 with 

permission.61 This secondary current was also present in mouse OSNs following cAMP un-caging (E 

and F). It constitutes up to the 90% of the transduction current and was blocked by the Cl- channel 
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blocker niflumic acid (grey traces). Modified from Boccaccio and Menini 2006 with permission 

from American Physiological Society.19 
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Figure 3.  TMEM16B is expressed in the OE and a side by side comparison with the olfactory 

native channel revealed surprisingly similar features. Immunofluorescence experiments revealed 

that TMEM16B is expressed in the cilia of OSNs (A). Modified from Maurya and Menini 2014 with 

permission.82 Its gene has 4 splice variants. (B) Diagram summarizes the 5’ TMEM16B exon splicing 

structure. The green sections indicate the most 5’ AUG translation start codons, and the 

subsequent black bars indicate predicted protein-coding sequence. The variants containing exons 

1a and 2 are less abundant in the olfactory epithelium than the variants containing the previously 

unknown exon 1b.  From Saidu et al. 2013 originally published in the Journal of General 

Physiology.85 (C) currents activated by 100 μM Ca2+ at −50 or +50 mV. (D) normalized currents 

measured at −50 mV were plotted versus Ca2+ concentrations and fitted with the Hill equation. (E 

and F) current–voltage relations from a ramp protocol activated by 100 μM Ca2+. Bath solutions 
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contained 140 mM NaCl, or the sodium salt of methanesulfonate (MeS, green trace) or of the 

more permeable ion Iodide (I, cyan trace), as indicated, showing a similar shift in the reversal 

potential. Intracellular blockage by 300 μM niflumic acid (NFA, orange trace) of the current 

activated by 100 μM Ca2+ at −50 mV. Modified from Pifferi et al. 2006b,59 copyright (2006) 

National Academy of Sciences, USA, and from Pifferi et al. 2009a.73 
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Figure 4.  Behavioral impairment in the TMEM16B KO mice.   In “find the buried cookie test” (A) a 

piece of Oreo cookie was buried under the cage bedding and the mouse when introduced into the 

cage was free to explore to find the cookie. TMEM16B KO mice were slower initially compared to 

WT but over the following days they improved and accomplished the task as fast as the WT (B, 

compare day 1 with day 4). When a new food item was buried the TMEM16B KO mice were again 

slower than the WT (B and C). Modified from Pietra et al. 2016 originally published in the Journal 

of General Physiology with permission.87 
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Figure 5. TMEM16 role in activity dependent firing. (A-B) IBMX responses recorded by using the 

suction electrode technique from isolated OSNs.95 OSNs from WT mice typically fired 2-3 APs in 

response to 1 mM IBMX (1 s stimulation) while the KO fired a more prolonged AP train. This 

finding was confirmed using a different approach: (C-D) loose patch recordings from the dendritic 

knob of OSNs in the intact epithelium (expressing the I7 OR stimulated with its ligand heptanal). 

OSNs from KO mice not only fired more APs (E) but also the AP train duration was prolonged (F). 

Modified from Pietra et al. 2016 originally published in the Journal of General Physiology with 

permission. 87 
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Figure 6 The lack of TMEM16B reduces the spontaneous firing in I7-expressing OSNs. (A) Loose-

patch recordings (60-s recordings) of the spontaneous firing activity from WT (top) and KO mice 

(bottom) OSNs expressing the I7 OR. (B) Interspike interval (ISI) distribution histograms (bin = 5 

ms) normalized to the number of recorded neurons in control (black line) and KO mice (blue line) 

showsthat brief ISIs were missing in TMEM16B KO OSNs compared with WT and that their 

distribution was shifted to longer ISIs. Modified from Pietra et al. 2016 originally published in the 

Journal of General Physiology with permission.87 

 


