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1
I N T R O D U C T I O N : T H E PA R A D O X O F D ATA
AVA I L A B I L I T Y I N C L I M AT E C H A N G E R E S E A R C H

Global Warming and Climate Change hot debate, in 1995, ignited
a global effort among the scientific comunity to study the issue in
a more collaborative way, the Coupled Model Intercomparison

Project (CMIP) organized by theWorld Climate Research Program
(WCRP). The project provided a thorough comparison between the
different climate models, which was needed because of the consider-
able scatter that existed among model results and between simulated
and observed data (Lambert & Boer 2001). The initiative succeeded
and, by 2012, the 5th generation of the project (CMIP5) had more than
20 modelling groups performing CMIP5 simulations using more than
50 climate models. The major goals of which were, according to Tay-
lor et al. (2012): 1) assessing the mechanisms responsible for model
differences, 2) examining climate "predictability" and 3) determining
why similarly forced models produce a range of responses.

The importance of such projects within Global Warming and Cli-
mate Change debate, lies in their ability to provide a range of sim-
ulated climate futures (decades to centuries) that can asses the im-
pact of climate change on society. In particular, as suitable adaptation
and mitigation strategies need to be taken at the national level, an
effort to produce high-resolution "downscaled" climate data based
on the CMIP5 simulations is incarnated by the Coordinated Regional
Downscaling Experiment (CORDEX). CORDEX allows for evaluating
and benchmarking model performances, encompassing the majority
of land areas of the world and reaching resolutions as fine as 10km
(Giorgi et al. 2009)1.

Although scientists are the main users of the data generated by
these projects, goverments and service providers have started real-
izing the need of having access to it, as strategic development to
overcome climate change requires data-driven decisions. As stated
by Overpeck et al. (2011): "Climate data provide the backbone for billion
dollar decisions. With this gravity comes the responsibility to curate climate
data and share it more freely, usefully, and readily than ever before". In view
of these needs, CMIP allows researchers from a wide range of commu-
nities to access climate model output. However, granting open access
puts constrains on the variety and scale of the data and requires a
clever storage and delivery strategies, which becomes even more dif-
ficult as the amount of data increases. Paradoxically, what is granted

1 As a complement to these efforts, the Geoengineering Model Intercomparison Project
(GeoMIP) explores the effects of possible geoengineering approaches to mitigate
climate change.
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2 the paradox of big-data

by models with such a high level of accuracy, is taken by the impossi-
bility of analysing their outputs with current storage infrastructures.

CMIP6 is the most recent phase of the project. Simulations and
analysis are planned to be running from 2015 to 2020, but analysis of
model outputs will continue in the future (Meehl et al. 2014).In par-
ticular, in the CORDEX context, use will be made of CMIP6 global cli-
mate model (GCM) output to produce downscaled projected changes,
which in turn will allow to study vulnerabilities, impacts and adap-
tation strategies. A particularly interesting case, which study will be
allowed by such high resolution models, is the impact of human ac-
tivities (e.g. land-use changes, urban development, the growth and
spread of coastal megacities and the presence of anthropogenic ori-
gin aerosols) on local climate (Gutowski Jr. et al. 2016).

Of all the factors relevant for the study of climate change, Rain
and Wind have a special role because of the dramatic influence they
can have in society. As such, they need to be acuratelly described
by regional climate models. Precipitation is one of the most difficult
variables to simulate in current climate models. Important uncertain-
ties in precipitation arise because of both systematic errors and large
natural variability. Regional winds instead, such as the mistral and
bora in the Mediterranean, are often driven by fine-scale topography
and surface–atmosphere exchanges, thus requiring high resolution to
accurately model them.

Figure 1: The paradox posed by ultra high resolution simulations: The pos-
sibility of making accurate local weather predictions, granted by
ultra-high resolution models (left panel; Gutowski Jr. et al. 2016),
is taken away by the impossibility of analysing their outputs with
current technologies (right panel; Overpeck et al. 2011).

The paradox posed by state of the art ultra high resolution mod-
els lies in the impossibility of current technologies to efficiently store,
share and analyse the outputs of the models. Coming back to the
example of precipitation and wind modelling: On one hand, there
is a need to characterize the uncertainty on precipitation, which re-
quires the analysis of large ensembles of data. On the other hand
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there is a need of analysing ultra high resolution simulations able to
accurately simulate local winds, which again translates in analysing
large amounts of data. –While CMIP1 involved less than 1 TB of data,
CMIP3 data amounts to 36 TB, and CMIP5 is 2.5 petabytes large (PB).
If value and knowledge is going to be extracted from the ultra high
resolution simulations that are running and will be running in the up-
coming years, developing a clever software-hardware infrastructure
which is capable of storing, sharing and analysing large ensembles of
data (Petabytes) is of the utmost importance (Figure 1).
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B I G D ATA @ I C T P

Like all the Climate Research groups in the world, the Earth System
Physics group at ICTP is facing the problem of storing and sharing
big amounts of data produced by Global and Regional Climate Mod-
els. Last decade, the problem was solved by taking advantage of the
network to access a big centralized storage using the Network File
System (NFS). NFS is a distributed file system protocol that allows
users on client computers to access files on a server as if they resided
on their local machines. This is an optimum solution for storing and
sharing files, even a large amount of them. However, problems arise
when

i) analyses have to be performed over a large number of them, or

ii) the amount of files becomes so large and the directory tree so
complicated that the main difficulty of any analysis becomes
knowing where the data is actually stored.

Moreover, human mistakes like careless ordering and sticking to
naming conventions can potentially result in an effective informa-
tion loss, even if the data is physically there, somewhere1. With large
datasets, the task of curating the data becomes extremely compli-
cated.

Lets suppose an ideal situation in which all the users of the data
–researchers, post-docs, PhD students, etc, are very careful, stick to
the naming conventions and a clever ordering schema exist, so all
files contain what they are supposed to contain and that there are no
files that should not be there. Users of this database will not lose time
on looking for the data they need but will only be concerned in writ-
ing scripts to perform the desired analysis. One of these scripts may,
for example, go through several hundreds of files contained in a direc-
tory called ./hourly_samples, opening each of them and performing
some calculations. At the end of it’s execution, the script may store
several files to a directory called ./monthly_means. This is a typical use
of the data in the ICTP Earth System Physics group. Having several
PhD students, post-docs, researchers and staff, continuously retriev-
ing and writing large amounts of data to the single NFS server is
inefficient and work-flows slow-down, as hard disk seek times are
long2 and the bandwidth of the network is limited. It is clear that the

1 In this case, to find the data, one should go through all the database, opening every
file to look what is inside. This kind of task is exactly the one described in point i)

2 HDD seek times are measured in ms. This is comparable to the time it takes to ping
64 bytes to a remote server in a neighbouring city!
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6 big data @ ictp

bottleneck of the work-flow is not the CPU or the Memory but the
reading of the data from disk and the network streaming of it.

Let’s take this idealisation further and suppose that there is not a
bunch of users competing for disk seeks and bandwidth. Let’s sup-
pose that we are the only users and that the File System is not NFS
but our local file system. Is the storage model efficient now?

In the remaining of the chapter I will address issues I) and II) above,
arguing that complications in the immediate future will inevitably
arise if the data-storage model is not rethought and improved.

example of an ideal data flow

Suppose we want to analyse the temperature field of a certain region
of spacetime. Such a temperature field may have been generated by
some simulation with such a resolution that provides Ni temperature
samples along coordinate i (i ∈ {t, x,y, z} = { time, longitude, latitude
and height }), with a grand total of NT = Nt×Nx×Ny×Nz temper-
ature samples3. This potentially huge 4D array will likely be chunked
into sub-arrays and stored in separate NetCDF files to be handled.
Each NetCDF file will thus contain the temperature field of a subin-
terval of time and a subregion of space, with nT = nt×nx×ny×nz

temperature values (The total number of files at the end of this chunk-
ing is Nfiles = NT/nT ).

Getting concrete and easy for now, we focus on a simple case: Nt =

Nx = Ny = Nz = 4, with chunks of size nt = nx = ny = nz = 2

stored to separate NetCDF files. We thus have NT = 256, nT = 16

and Nfiles = 16. A representation of the data is shown in Figure 2.
If we want to take the time-and-height average of this temperature
field and store the results to a single NetCDF file, we can do it easily
with available tools like Iris4. A simple script that does exactly this is
shown in Snippet 1.

For this low amount of files and resolution, our simple script works
perfectly. Figure 3 shows the results of applying the script of Snippet
1 to two datasets: The first dataset is the one we have just described
and the second dataset is almost like the first, with the only difference
being the number of temperature samples stored in each file, ni = 64,
so that Ni = 128, for i ∈ {t, x,y, z}. Note that doubling the resolution
requires handling 24 = 16 times more data. In this case, we have
increased the resolution by a factor of 64/2 = 32, leading to a total
number of temperature samples NT ' 0.26× 109.

3 Such an array will weight NT × 8 bytes if it is composed of doubles.
4 Iris: A python library for Meteorology and Climatology, http://scitools.org.uk/iris/
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Figure 2: A temperature field is sampled. The number of samples taken for
each coordinate is Nt = Nx = Ny = Nz = 4. The temperature
field is chunked and stored in different NetCDF files so that, in
each file, a chunk with nt = nx = ny = nz = 2 samples is found
(i.e. the chunk number of samples is

∏
ni = 16). The complete

temperature field is thus divided in Nfiles =
∏

Ni/
∏

ni = 16

chunks. The Figure shows 4 of these chunks, corresponding to
longitude-latitude slices at constant time and height. Needless to
say, the colors that in a real case scenario would correspond to the
values of the temperature, in this case are physically meaningless.
What concerns us is that each value weights 8 bytes, i.e, is a double.

Snippet 1: Python script that calculates time and height averages of a
temperature field distributed over several NetCDF files.

1 #!/usr/bin/env/ python

2 import iris

3

4 #Load data:

5 cubes = iris.load("./low_res_tas/*.nc")

6

7 #Concatenate the data into a single cube:

8 concat = cubes.concatenate_cube()

9

10 #Take the average:

11 avg = concat.collapsed([’time’,’height’], iris.analysis.MEAN)

12

13 #Save to a new file:

14 iris.save(avg,"./low_res_tas/time_height_avg.nc")
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Figure 3: Time-height average of the temperature field described in the
text. Both averages were computed taking the data from only 16

NetCDF files, the left subplot corresponds to low resolution data,
nt = nx = ny = nz = 2 (NT = 256), while the right subplot
corresponds to higher resolution data, nt = nx = ny = nz = 64

(NT = 268435456), though still low compared to the resolution of
a production run.

This approach breaks down immediately for resolutions ni = 128,
even when ni = 2.

map-reduce approach

As we have seen, the simple script of Snippet 1 for taking temperature
averages breaks as soon as ni > 27. The memory is not enough to
handle all the data and a MemoryError like the one shown in Snippet
2 is thrown. Having 256 total samples per dimension is not really a
respectable resolution for any code claiming to tackle state-of-the-art
problems, so a workaround must be found to handle the analysis of
higher resolutions.

Snippet 2: Memory error thrown when the number of samples per file
per coordinate ni > 128

1 MemoryError: Failed to create the cube’s data as there was

not enough memory available.

2 The array shape would have been (256, 256, 256, 256) and the

data type float64.

3 Consider freeing up variables or indexing the cube before

getting its data.

An immediate workaround which does not require much effort is
implementing a map-reduce approach: we first calculate partial means
by loading one file at a time (we map) and, once we have the partial
means of all files, we calculate from them the total average tempera-
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ture5 (we reduce). The modified version of our original script (Snippet
1) is shown in Snippet 3

Snippet 3: Map-Reduce approach as a workaround to the MemoryError

thrown when handling high resolution files.

1 import iris

2 import os

3

4 #Directory where our high resolution data is:

5 dir_in = "./high_res_tas"

6

7 ## Map phase: get partial averages ##

8

9 cubelist = iris.cube.CubeList([])

10 for root,dirs,files in os.walk(dir_in):

11 for f in files:

12 file_path = "/".join([root,f])

13

14 #load the data

15 cube = iris.load_cube(file_path)

16

17 #calculate the partial average

18 partial_avg = cube.collapsed([’time’,’height’], iris.

analysis.MEAN)

19

20 #Store the calculated partial average

21 cubelist.append(partial_avg)

22

23 ## Reduce phase: Compute global average. ##

24

25 #Get a single cube from the partial averages:

26 concat_avg = cubelist.concatenate().merge_cube()

27

28 #Take the average of the new cube just obtained:

29 avg = concat_avg.collapsed([’time’,’height’], iris.analysis.

MEAN)

30

31 #Save to a new file:

32 iris.save(avg,"./high_res_tas/time_height_avg.nc")

This approach, in principle, is able to handle any amount of data.
However, keeping ni = 128, it takes already an hour to analyse 81

files (i.e. close to 1 minute per file). As soon as the size of the data
that needs to be analysed increases to sizes of more than 1TB, we are
faced with 24-hour long analyses. Clearly this is not acceptable.

The conclusion we obtain from the discussion made in this chapter
is that, in order to keep up with the pace at which simulations gener-

5 Be careful: this approach must weight properly each partial mean, e.g,
mean(1, 2, 3, 4, 5) 6= mean(1, 2) + mean(3, 4, 5) but mean(1, 2, 3, 4, 5) = (2/5) ×
mean(1, 2) + (3/5)×mean(3, 4, 5). Fortunately, Iris takes care of this.
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ate data, a completely new approach must be provided. Switching to
the new approach should, however, represent a minimum effort for
the final users.



3
H A D O O P, H D F S A N D M A P R E D U C E

Even if nowadays we have hard drives with capacities as large as
1-terabyte, transfer speeds of around 100 MB/s conspire against effi-
cient analysis of large datasets –With these numbers, it would take
more than two and a half hours only to read 1 terabyte of data. A
straightforward solution (at least in theory) is to read from multiple
disks at once. Reading from 100 drives, each holding one hundredth
of the data and working in parallel, would take less than two minutes.
Of course, most analysis tasks need to combine the data in some way,
so data read from one disk may need to be combined with data from
any of the other 99 disks, and correctly allowing data to be combined
from multiple sources is notoriously challenging. Another challenge
is met when noting that, as soon as more pieces of hardware are in-
troduced, failure of at least one of them is more probable.

Hadoop Distributed File System (HDFS) and Hadoop MapReduce
programming model provide solutions for each of these challenges:

· HDFS prevents data loss through replication: redundant copies of
the data are stored in different drives so that, in event of failure,
there is another copy available.

· Mapreduce abstracts the problem from disk reads and writes, cast-
ing it into a computation over sets of keys and values. Using
this approach, any computation is composed of two parts –the
map (reading from multiple disks at once) and the reduce (the
"mixing" of the data read).

Hadoop provides a reliable, scalable platform for storage and anal-
ysis, with the additional advantage of being affordable because i) it
runs on commodity hardware, ii) it is open source, and iii) one can
set up a hadoop-cluster in the blink of an eye and pay only by the
time one actually uses it (e.g. the service provided by Amazon).

a toy 4-node hadoop cluster @argo.ictp.it

My first approach to the problem of setting up a hadoop cluster oc-
curred on the 15th of June, 2016. I received root access to 4 dual-
socket, 8-core, 12-GB nodes from ICTP: {hdp1, hdp2, hdp3, hdp4}.
Each node with a topology like the one shown in Figure 4 and 200GB
of disk space.

11
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Figure 4: One of the four nodes which would host the hadoop cluster and its
distributed filesystem, HDFS. All four had the same topology. The
diagram was generated by running lstopo of the package hwloc

on one of them, hdp1.

The machines were running Ubuntu 14.041. with Oracle’s Java version

"1.7.0_80". I downloaded the hadoop-2.7.3 binaries and unpacked
them in each machine. The rest of the installation was straightforward
following hadoop’s home page guide. In a nutshell, what I did to
have running my first word-count, the "Hello World" of MapReduce
jobs, can be summarized in 7 steps that I will explain in the following
sections:

· Define some environment variables in ∼/.bashrc (or equivalent en-
vironment script).

· Specify some configuration properties and environment variables
in the hadoop configuration files.

· Format the name node.

· Start the HDFS2, YARN3 and JobHistory daemons.

· Create the user directory inside the distributed filesystem.

· put some files in it.

· Launch MapReduce word-count example, included in the binaries.

The cluster that we get at the end looks like the one shown in Figure
5 and is composed of

1 WARNING: mapreduce jobs running on Ubuntu 16.04 machines will crash. I
learned that the hard way. See the operating systems and Java versions recom-
mended by hadoop before setting up your own cluster

2 Hadoop Distributed File System
3 Yet Another Resource Manager
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Figure 5: Anatomy of the toy 4-node Hadoop Cluster @argo.ictp.it.
One master node runs the NameNode, SecondaryNamenode,

ResourceManager and JobHistoryServer daemons. The rest of the
nodes, the slaves, run the DataNode and NodeManager daemons. All
the nodes and the client machines communicate using remote pro-
cedure calls (RPC). Chunks of data distributed among the slaves
appear to the client machine, which communicates with the clus-
ter using a Java Virtual Machine (JVM), as single files stored in the
HDFS.

· a namenode - The namenode store the physical location of each
block of data in the hadoop cluster. Client machines requesting
blocks of data must first contact the namenode for getting its
address. It is the sole repository of the metadata and the file-to-
block mapping.

· a secondary namenode - Despite its name, the secondary na-
menode does not act as a namenode. Its main role is to period-
ically merge the namespace image with the edit log to prevent
the edit log from becoming too large4.

· a resource manager - The resource manager is responsible for
allocating containers. Jobs to be run in the hadoop cluster must
contact the resource manager asking for resources (memory +
virtual cores).

· a job history server - The job history server will keep logs of
all completed jobs. One can contact it via a web-interface to get
useful information.

· several datanodes - The datanodes store and retrieve blocks
when they are told to (by clients or the namenode), and they

4 BEWARE: The namenode is still a single point of failure (SPOF).
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report back to the namenode periodically with lists of blocks
that they are storing.

· several node managers - Node managers send heartbeat re-
quests to the resource manager that carry information about the
node’s running containers and the resources available for new
containers. Each heartbeat is a potential scheduling opportunity
for new containers.

From these description we can readily note some patterns: The
namenode and the datanodes are responsible of storing information,
while the resource manager and the node managers are responsible of
allocating resources for jobs to analyse the data. So, requests for data
by a client machine must be firstly addressed to the namenode, and
ultimately served by the datanodes. Similarly, requests for resources
must be firstly addressed to the resource manager and ultimately
served by the node managers. This is the way in which hadoop logic
is built, daemons are separated: the namenode and the datanodes
have HDFS daemons running in them –NameNode and DataNode, while
the resource manager and the node managers must run YARN dae-
mons –ResourceManager and NodeManager. Nodes running DataNode

+ NodeManager daemons are called the worker nodes, or slaves. Nodes
running NameNode or ResourceManager daemons are the masters (See
table 1).

HDFS YARN

master NameNode ResourceManager

slave DataNode NodeManager

Table 1: Relations between the different components of a hadoop cluster.

hadoop’s environment

Hadoop’s HDFS, YARN and MapReduce offer command-line inter-
faces to perform tasks such as putting and getting files in HDFS,
launching, killing and monitoring jobs. For the client machine to run
these command-line tools, it is necessary to set some environment
variables. In particular, $HADOOP_HOME should point to the directory
where the hadoop binaries were unpacked (in my particular case,
$HADOOP_HOME=/usr/local/hadoop/ ). Then we can make available the
hadoop executables in our environment:

1 export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

As it is likely that we, as administrators, will be using often the
hadoop configuration directory to set and change the parameters, it
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is a good idea to set the environment variable $HADOOP_CONF_DIR to
point to where the configuration files reside. Additionally, setting it
will make Hadoop, Yarn and MapReduce daemons to read their con-
figuration from that location. Otherwise they will try to read it from
etc/hadoop subdirectory under $HADOOP_HOME.

Hadoop configuration is passed to all tools composing the frame-
work mainly via xml files, and, for setting a hadoop cluster with mini-
mal effort, it is at least necessary to edit core-site.xml, hdfs-site.xml,
yarn-site.xml and mapred-site.xml. There we can specify which
nodes will be running each daemon needed to the hadoop cluster.
Ideally, in large clusters, the NameNode, the SecondaryNameNode, the
ResourceManager and the JobHistoryServer should run in dedicated
nodes, however, for the toy cluster we are setting up, the best thing to
do is to group all the non-slave daemons into a single master node to
free the maximum amount of resources for the worker nodes where
the slave daemons will run5.

storing data inside hdfs

After setting up all the required parameters, we can start the hadoop
cluster by running the following commands in a terminal6:

1 $ ssh namenode $HADOOP_HOME/bin/hdfs namenode -format

2 $ ssh namenode $HADOOP_HOME/sbin/start-dfs.sh

3 $ ssh resourcemanager $HADOOP_HOME/sbin/start-yarn.sh

4 $ ssh jobhistoryserver $HADOOP_HOME/sbin/start-history-server.sh

5 $ hdfs dfs -mkdir /user

6 $ hdfs dfs -mkdir /user/hadoop_user

The first command will format the namenode (it will set the arena
for storing all the metadata in the node we designed as namenode
in the configuration files), the second command will start the HDFS
daemons (NameNode, SecondaryNameNode and DataNodes), the third com-
mand will start the YARN daemons (ResourceManager and NodeManagers

), and the fourth command will start the only MapReduce daemon,
the JobHistoryServer. The last two command will create the default
directory for the user hadoop_user. Communication among the nodes
and client machines occurs using remote procedure calls (RPC). In
general, for a client machine to communicate with the cluster, it is
necessary to start a Java Virtual Machine (JVM).

After successfully reaching this point, we are able to store our files
on HDFS, e.g,

5 After trying alternative configurations this was indeed the best one
6 These scripts rely on SSH to perform cluster-wide operations. In order to work, SSH

needs to be set up to allow passwordless login for the user running the commands
from machines in the cluster. The simplest way to achieve this is to generate a pub-
lic/private key pair and place it in an NFS location that is shared across the cluster.
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1 $ hdfs dfs -Ddfs.blocksize=256m -Ddfs.replication=3 -put

some_file some_existing_hdfs_directory

Running this command in a terminal of a machine with access to
the hadoop cluster starts a Java Virtual Machine which establishes
a communication with the HDFS daemons, instructing them to take
some_file in the local machine, store it in the hadoop cluster in chunks
of size 256 MB, and replicate it 3 times. Data is thus distributed in this
way among slaves. However, to the client machine, it will appear as
single files stored in the HDFS:

1 $ hdfs dfs -ls

2 $ some_existing_hdfs_directory/some_file

We can also put entire directories at once:

1 $ hdfs dfs -Ddfs.blocksize=256m -Ddfs.replication=3 -put

some_directory some/location/in/hdfs/

HDFS command line interface (CLI) has lots of handy commands
available to manage and explore stored files, e.g. cat, grep, ls,

mkdir, rm, ... When in doubt, ask Google.

a typical mapreduce job

Having set up the Hadoop cluster, and having stored some data in
it, what I needed to do for approaching my first MapReduce job is
what every programmer needs to do when learning a new program-
ming language: Write a "Hello World" program, which, in MapReduce
means running a word-count job. To my surprise, Hadoop installa-
tion not only came with a word-count program, but also with a ran-
dom text generator which itself is a MapReduce job (with only the
map part) which writes 10 GB of random text to every node. So, run-
ning a first MapReduce job was a piece of cake. Though useless from
the pedagogical point of view, it allowed me to assert the correct in-
stallation of the hadoop cluster and its suitability to run my own
MapReduce jobs in the future7. The command for launching a typical
MapReduce job looks like this:

1 $ hadoop jar [generic options] MyMapReduce.jar job_main_class [

arguments relevant to the job]

That command will start on the client a Java Virtual Machine (JVM)
to communicate with the ResourceManager and submit the application.
The ResourceManager will then ask an available node’s NodeManager

to launch a MRAppMaster. At this point, the MRAppMaster will continue
to orchestrate the job, spawning MapTasks and ReduceTask among the

7 My first jobs were dying randomly with no clear reason. After around one month I
got to the root of the problem: Ubuntu 16.04. See footnote 1
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Figure 6: Anatomy of a Map Reduce Job running in the toy 4-node
Hadoop Cluster @argo.ictp.it. A Java Virtual Machine (JVM) is
started to communicate with the ResourceManager, which will ask
an available node’s NodeManager to launch a MRAppMaster. The
MRAppMaster then asks the NodeManager of the slave nodes to al-
locate containers for starting a YarnChild JVM inside which a
MapTask or a ReduceTask will be ran.

slave nodes. NodeManagers are asked by the MRAppMaster to create con-
tainers if they have available resources. These containers must pro-
vide enough resources to host a JVM inside which a YarnChild will
run a MapTask or a ReduceTask. See Figure 6. If a Task uses more re-
sources than those allocated, the ResourceManager will kill it. If a Task

fails more than a certain number of times (defaults to 4), the complete
job is declared as Failed.

Map Tasks will always be placed as close as possible to the node
where data resides to avoid wasting bandwidth by moving data around
the cluster: i) If the Map Task is runs in a node which hosts the input
split of the data on which it is working, the task is called Data-Local.
ii) In the case that all nodes having the particular input split needed
by a certain Map Task are busy, the Map Task is launched in another
node of the same rack. Finally, iii) if no nodes are available in the
whole rack where the data input split is located, the Map Task is
launched in another rack. This makes MapReduce a very powerful
programming model.

The output (stderr) that the user sees when submitting a MapReduce
job looks like the one shown in Snippet 10 is if the run is successful.
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Snippet 4: Typical output of a successful MapReduce job

1 16/12/01 12:55:42 INFO client.RMProxy: Connecting to

ResourceManager at resourcemanager/140.105.32.201:8032

2 16/12/01 12:55:43 INFO input.FileInputFormat: Total input paths

to process : 16

3 16/12/01 12:55:43 INFO mapreduce.JobSubmitter: number of splits

:16

4 16/12/01 12:55:43 INFO mapreduce.JobSubmitter: Submitting tokens

for job: job_1479296429870_0032

5 16/12/01 12:55:43 INFO impl.YarnClientImpl: Submitted application

application_1479296429870_0032

6 16/12/01 12:55:43 INFO mapreduce.Job: The url to track the job:

http://hdp1:9046/proxy/application_1479296429870_0032/

7 16/12/01 12:55:43 INFO mapreduce.Job: Running job:

job_1479296429870_0032

8 16/12/01 12:55:50 INFO mapreduce.Job: Job job_1479296429870_0032

running in uber mode : false

9 16/12/01 12:55:50 INFO mapreduce.Job: map 0% reduce 0%

10 [...]

11 16/12/01 12:56:24 INFO mapreduce.Job: map 100% reduce 100%

12 16/12/01 12:56:25 INFO mapreduce.Job: Job job_1479296429870_0032

completed successfully

13 16/12/01 12:56:25 INFO mapreduce.Job: Counters: 49

14 File System Counters

15 [...]

16 Job Counters

17 [...]

18 Map-Reduce Framework

19 [...]

20 Shuffle Errors

21 [...]

22 File Input Format Counters

23 [...]

24 File Output Format Counters

25 [...]
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T H E D R AW B A C K S A N D A D VA N TA G E S O F S O M E
AVA I L A B L E H A D O O P U T I L I T I E S

To perform even a simple analysis over a Big amount of Data in a rea-
sonable amount of time, it is desirable to have some framework able
to distribute the reads and writes –the bottleneck of Big-Data analysis, in
the way MPI1 distributes the floating point operations –The bottleneck
of High Performance Computing. A framework that does exactly this is
Hadoop, together with its distributed file system (HDFS) and its im-
plementation of the Map-Reduce programming model (MapReduce2)
which brings the computation to the places where data is stored. Un-
fortunately, Hadoop has some drawbacks that prevent NetCDF data
storage and analysis out-of-the-box:

i) Hadoop is designed and highly optimized to read and write
text data. Weather and Climate scientists work with binary data
in the form of NetCDF files.

ii) HDFS stores the data by splitting every file in blocks and dis-
tributing those blocks among different nodes. NetCDF files can-
not be split, since they are binary and splitting would represent
data corruption.

iii) MapReduce programs must be written in Java. Weather and
Climate scientists codes are written in every programming lan-
guage available since the dawn of computer age but Java.

iv) MapReduce is a batch processing system, not suitable for inter-
active analysis. Weather and Climate scientists need interaction
with their data.

In the rest of this chapter I will describe some of the tools already
available in the market, extracting the salient aspects of them that
could be used to tackle the problem at hand.

Hadoop Streaming

Hadoop-Streaming is a utility that comes with Hadoop and allows
the user to launch MapReduce jobs without writing a single line of
Java code. This sounds promising for solving issue number iii) at the

1 Message Passing Interface
2 The introduction of YARN, a cluster resource management system, in Hadoop 2 has

allowed any distributed program (not just MapReduce) to run on data stored in a
Hadoop cluster.

19
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beginning of the chapter. The vanilla command to start a Hadoop-
Streaming job is shown in Snippet 5:

Snippet 5: Vanilla command for starting a Hadoop-Streaming Job

1 $ $HADOOP_HOME/bin/hadoop jar hadoop-streaming.jar \

2 -files mapper_script,reducer_script,

3 -input input1,input2,input3... \

4 -output hdfs_output_dir \

5 -mapper mapper_script \

6 -reducer reducer_script

Hadoop-Streaming will take each of the files input1,input2,input

3..., and will feed the contents of them to the mapper_script via stan-
dard input. If any of the inputs happens to be a directory, Hadoop-
Streaming will also take as inputs all the files inside the directory.
mapper_script must be an executable that takes the standard input
and translates it into a set of (key,value) pairs written to standard out-
put. Hadoop-Streaming will then take this (key,value) pairs, shuffle-
sort them by key, and feed them to the reducer_script via standard
input as new (key,value) pairs. After processing the set of key value
pairs, the reducer_script must write to standard output a new set of
(key,value) pairs, which Hadoop-Streaming will save to hdfs_output
_dir as the result of the MapReduce job.

The "Hello World!" program of any Map-Reduce implementation
is the word-count. Snippets 6 and 7 show an example input and the
output expected from wuch a job, and a couple of python scripts to
achieve that, wc_mapper.py and wc_reducer.py, are shown in Snippets
8 and 9. Indeed, there is no need to write a single line of Java code! 3

Hadoop-Streaming works by linking the chain "input | mapper |

reducer | output" via streams of bytes (preferably text). Clearly, this
is a huge drawback to solve our problem. However, there is some-
thing appealing in the logic behind it, if not in the specifics of the
implementation:

Provide a Java utility that makes data stored in HDFS available to
executable scripts written in arbitrary languages. Provide also a set of
rules that the executable scripts have to follow in their implementation

in order to build the chain "input | mapper | reducer | output".

3 For this simple example, the exact same thing can be achieved by using standard
shell tools instead of Hadoop-Streaming, e.g,
$ echo -e "one two three four \n two three four \n three four \n four" | ./mapper.py | sort | ./reducer.py.
In general, it is a good practice to test locally the mapper and reducer scripts be-
fore launching a Hadoop-Streaming job. The beauty of this one-liner resides in the
simplicity in which it casts the logic of Hadoop-Streming.
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Snippet 6: Example input for a Hadoop-Streming word-count job

1 one two three four

2 two three four

3 three four

4 four

Snippet 7: Example output of a Hadoop-Streming word-count job

1 four 4

2 one 1

3 three 3

4 two 2
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Snippet 8: A Python mapper script to implement a word-count
MapReduce job using Hadoop-Streaming

1 #!/usr/bin/env python

2 #wc_mapper.py

3

4 import sys

5

6 # Read each line from stdin

7 for line in sys.stdin:

8 # Get the words in each line

9 words = line.split()

10

11 # Write the (key,value) pairs to stdout: (word,1)

12 for word in words:

13

14 # By default, Hadoop-Streaming takes as key

15 # anything before the first tab character.

16 print ’{0}\t{1}’.format(word.lower(), 1)

Snippet 9: A Python reducer script to implement a word-count
MapReduce job using Hadoop-Streaming

1 #!/usr/bin/env python

2 #wc_reducer.py

3

4 import sys

5 curr_word = None

6 curr_count = 0

7

8 # Process each key-value pair from the mapper

9 for line in sys.stdin:

10 # Get the key and value from the current line

11 word, count = line.split(’\t’)

12 count = int(count)

13

14 # increment counter for the current word...

15 if word == curr_word:

16 curr_count += count

17

18 # or print to stdout if the word changed...

19 else:

20 #Remeber that key values are separated by tabs:

21 if curr_word:

22 print ’{0}\t{1}’.format(curr_word, curr_count)

23

24 curr_word = word

25 curr_count = count

26

27 # Output the count for the last word

28 if curr_word == word:

29 print ’{0}\t{1}’.format(curr_word, curr_count)
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Luigi and mrjob

Luigi4 and mrjob5 are Python MapReduce libraries, created by Yelp6

and Spotify7 respectively, that wrap Hadoop streaming, allowing multi-
step MapReduce jobs to be written in pure Python. One of the strengths
of these libraries is that they offer the possibility of writing MapReduce
jobs in a single class, avoiding the nuisance of having to write sepa-
rate programs for the mapper and the reducer. Another advantage
these libraries offer is that applications can be executed and tested
without having Hadoop installed, enabling development and testing
before deploying to a Hadoop cluster. To use these libraries, all depen-
dencies (e.g.numpy or iris) must be either available on the task nodes,
or uploaded to the cluster when jobs are submitted.

Although mrjob scope –simplicity, differs from Luigi’s –ability to
chain long pipelines of jobs, the philosophy behind them is the same:

Wrap an already available Java utility that allows for more general
classes of mappers and reducers, and allow the user to deploy

MapReduce jobs to a Hadoop cluster, not only without writing a single
line of Java code, but also without explicitly launching the underlying

Java utility.

To show the simplicity of a code written for this kind of libraries, I
reproduce on Snippet 10 a word-count example using mrjob.

These kind of libraries seem to be just what we need to solve the
problem of running MapReduce jobs over large datasets of NetCDF
files: They are completely written in other language than Java and,
the fact that they are written in python, promises some possibility of
tweaking them to be interactive, thus solving problems iii) and iv) at
the beginning of the chapter.

These libraries, however, are still designed to operate over text files
divided in blocks inside HDFS, eaving issues i) and ii) still waiting
for a solution. For the moment, let’s keep the philosophy of Luigi
and mrjob and move on to tackle the remaining issues.

4 https://luigi.readthedocs.io

5 https://mrjob.readthedocs.io

6 https://www.yelp.com

7 https://www.spotify.com

https://luigi.readthedocs.io
https://mrjob.readthedocs.io
https://www.yelp.com
https://www.spotify.com
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Snippet 10: Python implementation of a word-count MapReduce job us-
ing mrjob library

1 #!/usr/bin/env python

2 #wc_mrjob.py

3 from mrjob.job import MRJob

4 from mrjob.step import MRStep

5 import re

6

7 WORD_RE = re.compile(r"[\w’]+")

8

9 class MRWordCount(MRJob):

10

11 def steps(self):

12 return [

13 MRStep(mapper=self.mapper_get_words,

14 combiner=self.combiner_count_words,

15 reducer=self.reducer_count_words),

16 ]

17

18 def mapper_get_words(self, _, line):

19 # yield each word in the line

20 for word in WORD_RE.findall(line):

21 yield (word.lower(), 1)

22

23 def combiner_count_words(self, word, counts):

24 # optimization: sum the words we’ve seen so far

25 yield (word, sum(counts))

26

27 def reducer_count_words(self, word, counts):

28 yield word, sum(counts)

29

30 if __name__ == ’__main__’:

31 MRWordCount.run()

Running this example in a hadoop cluster is as simple as typing
on a client machine:

1 $ python wc_mrjob.py -r hadoop hdfs://path/to/input/input.txt

RootOnHadoop

A simple approach to the problem of file-splitting by HDFS, was
taken in 2012 by a then-student of the Università degli Studi di Udine,
Stefano Russo. His goal was to efficiently analyse High Energy Physics
data generated by the Atlas experiment in the Large Hadron Collider
(LHC); the problem to overcome being that the data analysis was (and
already is) analysed using ROOT, a software with a very large com-
munity of users that is written in C++, python and R. Because of this
issues, similar to the ones we have at hand now, developing a more ef-
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ficient strategy to analyse the data using Hadoop + MapReduce was
not straightforward.

The solution developed by Russo, a Java package called RootOnHadoop

, allowed him and his colleagues to run ROOT without any modifica-
tion and store the data to HDFS in its original format without split-
ting it. This kind of approach is what we need to solve points i) and ii)
at the beginning of the chapter. However, directly using RootOnHadoop

presents some drawbacks:

· Jobs need to be submitted in a classic, batch-fashioned manner.

· The overhead it adds for our particular problem is huge.

Both of these issues conspire against developing a interactive and
efficient application to launch MapReduce jobs targeted to analyse
NetCDF files. Snippet 11 shows how to sumbit a RootOnHadoop job
(batch fashioned manner; very similar to launching Hadoop-Streaming).

Snippet 11: RootOnHadoop runs in batch fashioned manner; the com-
mand to launch a RootOnHadoop job is similar to that for
launching a Hadoop-Streaming job

1 $ $HADOOP_HOME/bin/hadoop jar RootOnHadoop.jar RootOnHadoop \

2 -map mapper_script \

3 -reduce reducer_script \

4 -in input_file_or_dir \

5 -out output_hdfs_dir \

To test the applicability and performance of RootOnHadoop as a so-
lution, I created a simple job that, for each NetCDF file found on a
database containing ∼ 1300 files, creates some lines (∼ 10) of text de-
scribing what is inside (i.e, a catalogue entry). The results of this test
are shown in Figure 7, which not only compares the timings when ex-
ecuting the job serially and when using RootOnHadoop, but also show
the timing corresponding to pure overhead (i.e. when the mapper
script and the reducer script do not even read the NetCDF files).

There may be several reasons for the tremendous overhead shown
in Figure 7, but the one that is immediately evident by looking at the
code, is that there are several system calls to handle files inside the
HDFS. Making such kind of calls is not only expensive because call-
ing the kernel, but also because almost all of the calls require to start
a new Java Virtual Machine. In the end, any kind of analysis done
to a single file will add more than a couple of seconds to the total
overhead8 (See snippet 12).

8 Notice that numbers add up in a rough calculation: Making around 3 2-second sys-
tem calls for each one of the ∼ 1300 files, divided in 3 nodes, gives just around 40

minutes, comparable to the obtained overhead.
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Figure 7: Catalogue creation test timings for RootOnHadoop (middle column):
for each NetCDF file found on a database containing ∼ 1300 files,
a mapper_script creates a catalogue entry (∼ 10 lines of text).
RootOnHadoop takes around 17 times more than running the script
locally in a serial way (left bar). The rightmost column corresponds
to pure overhead –the mapper_script for this overhead test was
not even opening the NetCDF files.

Snippet 12: RootOnHadoop relies on several system calls to HDFS to
operate on a single file. The creation of JVMs by these
calls, when dealing with thousands of files this can result
in tremendous overhead

1 $ time for i in {1..10}; do hdfs dfs -ls > /dev/null; done

2 real 0m26.112s

3 user 0m37.352s

4 sys 0m1.452s

The strength of RootOnHadoop, however, lies not on its implementa-
tion, but in the use it makes of the Hadoop + MapReduce logic to
operate on any kind of data with any kind of executable:

MapReduce ensures that every MapTask will most likely run on
machines where data resides. Use this fact to bypass the HDFS

framework and run any desired executable on local data, just as it
normally would do.

Almost evil.



5
B I G N E T C D F D ATA A N A LY S E D . . . FA S T E R :
PIPISTRELLO & TINA

Of all of the tools available on the market, not a single one is able to
distribute and analyse NetCDF files efficiently. Summarizing, a frame-
work is needed that i) preserves the data structure and ii) is simple to
implement and understand, using the already available state-of-the-
art analysis tools. What is needed is not a completely different tool for
the users to learn; what is needed is a framework that allows for the
data analysis to safely take advantage of bleeding-edge technologies
without users noticing a change in their work-flows.

Some attempts that have been done to efficiently analyse scientific
data and their drawbacks are the following:

1. NCO[12] performs all computations on a single node and data
is read serially from the file system.

2. The SWAMP project ([18]) parallelizes the execution of NCO
queries but requires computations to be expressed using proce-
dural scripts.

3. ([20])’s method enable processing NetCDF data with MapReduce,
but this solution requires to transform data into a text-based for-
mat.

4. SciHadoop allows to efficiently execute queries as map/reduce
programs defined over the logical data model but it has to take
care of multiple and complicated repartitions of the data and, to
my knowledge, does not interface with current available tools.

[References taken from: "SciHadoop: Array-based Query Processing
in Hadoop"]

In the rest of the chapter I will introduce my two cents: Pipistrello
and Tina. A Java package and a Python library which, combined,

allow users to deploy MapReduce jobs over Scientific datasets in a
transparent way. Three of the Four Pillars on which these pieces
of software stand take inspiration from available tools described in
Chapter 4. The fourth one instead is a completely original contribu-
tion of this Thesis.
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1. Provide a Java utility that makes data stored in HDFS
available to executable scripts written in arbitrary

languages. Provide also a set of rules that the executable
scripts have to follow in their implementation in order to
build the chain "input | mapper | reducer | output".

2. Wrap an already available Java utility (1) that allows for
more general classes of mappers and reducers, and allow the
user to deploy MapReduce jobs to a Hadoop cluster, not only
without writing a single line of Java code, but also without

explicitly launching the underlying Java utility.

3. MapReduce ensures that every MapTask will most likely run
on machines where data resides. Use this fact to bypass the
HDFS framework and run any desired executable on local

data, just as it normally would do.

4. Provide an interactive mode and let the users query for data
properties (such as locations in the directory tree, bounds or
coordinates) without knowing a-priori the structure of the

directory tree. Let them also refine previous queries and test
the validity of a MapReduce job before deploying it.

pipistrello

Pipistrello1 is a Java utility very similar in philosophy to Hadoop-
Streaming that allows users to run MapReduce jobs over any kind
of binary files. Just as Hadoop-Streaming, Pipistrello requires map-
pers and reducers to follow a set of conventions in order for the
chain "input | mapper | reducer | output" to be correctly linked. Fist
of all, let’s see the typical command to invoke Pipistrello (much like
Hadoop-Streaming; Snippet 13).

Snippet 13: Invoking Pipistrello feels like invoking Hadoop-Streaming.

1 $ $HADOOP_HOME/bin/hadoop jar Pipistrello.jar \

2 -${generic_hadoop_mapreduce_options} \

3 -files file1,file2,file3... \

4 -input input1,input2,input3... \

5 -output hdfs_output_dir \

6 -mapper mapper_script \

7 -reducer reducer_script

The set of conventions that mapper_script and reducer_script must
follow are not exactly the same:

1 https://pipistrello.readthedocs.io

https://pipistrello.readthedocs.io
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i | m First of all, the inputs must have been stored in HDFS using
only one block per file2. The mapper_script should expect to re-
ceive two arguments: The first argument will represent an hdfs
fiename (corresponding to the file on which the mapper will
work). This first argument, for all practical purposes is just a
dummy name inside the mapper_script, though it is very con-
venient to know it. The second argument will be an actual file
path, local to the machine in which the map task is running.
This is the file containing the data needed by the mapper_script

to carry out it’s job3.

m | r The mapper_script should write to the local directory where it
is running an output file of any kind, writing its file-name to
stdout without blank spaces or line breaks. The reducer_script

must be ready to receive only one argument: the name of a file
containing lines of text.

r | o From the file provided as an argument, the reducer_script must
read lines of text, each of which will be a file path local to where
the reduce task is running. These are the partial outputs gener-
ated by the mappers, which the reducer will combine in some
way to i) generate an output file of any kind to the local direc-
tory and ii) write its file-name to stdout with no spaces or line
breaks. After the job has finished, the user will be able to find
this file inside the HDFS output directory.

Pipistrello under the hood

Pipistrello works in a very similar way to Hadoop-Streaming. From
the command line, it is given the mapper_script and the reducer_

script, which it packs and distributes among the nodes hosting the
data and map tasks will run.

The first difference between Hadoop-Streaming and Pipistrello is
that, while Hadoop streaming implements a couple of Java classes

(a RecordReader and an InputFormat) to read the records in a specific
format and stream them to the mapper_script and the reducer_script

, Pipistrello’s only purpose of implementing a RecordReader and an
InputFormat is to play by the rules of the Hadoop-MapReduce frame-
work4.

All the magic of Pipistrello lies inside its implementation of the
class Mapper and its class HdfsToLocalTranslator. The class Mapper

uses the class HdfsToLocalTranslator to get the local path of the

2 e.g. hdfs dfs -Ddfs.blocksize=10g -put some_file some_hdfs_dir
3 known bug here: this argument is fed to the mapper with no extension! Trying to

open a file without an extension could be confusing for some scripts.
4 Although these classes are not needed by the current design, a more clever way of

designing Pipistrello could use these classes to get the information that is needed
during the map phase
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data corresponding to the input split the MapTask needs to process.
The class HdfsToLocalTranslator is in charge of asking directly to the
NameNode –without starting any JVM or doing a system call– the name
of the local file corresponding to a given hdfs file. Once the name is
"leaked" inside the Mapper class, it can be given to the mapper_script as
an argument5. After the mapper_script is done, the Mapper class will
upload its output (a file) to the HDFS. It will also read the stdout of
the mapper_script (a filename) and set it as the value of the (key,value

) pair that the MapReduce framework will send to the reducer6.
MapReduce will start a ReduceTask in any available node with enough

resources to run it. At this point, (key,value) pairs are going to be fed
to the Reduce class. The Reducer class will open a text file files_to_

reduce.txt and write all the values (filenames), one for each line. At
the same time, the Reducer class will download these files from the
HDFS to make them available locally7. Finally, the Reducer Class will
launch the reducer_script, giving it as an argument the file files_to
_reduce.txt and its output (a file) is uploaded to HDFS. All in all,
Pipistrello is composed of 7 Java classes:

· HdfsToLocalTranslator.java

· PipistrelloInputFormat.java

· PipistrelloJob.java

· PipistrelloMapper.java

· PipistrelloRecordReader.java

· PipistrelloReducer.java

· PipistrelloMapReduce.java

The core ones have already been described and the rest of them are
wrappers that parse command line arguments and launch the Pip-
istrello MapReduce job. Pillars 1 and 3 are in place.

5 If the data is not available in the local node, the map task will fail. The MapReduce
framework will relaunch the task in a new node, highly likely where data is. This is
faster than moving the data –a potentially big file– around the network (or isn’t it?)

6 What is the key set to? Currently it is set to a generic value, always the same. There’s
ground to play in this area for further improvements.

7 We are making the assumption that these files, the outcomes of the map phase, are
orders of magnitude smaller than the input files. This operation should not represent
any substantial cost.
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tina

Tina is a very light Python library that sits on top of:

· Iris to handle NetCDF data.

· Snakebite to efficiently communicate with the Hadoop Filesys-
tem.

· Pipistrello to launch MapReduce jobs over a Scientific dataset.

Loading Iris cubes

Loading from the dataset Iris CubeLists containing all the cubes corre-
sponding to a certain region of spacetime, is as simple as it is in Iris,
though the call is not the same, as shown in Snippet 14:

Snippet 14: Loading cubes from HDFS using Tina is as easy as loading
cubes from NFS using Iris

1 #Load all cubes from files inside hdfs:///user/username/

high_res_sim with

2 #temperature higher than 20

3 #time between 24 and 48

4 #longitude lower than 40

5 cube_list = tina.load("high_res_sim","20<air_temperature",["

24<time<48","10<latitude<20","longitude<40"])

At this point, having an CubeList loaded, we are able to run any
analysis using all the well known and well tested functionality offered
by Iris.

MapReduce Big Data using Tina records

However, if we are using Tina, it is highly likely that we are actu-
ally dealing with a huge amount of data and a direct analysis is not
possible. In that case, we need to i) either take the local mapreduce
approach (slower) or ii) distribute the computation in the Hadoop
cluster (faster). To this end, we need to:

i. Load the Tina records we want to analyse,

ii. Choose the mapper and the reducer,

iii. Call the mapreduce function.

Just like the basic objects in Iris are the cubes, the basic objects in
Tina are the records. These objects, upon request, are read on the
fly from HDFS and contain information about all the available cubes.
Each record will contain the information of only one cube:

https://tina.readthedocs.io
http://scitools.org.uk/iris/
https://snakebite.readthedocs.io
http://pipistrello.readthedocs.io
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· The file containing the cube8.

· The minimum and maximum values of the data in the cube.

· The bounds on each of the coordinates of the cube.

The power of Tina resides on the simplicity of its logic9. With Tina,
launching the time-height-average MapReduce job (??), is as easy as
writing a script like the one shown in Snippet 15. The interaction
with the HDFS to load the Iris cubes or the Tina records, the call to
Pipistrello to launch MapReduce jobs and the getting the result in the
form of an iris cube, all of that happens under the hood.

Snippet 15: Time-height average MapReduce job using Tina

1 #!/usr/bin/env python

2 import tina

3 import iris

4

5 #A selection of mappers and reducers comes packed with Tina.

6 #One can also use custom mappers and reducers.

7 mapper="./time_height_mean_mapper.py"

8 reducer="./time_height_mean_reducer.py"

9

10 #Get all records in the WHOLE dataset with

11 #latitudes between 20 and 30

12 #(handling units not implemented yet).

13 record_list = tina.filter_records( "10<temperature<20",

14 ["30<latitude<40",

15 "10<longitude<30"] )

16

17 #Launches a MapReduce job to the Hadoop cluster.

18 #Returns an Iris cube.

19 avg = tina.mapreduce(reclist,mapper,reducer)

20

21 #Save the result locally using Iris.

22 iris.save(avg,"/home/output/filename.nc")

23

24 #Upload to the hdfs using Tina.

25 tina.put("/home/output/filename.nc","some_hdfs_dir")

26

27 #Simple as saying "We’re done"

Please take this with a grain of salt: even if Tina comes with a
handful of mappers and reducers, for specific cases, the mapper and
the reducer still need to be written by the user (More on this on
Section 6).

8 the file size: to be implemented
9 Certainly not in its robustness... yet.
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Local testing with Tina fake cubes

It may be the case that the selected data is not suitable to be MapRe-
duced, or that there is a bug in either the mapper script or the reducer
script. Launching a MapReduce job in these cases could potentially
make us lose hours waiting for a job that was ill from the very be-
ginning. Fortunately, to prevent these cases, Tina comes with a handy
functionality: from each Tina record a small fake cube can be created
on the fly. This will allow us to do a preliminary local analysis of our
data in the blink of an eye. If this fake analysis succeeds, it is likely
–though not certain, that a MapReduce job will succeed. Conversely,
if doing a fake local analysis on a certain set of records does not give
the results expected, it is certain that a MapReduce job on the same
set of records will fail.

Snippet 16: Use fake cubes to quickly simulate an analysis before at-
tempting a MapReduce job

1 #!/usr/bin/env python

2 import tina

3 import iris

4

5 #Load Tina records:

6 reclist = tina.filter_records("high_res_data","30<temperature

")

7

8 #Create a cube list of fake cubes:

9 cl = iris.cube.CubeList([])

10 for r in reclist:

11 cl.append(r.fake_cube())

12

13 ## Do something with the cube list ##

14 # ...do what mapper_script would do

15 # ...do what the reducer_script would do

16 # result = ...

17 ## Is the result as expected? In that case:

18

19 result = tina.mapred(reclist,mapper_script,reducer_script)

Tina is interactive

Tina, like most python packages, is suitable for working interactively.
Be it the command line or a jupyter notebook, Tina works there. In
particular, taking a look at the contents of a directory inside HDFS,
which might be handy when working interactively, is as simple as
typing tina.ls(). Snippet 17 shows an example interactive workflow
using Tina, and Figure 8 shows a result of a local test job using Tina
fake cubes together with the true results after running the complete
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MapReduce job. As shown in the Figure, fake cubes are not accurate
nor smooth, they are intended only as an aid to know whether the
dataset is suitable to be MapReduced in the Hadoop cluster by a
particular couple of mapper and the reducer scripts.

Snippet 17: Interactive workflow using Tina

1 >>> import tina
2 >>> import iris
3 >>> tina.ls()
4 /user/hadoop_user/high_res_sim
5 >>>tina.ls("high_res_sim")

6 /user/hadoop_user/high_res_sim/file_0001.nc
7 /user/hadoop_user/high_res_sim/file_0001.tina

8 [...]
9 /user/hadoop_user/high_res_sim/file_00081.nc

10 /user/hadoop_user/high_res_sim/file_00081.tina
11 >>> reclist = tina.filter_records("high_res_sim")
12 >>> mapper = "/path/to/mapred_scripts/mapper.py"
13 >>> reducer = "/path/to/mapred_scripts/mapper.py"
14 >>> fcubelist = iris.cube.CubeList([r.fake_cube() for r in reclist ])
15 >>> print(fcubelist)

16 [...]
17 78: air_temperature / (celsius) (time: 2; longitude: 2; latitude: 2; height: 2)

18 79: air_temperature / (celsius) (time: 2; longitude: 2; latitude: 2; height: 2)
19 80: air_temperature / (celsius) (time: 2; longitude: 2; latitude: 2; height: 2)
20 >>> fake_result = fcubelist.concatenate_cube().collapsed(["time","height"],iris.analysis.MEAN)
21 >>> print(fake_result)
22 air_temperature / (celsius) (longitude: 6; latitude: 6)
23 Dimension coordinates:
24 longitude x -
25 latitude - x

26 Scalar coordinates:
27 height: 50.1302083332 metres, bound=(0.130208333333, 100.130208333) metres

28 time: 2000-01-02 08:05:00, bound=(2000-01-01 00:05:00, 2000-01-03 16:05:00)
29 Cell methods:
30 mean: time, height
31 >>> true_result = tina.mapreduce(reclist,"./tina/mean_mapper.py","./tina/mean_reducer.py")
32 Mapreducing 81 files, this make take a while...
33

34 16/12/06 12:12:46 INFO client.RMProxy: Connecting to ResourceManager at resourcemanager
/140.105.32.201:8032

35 16/12/06 12:12:47 INFO input.FileInputFormat: Total input paths to process : 81

36 16/12/06 12:12:47 INFO mapreduce.JobSubmitter: number of splits:81
37 16/12/06 12:12:47 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1479296429870_0090

38 16/12/06 12:12:47 INFO impl.YarnClientImpl: Submitted application application_1479296429870_0090
39 16/12/06 12:12:47 INFO mapreduce.Job: The url to track the job: http://hdp1:9046/proxy/

application_1479296429870_0090/
40 16/12/06 12:12:47 INFO mapreduce.Job: Running job: job_1479296429870_0090
41 16/12/06 12:12:56 INFO mapreduce.Job: Job job_1479296429870_0090 running in uber mode : false
42 16/12/06 12:12:56 INFO mapreduce.Job: map 0% reduce 0%
43 16/12/06 12:36:37 INFO mapreduce.Job: map 100% reduce 100%
44 16/12/06 12:36:40 INFO mapreduce.Job: Job job_1479296429870_0090 completed successfully
45 16/12/06 12:36:40 INFO mapreduce.Job: Counters: 50

46 File System Counters
47 [...]

48 Job Counters
49 [...]
50 Map-Reduce Framework
51 [...]
52 Shuffle Errors
53 [...]
54 File Input Format Counters
55 [...]

56 File Output Format Counters
57 [...]

58 16/12/06 12:36:40 INFO streamlike.MyJob: Output directory: _PIPISTRELLO_20161206121243
59 16/12/06 12:36:40 INFO streamlike.MyJob: Time ellapsed: 1434 seconds.

60

61 INFO: Local output directory /tmp/_PIPISTRELLO_//20161206100119 created.

62 INFO: Loaded cubes from:

63 INFO: /tmp/_PIPISTRELLO_/20161206100119/_PIPISTRELLO_20161206121243/reduce_0.nc

64 INFO: /user/hadoop_user/_PIPISTRELLO_20161206121243 deleted.

65 >>>
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Figure 8: The left panel shows results of local analyses using Tina fake cubes.
Results obtained from Tina fake cubes are not smooth nor accurate,
as fake cubes are only meant to be used for testing the suitability of
analyses to be deployed as MapReduce jobs to the Hadoop cluster.
The right panel shows the results obtained after completing the full
MapReduce job of the real data in the Hadoop cluster. The creation
and analysis of fake cubes takes a couple of seconds, while, for this
particular case, the MapReduce of the real data took almost half
an hour.

Last but not least: tina.put()

For all the features already described, it is necessary to load every
single file to the Hadoop cluster using the function tina.put(), be it
in a script or in interactive mode:

1 tina.put("./some_local_file.nc","some_hdfs_dir")

pipistrello and tina enable a faster data analysis

Tests were performed by generating 4-D arrays of artificial data (dou-
bles representing temperature values) with different sizes. The arrays
were then distributed among several NetCDF files in chunks of 1284

(which amounts to file sizes of ∼ 2 GB). Due to lack of resources10,
only two different array sizes were tested: (128× 2)4 distributed in 16

files and (128× 3)4 distributed in 81 files.
The analysis made to test the performance of the Hadoop Cluster,

running Tina and Pipistrello MapReduce jobs, consisted on comput-
ing the time-height-average temperature of each of the whole arrays.
Figure 9 shows timings for the analysis of these arrays. By compar-
ing these timings it is evident that, for the array sizes tested and the
chunking of the data, Pipistrelo and Tina do an excellent job. The
MapReduce analysis done for the smaller array takes 1/3 of the time

10 The storage space per node was only 200GB, which amounts to an effective size of
200GB for a Hadoop cluster of 3 nodes and a replication factor of 3
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the best local approach (a local Map-Reduce approach, as the big
amount of data does not fit in Memory), while, for the larger array, it
takes only 1/2.5 of the time.
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Figure 9: The left panel shows the time it takes to analyse each dataset
by using the best local approach (blue circles) and by deploy-
ing a MapReduce job in the Hadoop Cluster using Tina and
Pipistrello (red dots). The time it would take supposing ideal
speedup is also shown (green stars). The right panel shows the
speedup reached for each case (red points) and the ideal speedup
(3, for our 3-node cluster) is marked by the dotted line.



6
C O N C L U S I O N S , WA R N I N G S A N D F U T U R E
P E R S P E C T I V E S

Needless to say, Tina and Pipistrello are experimental software. They
were born out of the need for handling and analysing the data gen-
erated by the Earth System Physics group at ICTP. As experimental
software, they are completely new tools not tested by anyone but the
developer (me in this case). They may contain bugs and may lack de-
sired functionality. In particular, the fact that the user has to write the
mapper and the reducer as separate scripts is something that annoys
me. A little step is still need to be taken to provide the same kind of
functionality that Luigi and mrjob provide. Like this one, and Tina’s
inability to handle units, there are other imperfections of which I am
aware of. And I am sure that there are many more of which I am not
aware of. The bright side, however, is that we now have traced the
path and paved the road to future development.

In this thesis, software has been developed that not only
enables to store data to a Hadoop Cluster without

modifying a single bit of it, but also to MapReduce it with
minimum overhead. All of this is achieved requiring an

almost non-existent effort for the users. With larger clusters,
larger storage space and willing people to carry out the

"dirty work" of curating the data, analysing hundreds of
Terabytes of Scientific Big Data will be faster than saying:

"Are we done yet?".
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