
Master in High Performance
Computing

Lattice Quantum
Chromodynamics on

Intel R© Xeon PhiTMbased
supercomputers

Supervisor :
Prof. Dr. Carsten Urbach

Candidate:
Peter Labus

2nd edition
2015–2016

Master’s Programme in High Performance Computing, ICTP & SISSA Trieste, Italy.

https://github.com/plabus/qphix
https://github.com/plabus/qphix-codegen

The research for this master’s thesis project was carried out under the supervision of Prof. Dr. Carsten
Urbach with the �nancial support of the SISSA Research Fellowship “Lattice QCD calculations of
Hadronic properties on Intel-MIC based supercomputers”, within a total of seven months, from
June to December 2016.

December 2016

https://github.com/plabus/qphix
https://github.com/plabus/qphix-codegen

Preface

The aim of this master’s thesis project was to expand the QPhiX library for twisted-mass fermions
with and without clover term. To this end, I continued work initiated by Mario Schröck et al. [63].

In writing this thesis, I was following two main goals. Firstly, I wanted to stress the intricate
interplay of the four pillars of High Performance Computing: Algorithms, Hardware, Software
and Performance Evaluation. Surely, algorithmic development is utterly important in Scienti�c
Computing, in particular in LQCD, where it even outweighed the improvements made in Hardware
architecture in the last decade—cf. the section about computational costs of LQCD. It is strongly
in�uenced by the available hardware—think of the advent of parallel algorithms—but in turn also
in�uenced the design of hardware itself. The IBM BlueGene series is only one of many examples in
LQCD. Furthermore, there will be no bene�t from the best algorithms, when one cannot implement
the ideas into correct, performant, user-friendly, read- and maintainable (sometimes over several
decades) software code. But again, truly outstanding HPC software cannot be written without a
profound knowledge of its target hardware. Lastly, an HPC software architect and computational
scientist has to be able to evaluate and benchmark the performance of a software program, in the
often very heterogeneous environment of supercomputers with multiple software and hardware
layers.

My second goal in writing this thesis was to produce a self-contained introduction into the
computational aspects of LQCD and in particular, to the features of QPhiX, so the reader would be
able to compile, read and understand the code of one truly amazing pearl of HPC [40].

It is a pleasure to thank S. Cozzini, R. Frezzotti, E. Gregory, B. Joó, B. Kostrzewa, S. Krieg,
T. Luu, G. Martinelli, R. Percacci, S. Simula, M. Ueding, C. Urbach, M. Werner, the Intel company
for providing me with a copy of [55], and the Jülich Supercomputing Center for granting me access
to their KNL test cluster DEEP [8].

Peter Labus, December 2016.

This page intentionally left blank.

Contents

Preface . 3

Introduction . 7

1 Algorithms . 13

1.1 The Dirac Dslash Operator 14
1.1.1 The Basic Algorithm . 14
1.1.2 Performance Model and Boundedness . 18
1.1.3 Clover Term and Twisted-Mass . 21

1.2 Iterative Solvers 24
1.2.1 Conjugate Gradient Method . 25
1.2.2 Biconjugate Gradient Stabilized Method . 26
1.2.3 Modified Richardson Iteration . 28
1.2.4 Preconditioning . 29

1.3 Hybrid Monte Carlo 34
1.4 Computational Complexity of LQCD 42

2 Hardware . 45

2.1 Architecture 46
2.1.1 Tiles and Cores . 47
2.1.2 Interconnect Mesh and Cluster Modes . 50
2.1.3 Memory and Memory Modes . 51
2.1.4 I/O and Omni-Path Fabric . 52

6

2.2 General Programming Implications 52
2.2.1 Managing MCDRAM . 53
2.2.2 Vectorisation . 53
2.2.3 Scaling . 57

2.3 Performance Model Revised 57

3 So�ware . 59

3.1 So�ware Layers for LQCD Simulations 59
3.2 QPhiX 60
3.2.1 Data Structures, Tiles & Geometry . 61
3.2.2 Cache Blocking and Load Balancing . 64
3.2.3 SMT Threading and La�ice Traversal . 66
3.2.4 BLAS Linear Algebra . 68
3.2.5 Even-Odd Operators & Iterative Solvers . 68
3.2.6 Inter-Node Communication . 70
3.2.7 Barriers . 71

3.3 QPhiX Code Generator 71
3.3.1 Instructions, Addresses & Vector Registers . 72
3.3.2 Implementing Instructions . 75
3.3.3 The dslash Body . 75
3.3.4 So�ware Prefetches . 77
3.3.5 Code Generation & Custom Make Files . 77

3.4 Extending QPhiX for Twisted-Mass 81
3.4.1 Code Generation for pure Twisted-Mass Fermions . 81
3.4.2 Data Types & Multiplication of Twisted-Mass Clover . 84
3.4.3 Declarations & L1/L2 Prefetches . 86
3.4.4 Extending the High-Level Facilities . 86

4 Benchmarks . 89

4.1 Single Node Results 89
4.2 Testing the Kernel Options 94
4.3 Multi-Node Results 94

Conclusions and Outlook . 97

Bibliography . 103

Introduction

Lattice Quantum Chromodynamics (LQCD) is the discretised version of the physical theory that is
believed to described the so-called strong interactions—one of the four known elementary forces
in the Universe. It describes the movement and interaction (the dynamics) of elementary particles
called quarks. Their charge is called colour (Greek chromos) and determines how they combine into
heavier particles like protons and neutrons which then themselves form the nucleus of the atom.
The particles that are responsible for this sort of binding mechanism are called gluons because
they stick or glue the quarks together. Interestingly enough, these particles themselves are charged
and interact not only with the quarks but also amongst each other. This has the consequence
that the equations describing the dynamics are non-linear and the theory cannot be easily solved
with analytic methods. However, discretising the underlying continuous space-time structure and
looking only onto a �nite subset of points provides an excellent framework to study the theory
on the computer. The discrete version of space-time assumes the form of a grid or lattice—which
explains the origin of the name of the theory.

Mathematically, QCD is fully described by an integral (the so-called path integral or partition
function) which can be manipulated to extract information from the theory and calculate observable
quantities which could then be compared with data from experiments. Numerical methods to
estimate integrals have a long history. Standard methods turn out to be particularly expensive when
the dimensionality of the domain of integration is high. For these kind of integrals a sophisticated
but simple technique which is based on pure randomness turns out to be most e�cient. It is known
under the name of Monte Carlo Integration. In essence, one lets the computer roll a – very clever –
dice many times to select the portions of relevance of the integral and then sums only those. This
can be shown to be a su�ciently fast converging estimate of the full integral.

In LQCD the preferred variant of this method is called Hybrid or Hamiltonian Monte Carlo
(HMC) algorithm [21]. It combines two of the most in�uential ideas in Scienti�c Computing of
the 20th century—the Metropolis Monte Carlo algorithm [50] and Molecular Dynamics [14]. The

8

word Hamiltonian thereby refers to the speci�c system of equations that is used for the Molecular
Dynamics (MD) Integration. MD is the procedure of integrating a system of di�erential equations
(i.e. equations of motion) by means of discretising the di�erential operators, which transforms the
equations into simple algebraic ones. We will come back to the HMC algorithm in more detail in
the next chapter.

The equations of motions which are integrated during the MD part of the Monte Carlo algorithm
describe how the quarks move or propagate in space-time under the in�uence of the gluons. As it
turns out, this is described by the inverse of an intricate di�erential operator (the Dirac operator
or dslash) in the continuum theory, which however becomes a very sparse matrix in the lattice
formulation. It is described by a (discretisation dependent) nearest-neighbour stencil operator
which we will present shortly. The appearance of this matrix is the reason why one has to solve
very many sparse systems of linear equations during the MD integration. This is best done using
iterative solvers to which we will give an introduction in the next chapter as well.

Lattice QCD is one of the most computationally expensive �elds in Scienti�c Computing
and uses large fractions of the available supercomputer resources worldwide. Walltimes for the
generation of Monte Carlo con�gurations can easily amount for up to a year on large parts of
capability supercomputers. In particular, several new important results in hadron physics are
expected to have demands of hundreds of Tera�op-years or even Peta�op-years [61]. This is why
LQCD software is frequently implemented very early on, on new available hardware and highly
optimised and e�cient implementations of the best known algorithms are of utmost importance.
After introducing the main algorithms used in practical LQCD simulations in the next chapter, we
will discuss the scaling of the simulation cost in terms of fundamental physical parameters of the
theory.

In this chapter, we want to give a brief overview over the mathematical framework and structure
of the continuous quantum �eld theory of QCD. First and foremost, this serves as a means to
familiarise the reader with the objects, entities and notions of the mathematical theory, so the
structure of the discretised theory becomes clearer. Then, we want to give a slightly more detailed
outline how one actually makes the transition to the lattice formulation of QCD in order to simulate
the theory on a computer. This should motivate the basic procedure one will have to apply to
extract usable data from the lattice theory and in particular point out ambiguities one has to
face when discretising the continuum theory. Along the way, we will introduce the objects that
eventually will have to be represented through data structures in the software implementation.

The theory of QCD is most compactly and conveniently represented in form of a partition
function1

Z =

∫
DψDψ̄DA e−SQCD[ψ,ψ̄,A] (1)

which is a Feynman path integral over all possible con�gurations of the fermion �elds ψ(x) and
the gauge �elds A(x) which are both functions of the space-time point x themselves. The former
will represent the aforementioned quarks and the latter the gluons. As for now, space-time is a
four-dimensional, continuous manifold and thus the integral is formally in�nite dimensional. This
will change, once the uncountable many points are reduced to �nitely many when passing to a
lattice with �nite extension.

1We will directly work in Euclidean signature where space-time is the vector space R4 with Euclidean inner product.

9

The name partition function was borrowed from statistical physics and in fact we will make use
of a probabilistic interpretation of the path integral in order to calculate Z . The most convenient
feature of the partition function is the fact that it can generate observable quantities of the theory
in a very elegant way. We will not outline the exact procedure here, but only state that all physical
observable are encoded within (vacuum) expectation values of so-called n-point functions of the
form

〈O1O2 . . .On〉 =
1

Z

∫
DψDψ̄DA O1O2 . . .On[ψ, ψ̄, A] e−SQCD[ψ,ψ̄,A] , (2)

where O1O2 . . .On are products of operators of the quantum �eld theory. The important point to
note, is the fact that all of these integrals have a very similar form and will in fact be evaluated in a
very similar way.

The actual information of the theory is encoded within the action SQCD which is also the
weight in the Boltzmann factor e−SQCD appearing in both the partition as well as the n-point
functions. In continuum’s QCD it reads

SQCD = SF [ψ, ψ̄, A] + SG[A] , (3)

SF =

NF∑
f=1

∫
d4x

[
ψ

(f)
(x)
(
/D(x) +m(f)

)
ψ(f)(x)

]
, (4)

SG =
1

2g2

∫
d4x TrF 2(x) , (5)

where the �rst part SF is the fermionic and the second SG is the (gauge) bosonic contribution. Here
the a�ne di�erential operator /D =

∑4
µ=1 γµ(∂µ + iAµ) is the Dirac dslash operator mentioned

earlier.2 The four 4× 4 matrices γµ are the gamma-matrices which arise from the property that
fermions have spin 1

2 . We will seem them later explicitly. The �rst part of the dslash operator (the
partial space-time derivative) describes the propagation of the fermions in space-time, whilst the
second term encodes the interaction of the quarks with the gluons. Finally, m(f) is the mass of
a quark of �avour f . The index f simply enumerates through the NF di�erent types of quarks,
of which six are known experimentally. In LQCD, one frequently simulates a number of �avours
varying from two to four.

The above notation is very compact and hides a lot of the information in order to be more
readable. Let us have a closer look at the components of the fermionic and bosonic �elds �rst. The
quarks are described by so-called Dirac four-spinor �elds

ψ
(f)α

c (x) and ψ(f)α
c (x) , (6)

which are de�ned for every �avour f at every space-time point x. In addition, they carry two
vector-like indices, the Dirac or spin indexα = 1, 2, 3, 4 and the colour index c = 1, 2, 3. Each of the
12 components for each space-time point is a complex number. The bar denotes Dirac conjugation
ψ = ψ†γ0. In the following we will often suppress these indices and adapt a matrix/vector notation.

The gluons on the other hand are described by the gauge �elds

Acdµ (x) , (7)
2As it is customary in the continuum theory, we will count one-based here, and pass to zero-based counting in the

lattice theory, since this way of counting is used more frequently in computer science.

10

n n+ µ̂Uµ(n) ≡ U(n, n+ µ)
n n+ µ̂U−µ(n) ≡ U †(n, n+ µ̂)

Figure 1: Forward (left) and backward (right) oriented link variables, which replace the gauge �elds on the
lattice, adapted from [35].

which again, are de�ne at every space-time point x. They carry a Lorentz index µ = 1, 2, 3, 4, and
in addition two colour indices c and d. In fact, they are traceless, hermitian 3× 3 matrices in colour
space and thus can be parametrised by eight real numbers. Choosing a basis T cdi ∈ su(3), where
i = 1, 2, . . . , 8, for these matrices, the gauge �elds can be parametrised by the eight real colour
components A(i)

µ as follows

Acdµ (x) =
8∑
i=1

3∑
b=1

A(i) cb
µ T bdi . (8)

With all indices written out the fermionic part of the action of QCD assumes the following form

SF =

NF∑
f=1

∫
d4x

4∑
µ=1

4∑
α,β=1

3∑
c,d=1

{
ψ

(f)α
c (x)

[
(γµ)αβ(∂µδcd + iAµcd) +m(f)δαβδcd

]
ψ(f)α

c (x)

}
.

(9)

Similarly, the bosonic part, that encodes the propagation and self-interactions of the gluons assumes
the form

SG =
1

4g2

∫
d4x

8∑
i=1

F (i)
µν (x)F (i)

µν (x) , (10)

F (i)
µν (x) = ∂µA

(i)
ν (x)− ∂νA(i)

µ (x)−
3∑
j=1

3∑
k=1

fijk A
(j)
µ (x)A(k)

ν (x) , (11)

with real coe�cients (the structure constants of the Lie algebra) fijk . Again, the presentation up to
now only serves the purpose to introduce to the quantities and structures of interest for later use
in the lattice theory and its implementation on the computer.

In order to proceed with the discretisation of the continuum theory, we essentially have to
follow a two-step programme. First the space-time continuum has to be replaced with a discrete
four-dimensional grid with a lattice spacing a separating two neighbouring points in one direction.
Secondly, we have to make sense of the action and integrals on this grid as well. To discretise
the action itself, two important requirements have to be met. On the one-hand side, we have to
guarantee that in the limit a→ 0, that is the naïve continuum limit, the lattice action approaches
the continuum action smoothly. On the other hand, we need to insure that a certain invariance of
the continuum’s formulation, the so-called gauge symmetry, is preserved, which allows to model
interactions with a local quantum �eld theory, paying a depth in terms of introducing a redundancy
into the theory. We shall not be concerned with the mathematical details of gauge �eld theories
here. The interested reader may �nd further details in any book about quantum �eld theory (cf.
e.g. [79]).

11

The �rst step is straight-forward. We introduce a lattice as the collection of points

Λ = {n = (n0, n1, n2, n3) |ni = 0, 1, . . . , Ni − 1} , (12)

such that each point of the lattice is labelled by a quadruple of integers and xµ = anµ for all
space-time dimensions µ = 0, 1, 2, 3. Then integrals are replaced with sums over the sites of the
lattice

∫
d4x→ a4

∑
n∈Λ and the fermion and gauge �elds are de�ned only on sites n of the lattice

ψ(n) and Aµ(n). Note that they still carry the same colour, spin and �avour indices as in the
continuum’s formulation, which we suppress here for simplicity.

It turns out, that the gauge part of the action is best discretised by exponentiating the gauge
�elds, and using the so-called link variables as the fundamental variables

Uµ(n) = exp (iaAµ(n)) ∈ SU(3) , (13)

thus promoting an su(3) Lie algebra-valued �eld into an SU(3) Lie group-valued �eld. The link
variables Uµ(n) ≡ U(n, n+ µ̂) live on connecting links between to lattices sites (thus the name)
and carry an orientation (cf. Fig. 1). They are 3 × 3 special unitary colour matrices. It can be
shown, that any closed loop of (oriented) products of link variables of the form

L(U) = Tr

 ∏
(n,µ)∈L

Uµ(n)

 , (14)

where L is a loop on the lattice, is gauge-invariant. These objects are called Wilson loops, and the
simplest of them is the plaquette

Uµν(n) = Uµ(n) Uν(n+ µ̂) U−µ(n+ µ̂+ ν̂) U−ν(n+ ν̂) , (15)

depicted in Fig. 2. One can show, that summing over all plaquettes of the lattice, counting only one
orientation per plaquette, on can resemble the continuum gauge action in the continuum limit

SG[U] =
2

g2

∑
n∈Λ

∑
µ<ν

Re Tr [1− Uµν(n)] =
a4

2g2

∑
n∈Λ

∑
µ,ν

Tr F 2
µν(n) +O(a2) . (16)

Note however, that this procedure is ambiguous, because we could add any term of O(a) or higher
to the action without spoiling the continuum limit a→ 0.

Unfortunately, the naïve, straight-forward discretisation procedure for the fermions is less
successful. Here, we �rst have to discretise the derivative operator, for instance with a symmetric
di�erence operator

∂µψ(x) 7→ 1

2a

(
ψ(n+ µ̂)− ψ(n− µ̂)

)
. (17)

Next, one can expand the link variables Uµ(n) for small lattice spacings a and replace the lattice
gauges �elds in the dslash operator with link variables. One can show that the resulting term is
gauge-invariant and the naïve fermion lattice action becomes:

Snaïve
F = a4

∑
n∈Λ

ψ(n)

 4∑
µ=1

γµ
2a

(
Uν(n)ψ(n+ µ̂)− U−ν(n)ψ(n− µ̂)

)
+mψ(n)

 . (18)

12

n n+ µ̂

n+ ν̂ n+ µ̂+ ν̂

Uµ(n)

Uν(n) Uν(n+ µ̂)

Uµ(n+ ν̂)

Figure 2: The plaquette is the simplest oriented product of link variables, adapted from [35].

Unfortunately, this action turns out to contain so-called fermion doublers, which double the number
of fermions for each dimension. It thus describes 16 instead of one fermion. The original solution
proposed by Wilson [80] is to add a second-derivative-like term3

SW = − r

2a

∑
n∈Λ

4∑
µ=1

ψ(n)

(
ψ(n+ µ̂)− 2ψ(n) + ψ(n− µ̂)

)
, (19)

to the naïve fermion action which e�ectively introduces an additional mass term for the fermions
and removes the doublers. There are, however, other problems with (pure) Wilson Fermions, which
is why there exist many other fermionic formulations of LQCD, including Staggered Fermions,
Overlap Fermions and Domain Wall Fermions.

Wilson-like fermions can also be improved, for instance by adding higher order terms in a,
like the clover term, as well as other terms like the twisted-mass term. We will see both of the
above terms in more detail in the next chapter. The goal of this thesis is to implement each of
these terms, as well as both in combination into the QPhiX lattice QCD library for Intel Xeon Phi
(co-)processors.

More about lattice gauge theories, and LQCD in particular, can be found in many excellent text
books, e.g. [27, 35, 57].

3The Wilson parameter r is usually set to 1.

1. Algorithms

In the last chapter we have given an introduction to Quantum Chromodynamics, the Quantum
Field Theory of the strong interactions and its discretised version which is known as Lattice QCD.
The latter is suitable to study the full theory on a computer and in this chapter we want to outline
the most important numerical techniques and algorithms to do so. In particular, we aim to describe
all algorithms that are actually used in the QPhiX library.

As we have seen before, in order to extract data from simulating lattice QCD, which could be
compared with experiments or studies using analytic techniques, one essentially has to calculate
integrals of a speci�c kind. These integrals are derivatives of the partition function known from
statistical physics, called correlation functions. They all resemble the same form, in that their
integrand is always weighted with what (at least in the case of vanishing temperature and chemical
potential) can be interpreted as a probability distribution—the Boltzmann factor e−S . This sort of
integral is usually best evaluated using Monte Carlo techniques, in particular those based on Markov
Chains, because of the high dimensionality of the integrals. In order to do so, one �rst generates
con�gurations that are distributed with the given probability and then calculates approximate
values of the integrals as the arithmetic mean of the integrated function evaluated on a (large) set
of these con�gurations.

Since there is, as of yet, no e�cient Monte Carlo Markov Chain algorithm known, that could
function with local updates for the full theory of QCD, one usually uses the Hybrid Monte Carlo
algorithm to generate gauge con�gurations. Within this algorithm, (global) updates are proposed
using a Molecular Dynamics procedure to integrate the classical equations of motion of the theory.

Both in the molecular dynamics part as well as when �nally evaluating integrals, it is of great
importance to be able to apply and invert the full fermion matrix M . In fact, most of the simulation
time for lattice QCD is spend in kernels implementing the matrix-vector product of this matrix.

This is why we will �rst have a detailed look on how to apply the fermion matrix to its
respective vector. After that we will give an introduction to a class of solvers for sparse systems

14 Chapter 1. Algorithms

of linear equations which can be used to invert the fermion matrix—so called Krylov Subspace
Iterative Solvers. Finally, we will outline, how both these techniques come in to play when one
wants to compute con�gurations distributed according to the Boltzmann probability, using the
Hybrid Monte Carlo algorithm. This understanding will be important, to be able to generate gauge
con�gurations on Xeon Phi’s eventually.

In this chapter we will be concerned about algorithms and their theoretical properties. We
will not worry about the particulars of an actual implementation, as for instance data structures,
memory patterns and the like, until after having introduced the target architectures in the next
chapter.

1.1 The Dirac Dslash Operator
After having pointed out in some detail the importance of the Dirac operator both for the generation
of gauge con�gurations as well as to measure quark propagators and other observables we will
now outline in some more detail how the matrix can be applied to a spinor �eld.

First we will describe the basic algorithm in the simplest case of Wilson fermions, already with
the addition of some very simple algorithmic improvements. From that we will estimate what kind
of theoretical performance we may expect. In particular, we will calculate the arithmetic intensity
measured in �oating point operations per transferred byte in memory. This will show that due to
the sparseness of the matrix, the algorithm is actually memory bandwidth rather than compute
bound, which would be the case for algorithms handling dense matrices.

Finally we will show how to additionally account for the twisted-mass as well as the clover
term which are added to the full fermion matrix M in the action for twisted-mass fermions.

1.1.1 The Basic Algorithm
As mentioned before, the Dirac operator /D is a very large sparse matrix which physically describes
both the propagation of the fermions as well as their interaction with the gluons. It is the part of
the full fermion matrix

M = (4 +m)− 1

2
/D . (1.1)

The Dirac operator connects even to odd (or red to black) sites and vice versa. This is why it is also
referred to as the hopping matrix. The Feynman slash indicates that the spacetime-derivative ∂µ
in the continuum theory is contracted with the Gamma matrices γµ as we will see in more detail
shortly.

As we have already seen the last chapter, the Dirac operator acts on fermion (a.k.a. quark or
spinor) �elds ψaα(x) on every point x of the lattice Λ. The additional indices of the spinor �eld are
called colour and spin. The (Latin) colour index a takes values in {0, 1, 2} and the (Greek) spinor
index α assumes the four values {0, 1, 2, 3}. A spinor (that is a spinor �eld at one lattice point)
may thus alternatively thought of as a collection of four three-component colour-vectors, or three
four-component spin-vectors. A spinor has thus 3× 4 = 12 complex components and so the Dirac
dslash operator is a square matrix of 24×|Λ| side length. For a cubic lattice of dimensions 483×96
the matrix would have roughly (254 million)2 elements. Stored in its entity in double precision, the
matrix would occupy more than 5 PB = 5× 1017 bytes of data.

1.1 The Dirac Dslash Operator 15

Fortunately, it is not necessary to store the matrix entirely. Rather, one only needs to store one
SU(3) matrix for each link connecting two neighbouring sites of the lattices—the link variables
(a.k.a. gauge or gluon �elds) which have been introduced in the last chapter, as well. A special,
unitary matrix Uab ∈ SU(3) is a 3× 3 complex matrix which contains 18 real elements. However,
since the matrix has to be unitary U †ab = U−1

ab and special, i.e. detUab = +1, there are actually
only 8 real parameters describing the matrix fully. In order to save storage and memory bandwidth
when applying the dslash operator, one can therefore use techniques to restore a full SU(3) from
only 8 or 12 parameters on the �y, as we will see below.

With all sums and indices written out explicitly a matrix-vector product of the dslash with a
spinor assumes the following form

χaα(x) =
∑
y∈Λ

2∑
b=0

3∑
β=0

/D
ab
αβ(x, y)ψbβ(y)

=

2∑
b=0

3∑
β=0

3∑
µ=0

[
Uab(x, x+ µ̂) (1− γµ)αβ ψ

b
β(x+ µ̂)+ (1.2)

U † ab(x, x− µ̂) (1 + γµ)αβ ψ
b
β(x− µ̂)

]
,

where x and y are spacetime vectors with four components each, which label the sites of the lattice.
The vectors µ̂ ∈ {0̂, 1̂, 2̂, 3̂} ≡ {t̂, x̂, ŷ, ẑ} represent the unit vectors in the respective (positive)
direction. Finally, the lattice indices of the matrices U label where the link is emanating and ending,
respectively.

There are a few things about this formula worth mentioning. First of all, note that the resulting
vector is again a spinor �eld and thus has 24 real components for every point of the lattice. As we
see explicitly in the second equality, the summation over the lattice variable y drops out and is
replaced by a summation over the four spacetime (or lattice) dimensions µ. In fact, since the matrix
U is unitary, we can think of the matrix U † = U−1 in the third line as the inverse operator which
is pointing backwards from the point x to the point x− µ̂. We thus see, that the Dirac matrix only
connects each site of the lattice with its eight nearest neighbouring sites, as well as the eight links
which emanate from that site. In computer science, this sort of operators are called stencil operators
and are well studied in the general context in the literature [25, 62].

Half Spinors and Projection

The �rst important algorithmic improvement for the evaluation of the stencil operation comes
from the fact that the 4× 4 matrices

P±µ = 1± γµ (1.3)

16 Chapter 1. Algorithms

act as projectors onto the spinors and can be evaluated beforehand. Indeed, choosing for instance
the DeGrand-Rossi basis1 of the gamma-matrices γµ

γ0 =


0 0 0 +i
0 0 +i 0
0 −i 0 0
−i 0 0 0

 γ1 =


0 0 0 −1
0 0 +1 0
0 +1 0 0
−1 0 0 0

 (1.4)

γ2 =


0 0 +i 0
0 0 0 −i
−i 0 0 0
0 +i 0 0

 γ3 =


0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0

 (1.5)

the projected spinors will have a particularly simple form. For instance, in the case of µ = 2 with
ψ = (ψ0, ψ1, ψ2, ψ3)T we have

P+
2 ψ =


1 0 i 0
0 1 0 −i
−i 0 1 0
0 i 0 1



ψ0

ψ1

ψ2

ψ3

 =


ψ0 + iψ2

ψ1 − iψ3

−iψ0 + ψ2

iψ1 + ψ3

 ≡


h0

h1

−ih0

ih1

 , (1.6)

where we de�ned h0 = ψ0 + iψ2 and h1 = ψ1 − iψ3 (we adopted the notation from the QPhiX
library [44]). That is, the two top components can be computed with one complex addition only (we
will not count multiplications with ±i as �oating point operations, because they merely consist of
a swap of the real and imaginary part with a possible change of sign). The lower two components
can even be reconstructed from the two upper ones without having to calculate anything at all.
This holds true for the seven other cases as well and we have summarised the outcome of projection
and reconstruction for each direction in Tab. 1.1. The physical origin of the simple structure for this
kind of bases is the fact that the part of the fermion action that is given by the hopping matrix
is chirally invariant. We will refer to the two-component projected (or reconstructed) spinors as
half spinors. Note in particular, that since the reconstruction is essentially a reordering of the four
components of the half spinor (h0, h1), one can �rst multiply the latter with the SU(3) matrix and
only then reconstruct the remaining two spinor components (r2, r3). This reduces the required
colour matrix multiplications from four to two per site and direction.

Gauge Compression
As we will see explicitly below, the basic dslash algorithm is memory bandwidth bound. That is,
one may want to decrease the amount of data one has to read from and write to memory, even if
this comes with a trade-o� in form of additional �oating point operations.

One way to do this, is to reconstruct or decompress the gauge matrices on the �y, e�ectively
having to read fewer of their elements from memory. As mentioned before, an SU(3) matrix
is fully parametrised by eight real parameters. From these eight parameters the nine complex
numbers, which have to be available for the matrix-vector multiplication, can be recalculated.

There are two common methods used for compression. The �rst one compresses the 18 real
numbers into 12 real parameters in the form of two 3-component complex colour vectors [26].
These two vectors a and b can be thought of as the �rst two rows of the matrix, which is why the

1The following structure will actually arise for any chiral representation of the gamma-matrices (cf. for instance
[53]), one other popular choice being the Weyl basis.

1.1 The Dirac Dslash Operator 17

(µ,±) h0 h1 r2 r3

(0,+) ψ0 + iψ3 ψ1 + iψ2 −ih1 −ih0

(1,+) ψ0 − ψ3 ψ1 + ψ2 h1 −h0

(2,+) ψ0 + iψ2 ψ1 − iψ3 −ih0 ih1

(3,+) ψ0 + ψ2 ψ1 + ψ3 h0 h1

(0,−) ψ0 − iψ3 ψ1 − iψ2 ih1 ih0

(1,−) ψ0 + ψ3 ψ1 − ψ2 −h1 h0

(2,−) ψ0 − iψ2 ψ1 + iψ3 ih0 −ih1

(3,−) ψ0 − ψ2 ψ1 − ψ3 −h0 −h1

Table 1.1: The action of the projection operators P±
µ de�ned in the text in the DeGrand-Rossi basis. The lower

half spinor (r2, r3) can always be reconstructed from the upper one (h0, h1).

technique is also called two-row compression. The vectors have to be normalised ||a|| = ||b|| = 1
and orthogonal onto each other 〈a,b〉 = 0. The third row can then be restored by calculating the
complex conjugate of the cross product

c = (a× b)∗ . (1.7)

Obviously, c will then be normalised as well and the triple U ≡ (a,b, c)T will be positively
oriented (i.e. right-handed), such that detU = +1. Since furthermore c is orthogonal on both a
and b and complex conjugate to them, it follows that U is also unitary.2

For the �rst component (a×b)∗0 = a∗1b
∗
2−a∗2b∗1, two complex multiplications and one complex

addition, that is eight �oating point operations, are required. Thus, in total this method introduces
an additional 24 �oating point operations, saving six reads at the same time.

To decompress SU(3) matrices from only eight parameters, one could use the generators of
the Lie algebra su(3) (the Gell-Mann matrices) and exponentiate, but this turns out to require
rather many �oating point operations. Another approach was proposed in [19] and modi�ed in
[22] and involves the use of trigonometric functions.

Starting again with a complex, normalised three-vector a, one can constructed an orthonormal
basis for C3 setting

b′ =
1

N
(0,−a∗2, a∗1) , N2 = |a1|2 + |a2|2 , (1.8)

c′ = (a× b′)∗ , (1.9)

i.e. 〈a,b′〉 = 〈a, c′〉 = 〈c′,b′〉 = 0 and ||b′|| = ||c′|| = 1. Since the second and third row of the
�nal matrix U ∈ SU(3) must be (complex) orthogonal to a, we have b, c ∈ span {b′, c′} and thus

2In case unitarity is lost due to rounding errors, it can be restore easily with a Gram-Schmidt procedure:

anew ← a / ||a|| , bnew ← b′ / ||b′|| , c← (anew × bnew)
∗ ,

with b′ = b− anew 〈anew,b〉 .

18 Chapter 1. Algorithms

Algorithm 1: Eight Parameter Gauge Decompression
input : 3 complex numbers a1, a2, b0 and 2 angles θ1, θ1

output : full SU(3) matrix

1 N2 ← |a1|2 + |a2|2

2 a0 ←
√

1−N2 (cos θ1, sin θ1)

3 c0 ←
√
N2 − |b0|2 (cos θ2, sin θ2)

4 n← −1/N2

5 b1 ← n (b0a
∗
0a1 + c∗0a

∗
2)

6 b2 ← n (b0a
∗
0a2 + c∗0a

∗
1)

7 c1 ← n (c0a
∗
0a1 − b∗0a∗2)

8 c2 ← n (c0a
∗
0a2 − b∗0a∗1)

we can rotate b′ and c′ by a transformation S ∈ SU(2) into b and c:a0 a1 a2

b0 b1 b2
c0 c1 c2

 =

1 0 0
0 s1 s2

0 −s∗2 s∗1

a0 a1 a2

0 − 1
N a
∗
2 − 1

N a
∗
1

N − 1
N a
∗
0a1 − 1

N a
∗
0a2

 . (1.10)

From this relation one can see that b0 = Ns2 and c0 = Ns∗1, that is, b0 and c0 can be used to
parametrise the matrix U . The ten (real) parameters {a, b0, c0} can then be further reduced to
eight parameters by demanding that the �rst row and column of the matrix U are normalised.3
Writing two of the complex parameters, say a0 and c0, in trigonometric from z = |z| eiθ , these two
conditions translate into conditions for the modulus of the two complex parameters, such that

||a|| = 1⇔ a0 =
√

1−N2 eiθ1 , (1.11)
|a0|+ |b0|+ |c0| = 1⇔ c0 =

√
N2 − |b0|2 eiθ2 , (1.12)

that is, a0 and c0 are parametrised by only one real parameter respectively. Thus a full SU(3)
matrix U can be reconstructed from a set {b0, a1, a2, θ1, θ2} with the help of Alg. 1. This involves
in total a 88 �oating point operations (additions and multiplications), one division, and two square
root, two sines and two cosines evaluations4 to save a total of 10 reads. Although, this sounds
extensively many, on platforms like GPGPUs this has proven to be bene�cial [22]. This is because,
for this architectures, fast (hardware) functionality for trigonometric and square root functions are
available and the rate of throughput per moved byte is rather high.

With the projection onto half spinors and the (optional) gauge compression in place, we can
now summarise the application of the dslash operator onto a spinor �eld in Alg. 2.

1.1.2 Performance Model and Boundedness
To get an idea, how this basic algorithm will perform we can �rst calculate the arithmetic intensity,
that is the number of �oating point operations per byte moved from/to memory. Let us �rst explicitly

3We are following Ref. [22] here. For an approach using stereographic projection see [19].
4Note that some of the �oating point operations for additions and multiplications may be reduced through the use

of fused multiply/add functionality on Xeon and Xeon Phi processors.

1.1 The Dirac Dslash Operator 19

Algorithm 2: Basic dslash Stencil
input : spinor �eld psi [position][colour][spin],

gauge �eld U [position][dimension][direction][colour][colour]
output : spinor �eld result [position][colour][spin]

1 Allocate temporary arrays: h [colour][2], Uh [colour][2]

2 foreach site x ∈ Λ do

3 Zero-out result [x][:][:]

4 for dim← 0 to 3 do
5 for dir = forward, backward do

6 nb = neighbour_index (x, dim, dir)
7 Decompress link variables U [x][dim][dir][:][:]

8 for col← 0 to 2 do
9 h [col][0] = Project_0 (dim, dir, psi [nb][col][:])

10 h [col][1] = Project_1 (dim, dir, psi [nb][col][:])
11 end

12 if dir == forward then
13 Uh [col][0] = SU3_Multiply (U [x][dim][dir][col][:], h [:][0])
14 Uh [col][1] = SU3_Multiply (U [x][dim][dir][col][:], h [:][1])
15 else
16 Uh [col][0] = SU3_Adj_Mult (U [nb][dim][dir][col][:], h [:][0])
17 Uh [col][1] = SU3_Adj_Mult (U [nb][dim][dir][col][:], h [:][1])
18 end

19 for col← 0 to 2 do
20 result [x][col][0] += Uh [col][0]
21 result [x][col][1] += Uh [col][1]
22 result [x][col][2] += Reconstruct_2 (dim, dir, Uh [col][:])
23 result [x][col][3] += Reconstruct_3 (dim, dir, Uh [col][:])
24 end

25 end
26 end

27 end

20 Chapter 1. Algorithms

show that the addition and multiplication of two complex numbers zi = (ai, bi) ≡ ai + ibi

z1 + z2 = (a1 + a2, b1 + b2) (1.13)
z1 ∗ z2 = (a1 ∗ b1 − a2 ∗ b2, a1 ∗ b2 + a2 ∗ b1) (1.14)

requires two and six �oating point operations, respectively.
Let us count the number of operations needed for one of the eight directions �rst. For the �rst

step of the algorithm we have to calculate h0 and h1, which require an addition of two colour-
vectors, twice. We thus need 3× 2× 1 complex adds which make up 12 �oating point operations.
Next, we have to evaluate two matrix-vector products of the form

∑
b U

abhbi for i = 1, 2 for every
colour a = 0, 1, 2, that is for every row of the matrix U . For each row we need three complex
multiplications and two complex additions, that is in total

2︸︷︷︸
h0, h1

× 3︸︷︷︸
colours

× (3× 6︸ ︷︷ ︸
complex mults

+ 2× 2︸ ︷︷ ︸
complex adds

) = 132 �ops . (1.15)

After the matrix multiplication, we have to reconstruct the lower half spinor, which however only
involves swaps in memory (with possible sign changes) and thus does not require any �oating
point operations at all. That is for all eight directions we need 8× (12 + 132 + 0) = 1152 �oating
point operations up until now. Finally, we have to accumulate the eight full (four component)
spinors to the overall result spinor. Each of the eight spinors has 24 real components (3× 4× 2 for
colour, spin and real/imaginary) and thus the 7 necessary adds amount for another 168 �oating
point operations. That is, the dslash requires 1320 �oating point operations in total per site. As
we have mentioned before, the two-row gauge compression requires 24 additional �oating point
operations,5 which we will keep in mind to see if, in case gauge compression is used, the algorithm
becomes compute bound. However, we will not add them to the arithmetic intensity, because they
do not contribute to the evaluation of the matrix product.

In terms of memory transfer the algorithms demands to read eight spinors and eight link
matrices per site. The latter have at most 18 (3×3×2 for colour, colour, real/imaginary) components.
In addition, we need to write one full spinor with 24 components as the result. We thus have

8︸︷︷︸
neighbours

× (24︸︷︷︸
spinors read

+ 18/12︸ ︷︷ ︸
links read

) + 24︸︷︷︸
spinor written

= 360/312 (1.16)

memory movements in total. The arithmetic intensity is then given by

I =
F

B
, (1.17)

the number of �oating point operations divided by the amount of memory transfer in bytes. Tab.
1.2 summarises di�erent intensities of various precision, with and without the use of 12 parameter
gauge compression.

On the other hand the maximal throughput per byte for the Xeon Phi processors can be
estimated as follows. KNL (KNC) has a memory bandwidth quoted with approximately 450 (320)
GB/s. The theoretical peak performance can be calculated as 6912 (2022) GFLOP/s. Thus the
maximal throughput per byte is 15.36 (6.32) FLOP/Byte.6 Since the algorithmic intensity is always

5We will not consider 8 parameter compression any further in this work.
6These (single precision) numbers have to be taken with a grain of salt what concerns both sustained bandwidth as

well as the peak performance, cf. [44] and the next chapter.

1.1 The Dirac Dslash Operator 21

Precision Compression Intensity [Byte−1]

half yes 2.16
half no 1.83

single yes 1.06
single no 0.92
double yes 0.53
double no 0.46

Table 1.2: Arithmetic intensity for the dslash algorithm, which needs 1320 �ops and read/write 360/312 Byte per
site, depending if 12 parameter gauge compression is used.

less than these values, we see that the dslash operation will be memory bandwidth bound, as soon
as the required (input) data does not �t into caches.

We will re�ne the above model in the next chapter for Xeon Phi’s, taking into account hardware
speci�c details of the memory tra�c.

1.1.3 Clover Term and Twisted-Mass
After having introduced and analysed the hopping part of the fermion matrixM , which we referred
to as the dslash stencil operator /D, we will now turn to the mass-like terms.

As we have pointed out in the introduction, the discretised action of the lattice version of QCD
is far from being unique. In particular, any term of O(a) and higher can be added, so that the
continuum action remains unchanged. Considered the other way around, any term of this form is
an artefact of the numerical method and only disappears in the continuum limit a→ 0. This limit,
however, is hard to take in practice: the lattice spacing a has to be send to zero in such a way, that
the physical volume remains unchanged

Vphys = L4 = Na4 = const. (1.18)

That is, reducing the lattice spacing by a factor of two, demands for an increase of the number of
lattice sites by a factor of 24 = 16. This is why in practice simulations are always performed for
�nite lattice spacings and then dealt with by extrapolating towards a = 0.

In this section we want to introduce two terms that can be added to the lattice action in order
to reduced the lattice artefacts by O(a). Both terms contribute to the local part of the fermion
matrix as follows

Mab
µν = (4 +m)δabδµν ± iµ γ5µν δ

ab + cswT
ab
µν −

1

2
/D
ab
µν , (1.19)

where we explicitly denoted colour and spin indices. The term proportional to µ (the twisted-mass
parameter) was introduced in [32, 33, 34] with the motivation to remove so-called exceptional
con�gurations, thus regulating the low-energy (infrared) physics. We will refer to it simply as the
twisted-mass term.7 For a discussion of the O(a) improvement of the action see, e.g. [35] (also cf.
[65] for a detailed review of twisted-mass fermions).

7The twisted mass term is actually non-trivial in �avour space, that is, in its simplest version, it describes two
(degenerate) fermions. Here, we will only note that this is the origin of the “±” in front of the term.

22 Chapter 1. Algorithms

x

x+ ν̂ x+ µ̂+ ν̂

x+ µ̂

Uµ,ν(x)

Figure 1.1: The sum of the four plaquettes in the clover term remind of the four leaves of a clover, adapted from
[35].

The second new term cswT
ab
µν is the so-called clover term [64] which reads

T abµν = − i

16
σµνF̂

ab
µν , (1.20)

where σµν = 1
2(γµγν − γνγµ) are anti-symmetrised products of gamma-matrices and F̂ abµν is (a

speci�c form) of the discretised �eld strength tensor that consists of products of link matrices:8

F̂µν(x) = (Qµν(x)−Qνµ(x)) ,

Qµν(x) = Uµ,ν(x) + Uν,−µ(x) + U−µ,−ν(x) + U−ν,µ(x) , (1.21)
Uµ,ν(x) = Uµ(x) Uν(x+ µ̂) U−µ(x+ µ̂+ ν̂) U−ν(x+ ν̂) ,

The product of the four link variables in the last expression (the aforementioned plaquette) forms
a closed, oriented loop on the lattice. The four closed loops appearing in F̂µν emanate from the
same lattice site and are reminiscent of the four leaves of a clover (cf. Fig. 1.1)—which is the origin
of the name of the term.

Before we have a look on how to evaluate the local terms of the fermion matrix M , let us give
a brief motivation on how (a class of terms like) the clover term can improve the action to O(a)
and higher.

Given any operator Ocont. in the continuum action9, one builds a (non-unique) discretised
operator Odisc. making some error that will depend on the lattice spacing a and only disappear in
the continuum limit

Odisc.[a] = Ocont. +O(an) , (1.22)

for some constant n ≥ 1. An improvement of O(a) is equivalent of increasing n by 1, on the
right-hand side. To improve the original operator, one can add a power series in the lattice spacing
a to the original discretised operator

Odisc.[a] +
N−1∑
i=1

ci a
i Odisc.

i [a] = Ocont. +O(aN) , (1.23)

8We suppress colour indices here, in order not to clutter the notation.
9Our discussion here will focus only on the operators in the action, but similar considerations apply for observables,

i.e. operators in correlation functions, as well.

1.1 The Dirac Dslash Operator 23

with real coe�cients ci. Here, the new operators Odisc.
i should respect the symmetries of the original

(discretised) operator and derive from a (higher dimensional10) continuum operator Odisc.
i = Ocont.

i +
O(aN−i). That is, the higher dimensional the operator, the more “inaccurate” the discretisation
may be in terms of a. Also note, that this procedure is note unique.

Following [35], let us illustrate this procedure with the simple example of a one-dimensional
derivative operator Ocont. = d

dx , acting on the “scalar �eld” f(x). Starting with a symmetric
di�erence as the discretised operator, one can use the Taylor expansion of f(x) around x+ a to
obtain the initial error done when discretising

f(x+ a)− f(x− a)

2a
= f ′(x) +O(a2) . (1.24)

In particular, since the initial Odisc. is symmetric in a, we can only ever have even powers of the
lattice spacing on the right-hand side and it is easy to see that the �rst correction term is 1

3!f
′′′(x).

Thus, in order to improve the �rst discretised operator of the �rst derivative, we have to add a
term −1

6a
2D(3)f(x) to the right-hand side, where D(3)f = f ′′′ +O(a2). Again with the Taylor

expansion one can �nd such a (non-unique) term

D(3)f(x) =
f(x+ 2a)− 2f(x+ a) + 2f(x− a)− f(x− 2a)

2a3
(1.25)

such that the sum of both discretised operators is now f ′(x) +O(a4).
Using an equivalent procedure in lattice QCD (the Symanzik improvement program) was

advocated in [46, 73, 74]. To lowest order, there turns out to be only one continuum operator, of
which the clover term, as we will use it here, is one possible discretisation.

Let us now turn to the application of the local term of the fermion matrix, which we will denote11

by A = (4 + α)1± iµγ5 + cSWT , to a spinor. In the DeGrand-Rossi basis A is block-diagonal12

A =

(
(α± iµ) 16 + cSWB0 0

0 (α∓ iµ) 16 + cSWB1

)
, (1.26)

with blocks of dimension (3 colour× 2 spin) 2. That is, once again, the components of the upper
and lower half spinors do not mix during the matrix multiplication. The 6× 6 clover blocks B0

and B1 are hermitian (and traceless)

B0 =
1

16

(
−F̂12 + F̂34 iF̂13 + F̂14 − F̂23 + iF̂24

−iF̂13 + F̂14 − F̂23 − iF̂24 F̂12 − F̂34

)
, (1.27)

B1 =
1

16

(
−F̂12 − F̂34 iF̂13 − F̂14 − F̂23 − iF̂24

−iF̂13 − F̂14 − F̂23 + iF̂24 F̂12 + F̂34

)
, (1.28)

which follows from the unitarity of Uµ(x) and the fact that Qµ,ν = Q−µ,−ν . However, the full
matrix A is hermitian if and only if µ = 0. In particular, when including the twisted-mass term,
A−1 will in general not have upper and lower triangular parts that are hermitian conjugate to each
other. This will be of importance later on, when we will introduce even-odd preconditioning. In

10Higher in mass dimensions [a−1], the traditional from of counting dimensionality in high energy physics.
11By a slight abuse of notation we will also refer to A as the clover term, irrespective of the value of µ.
12Again, this is also true for the Weyl basis.

24 Chapter 1. Algorithms

Precision Hermitian Intensity [Byte−1]

half yes 2.85
half no 1.64

single yes 1.43
single no 0.82
double yes 0.71
double no 0.41

Table 1.3: Arithmetic intensity for the mass term multiplication for various �oating point precisions, with and
without using hermiticity of the blocks.

case the matrices A and A−1 are not hermitian, the number of elements one has to read, in order
to perform the matrix-vector multiplication, will essentially double.

In order to calculate the product of A and a full spinor, for each block and each of the six
rows, we have to calculate the vector product of a complex six-vector. This requires six complex
multiplications and �ve complex additions:13

2︸︷︷︸
blocks

× 6︸︷︷︸
rows
× (6× 6︸ ︷︷ ︸

complex mults

+ 5× 2︸ ︷︷ ︸
complex adds

) = 552 �ops . (1.29)

Furthermore, we have to read and write a full (24 component) spinor from/to memory. Lastly, we
have to read the clover matrix itself. In case it is hermitian, we only need to read six (real) diagonal
components and 15 complex o�-diagonal components (say, the ones of the upper triangle) for each
of the two blocks. In case the matrix is not hermitian however, we need to read two full 6 × 6
complex blocks. That is, in total we need to read and write 96 or 168 elements respectively. In
Tab. 1.3 we summarise the resulting arithmetic intensity for the clover block multiplication alone,
for various precisions and in both aforementioned cases.

Note that in the hermitian case, the arithmetic intensity is always higher than the respective
one of the dslash operator, independently whether gauge compression is used or not. The exact
opposite is true, when having to read the full complex blocks of the clover term A.

1.2 Iterative Solvers
As we have mentioned before, in order to calculate observables and generate con�guration in
lattice QCD it will be necessary to invert the full fermion matrix M and solve linear systems of the
form Mx = b for x with some given right-hand side b.

Historically, this could always be done with a class of algorithms called direct, where the matrix
in question (or the linear system) is manipulated directly. Examples of such algorithms are the
Gaussian Elimination and the QR factorisation. Unfortunately, this class of algorithms usually
requires a number ofO(n) steps, each of which takesO(n2) work to complete, where n is the side
length of the matrix.14 Furthermore, they usually require the matrix to be stored entirely, both of

13In case the matrix is hermitian, one of the six multiplications is between a real and a complex number, which
requires 2 �oating point operations. The total number of �ops required in this case is thus 548.

14Famous exceptions of direct solvers with better asymptotic scaling are the ones by Strassen [70], and Coppersmith
& Winograd [23].

1.2 Iterative Solvers 25

which conditions are unsatisfactory in the case of the huge fermion matrix, we are dealing with.
Fortunately, there is another type of algorithms known that solely relies on the ability to

calculate products of the formMx. These algorithms are called iterative, because they approximate
the true solution better and better in each step. An important subclass of iterative solvers are the
so-called Krylov subspace methods. They rely on the construction of an iteratively growing subspace
of the form span (b,Mb,M2b,M3b, . . .)—the Krylov sequence. In this subspace a solution vector
is formed, such that the residuum to the true solution is minimised.

The main advantages of this method is that any sort of symmetry of the matrix can be used to
optimise the “black box”, which is the matrix multiplication Mx. In particular, the sparsity of a
matrix can be used to reduce the asymptotic scaling of this multiplication. In a direct solve, on
the contrary, an initial sparsity pattern is usually destroyed. In this way, the asymptotic scaling
behaviour of an iterative solver may demand only O(1) steps, each of which may require only
O(n) �ops to complete. In this case, the iterative solver scales two orders of magnitude better than
a typical direct solver.

In this section, we would like to introduce three of such iterative algorithms, exclusively
focusing on the ones implemented in the QPhiX library. This will be the conjugate gradient method
[37] which was the �rst of its kind, the stabilised biconjugate gradient method [77] that improves
the numerical stability of the original BiCG algorithm which uses two subspaces to circumvent the
limitations of CG, and �nally a variant of the Richardson Iteration. We will conclude this section
with a �rst glimpse on the vast subject of algorithmic improvements to iterative solvers in the
form of preconditioning.

Our presentation will leave out at least one very important iterative algorithm—the generalized
minimal residual method (GMRES) [60]. More about iterative methods may be found in the excellent
reference [59].

1.2.1 Conjugate Gradient Method
The conjugate gradient method was the �rst iterative method to solve hermitian (or symmetric in
the real case) systems of linear equationsMx = bwhereM ∈ Cm×m is a positive de�nite complex
matrix. It was proposed in 1952 by Hestenes and Stiefel [37] and convergences very rapidly for
systems with well separated eigenvalues or small spectral condition numbers k. It can be viewed
as an iterative procedure to minimise a quadratic function ϕ(x) on Cm, which corresponds to a
particular norm of the residuum vector en = x? − xn, which measures the distance of the exact
solution x? to the iterative one xn at step n.

Since M is hermitian and positive de�nite, all its eigenvalues are real and strictly positive. In
particular, 〈x,Mx〉 > 0, ∀x 6= 0 and ||x||M ≡

√
〈x,Mx〉 de�nes a norm (the M-norm) on Cm.

It is with respect to this norm that the residuum vector en is minimised by the CG method, or
equivalently the function

ϕ(xn) ≡ 1

2
〈xn,Mxn〉 − 〈xn, b〉 =

1

2
||en||2 + const., (1.30)

where the last equality follows directly from the de�nitions. The essence of a CG iteration is now
the update step

xn = xn−1 + αn pn−1 , (1.31)
which generates the unique iterative solution in the Krylov subspace Kn that minimises the norm
of the residuum. We will refer to the coe�cient αn as the step length and the vector pn−1 as the
search direction of the optimisation procedure.

26 Chapter 1. Algorithms

Algorithm 3: Conjugate Gradient
1 x0 = 0, r0 = b, p0 = r0

2 for n = 1, 2, . . . until convergence do
3 αn = 〈rn−1, rn−1〉/〈pn−1,M pn−1〉
4 xn = xn−1 + αn pn−1

5 rn = rn−1 − αnM pn−1

6 βn = 〈rn, rn〉/〈rn−1, rn−1〉
7 pn = rn + βnpn−1

8 end

It is readily shown by induction that the spaces spanned by the sequence of iterative solutions,
residuals and search direction vectors each by themselves are identical to the Krylov subspace that
is generated by the matrix multiplication Mpn−1 in each and every iteration step [75]:

Kn = span (b,Mb, . . . ,Mn−1b)

= span (x1, x2, . . . , xn)

= span (r0, r1, . . . , rn−1)

= span (p0, p1, . . . , pn−1) . (1.32)

Furthermore, the residual vectors rn and search directions pn are orthogonal in the following way:

〈rn, rj〉 = 0, ∀j < n , (1.33)
〈pn,Mpj〉 = 0, ∀j < n . (1.34)

This is guaranteed by the particular forms of the coe�cients αn and βn. These last three properties
make the conjugate gradient method so powerful, because they imply the monotonic and unique
convergence of the algorithm, such that xn = x? is reached for some n ≤ m (cf. [75] for details).

Although this is strictly true only for in�nite precision, and does not apply using �oating
point arithmetics, for well-behaved (possibly preconditioned) systems, convergence to the desired
precision is often achieved with n� m iterations. In particular it can be shown that for a given
spectral condition number k = λmax/λmin the norm of the residual at each step n is bound by

||en||A
||e0||A

≤ 2

(√
k − 1√
k + 1

)n
∼
(

1− 2√
k

)n
, (1.35)

where the last relation applies in the limit k → ∞. Thus for large condition numbers the CG
method should converge in at most O(

√
k) iterations, each of which take at most O(m2) steps

(dense matrix multiplication). However, as we have seen before, the dslash application scales only
linearly in the number of sites N of the lattice.

1.2.2 Biconjugate Gradient Stabilized Method
Although the conjugate gradient method is very powerful and converges, at least for well-conditioned
systems, in a fast and smooth (monotonic) manner, it has the considerable disadvantages to be
only applicable to real symmetric or complex hermitian (self-adjoint) linear systems.15

15In fact, dslash only satis�es γ5-hermiticity /D = γ5 /D
†
γ5.

1.2 Iterative Solvers 27

Fortunately, there is a number of iterative algorithms that can deal with non-hermitian problems,
as well. In the domain of Krylov subspace solvers, there are essentially two approaches to overcome
the requirement of self-adjointness. Thereby, one either has to let go of the advantage of three-term
recurrence (i.e. the fact that the solution vector xn can be iteratively constructed from the three
vectors xn−1, rn−1 and pn−1) or one has to construct an additional (orthogonal) Krylov subspace.
In the former category the GMRES algorithm with its (n + 1)-term recurrence is the standard
example. We will focus here on the latter case, to which the Biconjugate gradient (BiCG) [30]
algorithm and its variants belong.

However, before introducing the BiCG algorithm let us note that the restriction of self-
adjointness can be overcome even with some variation of the CG method. To that end, one
applies the CG algorithm to the normal equations

M †M x = M †b (1.36)

with new right-hand side b′ = M †b. This algorithm is usually referred to as CNG or CNGR. Since
M is non-singular, the matrix M †M is hermitian and positive de�nite, and CG will converge as
described in the last section. The main disadvantage of this technique, however, is the fact that
the condition number of the original system is squared. That is, if M has condition number k, the
condition number of the new system M †M will be k2, such that the number of iterations will only
be bound by O(k).

In the BiCG algorithm on the other hand, the two dual linear systems Mx = b and M †x̂ = b̂
are solved simultaneously. To achieve this, two orthogonal Krylov spaces

Kn = span (b,Mb, . . . ,Mn−1b) (1.37)
Ln = span (b̂,M †b̂, . . . , (M †)n−1b̂) (1.38)

are spanned such that the residual vector of the one system is perpendicular to the other subspace
rn ⊥ Ln. Here b̂ has to satisfy 〈b̂, b〉 = 1 and one usually chooses b̂ = b/||b||.

Algorithm 4: Biconjugate Gradient
1 x0 = 0, r0 = b, p0 = r0, r̂0 = b, p̂0 = r0

2 for n = 1, 2, . . . until convergence do
3 αn = 〈r̂n−1, rn−1〉/〈p̂n−1,M pn−1〉
4 xn = xn−1 + αn pn−1

5 rn = rn−1 − αnM pn−1

6 r̂n = r̂n−1 − αn p̂n−1M
†

7 βn = 〈r̂n, rn〉/〈r̂n−1, rn−1〉
8 pn = rn + βn pn−1

9 p̂n = r̂n + βn p̂n−1

10 end

Note the considerable similarities to the CG method. Speci�cally, the three-term recurrence
form of the algorithm is preserved, which keeps the storage requirements under control, and in
particular independent of the number of iterations. It however has the disadvantage that one
can not achieve rn ⊥MKn in each and every step, but only rn ⊥ Ln, and as a consequence the

28 Chapter 1. Algorithms

algorithm does not minimise the two-norm ||rn||2 monotonically [75]. The situation is reversed
within the GMRES algorithm, where the norm of the residual is smoothly reduced, but one pays
the prices in terms of having to store the entire Krylov subspace that has been generated. Another
disadvantage of the BiCG method is the need to implement an additional matrix product for the
hermitian conjugate matrix M †, although the resulting vectors enter the algorithm only indirectly
via the scalar coe�cients αn and βn.

One of the many proposed algorithms to circumvent the two major problems of BiCG—the
erratic, non-monotonous convergence and the additional matrix product—is the Biconjugate gra-
dient stabilized method (BiCGStab) [77]. It can be seen as a re�nement of the conjugate gradient
squared (CGS) method [69], where one essentially combines two BiCG steps in such a way that
the appearance of the hermitian matrix M † can be avoided. However, the convergence is still at
least as erratic as in the original BiCG algorithm. One can further improve on this fact using the
observation that the residual and directional vectors satisfy a recurrence relation

rn = Pn(M) r0 , (1.39)
pn+1 = Tn(M) r0 , (1.40)

and similar for the hatted vectors replacingM withM †, where Pn(M) and Tn(M) are polynomials
in M of degree n. Similarly, one �nds recurrence relations directly form the BiCG algorithm for
the polynomials themselves

Pn(M) = Pn−1(M)− αnM Tn−1(M) , (1.41)
Tn(M) = Pn(M) + βn+1 Tn−1(M) . (1.42)

(1.43)

The idea of BiCGStab now is to modify the recurrence relation for the residual vector rn and the
directional vector pn as follows

rn = Qn(M)Pn(M) r0 , (1.44)
pn+1 = Qn(M)Tn(M) r0 , (1.45)

introducing a new polynomial Qn(M) =
∏n
i=1(1− ωiM), in such a way, that suitable choices for

the coe�cients ωn enable faster and smoother convergence. The details of the derivation of the
optimal choice of these coe�cients can for instance be found in [59]. Here, we will only give the
�nal algorithm 5 without further explanations.

1.2.3 Modified Richardson Iteration
The Modi�ed Richardson Iteration, originally proposed in 1911 [56], obtains the solution to a linear
system M as the �xed point to a class of iterative recurrence relations. This is based on the
observation that the original linear system can be rewritten in the form x = x+ τ(b−Mx), for
any non-vanishing real value τ . In this way one can de�ne the nth iterative solution as the result
of the left-hand side evaluated on the solution of the previous step:

xn = xn−1 + τ(b−Mxn−1) . (1.46)

In this way, a �xed point, xn = xn−1, of the recurrence relation must also satisfy the original linear
system Mxn = b.

1.2 Iterative Solvers 29

Algorithm 5: Biconjugate Gradient Stabilized
1 x0 = 0, r0 = b, p0 = r0, r̂0 arbitrary
2 for n = 1, 2, . . . until convergence do
3 αn = 〈r̂0, rn−1〉/〈r̂0,Mpn−1〉
4 sn = rn−1 − αnM pn−1

5 ωn = 〈sn,Msn〉/〈Msn,Msn〉
6 xn = xn−1 + αnpn−1 + ωnsn
7 rn = sn − ωnMsn

8 βn = 〈r̂0,rn〉
〈r̂0,rn−1〉 ×

αn
ωn

9 pn = rn + βn(pn−1 − ωnMpn−1)

10 end

Convergence will in general be achieved under the following circumstances. From the recur-
rence relation we see that the residuum to the exact solution en = x? − xn will satisfy

en = (1− τM) en−1 , (1.47)

which implies ||en|| ≤ ||1− τM || ||en−1|| for any norm. In particular,

||en||
||e0||

= ||1− τM ||n , (1.48)

will converge to zero in the limit n → ∞ whenever the norm satis�es ||1 − τM || < 1. In the
case of a hermitian matrix M , all eigenvalues are real and positive and the last condition can
be satis�ed by demanding |1 − τλi| < 1 for all eigenvalues λi. This can clearly be satis�ed by
choosing 0 < τ < 2/λmax.

Iterative solvers of the more general form

xn = Gxn−1 + f , (1.49)

for some linear operator G are studied in the literature (cf. e.g. [59]). From quite general considera-
tions it can be shown, that the optimal value for τ in the case of the modi�ed Richardson iteration
is given by [59]

τopt =
2

λmin + λmax
. (1.50)

This sort of iterative solver has great practical value in particular in the context of mixed �oating
point precision, as discussed in greater detail below. In this case, a low-precision solution xn−1

may be found by means of some inner solver and then “improved” through a modi�ed Richardson
iteration using the high-precision matrix and vector operations, achieving an overall improved
rate of convergence.

1.2.4 Preconditioning
When solving a linear system of equation with an iterative method the rate of convergence of
the algorithm will in general depend on the condition number of the matrix involved. Most

30 Chapter 1. Algorithms

iterative solvers will increase their rate of convergence when the condition number of the matrix
is decreased, as we have seen explicitly in the case of the CG method.

This can be achieved with a technique called preconditioning, for which the original matrix
M is transformed by a linear transformation P (the preconditioner), such that the resulting linear
operator M̃ ≡ PM has a smaller condition number. Instead of solving the system Mx = b, one
then solves the better behaved system

M̃y = (MP)(P−1x) = b (1.51)

for the vector y, such that the solution to the original system can be obtained from x = Py.
Preconditioning of linear systems is a very powerful tool, but also a very complex matter. Here,

we will only focus on two simple (but potent) methods, which will be used later in QPhiX.

Even-Odd Preconditioning
The �rst algorithm of preconditioning we want to introduce is called even-odd preconditioning [28].
The main idea of this method is to separate the lattice into an even and an odd sublattice, which
are interlaced such that even sites only have odd neighbouring sites and vice versa. Since, starting
from a rectangular lattice in two dimensions, these sublattices resemble a chess or checkerboard
this method is also referred to as checkerboarding.

This method is very powerful, because as we will see shortly, it reduces the condition number
of the checkerboarded matrix to roughly half of the original linear operator [41]. Moreover, it will
also allow to solve the system on one sublattice, only. This e�ectively reduces the volume by a
factor of two.

Having separated the lattice into an even and an odd part, the original linear operator can be
written as a block matrix of the four operators connecting even to even, odd to odd, even to odd
and odd to even sites, respectively:

M =

(
Mee Meo

Moe Moo

)
. (1.52)

Note that this merely consists of a reordering and that the sub-matrices still carry two volume
indices each. This block separation will turn out to be particularly useful whenever the o�-diagonal
part of the original operator only connects even to odd sites and vice versa.

The only requirement for this technique to be bene�cial, is the ability to invert the even-even
operator relatively easily. This will be the case for all variants of the Dirac matrix we are considering
here. Then, as we will see shortly, one is left having to invert a matrix connecting odd to odd sites
only.

The �rst step of the even-odd preconditioning is to rewrite the decomposed operator as a
product of triangular matrices:(

Mee Meo

Moe Moo

)
=

(
Mee 0
Moe 1

)(
1 M−1

ee Meo

0 Moo −MoeM
−1
ee Meo

)
. (1.53)

This product, known as the (asymmetric) Schur decomposition allows for a simple inversion of the
matrix M which is still a product of triangular matrices:

M−1 =

(
1 M−1

ee Meo

0 Moo −MoeM
−1
ee Meo

)−1(
Mee 0
Moe 1

)−1

(1.54)

=

(
1 −M−1

ee MeoM̃
−1
oo

0 M̃−1
oo

)(
M−1
ee 0

−MoeM
−1
ee 1

)
, (1.55)

1.2 Iterative Solvers 31

where we have introduced the preconditioned odd-odd operator

M̃oo = Moo −MoeM
−1
ee Meo . (1.56)

Now we are able to formally write the solution to the full system as follows(
xe
xo

)
=

(
Mee Meo

Moe Moo

)−1(
be
bo

)
=

(
M−1
ee be −M−1

ee MeoM̃
−1
oo b̃o

M̃−1
oo b̃o

)
, (1.57)

where we have introduced the newly prepared (odd) source term

b̃o = −MoeM
−1
ee be + bo . (1.58)

To solve the full linear system with even-odd preconditioning one is thus led to the following
algorithmic procedure:

Algorithm 6: Even-Odd Preconditioning
input : Matrix M , source vector b
output : Solution vector x

1 Invert Mee

2 Prepare the source b̃o = −MoeM
−1
ee be + bo

3 Solve M̃ooxo = b̃o
4 Reconstruct even sites xe = M−1

ee (be −Meoxo)

This method is obviously only bene�cial as long as the even-even part of the operator can be
inverted cheaply. In this case, however, almost all the time of the algorithm will be spend inverting
a linear system, which only involves odd sites. This is again done with an iterative solver involving
the preconditioned operator only, which we will give below explicitly for all the considered cases.
As long as one does not include a clover term in the Dirac matrix, the even-even part can be
inverted analytically (even with twisted-mass) and one does not have to perform step 1 of the
algorithm. As soon as one adds the clover term, Mee is best inverted numerically, using a direct
solve such as a LU decomposition.

In the case of Wilson fermions the even-even and odd-odd parts are identical and proportional
to the identity matrix. Then we have Mee = (4 +m) 1 ≡ α 1 and Meo = −1

2 Deo, such that the
inverse is simply given by M−1

ee = 1
α1 and the preconditioned odd-odd operator (cf. [43]) by

M̃oo = α 1− 1

4α
DoeDeo . (1.59)

For later convenience we note that the action of the operator on some (odd) spinor �eld χ can be
obtained by applying two linear algebra routines

ψ = /D χ , (1.60)
M̃oo χ = aχ− b /Dψ , (1.61)

with a = α, b = 1/4α and /D being the appropriate version of the dslash operator.

32 Chapter 1. Algorithms

The case of twisted-mass fermions with clover term is slightly more involved. We will be
particularly interested in the two-�avour degenerate mass operators, which read

M±ee = α 1± iµγ5 + cswT , (1.62)

Meo = −1

2
Deo . (1.63)

The preconditioned operator then assumes the form

M̃±oo = (α 1± iµγ5 + cswToo)−
1

4
Doe(α 1± iµγ5 + cswTee)

−1Deo , (1.64)

with Too and Tee being the odd-odd and even-even part of the clover term, respectively. Again, we
can construct this operator with two linear algebra routines as

ψ = A−1 /D χ , (1.65)
M̃oo χ = Aχ− b /Dψ . (1.66)

with b = 1/4, A and A−1 being the sum of the mass and clover term and its inverse, which are
evaluate on opposing sublattices.

In the case of µ 6= 0, the inverse of the clover term can for instance be obtained with the method
of LU decomposition with pivoting.16 The idea is to transform the matrix A into an upper-triangular
matrix. To do so, one uses Gaussian Elimination, where one subtracts multiples of a given row
(the (i+ 1)th in the ith step) from all the subsequent rows. Then each iteration is essentially the
multiplication of a unit lower-triangular matrix with A such that

Ln−1 · · · L2 L1A = U, (1.67)

where n is the dimension of the matrix A. By inverting17 the product of transformations L ≡
L−1

1 L−1
2 · · ·L

−1
n−1 we obtain another unit lower-triangular matrix and thus arrive at an LU decom-

position

A = LU . (1.68)

In practice, at each and every step one has to choose the row and column with the biggest element
and apply Gaussian Elimination to the respective sub-matrix. In this way, one guarantees numerical
stability of the algorithm, because one circumvents the subtraction of large numbers. This selection
scheme is called pivoting.

Given an LU decomposition, it is simple to solve a linear system Ax = b. To this end, one
solves the system Ly = b �rst and subsequently the system U x = y. This is done very easily
using the method of forward- and backward substitution, respectively. This way, one obtains the
full inverse of A by solving the multi-system AX = B, with B being the identity matrix 1. For
more details on Gaussian Elimination and pivoting consult the excellent lecture series [75].

To conclude the section we will give an outline how the reduction of the condition number
comes about in the simplest case of Wilson fermions. Making use of the identity

det

(
A B
C D

)
= det(A) det(D − CA−1B) , (1.69)

16An alternative would be Cholesky factorization which is used in QDP++.
17The inversion actually turns out to be trivial and does not require any �oating point operations.

1.2 Iterative Solvers 33

one can rewrite the determinant of the full linear operator as follows

det(1− κ /D) =
1

α
detM = det(1− κ2DoeDeo) , (1.70)

where we divided by α and κ = 1/2α = 1/2(4 + m) < 1. Obviously, to every eigenvalue ν of
/D there is an eigenvalue ν2 of DoeDeo. Let ν = 1/(κ+ ε) be an eigenvalue of /D, such that the
smallest eigenvalue λ of M will be

λ = 1− κν = 1− κ

κ+ ε
' ε

κ
. (1.71)

The smallest eigenvalue of the preconditioned operator, on the other hand, is

λ̃ = 1− κ2ν2 = 1− κ2

(κ+ ε)2
' 2ε

κ
. (1.72)

That is, the ratio of the spectral condition numbers k(M) = λmax(M)/λmin(M) scales as

k(M̃)

k(M)
' λmin

λ̃min
=

1

2
. (1.73)

Mixed Precision Preconditioning
As we have described in the introduction, preconditioning essentially replaces the original system
of linear equations Mx− b = 0 with the preconditioned system P (Mx− b) = 0, such that the
condition number is reduced k(PM) < k(M). This can obviously be achieved, whenever the
exact inverse is known P = M−1, such that k(PM) = 1 is very well behaved.

This observation motivates the following idea: what if instead of the exact inverse one uses
an approximate inverse PM ≈ 1, i.e. an approximate solution to the linear system in question?
Since the matrix-product, as well as the condition number are continuous functions, the condition
number of the preconditioned system will still be drastically reduced. The power of this methods
then relies solely on the ability to �nd an approximate solution (that is one with lower numerical
precision than desired) relatively cost-e�ciently.

In practice, this is indeed feasible by evaluating vector-vector and matrix-vector products
within the iterative solvers using di�erent �oating point precisions. This is because, all these
routines are memory bandwidth-bound for sparse systems (as we know for vector-vector products
and have explicitly shown for the dslash operator) and thus may bene�t from the higher amount of
data being transferred from main memory or lying in caches. Historically, GPGPUs additionally
had signi�cantly higher throughput in single precision compared to double precision [39, 67]. The
idea of so-called mixed precision solvers is thus to evaluate most of the costly linear algebra routines
with (cheaper) low-precision �oating point operations, in such a way, that the worse convergence
behaviour that results from more signi�cant rounding errors, is counteracted upon.

There are essentially two di�erent approaches used in practical implementations [22, 39, 67, 72]:
defect-correction also known as iterative re�nement [49], where the system is solved to some inner
tolerance εin < ε using low-precision operations and then updated with high-precision arithmetics
to obtain an overall precision ε; and reliable updates [66], where the frequency of those high-
precision updates is controlled dynamically.

The simplest approach using mixed precision Krylov solvers is iterative re�nement, which
we outline in Alg. 7. There, one updates an inner solution vector x̃n by solving the linear system

34 Chapter 1. Algorithms

Algorithm 7: Iterative Re�nement
1 Variables with tilde represent low-precision types and operations.

x0 = 0, r0 = b, r̃0 = r0

2 for n = 1, 2, . . . until ||rn|| < ε do
3 Solve M̃ x̃n = r̃n−1 to precision εin
4 xn = xn−1 + x̃n (accumulate in high-precision)
5 rn = b−Mxn (calculate true residuum)
6 r̃n = rn (truncate)
7 end

M̃ x̃n = r̃n−1 with an inner solver (that may rely on the same algorithm used for the outer
solver) to some inner precision εin with the aid of low-precision arithmetics.18 Then, the iterative
solution xn is updated using high-precision operations, and the true residual vector is calculated
in high-precision, as well. Although easy to implement, the defect-correction method has a big
disadvantage: whenever an iterative algorithm is used for the inner solve, the Krylov subspace
that has previously been calculated is discarded after each and every iteration. This may result
in such an increase in the number of total iterations that the solver converges slower than it had
without preconditioning.

A solution to this problem may be achieved as follows. Using low-precision arithmetics with
one single solver will lead to rounding errors that will eventually destroy the precious orthogonality
relations that make iterative solvers so powerful. That is, in order not to have to restart the inner
solver (the low-precision part), it has to be corrected every so often with high-precision operations
(the reliable updates). In particular, one has to replace the iterative residual with the true one as to
rectify the numerical drift, and accumulate the iterative result vector into a high-precision bu�er,
in order to account for rounding errors. To guide the frequency of the high-precision updates one
can test, if the norm of the current iterative residual has decrease by more than a factor δ with
respect to the maximum of all previous residual norms. In order to guarantee convergence we
obviously have to choose δ > ulpin. On the other hand we want δ < 1 in order to see bene�ts of
the faster low-precision operations. In practical implementations δ may be chosen between 10−1

and 10−2 [22]. We summarise the full algorithm in Alg. 8.

1.3 Hybrid Monte Carlo

As we have mentioned already in the introduction, to calculate the integrals frequently appearing
in LQCD, it is best to use Monte Carlo techniques, because they generically scale much better
with the dimensionality of the integral in question than other techniques based on quadrature. In
the former approach the integrand f(x) is split into a part which is interpreted as a probability
distribution P(x) and a remainder g(x)

I =

∫
ddx f(x) =

∫
ddx g(x)P(x) . (1.74)

18In order for the algorithm to converge, the spectral radius of the matrix ρ(M) = max (λ1, λ2, . . . , λn) must be
smaller than the unit of least precision used in the inner solve ρ(M) < ulp−1

in and evidently εin > ulpin.

1.3 Hybrid Monte Carlo 35

Algorithm 8: Reliable Updates
1 Variables with tilde represent low-precision types and operations.

x0 = 0, r0 = b, x̃0 = 0, r̃0 = r0, n = 0

2 form = 1, 2, . . . until ||rn|| < ε do
3 Update x̃m ← x̃m−1 and r̃m ← r̃m−1 in low-precision
4 if ||r̃n|| < δ (maxk<n ||r̃k||) then
5 xn = xn−1 + x̃m (accumulate in high-precision)
6 rn = b−Mxn (calculate true residuum)
7 x̃m = 0
8 r̃m = rn (truncate)
9 n← n+ 1

10 end
11 end

Then, sampling a large number N of points {x} which are distributed according to P(x), allows
to approximate the above integral by calculating the arithmetic mean of the remainder function,
evaluated on that set of points:

I ≈
N∑

{xi}∈P

g(xi) . (1.75)

Although the error of such an estimate decreases only∝ N−1/2, it is by far the best known method
for integrals of very large dimensionality.

In 1953 Metropolis et al [50] proposed an algorithm which can sample a Markov Chain of
con�gurations x distributed according to any given P(x) by means of a random walk through
con�guration space. Its original domain of application was the calculation of statistical properties
of many-body systems. At about the same time Alder and Wainwright [14] proposed an alternative
algorithm which integrates the discretised Hamiltonian equations of motion of the molecular
system in order to extract properties of its dynamics. About forty years later, Duane, Kennedy,
Pendleton and Roweth uni�ed these two ideas in their landmark paper [21] into the Hybrid Monte
Carlo algorithm (HMC), in order to increase the acceptance rate of the Metropolis algorithm to
speed up calculations in lattice �eld theories.

The main idea goes as follows: Instead of exploring the con�guration space with a random
work, a suitable Hamilton function H is derived from the probability distribution P , such that
new states are proposed according to their evolution under the Hamiltonian dynamics given by
H . But since H is a conserved quantity under its own dynamics, exact integration will yield a
new state which will be accepted with probability one. Although this is no longer true, when
integrating discretised equations of motion using �nite precision, the algorithm still gives much
higher acceptance ratios and explores the con�guration space much faster than the Metropolis
Monte Carlo algorithm.

In this section, we want to introduce the basic HMC algorithm in full generality and give
some details of its most important properties. To this end, we will brie�y review Hamiltonian
dynamics and its numerical integration �rst, then describe, how to derive a Hamiltonian from a

36 Chapter 1. Algorithms

given probability distribution, and to use the Metropolis accepted/reject step in order to account
for inaccuracies of the numerical integration. Finally, we will outline how to adapt this algorithm
to LQCD, particularly focusing on how the application and inversion of the fermion matrix and
the dslash operator show up during the process.

Hamiltonian dynamics is an equivalent formulation of Newton’s second law of classical
mechanics, that uses position coordinates qi and momenta pi as fundamental variables, where
i = 1, 2, . . . , d and consists of 2d �rst order partial di�erential equations (a.k.a. equations of mo-
tion) instead of d second order partial di�erential equations in the Newtonian case. The dynamics
can be derived from a Hamilton function or Hamiltonian H(p, q) as follows

dqi
dt

= +
∂H

∂pi
, (1.76)

dpi
dt

= −∂H
∂qi

, (1.77)

which can be combined in symplectic from as

dz

dt
= J ∇H(z) , where J =

(
0d 1d
−1d 0d

)
. (1.78)

Here, z = (q, p) combines positions and momenta into one vector, and ∇H(z) is the gradient
of H . Hamiltonian dynamics can then be viewed as a one-parameter linear transformation AtH:
R × R2d 7→ R2d such that AtH(p0, q0) = (pt, qt), mapping an initial state (p0, q0) at time t0 into
some time-evolved state (pt, qt) at time t0 + t. In particular, this map has an inverse which is
given by (AtH)−1 = A−tH . This is the same as to say, that Hamiltonian dynamics is time-reversible.
Furthermore, it preserves the volume in phase-space, which is known as Liouville’s theorem. This
follows from the more general property of the Hamiltonian equations to be symplectic, i.e.

BTJB = J , (1.79)

where B is the Jacobian matrix of an arbitrary canonical transformation. This implies det2B = 1,
and, in turn, that the volume is preserved under the map AtH for any time t. The two properties
of reversibility and volume preservation will turn out to be essential to satisfy so-called detailed
balance for the Metropolis transition probability, to be discussed later.

The most important property of the Hamiltonian for the HMC algorithm however is the fact
that it is conserved along trajectories of the Hamiltonian equations:19

dH

dt
=

d∑
i=1

(
∂H

∂pi
ṗi +

∂H

∂qi
q̇i

)
=

d∑
i=1

(
−∂H
∂pi

∂H

∂qi
+
∂H

∂qi

∂H

∂pi

)
= 0 . (1.80)

The idea of HMC is now to apply the Metropolis Monte Carlo algorithm to a probability distribution
P ′ ∝ e−H(p,q). In this way, when evaluating the acceptance probability for a state s′ = (q′, p′)
obtained by integrating the Hamiltonian equations from some initial state s = (q, p), which is
given by T (s|s′) = min(1, e−H

′+H), we always have T (s′|s) = 1, because H(p, q) is preserved
along the trajectory. Although, this is no longer true in �nite precision, one can always correct for
numerical inaccuracy by an accept/reject step. This Metropolis step makes the algorithm exact.

19Strictly speaking, we assume that the Hamiltonian does not have an explicit time dependence ∂H
∂t

= 0, but there
exists a constant of motion in any case.

1.3 Hybrid Monte Carlo 37

Clearly, in the above scheme one cannot set P = P ′, because in this case one would sample
only con�gurations with some given (initial) probability. Rather, one has to promote the random
variables X in P(X) to the position variables q and introduced �ducial momentum variables p
which will be sampled independently of q at the beginning of every Monte Carlo step. We will see
this in more detail shortly.

First, however, let us have a look on how to integrate Hamilton’s equations numerically. With
out loss of generality, we can assume that the Hamilton function is separable into a potential U(q)
and a kinetic term K(p)

H(q, p) = U(q) +K(p) , (1.81)

which we can always arrange for, in the algorithm. Then, we have to replace di�erential operators
with �nite di�erences to obtain a discretisation of the di�erential equations. The simplest such
discretisation results from a Taylor expansion

pi(t+ ε) = pi(t) + ε
dpi
dt

(t) = pi(t)− ε
∂U

∂qi
(qi(t)) , (1.82)

qi(t+ ε) = qi(t) + ε
dqi
dt

(t) = qi(t) + ε
∂K

∂pi
(pi(t)) , (1.83)

where we used Hamilton’s equations in the second step. This scheme is known as Euler’s method. It
is neither time-reversible nor symplectic. As a consequence, this method is not numerically stable.

It can however be modi�ed by changing the step dependence within the second update, in the
following way:

pi(t+ ε) = pi(t)− ε
∂U

∂qi
(qi(t)) , (1.84)

qi(t+ ε) = qi(t) + ε
∂K

∂pi
(pi(t+ ε)) . (1.85)

This scheme is known as semi-implicit or symplectic Euler’s method. It preserves volume, because
it utilises only so-called shear transformations where in each step only one variable is changed by
an amount proportional to the respective other variable.

The modi�ed Euler’s method is an example of a �rst-order symplectic integrator. This means,
that each step of the trajectory has a local error ofO(ε2). It can be shown to accumulate to a global
error of O(ε) after simulating τ/ε steps with length ε.

Examples of second-order symplectic integrators are the Verlet type integrators and in particular
the leapfrog method in which updates of momenta and positions are staggered with half step-size
interlacing. In this case, one step looks as follows:

pi (t+ ε/2) = pi(t)−
ε

2

∂U

∂qi
(qi(t)) , (1.86)

qi(t+ ε) = qi(t) + ε
∂K

∂pi
(pi (t+ ε/2)) , (1.87)

pi (t+ ε) = pi (t+ ε/2)− ε

2

∂U

∂qi
(qi(t+ ε)) . (1.88)

Note that the last half-step can be combined with the next one, forming a full step. That is, only
the �rst and the last step are half steps. The only di�erence to the symplectic Euler’s method is

38 Chapter 1. Algorithms

the fact, that positions are updated at full multiples of the step-size, whilst momenta are updated
“in-between”. The improved global error of O(ε2) is a consequence of reversibility of the leapfrog
algorithm [51]. There are also third- and fourth-order algorithms [31, 58].

Now, assume we want to sample a probability distribution of the form

P(X) =
1

Z
e−S(X) , (1.89)

where Z is some normalisation constant. This is the form of a canonical partition function, which
we also �nd in the case of QCD. The �rst step consists in promoting the action S(X) to the potential
of the Hamiltonian U(q) = S(X)|X=q . Next, we have to introduce an auxiliary set of momentum
variables p. The most common practice is to choose a canonical kinetic term as the function K(p)

K(p) =
d∑
i=1

p2
i

2mi
, (1.90)

where the “masses” mi can be tuned for better convergence. In this way we have d independent
random variables with Gaussian distribution, which have zero mean and variance mi. We then
introduce the Hamiltonian H(q, p) = U(q) + K(p) and apply the Metropolis algorithm to the
distribution20

P ′(q, p) =
1

Z
e−H(p,q) . (1.92)

This works as follows: At the beginning of each step, we draw d independent Gaussian variables pi.
Then, we perform a reversible, volume-preserving (symplectic) integration with L steps of size ε
according to Hamilton’s equation with the above Hamiltonian H . Lastly, we calculate the resulting
change ∆H and accept or reject the step with probability ∝ min(1, e−∆H), which will correct for
numerical errors, in case the integration drifts to far from the exact solution. We summarise the
HMC algorithm in Alg 9.

Note, that the re-sampling of pi at the beginning of each trajectory, i.e. each Monte Carlo step,
is essential to prevent the sampling of con�gurations with only nearly constant probability. It
allows to have large changes in term of the action S, maintaining the HamiltonianH approximately
constant, and thus the acceptance rate high. This allows for a much faster and more e�cient
exploration of the phase space as compared to the Metropolis random work. In this way, the
momentum variables do resemble some sort of physical momenta, in that high kinetic energy at
the beginning of a trajectory will result in a �nal con�guration, which is far away form the initial
one, with respect to the action (or probability).

What is left to show, is that the HMC algorithm indeed leaves the canonical distribution
function P(q, p) invariant. To this end, we will �rst show that detailed balance is satis�ed. This is
the case, whenever the probability of passing from one state s to another state s′ is the same as
passing from s′ to s

P(s)T (s|s′) = P(s′)T (s′|s) , ∀s, s′ (1.93)
20Note, that since

∫
ddp e−K(p) =

∏d
i=1(2πmi)

1/2 we have

P(X)
∣∣
X=q

=

∫
ddp P ′(q, p) + const. (1.91)

The constant can be absorbed into a rede�ning of Z , and we will thus drop the prime in what follows.

1.3 Hybrid Monte Carlo 39

Algorithm 9: Generic Hybrid Monte Carlo Algorithm
input : Distribution P(X), desired number of states N
output : N states distributed according to P

1 Introduce position & momentum variables p, q
2 Introduce potential & kinetic energy K(p), U(q)
3 Re-write distribution as P = 1

Z exp (−H(p, q))

4 for n← 1 to N do
5 Generate initial momentum normally distributed
6 Integrate Hamiltonian Dynamics with symplectic integrator
7 Accept/reject with probability min(1, e−Hnew+Hold)
8 Store state vector q
9 end

where T (s|s′) is the transition kernel. To see this, one can partition the phase space into small
subsets {Si} such that the image of every Si under the Hamiltonian dynamics is S′i. Then {S′i}
will also form a partition of phase space, because this map is bijective, due to reversibility and
volume-preservation. We are left to show that

P(Si)T (Si|S′j) = P(S′j)T (S′j |Si) . (1.94)

This is satis�ed by construction for any i 6= j. Otherwise is can easily been seen, that the above
choice of the transition kernel T (S|S′) = min

(
1, e−H(S′)+H(S)

)
leads to an identity

1

Z
e−H(S) min

(
1, e−H(S′)+H(S)

)
=

1

Z
e−H(S′) min

(
1, e−H(S)+H(S′)

)
. (1.95)

Finally, let Sk be canonically distributed. We want to show that its image after the accept/reject
step is still canonically distributed. To this end we have to sum the probability for the states to
transition to any other state (which may be the same) or to be rejected R(Sk).

P(Sk)R(Sk) +
∑
i

P(S′i)T (Sk|S′i)

= P(Sk)R(Sk) +
∑
i

P(Sk)T (S′i|Sk)

= P(Sk)R(Sk) + P(Sk)
∑
i

T (S′i|Sk)

= P(Sk)R(Sk) + P(Sk)(1−R(Sk))

= P(Sk) , (1.96)

where detailed balance was of crucial importance in the �rst step.
Apart from the Markov chain being reversible—which is the case when detailed balance is

satis�ed—it is crucial for any Monte Carlo algorithm to be ergodic. This roughly translates into the
requirement that any state in con�guration space must be reachable in a �nite number of Monte

40 Chapter 1. Algorithms

Carlo steps from any other state. It is a well-known fact, that generic Hamiltonian dynamical
systems are neither ergodic nor even integrable [48]. However, the obstacle of ergodicity in practical
applications is that trajectories may end up being exactly periodic, such that the evolution gets
stuck in a subset of states. One solution to this problem is to randomly change both the number of
steps L as well as the step size ε within small intervals occasionally [47].

For the later presentation of the computational costs of LQCD, let us state the scaling behaviour
of HMC in terms of the dimensionality of the phase space d as well as the optimal acceptance
rate. A more detailed discussion may be found in [51] and references therein. It is well known,
that the Metropolis algorithm scales asymptotically with d2 which is far superior to any method
of quadrature. However, the HMC algorithm can be shown to scale even better, namely with
d5/4 [24]. Furthermore, as we pointed out before it has a much higher ideal acceptance rate than
the Metropolis algorithm. One can show, that the ideal rate of acceptance for Metropolis is 23%,
whereas it is 65% for the HMC algorithm [51].

Let us now turn to the case of LQCD. We have already seen the kind of integrals one is interested
in calculating. In particular, the partition function takes the form

Z =

∫
DψDψ̄DA e−SG[A]−SF [ψ,ψ̄,A] , (1.97)

where it is possible to integrate out the fermion �elds analytically. Using the property that fermion
�elds anti-commute with each other (they are Grassmann valued) one can show that the Gaussian
integral of the fermion part of the action is proportional to its determinant. For two �avours (up
and down) one can thus rewrite the partition function as

Z =

∫
DA e−SG[A] det(Mu) det(Md) . (1.98)

In order to interpret the integrand as a probability distribution, it has to be real and non-negative.
Since the fermion matrix M can be shown to be γ5-hermitian, i.e. M † = γ5Mγ5, reality follows:

(detM)∗ = (detMT)∗ = detM † = det(γ5Mγ5) = detM , (1.99)

because of γ2
5 = 1. The simplest possibility to guarantee positivity is to use pairs of degenerate

fermions (here Mu = Md = M) which for later convenience we can write as

0 ≤ (detM)2 = (detM)(detM †) = det(MM †) . (1.100)

The trick is now, to rewrite the determinant as another Gaussian integral, although one of bosonic
(that is commuting) �elds. Using the identity detA = 1

detA−1 for any invertible matrix A, we can
write

Z =

∫
DA e−SG[A]

∫
Dφ†Dφ e−φ†(MM†)−1φ , (1.101)

where φ is a complex-valued scalar �eld that carrier the same index structure as the fermion �elds
ψ. It is called a pseudo-fermion �eld, because it behaves like a fermion.

Note, that the fermion matrix M is a functional of the gauge �elds Aµ. As a consequence, even
though the gauge bosonic part of the action is ultra-local, i.e. all terms in the action only consist of

1.3 Hybrid Monte Carlo 41

products of neighbouring links, the fermionic part is not. Quite on the contrary, because of the
appearance of the inverse of the fermion matrix, it will involve all kinds of products of links that
are very far apart. That does not only make it more expensive to evaluate the di�erence of the
action after proposing a Monte Carlo move, it also makes it very unlikely, that a con�guration
reached by random work will be accepted during the Metropolis step. This is why we want to use
the HMC algorithm to sample a distribution

PQCD ∝ e−SG[A]−φ†(MM†)−1φ . (1.102)

As a �rst step, one samples the fermions by themselves. This is done be rewriting M−1φ = χ.
Then one samples the Gaussian e−χ†χ and obtains the pseudo-fermions by calculating φ = Mχ.

Then we have to propose a new con�guration of the gauge links by integrating the Hamiltonian
dynamics. This is best done by using the lattice gauge �elds as position variables qµ(n) = Aµ(n).
They, however, live in the algebra su(3) as mentioned earlier and need to be exponentiated in order
to obtain link variables,

Uµ(n) = exp

(
i

8∑
i=1

ωiTi

)
. (1.103)

Here the ωi are the eight real coe�cients of an algebra element and the Ti the generators, which
are traceless, hermitian 3× 3 matrices. Then, also the conjugate momentum variables pµ(n) will
be traceless, hermitian matrices and we will use the kinetic function

K(pµ) =
1

2

∑
n,µ,i

(
p(i)
µ (n)

)2
=
∑
n,µ

Tr p2
µ(n) . (1.104)

Hence as the second step, one samples the momentum variables according to their Gaussian
distribution given by e−Tr p2 . Finally, we have to integrate the equations of motion for the Hamilton
function H(q, p) = SG(q) + φ†

(
MM †(q)

)−1
φ + Tr p2. The most involved part thereof is the

evaluation of the force term F [U, φ] = ∂H
∂q which assumes the following form:

F [U, φ] =

8∑
i=1

Ti∇(i)
(
SG[U] + φ†(MM †)−1φ

)
. (1.105)

It is again an element of su(3). The fermionic contribution will read [35]

∇(i)
(
φ†(MM †)−1φ

)
= −ξ†

(
∂M

∂ωi
M † +M

∂M †

∂ωi

)
ξ , (1.106)

with ξ = (MM †)−1φ . (1.107)

The derivatives of the fermion matrix are very similar to the dslash operator itself and read in the
case of Wilson fermions

∂M(n,m)

∂ωµi (k)
= − i

2a
(1− γµ)TiUµ(k)δn+µ̂,mδn,k +

i

2a
(1 + γµ)Uµ(k)†Tiδn−µ̂,mδm,k . (1.108)

42 Chapter 1. Algorithms

Algorithm 10: HMC Algorithm for LQCD with Leapfrog Integration
input : Initial gauge con�guration U0, force functions F [U, φ]
output : New gauge con�guration Un

1 Generate normally distributed random spinor �eld χ and calculate pseudo-fermions �eld
φ = Mχ

2 Sample initial momentum p0 con�guration according to e−Tr p2

3 Initial step:
4 p 1

2
= p0 − ε

2 F [U, φ]
∣∣
U0

5 foreach intermediate step k ← 1 to n− 1 do
6 Uk = exp (i ε pk− 1

2
) Uk−1

7 pk+ 1
2

= pk− 1
2
− ε F [U, φ]

∣∣
Uk

8 end

9 Final step:
10 Un = exp (i ε pn− 1

2
) Un−1

11 pn = pn− 1
2
− ε

2 F [U, φ]
∣∣
Un

12 Accept when uniform random number r ∈ [0, 1) is smaller than
exp

[
Tr p2 − Tr p′2 + SG[U]− SG[U ′] + φ†

(
(MM †)−1 − (M ′M ′†)−1

)
φ
]

The computation of the fermion forces is the most expensive part of the whole HMC algorithm. In
particular, after every update of the gauge �elds, the fermion matrix M changes. The update of
the momentum �elds however, requires the inversion of the matrix MM † by means of an iterative
solver. The typical number of time steps per trajectory is of O(100). That is, during every Monte
Carlo step, one needs to perform a number of inversions of the same order. We summarise the
HMC algorithm for the special case of LQCD with leapfrog integration in Alg. 10.

1.4 Computational Complexity of LQCD

After having introduced all basic tools to carry out a simulation in lattice QCD, we can make an
estimate of its computation complexity. As mentioned previously, the fermion matrixM is a square
matrix with side length roughly given by the number of lattice sites. Thus, it is a sparse matrix of
size (L/a)4 × (L/a)4. Here, L is the physical length of one lattice dimension, and a is the lattice
spacing. To make physically sensible calculations, L should be much larger than the largest length
scale of the dynamics, which is given by the inverse of the pion mass m−1

π . Similarly, a should be
much smaller than the smallest dynamical length scale, which is given by Λ−1

QCD

L� m−1
π ∼ 10−15 m , (1.109)

a� Λ−1
QCD ∼ 10−16 m . (1.110)

Hence, we should ideally have L/a & 100, which results in M being 108 × 108.

1.4 Computational Complexity of LQCD 43

The fermion matrix is of the form M = amf1 + /D and so the smallest and largest eigenvalues
of the product matrix MM †, relevant for the HMC algorithm, can be estimated as

λmin ∼ (amf)2 , λmax ∈ O(10) . (1.111)

For the simplest case of two degenerate quarks we have mu,d/ΛQCD ∼ 10−2, which together with
the above requirement, leads to amf . 10−3.

Recalling that the HMC algorithm scales with d5/4, where d is the dimensionality of the
distribution to be sampled, and the fact that it scales with the number of lattice sites d ∼ V , we
can estimate the scaling in terms of the lattice extent as L5. Taking into account, that the number
of iterations of the solver scales with the condition number k = λmax/λmin, we arrive at the
following estimate for the computational cost of LQCD, cf. Ukawa [76] from 2001:

2.8

(
#conf

1000

)(
mπ/mρ

0.6

)−6(L

3 fm

)5 (a

2 GeV

)−7
. (1.112)

With this estimate, the costs to obtain 100 well-decorrelated con�gurations for a lattice with
L = 6 fm and a = 0.04 fm would amount to approximately 107 TFlops · year ∼ 1026 ops.

Eleven years later, the same estimate was made by Schaefer [61], taking into account new
algorithmic developments, like multi time-scale and higher order symplectic integrators during the
molecular dynamics integration, preconditioning with Hasenbusch decomposition, and de�ation.
Then the above estimate reduces to approximately 103 TFlops · year ∼ 1022 ops, which is an
improvement of four orders of magnitude.

Within the same time frame, there were similar improvements made in the domain of computer
hardware. Judging from the front runner of the TOP500 [71], which was ASCI White in November
2001 with 12 TFlops and Titan Cray XK7 in November 2012 with 27 112 TFlops, this amounts to
a factor of 2204.

But the history of lattice QCD is not short of developments in innovative computer hardware
itself. Noteworthy are certainly the APE project (within the INFN collaboration), which started
with a 250 MFlops machine in 1988 and featured the APEnext 10 TFlops machine in 2006 [15, 20],
as well as the series of BlueGene computers which were developed by IBM in collaboration with
lattice physicists like Peter Boyle [17, 36].

This page intentionally left blank.

2. Hardware

In this chapter, we want to introduce the target hardware of the QPhiX library, the Intel Xeon Phi
processor/coprocessor family. We will in particular focus on the second generation product, with
the code name Knights Landing (KNL), which is the successor of the coprocessor card Knights Corner
(KNC). First announced in 2011, the Intel Xeon Phi family is a many integrated core architecture
that hosts of the order of 60–70 CPU cores in one processor or coprocessors card, and can in many
ways be considered as Intel’s alternative to General-purpose Graphics Processing Units (GPGPUs or
short GPUs).

With the end of the increasing CPU frequency era in the early 2000’s, CPU manufacturers
started to produce CPUs with more than one core and/or thread. However, Moore’s law continued
to be valid up to 2016 and so the increase of transistor counts was used to increase the number of
cores inside one CPU. In turn, software had to use parallelism on several levels to make use of the
improved capabilities of new hardware in order to extract performance.

This is in particular true for Xeon Phi processors, which o�er a large amount of parallelism on
the level of both single cores, i.e. Single Instruction, Multiple Data (SIMD), as well as on the level of
threads in a shared memory environment. This is further complicated by the fact, that the gap
between the throughput of CPUs (the number of �oating point operations that can be executed
per second) and the bandwidth of all layers of memory grows more and more.

From this considerations one �nds three main points which have to be respected in order to
extract performance out of (any) parallel environment. Software must scale up to many threads
(that is as many as 288 for KNL) inside a shared memory system, it must make use of vectorisation
in form of SIMD and it must minimise memory tra�c through data locality/a�nity, which will
improve the reuse of data in the faster CPU-a�ne caches. To this end, one uses techniques such
as cache blocking and tiling, loop unrolling and (multi-)loop interchange, as well as prefetching,
unit-stride, memory-contiguous data alignment and the use of (arrays of) structure of arrays
(ASA/SoA) to improve vectorisation e�ciency. We will see many of these techniques in much more

46 Chapter 2. Hardware

detail later on.
In this chapter we want to give an introduction to the speci�c architectural design of the KNL

processor. As with the presentation of the algorithms in the last chapter, we want to present
the di�erent layers of the hardware starting from the lowest lying core and tile structure, then
continuing to the interplay of cores and threads in form of the interconnecting mesh and the
particulars of KNL’s memory structure, and ending with some remarks about the internode features
when connecting several processors or cards. With this knowledge in mind, we will present some
re�nements of the above optimisation considerations and present some software solutions/APIs
which are available for multi-core hardware systems. We will also revisited the arithmetic intensity
for the dslash operator to create a simple performance model taking hardware considerations into
account.

2.1 Architecture
KNL is a processor with up to 72 cores which exists also as a coprocessor version, whilst KNC was
only available as a PCIe card. It is structured in so-called tiles which posses two CPUs each. Each
tile has an L2 cache of 1MB which is private to the tile, but shared amongst the two cores. The tiles
are connected via a 2D mesh, as opposed to a 1D ring in the KNC version. In addition, KNL’s are
shipped with two sorts of memory. One high bandwidth memory called MCDRAM (multi-channel
dynamic random access memory) of 16 GB size and a conventional DDR-4 memory with up to
2400 MHz frequency and 384 GB size. It can be connected to the network via an on-package
interconnect called Intel Omni-Path Fabric which o�ers two ports with 100 GB/s bandwidth each.
It also fully integrates a new Instruction Set Architecture (ISA) called AVX-512 which supports
SIMD vectors of 512-bit size and most notably incorporates new hardware instructions to gather
(load) and scatter (store) non-memory contiguous vectors e�ciently. KNC instead was using the
Intel Initial Many-core Instructions (IMCI) which are likely to be discontinued. Furthermore, KNL
is binary compatible with all previous ISA’s of Intel and in particular supports the legacy ISA’s
SSE, MMX, x87, AVX and AVX-2. This allows for a direct use of all C/C++ and Fortran features, as
well as OpenMP and MPI APIs, which is a huge practical advantage compared to the situation for
GPUs, in particular for Fortran programmers.

When designing a successor for the KNC, the main goal was to remove the o�oad overhead
which introduces a considerable bottleneck given by the latency and bandwidth limitations of the
PCIe bus. It was therefore necessary to design a stand-alone processor which would be able to
boot an operating system and connect to the network directly. To achieve this four major design
decisions had to be made [55]. First of all, the single thread performance had to be improved
considerably, since all the code would be run on the same device. It should be able to execute
instructions out-of-order (which KNC could not), but be power-e�cient for parallel and vectorised
code as well. Secondly, it should be binary compatible to all previous ISA, so that OSes, debuggers,
infrastructure, legacy libraries etc. could be used, even without recompilation. Thirdly, it should
have a much larger memory capacity than KNC, ideally something of the order of 5 GB per core,
which is about the upper limit that certain HPC applications demand. But in addition it should
posses a high-bandwidth memory (the MCDRAM) in order to be able to transfer enough data to and
from the large vector registers. Fourth and lastly, it was necessary, to improve the tile interconnect
in form of a 2D mesh to reduce latency and bandwidth, so caches could be kept coherent with
velocities much faster than the already high speeds provided by the MCDRAM. The design of the
KNL is depicted in Fig. 2.1.

2.1 Architecture 47

2 × 16

1 × 4
MCDRAM

EDC

DDR MC DDR MC

EDC
PCIe

Gen3
DMI

EDC EDC

EDC EDC EDCmisc. EDC

3
 D

D
R

4
 c

h
a
n
n
e
ls

3
 D

D
R

4
 c

h
a
n
n
e
ls

MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

× 4

DMI

36 Tiles

connected by

2D Mesh

Interconnect

Tile

Tile

Tile

Tile

Figure 2.1: Schematic layout of the Xeon Phi Knights Landing processor. Reproduced from [55].

2.1.1 Tiles and Cores

The tiles are the basic building blocks of the KNL (Fig. 2.2). They consist of two cores with two
vector processing units (VPUs) each and a 1MB shared L2 cache. They also host the Bus Interface
Unit (BIU) which controls cache coherency of the L2 inside the tile, as well as the Caching-Home
Agent (CHA) which stores a part of the distributed cache line hash, which is used to keep the L2
cache coherent over the whole tile mesh. The CHA is also part of the on-die interconnect mesh
itself, which we will revisit shortly.

Each core is a 2-wide (that is it can execute two instructions per cycle) out-of-order core which
was derived from the Intel Atom core with codename Silvermont. However, many new features
have been added. In particular it has four hardware hyper-threads (also called simultaneous multi-
threads (SMT)) which help to hide instruction and cache latencies via the out-of-order execution.
It has the double number of in�ight instructions and deeper out-of-order bu�ers (the Reorder
Bu�er (ROB) has 72 slots). It also has larger and faster L1 and L2 caches. In particular the L1 data
cache, which is private to the core has a size of 32 kB. It posses two additional 64 B load ports to
feed the two VPUs each core owns. They are themselves tightly integrated into the out-of-order
pipeline. In addition, the L2 bandwidth was doubled, and each tile can now read 1 cache line and
write 1/2 cache line per cycle. The full bandwidth may even be used by one core alone, in case
the other one is busy otherwise. Cache lines have a size of 64 B. Furthermore, the translation
lookaside bu�er (TLB), which is a cache in which virtual page addresses are translated to physical
one, was increased and support for 1 GB pages was added (16 entries, in order to cover the whole
of MCDRAM). Lastly, gather and scatter facilities are integrated into the hardware directly, in order
not to use fetch and decode slots in the pipeline.

48 Chapter 2. Hardware

Figure 2.2: Schematic structure of a KNL tile. Reproduced from [55].

KNL is also the �rst hardware to implement the new AVX-512 ISA, which is announced to
be supported also in the Skylake microarchitecture. It has full 512-bit SIMD support and uses 32
logical registers (ZMM0-31) which can be mapped to 256-bit or 128-bit registers (YMM0-31 and
XMM0-31) for AVX-2 and AVX support, respectively. In addition, it has 8 mask registers (k0-k7) for
vector predication. The instructions are separated into four categories. The �rst one, foundations
AVX-512F, includes all the basic �oating point operations, notably the fused-multiply-add (FMA),
which have mostly a 6-cycle latency. The second category, con�ict detection AVX-512CD, contains
functionality that ensures correctness for gather-modify-scatter type sequences of instruction.
They are for instance relevant when one updates arrays at index positions, that have to be looked
up with the help of some other array (e.g. lookup tables for space-�lling curves etc.). For example,
they contain instructions that detect duplicates within a SIMD vector and reduce it to con�ict-free
subsets. The third set of instructions are special reciprocal and exponential operations AVX-512ER,
which compute approximate exponentials, inverses and inverse square roots to a precision of at
least 2−23. The last set are prefetch instructions AVX-512PF, which include operations for software
prefetches to both the L1 as well as the L2 caches.

The core itself consists of �ve units: the front-end unit (FEU), the allocation unit (AU), the
integer execution unit (IEU), the memory execution unit (MEU) and the vector processing unit
(VPU), cf. Fig. 2.3. In the FEU, instructions are fetched and decoded, branches predicted and all
instructions are split in so-called micro-operations (µops) which have a 1-cycle latency. This is done
in order to be able to implement complicated instructions from simple hardware facilities. In the
AU, µops are prepared for out-of-order execution and resources that are needed are allocated here.
These include ROB, and Rename Bu�er (RB) entries, Store Data bu�ers, as well as gather/scatter
entry tables. Finally, each µop is sent to either the Integer, Memory or Vector Processing. The IEU
operates on general purpose registers R0-15, and most µops have a 1-cycle latency. However, there
are important operations (e.g. multiply) with 3–5 cycle latencies. Each core possesses two IEU’s.
The MEU, which is also 2-wide, is responsible to fetch requests in case of the instruction cache
and ITLB misses. It supports unaligned memory accesses without penalty and accesses to data,
that is split between two cache lines with a 2-cycle penalty. It also hosts the gather/scatter logic.

2.1 Architecture 49

Thread Select

Thread Select

Thread Select

Thread Select Thread Select

Branch

Decoder

Decoder

Microcode

ROM

IQ

ROB
(72 entry)

FP RS FP RS Integer Rename Buffers

Integer Register File

(one per thread)
FP Rename Buffers

FP Register File

(one per thread)

Legacy FP

Units

Vector

Units

Vector

Units

Vector/FP Store Buffers

MEC RS Recycle Buffer IEC RS IEC RS

Integer

Units

Integer

Units
Addr. Gen.

Units

Addr. Gen.

Units

L1

Prefetcher

L2

Prefetcher

Dcache
(32KB, 8-way)

DTLB PMH

Store

Buffers

Fill Buffers/Write

Combining Buffers L2 Cache
(1MB, 16-way)

Next Instr.

Ptr.

lcache
(32KB 8-way)

iTLB

B
u

ff
e

r

Figure 2.3: Block diagram of a KNL core. Reproduced from [55].

50 Chapter 2. Hardware

Finally, there are two VPUs per core which have 20 entries in their reservation station, which can
be executed out-of-order with 1 µop per clock. In total, the core is 2-wide in decoding, allocating
and retiring, but can execute up to 6 instructions of integer, �oating point and memory operations
(each unit being 2-wide as stated above) per clock.

There are some remarks about the hardware threads in order. All instructions for up to four
threads �ow through the same pipeline simultaneously. There are several points where threads
select which instructions is moving forward in the pipeline (cf. Fig 2.3). This decision is made
every single cycle and has a heuristic scheme, based on resource availability, fairness and stalling of
threads. Core structures in the pipeline are shared, dynamically partitioned or duplicated amongst
threads. In contrary to KNC, one KNL hardware thread can achieve maximal performance, but two
or four threads often perform better, because they tend to hide latencies more e�ciently. However,
linear scaling of an application in the number of hyper-threads is very unlikely to be achieved.

Intel cites the peak performance of a 72 core KNL with over 3 TFLOP/s in double and over
6 TFLOP/s in single precision [55]. This is, assuming every clock the processor is executing one
FMA, which is worth 2 �oating point operations for 8 doubles or 16 �oates, in each and every VPU.
With a core frequency of 1.5 GHz we have

72× 2× (2× 8/16)× 1.5× 109 Hz ≈ 3.46/6.91 TFLOP/s

for double and single precision, respectively.

2.1.2 Interconnect Mesh and Cluster Modes
To connect the tiles of the KNL, a 2D cache-coherent interconnect mesh is used, which outperforms
the 1D ring that was used in KNC by far. In order to keep the L2 cache coherent amongst all tiles
of the processor, a MESIF protocol is used. It is based on a distributed tag directory, of which
every tile keeps a local part in its CHA. The distribution is based on an address hash which varies
depending on the cluster modes which is used. MESIF is an acronym for the �ve states, a given
cache line may be in: Modi�ed, Exclusive, Shared, Invalid and Forward. When issuing a request
through the mesh, YX routing is used to reduce the possibility of deadlocks, caused by travelling
messages. This means that messages travel vertically �rst, which consumes 1 clock cycle, and
then horizontally, which takes 2 cycles. The aggregated bandwidth of the 2D mesh amounts to
700 GB/s which is about double the peak bandwidth of the MCDRAM, and which, as we will see,
may be used as a high level cache.

In order to keep the communication as local as possible on the mesh, there are di�erent so-
called cluster modes, one can choose from at boot time. They divide the chip into virtual regions
in di�erent ways, so that cache messages travel only inside these regions. This reduces latency
which will e�ectively increase the bandwidth, because hardware bu�ers are freed sooner and more
messages can be issued in a given time frame. There are three major modes available: the all-to-all
mode, the quadrant mode and the Sub-NUMA Cluster (SNC) mode. To understand the di�erence
between these modes, one has to look how messages typically travel in case of an L2 miss. There
are three main points involved in this process. The tile/core that generates the L2 cache line miss,
the CHA that owns the address of this cache line in its local CHA dictionary, and �nally the part
of the MCD or DDR-RAM that carries the data.

The all-to-all mode is the one lowest in general performance, but it is the most general one, in
that it can be used even if the DIMMs of the DDR are equipped non-symmetrically in capacity. In
this mode, addresses are hashed uniformly over the whole chip, so that a request may travel from

2.1 Architecture 51

Hybrid mode

DDR
4 or 8 GB

MCDRAM

8 or 12GB

MCDRAM

16GB

MCDRAM

DDR

Flat mode

P
h
y
s
ic

a
l
a
d

d
re

s
s

DDR
16GB

MCDRAM

Cache mode

P
h
y
s
ic

a
l
a
d

d
re

s
s

(cache)(cache)

P
h
y
s
ic

a
l
a
d

d
re

s
s

Figure 2.4: Structure of the memory modes which can be chosen at boot time. Reproduced from [55].

any tile to any other inside the entire processor, and the data may reside in any part of the memory.
In the quadrant mode, which is the default mode, the chip is divided into four virtual parts in order
to establish vicinity between the CHA and the memory. In this mode, the address of cache lines
are hashed in such a way that CHA’s carry only those addresses, that are physically located in the
memory directly connected to the respective quadrant. This will reduce latency and thus increase
performance without requiring any NUMA-awareness of the software. Finally, there is the SNC-4
mode, in which additional a�nity of the tiles and the CHA’s is established. Namely, each of the
four quadrants is now promoted to a separate cache-coherent NUMA sub-cluster. That is, addresses
are hashed only over a given quadrant and point only to memory located in that quadrant. This
e�ectively subdivides (each type of) memory into four (or eight in case of addressable MCDRAM,
see below) NUMA clusters. Although this mode has the smallest latency and highest bandwidth, it
requires the software to by NUMA-aware in order to extract maximal performance. Note however,
that any software will run in every cluster mode, and cache-coherence is always maintained over
the entire chip. Di�erent levels of a�nity may however in�uence the performance signi�cantly,
depending on the hardware awareness of the software.

2.1.3 Memory and Memory Modes
KNL ships with two kinds of memory. A relatively small high-bandwidth memory (HBM) which is
integrated on-package, and an ordinary high capacity, small bandwidth, extendable DDR type of
memory, which is placed outside the package.

The MCDRAM HBM comes in 8 portions of 2 GB, each with its own memory controller (called
EDC). It has an aggregated bandwidth of about 450 GB/s. It can be used either as addressable
memory or as an additional high level memory-a�ne (as opposed to the usual low level CPU-a�ne)
cache. The DDR-4 memory on the other hand has two dedicated memory controllers, each with
three channels. In each channel one DIMM can be placed, having frequencies up to 2400 MHz.
Each DIMM may have a size of up to 64 GB, making a total of 6∗64 GB = 384 GB. The aggregated
bandwidth amounts to 90 GB/s.

These two types of memory may now be combined in three di�erent modes, called cache, �at
and hybrid (Fig 2.4). In cache mode, the entire 16 GB of MCDRAM are used as a global coherent
cache to the DDR memory. It can be thought of as a giant, relatively CPU-far L3 cache, because it
has the same latency as the DDR-4 memory. This is the default mode and will be bene�cial for
most applications, as long as they do not either block very e�ciently into the L2 with a high rate of
data reuse, or stream over larger than 16 GB parts of memory frequently. In this mode, the cache
is invisible to software (including the OS) and is managed exclusively by the hardware.

In the �at mode, the entire MCDRAM is exposed to the OS as an addressable NUMA cluster of
ordinary memory. Its NUMA distance is set higher than the one of the DDR, so that the OS does

52 Chapter 2. Hardware

Package

× 16 PCIe

Omni Path ports

100 Gb/s/portDDR4

× 4 PCIe

16 GB
MCD RAM

KNL

Omni

Path

Figure 2.5: KNL package with chip, MCDRAM and Omni-Path Fabric. Reproduced from [55].

not preferably allocate into this memory. It is fully manageable by the software, and in particular
provides an allocatable heap to the applications.

Hybrid mode, �nally, is a combination of cache and �at mode. In this mode 25% or 50% of the
HMB may be used as cache, whereas the rest remains fully addressable. This mode is in particular
useful to help di�erent kinds of software to bene�t from the high-bandwidth MCDRAM.

On a practical level, it seems to be rather restrictive that both the cluster modes as well as the
memory modes have to be chosen at boot time. This is because, often HPC users do not have the
(root) rights to reboot the processors and enter the BIOS. This however seems to be a problem
mostly caused by the fact that software, namely the OSes, can not yet deal with the possibility of
hardware changes during up-time (think new tables for memory tags, routing and caching, which
are normally generated during boot time). Since this is a rather new phenomenon, software is
likely to adapt in the future.

2.1.4 I/O and Omni-Path Fabric
For inter-node communication and I/O the KNL processor provides a total of 36 PCIe Gen3 lanes
(PCIe Root Ports) which are split into two 16x and one 4x lane. Some versions of KNL also integrate
an on-package Intel Omni-Path Fabric which is connected to the die via the two 16x lanes and
provides two ports out of the package with bandwidths of 100 GB/s each (Fig. 2.5).

Omni-Path is a communication architecture for HPC that is supposed to o�er low latency, low
power consumption and high overall bandwidth. It aims to provide tight coupling to CPU, memory
and storage resources and high scalability up to the exa-scale.

2.2 General Programming Implications
We have already seen in the introduction that there are generally three points which have to be
optimised in order to extract performance from the Xeon Phi processors. That is, the software
has to be scalable up to many threads, it has to make use of the large vector registers using SIMD
instructions (at least if the application is not memory bandwidth bound, up to the point where
the bandwidth is saturated already for scalar instructions) and it has to optimise data locality and
cache reuse.

In this section, we want to brie�y introduce the features o�ered by the KNL architecture
to incorporate the above three points. In particular, we will review some high level solutions
concerning the software management of the MCDRAM memory, alternative APIs for parallel
programming in shared memory environments, and �nally some details about the deliberate use
of SIMD instructions for vectorisation.

2.2 General Programming Implications 53

2.2.1 Managing MCDRAM

When using KNL in cache memory mode, the HBM is entirely managed by the hardware and
invisible to the OS. However, in both �at and hybrid mode, the MCDRAM is addressable and can
be used for dynamical allocations. The programmer has essentially three tools to choose from
when managing the MCDRAM manually. He can either use the NUMA control utility (numactl),
the autohbw library, or the more general and powerful memkind library [4].

numactl can be simply used to allocate all data that is managed inside the software (including
the stack and data segments) to the MCDRAM. This is independent of the programming language
and does not require changes to already existing software. However, it does not allow for a heap
that is split between di�erent kinds of memory or a �ne-grained control (and exception handling)
for di�erent sorts of memory.

This issue is addressed by the memkind library, which is an open-source user extensible heap
manager for a large class of di�erent memory types (including DRAM, MMIO, RDMA, slabs,
symmetric heaps). It is based on jemalloc, which provides a general purpose malloc facility and
particularly aims towards fragmentation reduction and scalable concurrency support [2]. memkind
provides two APIs, one of which (hbwmalloc.h) is considered more stable and can be used by calling
the usual C malloc routines with pre�x hbw_. The second one (memkind.h) is very powerful,
but still under development. Amongst others, it allows to de�ne customised memory types, type
dependent allocation routines and explicit support for huge pages at allocation time (e.g. 2 MB
instead of the usual 4 kB). It can also easily be used to overload the operator new in C++ in
order to hide the implementation details in the high level code. We give a minimalistic example in
Lst. 2.1, which is adapted from the memkind project.

The autohbw API �nally is implemented using the memkind library and relies on the standard
GNU C library (glibc) allocation routines. Thus, it can be used with Fortran, C and C++. It allows
to allocate data in a certain range of size to be automatically allocated to MCDRAM. It does not
require code changes, and only has to be (dynamically with LD_PRELOAD or statically) linked.
The stack and data segments are not allocated on the HBM.

2.2.2 Vectorisation

Parallelism on the level of single CPU cores is becoming increasingly important. A vector register
on both KNC and KNL has a size of 512-bit, allowing for the parallel SIMD execution of 8 doubles
or 16 �oats, which will cause an enormous loss in the area of HPC when not employed (e�ciently).
This issue will become even more severe, because 512-bit large vector registers will enter the Xeon
product line via the Skylake microarchitecture [10], and are likely to grow even further to 1024-bit
in the future [9].

On the other hand, however, SIMD is the area of parallel programming with the least high and
low level API support for software developers. Intel tends to suggest three main strategies to utilise
vectorisation for the majority of cases [55]. These are the usage of SIMD e�cient libraries, compiler
auto vectorisation and guided vectorisation via the use of #pragma’s. The latter including the
openMP 4.0 #pragma SIMD and compiler speci�c directives like #pragma ivdep.

There are (at least) two reason why this is very unsatisfactory in practice. First of all, it does not
allow to access all the facilities of the ISA. In particular, shu�e, gather&scatter, masking and more
complex �oating point operations cannot be handled by the programmer directly. Secondly, the
necessity of having to adjust the data structures for the e�cient use of SIMD, interferes with good
software design. In particular, with scienti�c software growing to several million lines of source

54 Chapter 2. Hardware

1 # i n c l u d e <memkind . h>
2 # i n c l u d e < c s t d l i b >
3 # i n c l u d e <new>
4

5 t e m p l a t e < c l a s s d e r i v i n g _ c l a s s >
6 c l a s s memkind_a l loca ted
7 {
8 p u b l i c :
9 s t a t i c memkind_t g e t C l a s s K i n d ()

10 {
11 r e t u r n MEMKIND_DEFAULT ;
12 }
13

14 vo id ∗ o p e r a t o r new (s t d : : s i z e _ t s i z e)
15 {
16 r e t u r n d e r i v i n g _ c l a s s : : o p e r a t o r new (
17 s i z e ,
18 d e r i v i n g _ c l a s s : : g e t C l a s s K i n d ()) ;
19 }
20

21 vo id ∗ o p e r a t o r new (s t d : : s i z e _ t s i z e , memkind_t memory_kind)
22 {
23 vo id ∗ r e s u l t _ p t r = NULL ;
24 i n t a l l o c a t i o n _ r e s u l t = 0 ;
25

26 / / Th i s checks i f d e r i v i n g _ c l a s s has s p e c i f i e d a l ignment ,
27 / / which i s s u i t a b l e t o be used with pos ix_memal ign ()
28 i f (a l i g n o f (d e r i v i n g _ c l a s s) < s i z e o f (vo id ∗)) {
29 r e s u l t _ p t r = memkind_malloc (memory_kind , s i z e) ;
30 a l l o c a t i o n _ r e s u l t = r e s u l t _ p t r ? 1 : 0 ;
31 }
32 e l s e {
33 a l l o c a t i o n _ r e s u l t = memkind_posix_memalign (
34 memory_kind ,
35 &r e s u l t _ p t r ,
36 a l i g n o f (d e r i v i n g _ c l a s s) ,
37 s i z e) ;
38 }
39

40 i f (a l l o c a t i o n _ r e s u l t) {
41 throw s t d : : b a d _ a l l o c () ;
42 }
43

44 r e t u r n r e s u l t _ p t r ;
45 }
46 } ;

Listing 2.1: Minimal example, how to overload the operator new using memkind functionality

2.2 General Programming Implications 55

1 # i n c l u d e < s d l t / s d l t . h>
2

3 s t r u c t Y o u r S t r u c t
4 {
5 doub le x , y , z ;
6 } ;
7

8 SDLT_PRIMITIVE (Y o u r S t r u c t , x , y , z) ;
9 t y p e d e f s d l t : : s o a 1 d _ c o n t a i n e r < Y o u r S t r u c t > YourConta ine r ;

10

11 YourConta iner i n p u t C o n t a i n e r (count) ;
12 YourConta iner : : a c c e s s o r <> i n p u t = i n p u t C o n t a i n e r . a c c e s s () ;

Listing 2.2: Minimal example, how to use Intel SDLT containers.

code, separation of algorithms from data structures and low level data manipulations becomes
increasingly important.

There is an interesting project by Intel which tries to address the second issue, the SIMD Data
Layout Template (SDLT). SDLT is a C++11 template library that provides abstract containers which
aim to store data of Arrays of Structures (AoS), often used in an object-oriented software design, in
the form of Structures of Arrays (SoA) or Arrays of Structures of Arrays (ASA) in order to improve
SIMD e�ciency. SoA’s are more vectorisation friendly, because they allow to load contiguous data
from memory to vector registers. ASA on the other hand, are SoA’s (usually referred to as tiles),
which are by themselves combined into an array, and �t into cache, such that data is blocked into
cache for reuse maximisation.

SDLT is designed in a similar fashion as the Standard Template Library (STL), in that it provides
containers and iterators (which are called accessors in SDLT) separately. The latter can then be
used to access data in STL algorithms which is stored in these abstract containers. We give a
minimal example on how to create a (1d SoA) SIMD friendly container from a struct in Lst. 2.2
and how to access it. The (not very elegant) use of the SDLT_PRIMITIVE macro is necessary
because of the lack of compile-time re�ection in C++11. That is, the standard does not de�ne a way
of type checking (convertibility, parent/child, base/derived, container/iterator, friends, . . .), when
meta-programming with classes that contain other classes etc. The two standard work-arounds for
this lack is the use of code generators that parse C++ �les in order to extract relationships between
classes, and the use of macros. This issue, however, will likely be addressed in C++17 or C++20
[11].

The features SDLT aims to provide seem to be very import and one should hope that this issues
will eventually be resolved in the C++ standard itself. There are already e�orts to enable the use of
(SIMD and thread) parallelism within the <algorithm> section of the STL. In particular, C++17
is likely to include the parallel and vectorised execution of algorithms à la sort(par_vec,
vec.begin(), vec.end()) [12].

SDLT has a few major disadvantages as a tool for the programmer to guarantee vectorisation.
On a purely practical level, usage is restricted by the fact that SDLT is non-free (it ships with ICC
starting from version 16 update 1) and close-source. More importantly however, it still relies on
auto vectorisation done by the compiler.

The most high level option available at the moment to circumvent this issue is the use of vector
intrisics. Intrinsics are available in C and C++ after including the header immintrin.h, and are

56 Chapter 2. Hardware

1 # i n c l u d e " immin t r in . h "
2

3 i n t main (vo id)
4 {
5 f l o a t a [1 6] = { 1 . 0 } ;
6 f l o a t b [1 6] = { 2 . 0 } ;
7 f l o a t c [1 6] = { 0 . 0 } ;
8

9 __mmask16 m16s = 0xAAAA ;
10

11 __m512 simd1 = _mm512_load_ps (a) ;
12 __m512 simd2 = _mm512_load_ps (b) ;
13

14 __m512 simd3 = _mm512_maskz_fmadd_ps (m16s , simd1 , simd2 , s imd2) ;
15 _mm512_store_ps (c , s imd3) ;
16

17 r e t u r n 0 ;
18 }

Listing 2.3: Example using intrinsics to create a fused multiply-add with AVX-512 vectors of �oats.

ordinary function calls with input parameters and return values. However, the compiler will not
generate function calls in the binary when using intrinsics, but rather inlined SIMD instructions
for the ISA used in the code. Using intrinsics as compared to assembly or inline-assembly has the
advantage that the programmer does not have to take care about low level instruction scheduling
and register allocation. Lst. 2.3 shows a simple example of a fused multiply and add of two arrays
of 16 �oats each, using a mask such that only every odd index is touched.

Today, all major compilers, including Clang, gcc and ICC, support intrinsics. Documentation for
all Intel ISA’s and the available intrinsics can be found online [6]. To see the code that is generated
by the compiler, it su�ces to compile with the option -S. This will create a �le with su�x .s. For
later convenience we give a list of the common su�xes of AVX-512 intrinsics in Tab. 2.1.

The QPhiX library guarantees the use of SIMD by using an explicit ASA layout for the data and
by building kernels from vector intrinsics using a C++ code generator. We will study the details of
this implementation in the next chapter.

Su�x Type Description

_pd __m512d 8 packed doubles in 512-bit
_ps __m512s 16 packed �oats in 512-bit
_sd double double in lower 64-bit
_ss float �oat in lower 32-bit
_epi32 __m512i extended packed interger of 32-bit (signed)
_epi64 __m512i extended packed interger of 64-bit (signed)

Table 2.1: Most common data type su�xes for AVX-512 vector intrinsics.

2.3 Performance Model Revised 57

2.2.3 Scaling
When it comes to parallel programming in a shared memory environment, thread based models
are the predominant form of concurrency. There are several APIs based on thread scheduling
including pthreads, C++11 threads and openMP. The latter is widely used in scienti�c computing
and particularly in LQCD. It has a very simple to implement #pragma based interface, which
however does not give the programmer a very �ne-grained access to the scheduler. In particular,
the creation and destruction of threads is entirely hidden at the software level. It also does not
incorporate itself very well in an object-oriented design, because private/shared attributes do not
bind to scopes. Shared variables, which are declared inside parallel regions, have to be marked
static.

For C++ programmers there is however already a large set of concurrency features available
through the standard itself. This includes threads, mutexes, atomicity and asynchronous tasks.
C++17 will add upon this improvements in std::future and std::experimental with
possibly executers and asynchronous operations, resumable functions (and lambdas), latches and
barriers, atomic smart pointers [13], as well as the aforementioned parallel STL algorithms [12].

Apart from threads, there are a few APIs available that are build on tasks. It has been argued
that concurrent programming has eventually to move from threads to tasks [45]. Amongst those
APIs is the threading building blocks (TBB) library [7] and the hetero streams library [3]. The
former is a free, open-source project, that has been initiated by Intel in 2006. It is a C++ template
library that focusses on providing concurrent algorithm templates, as well as support facilities like
a task-stealing scheduler, a concurrency-aware memory allocator, concurrent containers, portable
mutexes and global timestamps. The hetero streams library on the other hand, is an open-source
library that focusses on asynchronous task execution in heterogeneous platforms via streams.
The Barcelona Supercomputing Center has an interesting collection of articles comparing hetero
streams with CUDA streams and openCL [5].

2.3 Performance Model Revised
In the last chapter we calculated the algorithmic intensity for the dslash operator from the number
of useful �oating point operations, and established that it is generically bound by the memory
bandwidth on Xeon Phi Processors. Here we want to present a simple model proposed in [44] to
estimate the rooftop line of the performance we may expected on KNC and KNL, taking hardware
features into account.

To this end, we have to replace the read and written bytes when calculating the arithmetic
intensity by the actual memory bandwidth. In addition, we can model the hardware features of
cache re-use, streaming stores and di�erences in read and write memory bandwidth. Streaming
stores are instructions designed to continuously stream the output data to the main memory
and to store it in a contiguous chunk. This has the advantage that data can be directly written
to memory without having to have prior knowledge of the old content. This will save memory
bandwidth needed to read the old data. Streaming store instructions are supported by a wide range
of architectures including Xeon and Xeon Phi processors. Within the AVX-512 ISA in can be called
via the intrinsic function void _mm512_stream_pd(void* mem_addr, __m512d a)
passing the memory address and a reference to the data one wishes to store.

58 Chapter 2. Hardware

Reuse Compression Streaming Stores Throughput [GB/s]

Half Single Double
0 no no 635.9 318.0 159.0
0 no yes 678.3 339.2 169.6
0 yes no 726.8 363.4 181.7
0 yes yes 782.7 391.4 195.7
7 no no 1130.6 565.3 282.7
7 no yes 1271.9 635.9 318.0
7 yes no 1453.6 726.8 363.4
7 yes yes 1695.8 848.0 423.9

Table 2.2: Estimated maximal throughput of the dslash stencil for various tuning options and precision on KNL.
We assume a memory bandwidth of 370 GB/s, which is about 85% of the STREAM bandwidth.

Recalling that the dslash stencil needs 1320 �oating point operations, writes one (result) spinor,
and reads 8 link variable and 8 neighbouring spinors (plus possibly the resulting one) per site, we
can estimate the throughput as follows:

F = 1320×Br ×

8G+ (8− rc)S + rs S︸ ︷︷ ︸
reads

+
Br
Bw

S︸ ︷︷ ︸
writes


−1

.

Here G is the size of one link variable, which is 18 or 12 times the (precision-depending) size
of one �oating point number, and S is the size of a spinor, which again is 24 times the size of
one �oat in Bytes. With the parameter rc one can set the number of neighbouring spinor �elds
that may already be in cache and can be reused. It may take values between 0 and 7. This model
assumes that the lowest lying cache is in�nitely fast and Br and Bw are the bandwidths between
the main memory and this lowest cache (which we will assume to be MCDRAM and L1 for KNL
respectively). The parameter rs �nally mimics streaming stores and is either rs = 0 when they are
used, or rs = 1 when not. We do not include the possibility of link variable reuse, because one
usually implements the even-odd preconditioned dslash operator. In this case, moving from an odd
site to the next, non of the emanating links will be the same.

We summarise the rooftop performance for this model with the various options and precisions
in Tab. 2.2. The calculations have been done for KNL, and we have set Br = Bw = 370 GB/s,
which is about 85% of the performance achieved in the STREAM benchmark. This is a reasonable
estimate based on observations on Haswell and KNC architectures, cf. [55]. Note that the best
throughput one could hope to achieve in single precision is about one third of the peak performance
of the KNL, which re�ects the fact that the dslash is memory bound, even with a large amount of
cache reuse.

3. So�ware

In this chapter we will �nally see the implementation of the dslash stencil and various iterative
Krylov solvers, we have studied in the chapter about Algorithms, in the QPhiX library. In particular,
we will remeet the three essentials of performant parallel software, which we have presented in
the last chapter, in form of a cache blocked, OpenMP threading scheme, which utilises data locality
and SIMDisation.

This chapter is organised as follows: First we will have a brief look what purpose QPhiX is
meant to satisfy within the layered software design approach to LQCD simulations of the USQCD
collaboration. Then we will have a closer lock at the structure and design of QPhiX itself, before we
conclude the chapter with a detailed description of the changes and additions that were necessary
to be made, in order to use QPhiX for twisted-mass fermions.

3.1 So�ware Layers for LQCD Simulations

QPhiX is part of a layered structure of programs which are supposed to provide a highly optimised
and portable set of software to carry out simulations in LQCD on various platforms. There are four
layers, cf. Fig. 3.1, which provide increasing functionality, but rely on the lower levels, respectively.

The �rst level provides basic functionality in form of the QCD Message Passing (QMP) parallel
API which is built on top of MPI, and QLA, which makes a standard interface for linear algebra
on sites or arrays of sites, available. The second level provides data parallel APIs in form of
QDP/QDP++ for lattice-wide data structures, operations (in form of expression templates), as well
as communication; and in form of QIO for I/O operations of lattice data. A similar software e�ort,
including the use of SIMD vectors, was recently initiated by Peter Boyle [18]. The third level is
meant to provide optimisations in form of e�cient solvers and stencil operators. Examples of this
layer are the QUDA library which is optimised for GPGPUs, and precisely the QPhiX library for
Intel Xeon Phi’s. In particular, QPhiX needs the QIO, QMP and QDP++ (for testing) libraries to be

60 Chapter 3. So�ware

Figure 3.1: Software layers above and below QPhiX.

built.
Above this layer several software suites have been implemented which provide functionality

needed for the investigation of spectroscopy, decay constants, nucleon form factors and chiral
aspects of LQCD. Examples of the application layer are Chroma [29] and MILC [1].

3.2 QPhiX
QPhiX is a C++11 template library with external code generator QPhiX-codegen. It implements
in essence three types of facilities. First and foremost, it provides two (checkerboarded) matrix
multiplication routines, namely

(1) y = /D x, (y = A−1 /D x), (3.1)

(2) z = a x− b /D y, (z = Ax− b /D y), (3.2)

where a and b are real coe�cients, /D is the dslash stencil and A is the clover term. The routines
in parenthesis are used when the Wilson clover term is included. The �rst one is referred to as
dslash and the second one as achimbdpsi in the code. From these routines, as we have seen
in Eqn. (1.60) and Eqn. (1.65), one can easily build an even-odd preconditioned fermion matrix
multiplication routine.

Secondly, it provides BLAS facilities, e.g. y ←[αy+ x, ρ←[||r||2, ρ←[||x− y||2, etc. They are
implemented by combining loops over lattice sites with the Structure of Arrays (SoA’s) of the data
types, and providing real and complex functors which can act on the vectors.

Thirdly, there are three iterative solvers that use the above functionality to invert the even-odd
preconditioned fermion matrix (that is, its odd-odd or even-even part). Reconstruction routines
to obtain the solution to the full system are not included in QPhiX itself. There is a CG solver
that solves the normal system M †Mx = b, as well as a BiCGStab and a modi�ed Richardson
iteration solver which directly solve the system Mx = b. The latter implements mixed precision
preconditioning using iterative re�nement, as we have seen it in Sec. 1.2.4.

QPhiX is heavily templated over four parameters:
1. typename FT
2. int VECLEN
3. int SOALEN
4. bool COMPRESS12

3.2 QPhiX 61

The �rst parameter is the �oating point type and can be chosen to be half, single or double precision.
The second template parameter speci�es the length of the SIMD vectors for the architecture one
likes to build upon, in units of �oating point numbers in the precision one uses. For Xeon Phi’s
it will assume values of 8 for double precision and 16 for single and half precision. The third
parameter speci�es the length of the SoA’s inside the SIMD vector, which has to be a factor of
VECLEN and could be SOALEN = 4, 8, 16 on Xeon Phi’s. The last parameter �nally speci�es if 12
parameter gauge compression should be used or not, cf. Sec. 1.1.1.

Since all these template parameters relate to types and the dimensions of arrays, their values
have to be set at compile time. QPhiX is essentially a header-only library, as it is common for C++
software that heavily relies on templates (cf. STL, boost, etc.).1 To be con�gured and build, QPhiX
uses GNU Autoconf and Automake, which allows for a high level of portability and abstracts the
handle of library dependencies (mainly QDP++, QMP and libxml2) into the autotools functionality.

For the convenience of the reader we summarise (most of) the �le structure of QPhiX in
Fig. 3.2. There are three main directories: The lib/ directory where the main static library
libqphix_solver.a is build, and one �nds thread binding for BlueGene/Q and a generic
architecture, as well as printing utilities with multi-node support. Then there is the directory
tests/ where testing and timing facilities are implemented. Finally, the main part of the source
code lies under include/qphix/.

The main purpose of the QPhiX library is to provide the lattice site loops for the dslash stencil,
the inter-node communication (combined with a heuristic load balanced scheduler), as well as
the OpenMP threading. The implementation of the two above mentioned kernels for the bulk
or body of the lattice (as well as for the face or boundary of the node-local lattice) however, will
be generated in the QPhiX code generator, which we describe in more details later. Here, it is
important to know that this pre-generated kernel routines, which operate on SIMD vectors, will
be provided in subfolders ARCH/generated/ where ARCH may be SCALAR, SSE, AVX, AVX2,
AVX512 (KNL) or MIC (KNC). The appropriate routines for the various precisions and values
for VECLEN and SOALEN, will be #include’d using a set of #ifdef-macros in the template
specialisation �les, which are found under ARCH/.

3.2.1 Data Structures, Tiles & Geometry

The geometry of the lattice, as well as its subdivision into tiles and blocks is de�ned in the
�le geometry.h. It contains the de�nition for the half precision type (cf. Lst. 3.1), and the
functionality to (up and down) convert between half, single and double precision. It also also
provides a constructor to initialise the geometry parameters such as the number of cores NCores
used per node, the dimensions of the blocks in Y and Z direction By and Bz (used for cache blocking,
see below), the number of hyper-threads (SMT threads) within one core Sy and Sz, as well as
the padding for XY-planes and (XYZ) time-slices PadXY and PadXYZ. It also provides (aligned)
allocation and free routines for all the introduced data types (with support for 2 MB pages).

The class Geometry also contains the basic type de�nitions for the spinors, gauges and
clover terms on checkerboarded sublattices for which Nxh = Nx/2, Nx being the number of sites
in the X-direction. As we have mentioned in the last chapter, in order to be able to su�ciently use
SIMD vector instructions, data has to be split into SIMD vectors which lie contiguously and aligned

1This approach is known as the inclusion model, and is one way to make sure the compiler understands for what
template parameters a given de�nition should be instantiated. More details and alternative approaches can be found in
[78].

62 Chapter 3. So�ware

qphix
include/

qphix/
ARCH/

generated/
pre-generated KERNELs

KERNEL_ARCH_complete_specialization_form.h
KERNEL_ARCH_complete_specialization.h

abs_solver.h
Barrier_mic.h
Barrier_stubs.h
blas_c.h
blas.h
blas_mic.h
blas_new_c.h
blas_utils.h
comm.h
complex_functors.h
dslash_body.h
dslash_def.h
dslash_generated.h
dslash_utils.h
face.h
geometry.h
invbicgstab.h
invcg.h
inv_richardson_multiprec.h
linearOp.h
minvcg.h
print_utils.h
qdp_packer.h
real_functors.h
site_loops.h
threadbind.h
wilson.h

lib/
bgq_threadbind.cc
generic_threadbind.cc
print_utils.cc

tests/
...

Figure 3.2: The most important �les of the QPhiX library. Autotool �les, tests and clover speci�c �les are left out
to safe space.

3.2 QPhiX 63

1 t y p e d e f uns igned s h o r t h a l f ;
2

3 t emp la t e <typename FT , i n t VECLEN , i n t SOALEN , b o o l COMPRESS12>
4 c l a s s Geometry {
5 p u b l i c :
6 t y p e d e f T F o u r S p i n o r B l o c k [3] [4] [2] [SOALEN] ;
7 t y p e d e f T SU3Matr ixB lock [8] [COMPRESS12 ? 2 : 3] [3] [2] [VECLEN] ;
8

9 . . .
10 } ;

Listing 3.1: The elementary data types for spinors, gauges, and half precision. [geometry.h]

Figure 3.3: Divison of a checkerboarded XY-plane into tiles (of ngy ∗ SOALEN elements) and blocks for cache
optimisation [43].

in memory. One possibility to guarantee that, is to form vectors from lattice sites in the X-direction.
This has been done in [68], but it is rather restrictive, as one has to guarantee that Nxh is a multiple
of the register length VECLEN. In QPhiX, SIMD vectors are formed from tiles in XY-planes instead.
Then, only SOALEN sites belong to a tile in X-direction, which have ngy = VECLEN/SOALEN
di�erent Y-values2. For this approach to work on has to guarantee that ngy divides Ny, and
SOALEN divides Nxh. Then in each step, the (pre-generated) kernels will still process VECLEN
number of sites, but this time from ngy di�erent Y-values. The division of one XY-plane of the
(checkerboarded) lattice into tiles is illustrated in Fig. 3.3.

The resulting (elementary) data structures for spinors and gauges are summarised in Lst.
3.1. A FourSpinorBlock carries indices (in order of increasing contiguity) for colour, spin,
real/complex and SIMD of the tile. To implement a full spinor �eld on the entire lattice, one thus
needs an array of length Nxh ∗ Ny ∗ Nz ∗ Nt /SOALEN. This is the Array of Structures of Arrays
(ASA) we have mentioned in the last chapter.

The link variables are implemented in a slightly di�erent way, in that they carry an index
for the eight directions (backward/forward in four dimensions), in which the links emanate from
each site, an index for the colour row of the SU(3) matrix, the colour column, real/imaginary part
and again the position inside the SIMD vector. But since gauges are reused in successive dslash
applications, it is bene�cial to repack them into full registers, so that they can be read as a single
vector. Thus, the gauge �eld array will be of length Nxh ∗ Ny ∗ Nz ∗ Nt /VECLEN. Note, that

2On the Xeon Phi’s this will be either 1, 2 or 4.

64 Chapter 3. So�ware

1 F o u r S p i n o r B l o c k [xb+Lxh / SOALEN∗ y+ xyBase] [c o l o u r] [s p i n] [RE / IM] [x i] ;
2 SU3Matr ixB lock [xb +(Lxh / SOALEN∗ y+ xyBase) / ngy] [d i r e c t i o n] [row] [c o l] [RE / IM] [x i] ;

Listing 3.2: Accessing elements inside arrays of spinors and gauges, given a lattice site (x, y, z, t). Cf. the text
for further explanation.

when gauge compression is used, each SU3MatrixBlock has only two rows instead of three.
To reduce the number of associativity con�ict misses caused when reading vectors with less

than VECLEN elements, one can use padding for every XY-plane, as well as for every time-slice
(XYZ-hyper-plane). Then, given a lattice index (x, y, z, t), one �nds the associated spinor at this
site in three steps. First, one has to calculate the XY-plane and its respective xyBase, as follows:

xyBase = t ∗ Pxyz + z ∗ Pxy ,

where Pxy = (Nxh ∗ Ny/SOALEN) + PadXY ,

and Pxyz = Nz ∗ Pxy + PadXYZ .

Then, secondly, one has to calculate the tile xb and its associated vector index xi:

xb = x /SOALEN ,

xi = x%SOALEN .

Finally, one �nds the o�set in the T-direction by (cf. Fig. 3.3 again):

yOffset = xb + Nxh /SOALEN ∗ y .

In case of the gauge �elds, one has to take into account that ngy values in the Y-direction are
repacked together. In this case, the array index becomes (cf. Lst 3.2):

xb + (Nxh /SOALEN ∗ y + xyBase) /ngy .

3.2.2 Cache Blocking and Load Balancing
Now we have padded and aligned data structures composed of SIMD vectors, which can be loaded
contiguously into vector registers. However, the lattice still needs to be subdivided into chucks,
such that these chucks can be assigned to di�erent threads, when looping over the lattice sites.

When dividing the lattice in such chucks or blocks, there are two things that have to be kept in
mind. First, the blocks should ideally �t into low-lying caches to reduce memory bandwidth/latency
bottlenecks. Secondly, when processing the blocks, the utilisation of available cores/threads should
be maximised. The latter will depend both on the blocking scheme itself, as well as on the block-
to-core mapping.

QPhiX implements a method known as 3.5D-blocking [52]. This works as follows: The Y-
and Z-direction of the lattice are subdivided into blocks of length By and Bz, respectively. The

3.2 QPhiX 65

Figure 3.4: The lattice is sub-divided into blocks, which �t into L2 cache, in the Y- and Z-direction. These blocks
are mapped onto the cores in multiple phase, using a heuristic load balancing scheme [43].

ideal values of these variables will depend on the architecture and can be set by the user, when
constructing an instance of class Geometry. On dual-socket Xeon processors they are best
set to 8, while for Xeon Phi’s the best value for both parameters turns out to be 4. In this way, at
least three (blocked) time-slices of dimension Nxh ∗ By ∗ Bz will �t into the L2 cache.

Now, one has to map theseNb = Ny /By∗Nz /Bz blocks to cores, possibly in multiple phases.
Let us denote the number of remaining blocks to be processed with Nr , where initially Nr = Nb.
As long as Nr ≥ Ncores, each cores will be assigned with one block, and the block is streamed
up in the positive T-direction. As soon as Nr < Ncores, there will not be work left for all cores.
To prevent cores from running idle, the blocks will be divided in the T-direction (this is the half in
3.5D, since in this case one also blocks in the time direction).

Assuming the number of remaining blocks divides the number of cores available, we can just
split each block into Ct = Ncores/Nr sub-blocks and �nish the processing. However, if this
is not the case, there are two possibilities to choose from. We can either divide each block into
C lt = bNcores/Nrc or into Cut = dNcores/Nre sub-blocks. In the former case, we will have
fewer blocks than cores, so the processing will �nish, but not all cores will be used in this phase.
In the latter case, the core utilisation will be higher, but in the subsequent phase there will be even
fewer blocks, which will have to be split in even smaller chunks.

This is where the load balancing comes into play. It is based on the heuristic assumption that
in case we would split each T-slice in more than Cut > Tt chunks, we can assume that too little
work would be done, and so we will choose C lt instead, and �nish the processing. Here, Tt is a
threshold that will depend on Nt and the architecture, but for reasonable lattice sizes Tt = 4 turns
out to be optimal for both Xeon and Xeon Phi processors.

Apart from an upper bound, the user may also specify a lower bound minCt of the number
of blocks in the T-direction. This is bene�cial when working with NUMA architectures (like
dual-socket Xeon’s), because then one can map sub-blocks to cores which are “closest”. In this way,
one may set this parameter to 1 for Xeon Phi’s, but to 2 for Xeon’s. Since the entire phase break
down only depends on the geometry of the lattice and the node, it will be pre-constructed when
initialising a Geometry object.

Fig. 3.2.2 illustrates the cache blocking scheme (with suppressed X-direction) with a two-
phase processing. Here, 4 cores work on 6 blocks by �rst processing one entire (blue) block each,

66 Chapter 3. So�ware

1 / / Get Core ID and SMT ID
2 i n t c i d = t i d / n _ t h r e a d s _ p e r _ c o r e ;
3 i n t smt id = t i d − n _ t h r e a d s _ p e r _ c o r e ∗ c i d ;
4

5 / / Compute SMT ID f o r Y− and Z−d i r e c t i o n
6 i n t s m t i d _ z = smt id / Sy ;
7 i n t smt id_y = smt id − Sy ∗ s m t i d _ z ;

Listing 3.3: How to calculate core and SMT IDs, given the OpenMP thread ID. [dslash_body.h]

streaming over the T-direction, in Phase 1. In the second phase the two remaining blocks are
sub-divided into four equally sized (orange) sub-blocks along the T-direction. They can then be
processed round-robin using all four cores. Note, that although the initial number of blocks is not
divisible by the number of available cores, non of the cores runs idle during the entire processing.

3.2.3 SMT Threading and La�ice Traversal
We have seen in the last chapter, that each core inside a Xeon Phi processor has up to 4 hardware
threads called hyper-threads or SMT threads. QPhiX treats these threads inside a core as a grid
of dimension Sy ∗ Sz, both of which variables can be set by the user. The number of OpenMP
threads will then be equal to Ncores ∗ Sy ∗ Sz. The thread, core and SMT IDs satisfy the relation
tid = Sy ∗ Sz ∗ cid+ Sy ∗ smtid_z+ smtid_y and can be calculated as shown in Lst. 3.3.

With the SMT threading, the data layout using tiles and the blocking scheme in place, we are
now ready to understand the lattice traversal for the dslash stencil operator. It is implemented in
the two routines

Dslash<FT,VECLEN,SOALEN,COMPRESS12>::DyzPlus

Dslash<FT,VECLEN,SOALEN,COMPRESS12>::DyzMinus

for dslash and its hermitian conjugate, respectively, in the �le dslash_body.h (and similarly
for the dslash stencil with clover term in clover_dslash_body.h). As its parameters, it takes
pointers to the in- and output spinor �elds, the gauge �eld, as well as the thread ID and the
checkerboard (even or odd), cf. Lst. 3.4.

All threads loop over all the phases constructed from the geometry. If there are fewer blocks
than cores, cores which are not needed, will skip to the next phase. From the thread ID, each
thread will calculate its core ID, the SMT IDs, the block, it has to process, as well as the starting
value in the time direction. Every thread then streams over its range of T values in its block. For
each given time slice, it traverses the XYZ volume in the following way: Every core splits its
respective XY-planes between the SMT threads, such that every SMT thread processes a tile of
size SOALEN ∗ ngy, at any given step. The volume is then traversed by processing chunks of size
SOALEN in the X-direction, and increasing Y in steps of ngy (the Y-axis of the SMT grid). The
next plane (associated with the Z-axis of the SMT grid) will then be reached, by looping over the
Z-direction in strides of Sz.

Within the loops, the indices can be used to calculated the addresses of neighbouring spinor
blocks, the output spinor and the gauge �eld, as well as the o�sets to the neighbouring spinors
for successive blocks. They will be used to prefetch data to the L2 cache, in case that software
prefetching is turned on. In addition, communication for the faces is handled. Finally, all this

3.2 QPhiX 67

1 t emp la t e <typename FT , i n t VECLEN , i n t SOALEN , b o o l COMPRESS12>
2 vo id Dslash <FT , VECLEN , SOALEN , COMPRESS12 > : : DyzPlus (
3 i n t t i d , c o n s t F o u r S p i n o r B l o c k ∗ ps i ,
4 F o u r S p i n o r B l o c k ∗ r e s u l t , c o n s t SU3Matr ixB lock ∗ u , i n t cb)
5 {
6 / / Loop over phases
7 f o r (i n t ph = 0 ; ph < num_phases ; ph ++) {
8 i n t n A c t i v e C o r e s = phase . Cyz ∗ phase . Ct ;
9 i f (c i d >= n A c t i v e C o r e s) c o n t i n u e ;

10

11 / / Stream over b l o c k s o f t ime s l i c e s
12 f o r (i n t c t = 0 ; c t < Nct ; c t ++) {
13

14 / / Handle B / Cs here
15

16 / / Loop over z
17 f o r (i n t cz = s m t i d _ z ; cz < Bz ; cz += Sz) {
18

19 / / c a l c u l a t e s p i n o r base a d d r e s s f o r :
20 / / x & y n e i g h b o u r s
21 / / backward / forward z ne ighbour
22 / / backward / forward t ne ighbour
23 / / o u t p u t
24

25 / / Loop over y
26 f o r (i n t cy = nyg ∗ smt id_y ; cy < By ; cy += nyg ∗ Sy) {
27

28 / / cx l o o p s over the s o a l e n p a r t i a l v e c t o r s
29 f o r (i n t cx = 0 ; cx < nvecs ; cx ++) {
30

31 / / c a l c u l a t e base a d d r e s s f o r gauges
32 / / and v a r i o u s o f f s e t t o s u c c e s s i v e f i e l d s
33 / / f o r L2 p r e f e t c h e s
34

35 / / C a l l the pre−g e n e r a t e k e r n e l on the t i l e
36 / / with the a p p r o p r i a t e p o i n t e r s
37 d s l a s h _ p l u s _ v e c <FT , VECLEN , SOALEN , COMPRESS12 > (. . .) ;
38

39 }
40 } / / End f o r over s c a n l i n e s y
41 } / / End f o r over s c a l i n e s z
42

43 / / C a l l a b a r r i e r w i t h i n a c o r e group
44 i f (c t % BARRIER_TSLICES == 0)
45 b a r r i e r s [ph] [b i n f o . c i d _ t]−> wai t (b i n f o . g r o u p _ t i d) ;
46

47 } / / end f o r over t
48 } / / phases
49 }

Listing 3.4: The skeleton of the lattice traversal for the dslash stencil. Here, indices of neighbouring spinor and
gauges, output addresses, and o�sets for L2 prefetches are computed and the pre-generated service kernel, which
operates on tiles is called. There, the main dslash computation is carried out. (We have suppressed all QMP
communication done here.) [dslash_body.h]

68 Chapter 3. So�ware

1 t emp la t e <typename FT , i n t V , i n t S , b o o l C>
2 vo id axpy (c o n s t doub le a lpha , c o n s t F o u r S p i n o r B l o c k ∗ x ,
3 F o u r S p i n o r B l o c k ∗ y , c o n s t Geometry <FT , V , S , C>& geom ,
4 i n t n _ b l a s _ s i m t)
5 {
6 AXPYFunctor <FT , V , S , C> f (a lpha , x , y) ;
7 s i t eLoopNoReduc t ion <FT , V , S , C , AXPYFunctor <FT , V , S , C> >
8 (f , geom , n _ b l a s _ s i m t) ;
9 }

Listing 3.5: Structure of BLAS routines, for the example of an axpy. Every operation has its own functor, which is
constructed and fed to the site loop facility template functions, which also handle reductions. [blas_new_c.h]

data is passed to the service kernel, in which the actual calculation will take place. The necessary
kernels are pre-generated with QPhiX-codegen, which we will cover shortly.

3.2.4 BLAS Linear Algebra
As we have seen earlier, in order to implement an iterative solver, one not only needs a matrix-
vector multiplication, but also a number of vector linear algebra routines, such as scalar products
and vector norm squared calculations. All of these operations have a very low arithmetic intensity,
and are thus memory bound. This is why it turns out to be bene�cial to fuse several kernels into
one, such as the calculation of a vector di�erence and the norm squared of the resulting residual
vector.

QPhiX implements all BLAS linear algebra routines by constructing a functor for every opera-
tion that acts on a single array element (which by itself consists of (3 ∗ 4 ∗ 2 ∗SOALEN) /VECLEN
SIMD vectors), and providing separate side loop facilities with and without reduction of a variable.
This is illustrated in Lst. 3.5.

Every functor is a template class which provides an inline member function

inline void func(int block, double* reduction) ,

which loops over a single element of a spinor array, given by block. The second argument only
appears when a reduction of a variable is necessary (as for instance when calculating a norm).
The loops over the blocks are auto-vectorised, which is guaranteed with #pragma SIMD, and
compiler hints about their memory alignment. The number of SMT threads used inside every single
BLAS routine can be set when calling the routine, and is auto-tuned inside the iterative solvers,
see below. It shows, that best throughput is usually achieved with only one or two hyper-threads,
whereas the dslash stencil bene�ts from up to four.

Finally, the lattice traversal and possibly a reduction is managed inside the loop template
functions in the �le site_loops.h. Here, each thread calculates the range of array elements it
has to process, much in the same way, as we have outline above for the dslash stencil. Then each
thread loops over its local volume and calls the member function func of the passed functor on
each array element. In the case of reductions, the site loop will also handle the message passing
communication.

3.2.5 Even-Odd Operators & Iterative Solvers
Now that we have seen all the low-level functionality, which makes up the major part of QPhiX,
let us turn to the high-level routines and interfaces, a user is likely to access.

3.2 QPhiX 69

1 t emp la t e <typename FT , i n t VECLEN , i n t SOALEN , b o o l COMPRESS12>
2 c l a s s EvenOddLinearOpera tor {
3 p u b l i c :
4 v i r t u a l vo id o p e r a t o r () (F o u r S p i n o r B l o c k ∗ r e s u l t ,
5 c o n s t F o u r S p i n o r B l o c k ∗ i n _ s p i n o r , i n t i s i g n) = 0 ;
6 v i r t u a l Geometry <FT , VECLEN , SOALEN , COMPRESS12>&
7 getGeometry (vo id) = 0 ;
8 } ;

Listing 3.6: An abstract even-odd operator should be applicable to a spinor �eld and know about its geometry.
Here and in what follows, isign==1 stands for the normal operator, and isign==-1 for the application of
its hermitian conjugate. [linearOp.h]

1 vo id EvenOddWilsonOperator : : o p e r a t o r ()
2 (F o u r S p i n o r B l o c k ∗ r e s u l t , c o n s t F o u r S p i n o r B l o c k ∗ in , i n t i s i g n)
3 {
4 D−>d s l a s h (tmp , in , u [1] , i s i g n , 1) ;
5 D−>dslashAChiMinusBDPsi (r e s u l t , tmp , in , u [0] ,
6 m a s s _ f a c t o r _ a l p h a , m a s s _ f a c t o r _ b e t a , i s i g n , 0) ;
7 }

Listing 3.7: Implementation of the Wilson even-odd preconditioned fermion matrix. D is an instance of the
Dslash class, u are gauge �eld pointers, and the last argument in the function calls is the checkerboard.
[wilson.h]

As we have explained in the chapter about Algorithms, inverting the fermion matrix in LQCD
is best approached using an iterative solver for the even-odd preconditioned linear operator M̃oo,
possibly in mixed precision. This operator in turn, can be constructed using the two low-level
routines mentioned in the beginning of this section.

However, to use any iterative Krylov subspace solver, one really only needs to be able to apply
a matrix to a vector. This is why QPhiX implements an abstract EvenOddLinearOperator
which has to overload operator(), that is, must be applicable to a spinor �eld, and has a getter
for its Geometry, cf. Lst. 3.6. This approach turns out to be highly bene�cial, when it comes
to extending QPhiX for other lattice actions, because it allows to use all the solver facilities, as
long as a new EvenOddLinearOperator is provided. QPhiX itself implements two derived
classes for the even-odd preconditioned fermion matrix with and without clover term, in the
form of EvenOddWilsonOperator and EvenOddCloverOperator. Lst. 3.7 shows the
overloaded parenthesis operator for the case without clover term. We easily recognise the even-
odd preconditioned fermion matrix built from the two basic kernels, as described in Sec. 1.2.4,
Eqn. (1.60).

The solvers themselves are also abstracted, and have to provide similar functionality as the
linear operators, cf. Lst. 3.8. There are template classes for a solver that solves a single linear
system, as well as a multi-solver, that solves a set of linear equations, in which the operators
are related by a shift.3 Note, that a child class of AbstractSolver does not rely on an Even-
OddLinearOperator. In this way, a solver may be implemented using an operator without
preconditioning. The CG, BiCGStab and Richardson solvers, however, use such an instance. This
can be seen in the short example of the constructor for the conjugate gradient solver InvCG in Lst.

3This is useful e.g. to compute propagators for di�erent quark masses simultaneously.

70 Chapter 3. So�ware

1 c l a s s A b s t r a c t S o l v e r {
2 p u b l i c :
3 v i r t u a l vo id o p e r a t o r () (
4 S p i n o r ∗ x ,
5 c o n s t S p i n o r ∗ rhs ,
6 c o n s t doub le RsdTarget ,
7 i n t& n i t e r s ,
8 doub le& r s d _ s q _ f i n a l ,
9 uns igned long& s i t e _ f l o p s ,

10 uns igned long& mv_apps ,
11 i n t i s i g n ,
12 b o o l ve rboseP) = 0 ;
13 v i r t u a l vo id tune (vo id) = 0 ;
14 v i r t u a l Geometry <FT , VECLEN , SOALEN , COMPRESS12>& getGeometry () = 0 ;
15 } ;

Listing 3.8: An iterative solver inheriting from AbstractSolver has to provide a right-hand side and a
target residual. [abs_solver.h]

1 c l a s s InvCG : p u b l i c A b s t r a c t S o l v e r <FT , VECLEN , SOALEN , COMPRESS12> {
2 p u b l i c :
3 InvCG (EvenOddLinearOperator <FT , VECLEN , SOALEN , COMPRESS12>& M_ , i n t M a x I t e r s _)
4 : M(M_) , geom (M_ . getGeometry ()) , M a x I t e r s (M a x I t e r s _)
5 { . . . }
6 }

Listing 3.9: All solvers implemented in QPhiX inherit from AbstractSolver and are constructed from an
instance of EvenOddLinearOperator. [invcg.h]

3.9, which only take a reference to an EvenOddLinearOperator-object and an upper bound
on the number of iterations. InvCG as well as the other solvers, also provide functionality to get
and set the number of OpenMP threads used in the various BLAS routines within the solver, and a
tuning procedure, which optimises these numbers for every single routine.

3.2.6 Inter-Node Communication

For all its inter-node communication QPhiX uses the QCD Message Passing API, which is built on
top of MPI [42]. Since the SIMD vectors are laid out in the X- and Y-direction, MPI communication
is done only in the Z- and T-direction.

To this end, the lattice is divided into a bulk (called the body) and the boundary (called face).
The processing of the faces is split into two steps. In the �rst step, the spinors are projected onto
half-spinors, as we have described in Sec. 1.1.1, and subsequently sent to its destination node. This
step is done in overlap with the calculation of the dslash body. As soon as the faces are received at
their destination and the body calculation is �nished, they will be processed further in a second
step. Then, they will be multiplied with the appropriate link variables, the lower half spinors
reconstructed, and eventually accumulated to the �nal dslash result. The face data transferred
for a typical multi-node simulation in LQCD is of the order of 256 kB up to few MBs per dslash
application.

3.3 QPhiX Code Generator 71

The machinery needed for both steps is implemented in face.h in the two functions

void Dslash<FT,VECLEN,SOALEN,COMPRESS12>::packFaceDir ,

void Dslash<FT,VECLEN,SOALEN,COMPRESS12>::completeFaceDir .

These routines have a structure similar to DyzPlus and DyzMinus, and are used to process
the body, as we have seen earlier. Their primary purpose is to collect the needed bases ad-
dresses and o�sets for the spinors and gauges involved, and then call the service kernels, pre-
generated in QPhiX-codegen. These kernels are called face_proj_dir_plus/minus and
face_finish_dir_plus/minus, and we will meet them again shortly. Finally, the manage-
ment of the QMP communication, in accord with body and face processing, is done in

void Dslash<FT,VECLEN,SOALEN,COMPRESS12>::DPsiPlus ,

void Dslash<FT,VECLEN,SOALEN,COMPRESS12>::DPsiMinus .

which are implemented in dslash_body.

3.2.7 Barriers
To conclude this section, let us mention a peculiar feature, which is used to synchronise cores within
the dslash stencil. It turns out, that using lightweight, local barriers to occasionally synchronise
threads, is bene�cial on Xeon Phi’s.

These barriers were provided by the Intel Cooperation and can be found in the �le Bar-
rier_mic.h. They function as follows: During each phase, cores are structured together into
groups, such that they work on the same range of T-slices. They will then be synchronised by
calling a barrier at the end of every so-many T-slices (cf. the last function call in Lst. 3.4). This
parameter can be tuned individually, and seems to give best results when it is set to 16 slices.

The reason why this is bene�cial is the following: Since cores of one group are supposed to
work on the same T-slice at the same time, one core might �nd a missed cache line in the L2
cache of the other (recall the tag directory based L2 cache coherency from last chapter). In case
the processing between two cores of one group becomes too desynchronised, data may have to
be fetched from main memory upon an L2 miss. This outweighs the costs of occasional barriers,
which reduce the probability of that to happen.

3.3 QPhiX Code Generator
Now that we have seen, how QPhiX implements the data layout, the lattice traversal and the high-
level functionality, let us turn to the low-level functionality that carries out the actual computation.

These functions are generated with a C++11 code generator called QPhiX-codegen. They
contain vector intrinsics and act on the XY-tiles we have seen in the last section. The main purpose
of the code generator was to provide a uni�ed interface which gives access to hardware features
like streaming stores, gather/scatters, load-packs etc. It also allows for an elegant inclusion of
software prefetches, which were crucial to achieve performance on KNC’s—all using a high-level
software design which is maintainable, readable and extendable. Indeed, it is fairly simple to
expand QPhiX-codegen both for di�erent ISA’s, as well as for new kernels, which are needed when
using di�erent lattice actions and the like.

72 Chapter 3. So�ware

qphix-codegen
ARCH/

generated KERNELs
address_types.h
codegen.cc
data_types.cc
data_types.h
dslash.cc
dslash.h
dslash_common.cc
instructions.h
inst_scalar.cc
inst_sp_vec16.cc
inst_sp_vec4.cc
inst_sp_vec8.cc
inst_dp_vec2.cc
inst_dp_vec4.cc
inst_dp_vec8.cc
Makefile
customMake.ARCH

Figure 3.5: The QPhiX code generator �le structure.

Code generators have already been used in the past for LQCD, for instance in the assembly
generator BAGEL [16] and the QA0 code generator [54].

3.3.1 Instructions, Addresses & Vector Registers

A list of �les included in the code generator can be found in Fig. 3.5. The generator de�nes and
uses objects of three main types: the actual C++ instructions used in the code, which will include
vector intrinsics function calls, then the memory addresses for the various data types, o�set, etc.,
and �nally the vector registers, which will be variables of SIMD types in the generated code. All
of these objects are instances of classes that inherit from Instruction, Address or FVec,
respectively. These classes are implemented in instructions.h and address_types.h.

Instructions come in two types: �rstly general ones, like multiplications, additions, and fused
multiply adds, but also auxiliary ones like scope delimiters, if-else conditional blocks, and variable
declarations; and secondly memory reference instructions. Both Instruction’s as well as Ad-
dress’es have a member function serialise() which returns a std::string representing
the actual C++ code. Registers on the other hand are managed with the help of FVec objects,
which carry a name that identi�es the associated SIMD register in the code. Instructions reference
Address and FVec objects, and are stored in std::vector’s (InstVector) during the code
generation. Each kernel is produced from one such InstVector, which will be serialised and
written to a �le at the end of the code generation.

The additional attribute of the Address and Instruction class allows to extract infor-
mation for the code analysis later. In this way, one can for instance count the number of arithmetic
vs. memory reference instructions, or extract addresses from MemRefInstruction’s in order

3.3 QPhiX Code Generator 73

1 c l a s s I n s t r u c t i o n
2 {
3 p u b l i c :
4 / / s t r i n g c l a s s r e t u r n empty s t r i n g
5 v i r t u a l s t d : : s t r i n g s e r i a l i z e () c o n s t
6 {
7 r e t u r n s t d : : s t r i n g (" ") ;
8 }
9 v i r t u a l b o o l hasAddress () c o n s t

10 {
11 r e t u r n f a l s e ;
12 }
13 v i r t u a l i n t n u m A r i t h m e t i c I n s t () c o n s t
14 {
15 r e t u r n 0 ;
16 }
17 v i r t u a l i n t numDec la ra t i ons () c o n s t
18 {
19 r e t u r n 0 ;
20 }
21 v i r t u a l i n t numScopes () c o n s t
22 {
23 r e t u r n 0 ;
24 }
25 v i r t u a l i n t numIfs () c o n s t
26 {
27 r e t u r n 0 ;
28 }
29 } ;
30

31 t y p e d e f v e c t o r < I n s t r u c t i o n ∗ > I n s t V e c t o r ;

Listing 3.10: The Instruction class provides a serialize function to generate the ISA speci�c vector intrinsics, and
several counters to generate statistics of the �nal code. [instructions.h]

1 enum AddressType { GAUGE, SPINOR , CLOVER_DIAG , CLOVER_OFFDIAG , ADDRESS_OF_SCALAR
, GENERIC_ADDRESS } ;

2

3 c l a s s Address
4 {
5 p u b l i c :
6 Address (i n t i s H a l f T y p e _) : h a l f T y p e (i s H a l f T y p e _) { }
7 v i r t u a l s t d : : s t r i n g s e r i a l i z e (vo id) c o n s t = 0 ;
8 v i r t u a l AddressType getType (vo id) c o n s t = 0 ;
9 i n t i s H a l f T y p e (vo id) { r e t u r n h a l f T y p e ; }

10 p r i v a t e :
11 i n t h a l f T y p e ;
12 } ;

Listing 3.11: The address class also provides a serialize function for physical addresses and an interface for
distinguished half precision treatment. [address_types.h]

74 Chapter 3. So�ware

1 c l a s s FVec
2 {
3 p u b l i c :
4 FVec (c o n s t s t d : : s t r i n g& name_) ;
5 FVec (c o n s t FVec& v_) : name (v_ . getName ()) , type (v_ . getType ()) { }
6 c o n s t s t d : : s t r i n g& getName () c o n s t { r e t u r n name ; }
7 c o n s t s t d : : s t r i n g& getType () c o n s t { r e t u r n type ; }
8 p r i v a t e :
9 c o n s t s t d : : s t r i n g name ;

10 c o n s t s t d : : s t r i n g type ;
11 } ;

Listing 3.12: FVec objects are used to assign names to vector registers and treat them has variables in the C++
code. [instructions.h]

1 enum MemRefType { LOAD_ALIGNED_VEC , LOAD_UNALIGNED_VEC , LOAD_MASKED_VEC ,
STORE_VEC , STREAM_VEC , STORE_MASKED_VEC , LOAD_NONVEC, L1_PREFETCH ,
NTA_PREFETCH , L2_PREFETCH , L1_EVICT , L2_EVICT , GATHER_VEC , SCATTER_VEC ,
GATHER_PREFETCH_L1 , GATHER_PREFETCH_L2 , GATHER_PREFETCH_NTA } ;

2

3 c l a s s M e m R e f I n s t r u c t i o n : p u b l i c I n s t r u c t i o n
4 {
5 p u b l i c :
6 / / O v e r r i d e v i r t u a l
7 v i r t u a l b o o l hasAddress () c o n s t
8 {
9 r e t u r n t r u e ;

10 }
11 v i r t u a l c o n s t Address ∗ g e t A d d r e s s () c o n s t = 0 ;
12 v i r t u a l MemRefType getType () c o n s t = 0 ;
13 v i r t u a l b o o l hasGSAddress () c o n s t
14 {
15 r e t u r n f a l s e ;
16 }
17 } ;

Listing 3.13: Memory instructions are Instruction’s with additional facilities to handle their memory
addresses. [instructions.h]

3.3 QPhiX Code Generator 75

1 c l a s s FMAdd : p u b l i c I n s t r u c t i o n
2 {
3 p u b l i c :
4 / / r e t = a ∗ b + c
5 FMAdd (c o n s t FVec& r e t _ , c o n s t FVec& a_ , c o n s t FVec& b_ ,
6 c o n s t FVec& c_ , c o n s t s t d : : s t r i n g& mask_) :
7 r e t (r e t _) , a (a_) , b (b_) , c (c_) , mask (mask_) { }
8 s t d : : s t r i n g s e r i a l i z e () c o n s t ;
9 i n t n u m A r i t h m e t i c I n s t () c o n s t { r e t u r n 1 ; }

10 p r i v a t e :
11 c o n s t FVec r e t ;
12 c o n s t FVec a ;
13 c o n s t FVec b ;
14 c o n s t FVec c ;
15 c o n s t s t d : : s t r i n g mask ;
16 } ;
17

18 i n l i n e vo id fmaddFVec (I n s t V e c t o r& i v e c t o r , c o n s t FVec& r e t , c o n s t FVec& a , c o n s t
FVec& b , c o n s t FVec& c , s t d : : s t r i n g mask = " ")

19 {
20 i v e c t o r . push_back (new FMAdd (r e t , a , b , c , mask)) ;
21 }

Listing 3.14: Utility function for a fused multiply add instruction. [instructions.h]

to automatically generate prefetch instructions.
In addition, there are several utility functions, as the fused multiply add shown in Lst. 3.14,

which take an InstVector and several FVec’s in order to generate an instruction that utilises
these speci�c vector registers. Finally, the instruction is appended to the original vector and
returned. The actual kernels are almost exclusively built from these utility functions.

3.3.2 Implementing Instructions
In the last section we have seen, how the code generator abstracts basic �oating point instruc-
tions into high-level facility functions from which all dslash kernels can be built exactly once,
independently of the actual ISA the hardware provides.

The specialisation to the ISA one wants to use is done through the implementation of the
serialise() function for every instruction class and di�erent VECLEN and �oating point
precisions, in �les like inst_dp_vec8.cc and inst_sp_vec16.cc, cf. Fig. 3.5. The latter
two �les, implement the instructions for KNC (using IMCI) and KNL (using AVX-512). In these
cases the FVec type is set to __m512, to use the ZMM registers of the Xeon Phi’s, and is further
specialised to �oats and doubles, cf. Tab. 2.1.

Lst. 3.15 illustrates this procedure again for the example of a fused multiply add, both with and
without the use of a mask. Finally, Lst. 3.16 illustrates the mechanisms of the up-conversion when
using half precision type variables. Note the di�erence of the implementation for KNC and KNL.

3.3.3 The dslash Body
The facilities for the body of the dslash kernel are implemented in the two �les dslash.cc and
dslash_common.cc. Lst. 3.17 shows the part where the instructions for the computation are
implemented. We have suppressed some code fragments, which are used to simulate hardware

76 Chapter 3. So�ware

1 s t r i n g FMAdd : : s e r i a l i z e () c o n s t
2 {
3 i f (mask . empty ()) {
4 r e t u r n r e t . getName () + " = _mm512_fmadd_pd (" + a . getName () +
5 " , " + b . getName () + " , " + c . getName () + ") ; " ;
6 }
7 e l s e {
8 r e t u r n r e t . getName () + " = _mm512_mask_mov_pd (" +
9 r e t . getName () + " , " + mask + " , _mm512_fmadd_pd (" +

10 a . getName () + " , " + b . getName () + " , " + c . getName () + ")) ; " ;
11 }
12 }

Listing 3.15: The actual implementation of the fused multiply add instruction using AVX-512 intrinsics.
[inst_dp_vec8.cc]

1 s t r i n g L o a d B r o a d c a s t : : s e r i a l i z e () c o n s t
2 {
3 s t d : : o s t r i n g s t r e a m buf ;
4 # i f d e f AVX512 / / KNL
5 i f (! a−>i s H a l f T y p e ()) {
6 buf << v . getName () << " = _mm512_set1_pd (∗ " << a−> s e r i a l i z e ()
7 << ") ; " << s t d : : e n d l ;
8 }
9 e l s e {

10 buf << v . getName () << " = _mm512_cvtpslo_pd (_mm512_set1_ps (∗ "
11 << a−> s e r i a l i z e () << ")) ; " << s t d : : e n d l ;
12 }
13 # e l s e / / KNC
14 i f (! a−>i s H a l f T y p e ()) {
15 buf << v . getName () << " = _mm512_extload_pd (" << a−> s e r i a l i z e ()
16 << " , _MM_UPCONV_PD_NONE , _MM_BROADCAST_1X8 , _MM_HINT_NONE) ; "
17 << s t d : : e n d l ;
18 }
19 e l s e {
20 buf << v . getName () << " = _mm512_cvtpslo_pd (_mm512_ext load_ps ("
21 << a−> s e r i a l i z e ()
22 << " , _MM_UPCONV_PS_NONE , _MM_BROADCAST_1X16 , _MM_HINT_NONE)) ; "
23 << s t d : : e n d l ;
24 }
25 # e n d i f
26 r e t u r n buf . s t r () ;
27 }

Listing 3.16: A load broadcast, including the case of half precision, on both Xeon Phi’s KNC and KNL.
[inst_dp_vec8.cc]

3.3 QPhiX Code Generator 77

masking on platforms other than Xeon Phi’s. The explicit use of masks is required when processing
faces in a multi-node implementation, as we have explained above.

Apart from the additional use of the coe�cient b (which is called beta_vec in the code), that
is multiplied when accumulating the result and necessary to construct the routine Eqn. (3.2), the
code resembles very much our basic algorithm Alg. 2. In particular, for every site, we have to loop
over the eight nearest neighbours (four dimension times two directions) and decide whether to use
a standard SU(3) multiplication or its adjungated form. Then, we have to project to half spinors,
load the gauge �elds and multiply them with the spinors, and �nally reconstruct the lower half
spinor and accumulate to the result spinor. Note that the generated code will not contain any for
loops, rather, they are unrolled automatically when generation the code.

Let us have a closer look at the matrix multiplication to illustrate the use of the utility functions
we have seen earlier. When creating a kernel, declarations for all single components of the gauge
and spinor �elds (spin, colour, complex) will be generated. They are then repacked into arrays, so
that they resemble the index structure of individual blocks as used in QPhiX. They carry names
like b_spinor (the projected spinor) and ub_spinor (the spinor resulting from the matrix
multiplication) and are global variables within the code generator.

Lst. 3.18 shows the matrix multiplication of one SU(3) colour matrix with one spin-component
s of the spinor (which is by itself a 3-component colour vector). This routine will then be called
on a half spinor such that s assumes values 0 and 1. Note that no actual conjugation takes places
when using an adjungated multiplication, and again that the instructions in the actual code will be
a continuous stream of instructions without any loops. The actual calculation is done by using
the utility functions for a complex vector multiplication and a complex vector fused multiply add,
respectively. This shows that roughly 2/3 of the �oating point instructions can be done using the
hardware FMA operation.

3.3.4 So�ware Prefetches
QPhiX-codegen implements software prefetches into the L1 and L2 cache separately. In case of the
L1 cache, full spinors are prefetches directly prior to their element-wise load and utilisation.

In the case of the L2 cache, prefetches have to be scheduled earlier. The aim in this case is to
prefetch neighbouring spinors from successive spinor blocks, which will be processed later. To
this end, up to 4 pointers pfBase1, pfBase2, . . . , to the successive base spinors and respective
o�sets siprefdist1, siprefdist2, . . . , to their neighbours are used to locate the prefetch
destination. The same mechanism is used to generate L2 prefetches for gauges, the output spinor
and clover terms. All base pointers and o�sets are calculated during the lattice traversal, as we
have explained above.

Other than the L1 prefetches, L2 prefetches are generated into a separate InstVector and
then merged with the main instructions to achieve an even spacing between the prefetches.

3.3.5 Code Generation & Custom Make Files
To �nally generate the code, the desired architecture ARCH as to be set at compile time. To this
end there is a main Makefile in which the target is set via a variable mode. This will include a
second make�le customMake.ARCHwhich provides a set of hardware options which are speci�c
to the architecture. Their value can be set here and will be included in main make�le when the code
is compiled. To do this, the main make�le provides a speci�c target for all supported architectures.

Lst. 3.20 shows the custom make�le for the KNC and KNL. Amongst others, it allows to switch

78 Chapter 3. So�ware

1 vo id d s l a s h _ b o d y (I n s t V e c t o r& i v e c t o r , b o o l compress12 ,
2 p r o j _ o p s ∗ ops , r e c o n s _ o p s ∗ rec_ops_bw ,
3 r e c o n s _ o p s ∗ rec_ops_fw , FVec o u t s p i n o r [4] [3] [2])
4 {
5 f o r (i n t dim = 0 ; dim < 4 ; dim ++) {
6 f o r (i n t d i r = 0 ; d i r < 2 ; d i r ++) {
7

8 i n t d = dim ∗ 2 + d i r ;
9 b o o l adjMul = (d i r == 0 ? t r u e : f a l s e) ;

10 r e c o n s _ o p s rec_op =
11 (d i r == 0 ? rec_ops_bw [dim] : rec_ops_ fw [dim]) ;
12

13 i f S t a t e m e n t (i v e c t o r , " a ccumula te [" + s t d : : t o _ s t r i n g (d) + "] ") ;
14 {
15 dec lareFVecFromFVec (i v e c t o r , b e t a _ v e c) ;
16 l o a d B r o a d c a s t S c a l a r (i v e c t o r , be ta_vec , beta_names [d] ,
17 SpinorType) ;
18

19 s t d : : s t r i n g mask ;
20 i f (r equ i r eA l lOneCheck [dim]) {
21 mask = " accMask " ;
22 dec l a reMask (i v e c t o r , mask) ;
23 intToMask (i v e c t o r , mask ,
24 " accumula te [" + s t d : : t o _ s t r i n g (d) + "] ") ;
25 }
26

27 p r o j e c t (i v e c t o r , basenames [d] , o f f s n a m e s [d] ,
28 ops [d] , f a l s e , mask , d) ;
29 l oadGaugeDir (i v e c t o r , d , compress12) ;
30 matMultVec (i v e c t o r , adjMul) ;
31 r econs_add (i v e c t o r , rec_op , o u t s p i n o r , mask) ;
32 }
33 endScope (i v e c t o r) ;
34 }
35 }
36 }

Listing 3.17: The code generation routine for the dslash body. Note the very similar structure to the basic dslash
algorithm in Alg. 2. [dslash.cc]

3.3 QPhiX Code Generator 79

1 vo id matMultVec (I n s t V e c t o r& i v e c t o r , b o o l adjMul , i n t s)
2 {
3 s t d : : s t r i n g mask = " " ;
4 f o r (i n t c1 = 0 ; c1 < 3 ; c1 ++) {
5 i f (! adjMul) {
6 mulCVec (i v e c t o r , u b _ s p i n o r [s] [c1] , u_gauge [0] [c1] ,
7 b _ s p i n o r [s] [0] , mask) ;
8 fmaddCVec (i v e c t o r , u b _ s p i n o r [s] [c1] , u_gauge [1] [c1] ,
9 b _ s p i n o r [s] [1] , u b _ s p i n o r [s] [c1] , mask) ;

10 fmaddCVec (i v e c t o r , u b _ s p i n o r [s] [c1] , u_gauge [2] [c1] ,
11 b _ s p i n o r [s] [2] , u b _ s p i n o r [s] [c1] , mask) ;
12 }
13 e l s e {
14 mulConjCVec (i v e c t o r , u b _ s p i n o r [s] [c1] , u_gauge [c1] [0] ,
15 b _ s p i n o r [s] [0] , mask) ;
16 fmaddConjCVec (i v e c t o r , u b _ s p i n o r [s] [c1] , u_gauge [c1] [1] ,
17 b _ s p i n o r [s] [1] , u b _ s p i n o r [s] [c1] , mask) ;
18 fmaddConjCVec (i v e c t o r , u b _ s p i n o r [s] [c1] , u_gauge [c1] [2] ,
19 b _ s p i n o r [s] [2] , u b _ s p i n o r [s] [c1] , mask) ;
20 }
21 }
22 }

Listing 3.18: Colour matrix-vector multiplication in the QPhiX code generator. [dslash_common.cc]

1 vo id g e n e r a t e L 2 P r e f e t c h e s (I n s t V e c t o r& i v e c t o r , b o o l compress12 , b o o l ch i , b o o l
c l o v e r)

2 {
3 P r e f e t c h L 2 F u l l S p i n o r D i r I n (i v e c t o r , " xyBase " , " p f y O f f s " ,
4 " s i p r e f d i s t 1 ") ;
5 P r e f e t c h L 2 F u l l S p i n o r D i r I n (i v e c t o r , " p f B a s e 1 " , " o f f s " ,
6 " s i p r e f d i s t 1 ") ;
7 P r e f e t c h L 2 F u l l S p i n o r D i r I n (i v e c t o r , " p f B a s e 2 " , " o f f s " ,
8 " s i p r e f d i s t 2 ") ;
9

10 { . . . }
11

12 P r e f e t c h L 2 F u l l G a u g e I n (i v e c t o r , " gBase " , " g O f f s " , " g p r e f d i s t " ,
13 compress12) ;
14 P r e f e t c h L 2 F u l l S p i n o r O u t (i v e c t o r , outBase , " o f f s " , " s i p r e f d i s t 4 ") ;
15 }

Listing 3.19: L2 prefetches are generated from successive base pointers, and o�set to their neighbours, for spinors,
gauges and clover terms. [dslash.cc]

80 Chapter 3. So�ware

1 mode = mic
2

3 # Genera te AVX512 code f o r KNL
4 AVX512 = 0
5

6 # D e f i n e compute p r e c i s i o n (1= f l o a t , 2= doub le)
7 PRECISION ?= 1
8

9 # Enab le Lower P r e c i s i o n i f s e t t o 1
10 ENABLE_LOW_PRECISION ?= 0
11

12 # D e f i n e SOA l e n g t h
13 SOALEN ?= 8
14

15 # Enab le s e r i a l s p i n compute i n Ds la sh
16 SERIAL_SPIN = 1
17

18 # P r e f e t c h i n g o p t i o n s
19 # f o r KNC s e t a l l t h e s e t o 1
20 # f o r KNL s e t a l l t h e s e t o 0
21 PREF_L1_SPINOR_IN = 1
22 PREF_L2_SPINOR_IN = 1
23 PREF_L1_SPINOR_OUT = 1
24 PREF_L2_SPINOR_OUT = 1
25 PREF_L1_GAUGE = 1
26 PREF_L2_GAUGE = 1
27 PREF_L1_CLOVER = 1
28 PREF_L2_CLOVER = 1
29

30 # Gather / S c a t t e r o p t i o n s
31 USE_LDUNPK = 1 # Use loadunpack i n s t e a d o f g a t h e r
32 USE_PKST = 1 # Use p a c k s t o r e i n s t e a d o f s c a t t e r
33 USE_SHUFFLES = 0 # Use l o a d s & S h u f f l e s t o t r a n s p o s e s p i n o r
34 # when SOALEN>4
35 NO_GPREF_L1 = 1 # Genera te bunch o f normal p r e f e t c h e s i n s t e a d o f
36 # one g a t h e r p r e f e t c h f o r L1
37 NO_GPREF_L2 = 1 # Genera te bunch o f normal p r e f e t c h e s i n s t e a d o f
38 # one g a t h e r p r e f e t c h f o r L2
39

40 # Enab le nontempora l s t r e a m i n g s t o r e s
41 ENABLE_STREAMING_STORES ?= 1
42 USE_PACKED_GAUGES ?= 1 # Use 2D xy pack ing f o r Gauges
43 USE_PACKED_CLOVER ?= 1 # Use 2D xy pack ing f o r C lover

Listing 3.20: Custom Make�le for KNC and KNL. When using KNL, the AVX-512 instruction set architecture
should be switched on, and software prefetches turned o�. [customMake.mic]

3.4 Extending QPhiX for Twisted-Mass 81

on software prefetches into the L1 and L2 cache for the various data types, set the SOALEN, and to
use streaming stores and gather/scatter instructions.

Once the code is built and run, it will generate �les for each kernel in the subdirectory ARCH/.
These �les contain the body of the function, but no argument lists, prototypes, etc. They then have
to be transferred into the QPhiX repository, into the direction include/qphix/ARCH/gen-
erated/, where they will be included via the use of template specialisation carried out through
C preprocessing macros. There, the function headers will be added.

3.4 Extending QPhiX for Twisted-Mass
In order to extend QPhiX to the case of twisted-mass fermions with or without clover term, the
�rst thing one has to change are the basic kernel routines.

This is so, because the inverse of the even-even part of the even-odd pre-conditioned matrix is
no longer proportional to the identity matrix, not even without the clover term (csw = 0), c.f. Sec.
1.2.4, and in particular Eqn. (1.62). For this reason, the �rst of the kernels one has to implement,
always assumes the form

y = A−1 /D x , (3.3)

where the speci�cs of the multiplication with A−1 are di�erent, depending whether the clover
term is used or not. The same holds true for the �rst term of the second routine

z = Ax− b /D y . (3.4)

This time, the odd-odd part of the clover term is multiplied with the �rst input spinor. However,
since A and A−1 are passed to the constructors in the EvenOddLinearOperator externally,
one only has to implement the multiplication once.

3.4.1 Code Generation for pure Twisted-Mass Fermions
To understand better, what kind of functionality we have to modify and extend, let us have a closer
look, how the kernels are precisely generated. Lst. 3.21 shows our expanded and restructured
version of the loop over all the cases which are necessary to generate the aforementioned two
kernel routines. We will focus here only on the respective body versions.

We have to distinguish all the cases with or without twisted-mass and clover term, the form of
the kernel, if it applies the normal or hermitian conjugate operator, and if it uses gauge compression.
Then, we create two InstVector’s and construct the �le name for each kernel. Finally, we
generate L2 prefetches into one of the instruction vectors, and the main calculation into the other.
The two will be merged, and eventually written to a �le.

To extend all existing facilities, we have to add two switches or �ags which indicate that we
want to use either pure twisted-mass or twisted-mass-clover. Then, one has to add all the utility
functions which generate L1 and L2 prefetches, as well as type declarations and so forth.

Let us have a closer look, how the routine to generate the plain body of dslash changes,
depending on the lattice action we want to use, cf. Lst. 3.22. After declaration of in- and output
variables as SIMD vectors, the result spinor is zeroed-out, and projection and reconstruction
operations are initialised. With all these parameters the generation of the main dslash kernel is

82 Chapter 3. So�ware

1 / / DSLASH and DSLASH_ACHIMBDPSI ROUTINES
2 / / =====================================
3 f o r (au to t w i s t e d _ m a s s : { t rue , f a l s e }) {
4 f o r (au to c l o v e r : { t rue , f a l s e }) {
5 f o r (au to k e r n e l : { " d s l a s h " , " d s l a s h _ a c h i m b d p s i " }) {
6 f o r (au to i s P l u s : { t rue , f a l s e }) {
7 f o r (au to compress12 : { t rue , f a l s e }) {
8

9 I n s t V e c t o r i v e c t o r ;
10 I n s t V e c t o r l 2 p r e f s ;
11 s t d : : o s t r i n g s t r e a m f i l e n a m e ;
12

13 s t d : : s t r i n g t m f _ p r e f i x = t w i s t e d _ m a s s ? " tmf_ " : " " ;
14 s t d : : s t r i n g c l o v _ p r e f i x = c l o v e r ?
15 " c l o v _ " +CloverTypeName+ " _ " : " " ;
16 s t d : : s t r i n g p lusminus = i s P l u s ? " p l u s " : " minus " ;
17 i n t num_components = compress12 ? 12 : 1 8 ;
18 b o o l c h i _ p r e f e t c h e s = (k e r n e l == " d s l a s h _ a c h i m b d p s i ") ?
19 t r u e : f a l s e ;
20

21 f i l e n a m e << " . / " << ARCH_NAME << " / " << t m f _ p r e f i x
22 << c l o v _ p r e f i x << k e r n e l << " _ " << p lusminus << " _ "
23 << " body " << " _ " << SpinorTypeName << " _ "
24 << GaugeTypeName << " _v " << VECLEN << " _s "
25 << SOALEN << " _ " << num_components ;
26

27 / / Genera te I n s t r u c t i o n s
28 g e n e r a t e L 2 P r e f e t c h e s (l 2 p r e f s , compress12 , c h i _ p r e f e t c h e s ,
29 c l o v e r , t w i s t e d _ m a s s) ;
30 i f (k e r n e l == " d s l a s h ")
31 d s l a s h _ p l a i n _ b o d y (i v e c t o r , compress12 , c l o v e r ,
32 tw i s t ed_mass , i s P l u s) ;
33 e l s e i f (k e r n e l == " d s l a s h _ a c h i m b d p s i ")
34 d s l a s h _ a c h i m b d p s i _ b o d y (i v e c t o r , compress12 , c l o v e r ,
35 tw i s t ed_mass , i s P l u s) ;
36 m e r g e I v e c t o r W i t h L 2 P r e f e t c h e s (i v e c t o r , l 2 p r e f s) ;
37 dumpIVector (i v e c t o r , f i l e n a m e . s t r ()) ;
38

39 } / / gauge compress ion
40 } / / p l u s / minus
41 } / / k e r n e l
42 } / / c l o v e r
43 } / / t w i s t e d _ m a s s

Listing 3.21: Scheduling of the code generation for the kernels acting on the body. [dslash.cc]

3.4 Extending QPhiX for Twisted-Mass 83

1 vo id d s l a s h _ p l a i n _ b o d y (I n s t V e c t o r& i v e c t o r , b o o l compress12 ,
2 b o o l c l o v e r , b o o l twi s t ed_mass , b o o l i s P l u s)
3 {
4 d e c l a r e _ b _ S p i n s (i v e c t o r) ;
5 d e c l a r e _ u b _ S p i n s (i v e c t o r) ;
6 d e c l a r e _ u _ g a u s (i v e c t o r) ;
7 d e c l a r e _ m i s c (i v e c t o r) ;
8 d e c l a r e _ o u t s (i v e c t o r) ;
9

10 i f (c l o v e r) d e c l a r e _ d o u t s (i v e c t o r) ;
11

12 i f (c l o v e r && ! t w i s t e d _ m a s s) {
13 d e c l a r e _ c l o v e r (i v e c t o r) ;
14 } e l s e i f (c l o v e r && t w i s t e d _ m a s s) {
15 d e c l a r e _ f u l l _ c l o v e r (i v e c t o r) ;
16 }
17

18 FVec (∗ o u t s p i n o r) [4] [3] [2] ;
19

20 i f (c l o v e r) {
21 o u t s p i n o r = &d o u t _ s p i n o r ;
22 } e l s e {
23 o u t s p i n o r = &o u t _ s p i n o r ;
24 }
25

26 z e r o R e s u l t (i v e c t o r , (∗ o u t s p i n o r) [0] [0]) ;
27

28 p r o j _ o p s ∗ p_ops ;
29 r e c o n s _ o p s ∗ rec_ops_bw ;
30 r e c o n s _ o p s ∗ rec_ops_ fw ;
31

32 i f (i s P l u s) {
33 p_ops = p r o j _ o p s _ p l u s ;
34 rec_ops_bw = r e c _ p l u s _ p b e t a _ o p s ;
35 rec_ops_ fw = r e c _ m i n u s _ p b e t a _ o p s ;
36 } e l s e {
37 p_ops = pro j_ops_minus ;
38 rec_ops_bw = r e c _ m i n u s _ p b e t a _ o p s ;
39 rec_ops_ fw = r e c _ p l u s _ p b e t a _ o p s ;
40 }
41

42 d s l a s h _ b o d y (i v e c t o r , compress12 , p_ops , rec_ops_bw ,
43 rec_ops_fw , ∗ o u t s p i n o r) ;
44

45 i f (c l o v e r && ! t w i s t e d _ m a s s)
46 c l o v e r _ t e r m (i v e c t o r , ∗ o u t s p i n o r , f a l s e) ;
47 e l s e i f (c l o v e r && t w i s t e d _ m a s s)
48 f u l l _ c l o v e r _ t e r m (i v e c t o r , ∗ o u t s p i n o r , f a l s e) ;
49 e l s e i f (! c l o v e r && t w i s t e d _ m a s s)
50 t w i s t e d _ t e r m (i v e c t o r , ∗ o u t s p i n o r , f a l s e , i s P l u s) ;
51 e l s e i f (! c l o v e r && ! t w i s t e d _ m a s s) { } ;
52

53 S t r e a m F u l l S p i n o r (i v e c t o r , o u t _ s p i n o r , outBase , o u t O f f s) ;
54 }

Listing 3.22: Complete dslash generation, depending on the lattice action and gauge compression.
[dslash_common.cc]

84 Chapter 3. So�ware

carried out, which corresponds to the hopping part of the full fermion matrix, as we have seen it in
the last section.

The interesting part follows now: the multiplication with the matrix A−1 mentioned above. In
the case of pure Wilson fermion, this is essentially a constant factor, which is dealt with in the
high-level functions. The case of the clover term has already been implemented, and we will come
back to this case shortly. For the case of pure twisted-mass fermions we have

A−1 = (α1± iµγ5)−1 =
1∓ iµγ5

α+ µ2
. (3.5)

In particular, we have to implement a colour matrix times vector multiplication for a full spinor,
because the lower half spinors have already been reconstructed. This is most easily done by
multiplying with the matrix in the numerator �rst, and then rescaling with the factor in the
denominator. The �rst part can be done with a FMA for each real and complex component,
whereas the latter will be a multiplication with a variable mu_inv, which is passed to the kernel
externally and will be calculated at some higher level. Since γ5 is block-diagonal and simply given
by diag(12,−12), the �rst spin component of the matrix product reads

(α+ µ2) Re (A−1ψ0) = µ ∗ Imψ0 + Reψ0 , (3.6)

(α+ µ2) Im (A−1ψ0) = µ ∗ Reψ0 − Imψ0 . (3.7)

A part of the full implementation is shown in Lst. 3.23, and has been written by Mario Schröck, as
well as the rest of the machinery for pure twisted-mass fermions [63].

3.4.2 Data Types & Multiplication of Twisted-Mass Clover
The situation is a little bit more complicated in the case of the clover term. Here we have two major
di�erences with respect to the Wilson action: First of all, we necessarily have to simulate two
degenerate fermions at the same time, which di�er by the sign in front of the twisted-mass term

A = α1± iµγ5 + cswT , (3.8)

and thus we need two clover terms and two clover inverses. Strictly speaking, this is already true
when csw = 0, but there, A−1 is analytically related to A, which is not true for csw 6= 0.

Secondly, due to the imaginary addition of µ to the diagonal, A is no longer hermitian in the
case of twisted-mass fermions. In particular, the inverse of the clover term A−1, will not even
respect the particular form of A, such that the upper and lower triangular part of the matrix are
not self-adjoint.

With the �rst problem we can deal in QPhiX at the level of the service functions, because each
kernel still only involves one clover term, and one inverse. The second issue however, forces us to
change the data layout of the clover term, and with it all the low-level utilities and the main matrix
multiplication.

Recall that the clover term is composed out of two 6 × 6 blocks (i.e. half spinor × colour
vector). In QPhiX, these blocks are stored in form of the 6 real diagonal elements and the 15 upper
triangular complex elements, cf. Lst. 3.24. In order not to have to introduce distinct data structures
for the twisted-mass clover term and its inverse, we decided to use a data layout, in which we store

3.4 Extending QPhiX for Twisted-Mass 85

1 vo id t w i s t e d _ t e r m (I n s t V e c t o r& i v e c t o r , FVec i n _ s p i n o r [4] [3] [2] ,
2 b o o l f a c e , b o o l i s P l u s , s t d : : s t r i n g mask)
3 {
4 dec lareFVecFromFVec (i v e c t o r , mu_vec) ;
5 dec lareFVecFromFVec (i v e c t o r , mu_inv_vec) ;
6 l o a d B r o a d c a s t S c a l a r (i v e c t o r , mu_vec , mu_name , SpinorType) ;
7 l o a d B r o a d c a s t S c a l a r (i v e c t o r , mu_inv_vec , mu_inv_name , SpinorType) ;
8

9 f o r (i n t c o l = 0 ; c o l < 3 ; c o l ++) {
10 f o r (i n t s p i n = 0 ; s p i n < 2 ; s p i n ++) {
11 FVec ∗ sp = i n _ s p i n o r [s p i n] [c o l] ;
12 FVec ∗ tmout = o u t _ s p i n o r [s p i n] [c o l] ;
13

14 i f (i s P l u s) {
15 fmaddFVec (i v e c t o r , tmp_1_re , mu_vec , sp [IM] , sp [RE] , mask) ;
16 fnmaddFVec (i v e c t o r , tmp_1_im , mu_vec , sp [RE] , sp [IM] , mask) ;
17 }
18 e l s e {
19 fnmaddFVec (i v e c t o r , tmp_1_re , mu_vec , sp [IM] , sp [RE] , mask) ;
20 fmaddFVec (i v e c t o r , tmp_1_im , mu_vec , sp [RE] , sp [IM] , mask) ;
21 }
22

23 i f (f a c e) {
24 fmaddFVec (i v e c t o r , tmout [RE] , mu_inv_vec , tmp_1_re ,
25 tmout [RE] , mask) ;
26 fmaddFVec (i v e c t o r , tmout [IM] , mu_inv_vec , tmp_1_im ,
27 tmout [IM] , mask) ;
28 }
29 e l s e {
30 mulFVec (i v e c t o r , sp [RE] , mu_inv_vec , tmp_1_re , mask) ;
31 mulFVec (i v e c t o r , sp [IM] , mu_inv_vec , tmp_1_im , mask) ;
32 }
33 }
34 }
35 { . . . }
36 }

Listing 3.23: Implementation of the twisted-mass term. First, the coe�cients are promoted to SIMD
vectors, then the multiplication is carried out in two steps. Face values are accumulated to �nal result.
[dslash_common.cc]

1 t y p e d e f s t r u c t {
2 FT d i a g 1 [6] [VECLEN] ;
3 FT o f f _ d i a g 1 [1 5] [2] [VECLEN] ;
4 FT d i a g 2 [6] [VECLEN] ;
5 FT o f f _ d i a g 2 [1 5] [2] [VECLEN] ;
6 } C lover ;

Listing 3.24: Wilson clover term with its two blocks of 6 real diagonal and 15 complex o�-diagonal elements.
Here, tiles are repacked as in the case of the gauges. [data_types.h]

86 Chapter 3. So�ware

1 t y p e d e f s t r u c t {
2 FT b l o c k 1 [6] [6] [2] [VECLEN] ;
3 FT b l o c k 2 [6] [6] [2] [VECLEN] ;
4 } F u l l C l o v e r ;

Listing 3.25: Twisted-mass clover term with two full 6× 6 complex blocks. [data_types.h]

two full 6× 6 complex blocks. This new data structure is called FullClover and we show it in
Lst. 3.25.

With this new data structure, we implemented the clover-term-spinor multiplication in the
routine full_clover_term, which is needed after the plain dslash, as we have seen in Lst. 3.22.
Here, we loop over the two blocks, prefetch one full clover block into the L1 and load it into the
vector register. The spinor components should already be in the registers, and thus do not have to
be prefetched and loaded. For each of the blocks, we calculate spin and colour index for both input
and output spinor. Finally, the multiplication is carried out with complex FMA’s or a standard
complex multiplication, in case one starts to accumulate to a new spinor component. Note that
the face version always uses FMA’s, because it is an accumulation to the calculation of the body,
which has already been carried out by that time. The full implementation can be found in Lst. 3.26.

3.4.3 Declarations & L1/L2 Prefetches
To use the clover multiplication generator, we also had to implement low-level utility functions,
Address classes and FVec’s to provide facilities for declaration, loads and prefetches to L1 and
L2 of FullClover terms.

This turns out to be a bit tedious and requires rather good understanding of the code, but
much of the existing functionality could be mimicked. We show the example of the L1 prefetch
machinery in Lst. 3.27. Here, the implementation of a new FullCloverAddress class was
skipped to save space.

3.4.4 Extending the High-Level Facilities
With the expansion of the code generator, new kernels could be generated and imported into the
QPhiX �le structure.

The extension of the QPhiX library turned out to be rather straight-forward due to the well-
organised software design. For both cases we have implemented one new EvenOddLinearOp-
erator class each, which can directly be used for the iterative solvers as well.

The �rst one, EvenOddTMWilsonOperator, has two additional member variables, dou-
ble Mu and bool mu_plus, which allow the user to set the sign and value of the twisted-mass
parameter µ. The inverse parameter is then automatically calculated and passed to the kernel
acting on the tiles. For the second one, EvenOddTMCloverOperator, we had to integrate the
new data structure, which we used already in the code generator, into QPhiX, and provide memory
facility functions for array allocation and free. As mentioned before, we also had to pass two clover
terms and two inverses to the constructor. The right one is then automatically deduced from the
isign the user provides, cf. Lst. 3.28. This is possible, because one clover term is the hermitian
conjugate of the other.

The lattice traversal was replicated largely unchanged. This could be a very apt starting place to
refactor the library in the future. We also had to manage the #include’s of the newly generated

3.4 Extending QPhiX for Twisted-Mass 87

1 vo id f u l l _ c l o v e r _ t e r m (I n s t V e c t o r& i v e c t o r , FVec i n _ s p i n o r [4] [3] [2] , b o o l f a c e ,
s t d : : s t r i n g mask)

2 {
3 f o r (i n t b l o c k = 0 ; b lock < 2 ; b l o c k ++) {
4

5 P r e f e t c h L 1 F u l l C l o v e r F u l l B l o c k I n (i v e c t o r , c l B a s e , c l O f f s , b l o c k) ;
6 L o a d F u l l C l o v e r F u l l B l o c k (i v e c t o r , c l o v _ f u l l , c l B a s e , c l O f f s , b l o c k) ;
7

8 f o r (i n t s c 1 = 0 ; sc1 < 6 ; s c 1 ++) { / / h a l f−sp in−c o l o u r row
9

10 i n t s p i n _ o u t = 2 ∗ b l o c k + s c 1 / 3 ;
11 i n t c o l _ o u t = s c 1 % 3 ;
12 FVec ∗ c l o u t = o u t _ s p i n o r [s p i n _ o u t] [c o l _ o u t] ;
13

14 f o r (i n t s c 2 = 0 ; sc2 < 6 ; s c 2 ++) { / / h a l f−sp in−c o l o u r column
15

16 i n t s p i n _ i n = 2 ∗ b l o c k + s c 2 / 3 ;
17 i n t c o l _ i n = s c 2 % 3 ;
18 FVec ∗ c l i n = i n _ s p i n o r [s p i n _ i n] [c o l _ i n] ;
19

20 i f (s c 2 == 0 && ! f a c e) {
21 mulCVec (i v e c t o r , c l o u t , c l o v _ f u l l [s c 1] [s c 2] , c l i n , mask) ;
22 } e l s e {
23 fmaddCVec (i v e c t o r , c l o u t , c l o v _ f u l l [s c 1] [s c 2] , c l i n , c l o u t ,
24 mask) ;
25 }
26

27 } / / h a l f−sp in−c o l o u r column
28 } / / h a l f−sp in−c o l o u r row
29 } / / b l o c k
30 }

Listing 3.26: The clover-term-spinor multiplication in the non-hermitian case with twisted-mass.
[dslash_common.cc]

1 vo id P r e f e t c h L 1 F u l l C l o v e r F u l l B l o c k I n (I n s t V e c t o r& i v e c t o r ,
2 c o n s t s t d : : s t r i n g& base , c o n s t s t d : : s t r i n g& o f f , i n t b l o c k)
3 {
4 i n t n S i t e s =VECLEN ;
5 f o r (i n t i = 0 ; i < ((3 6 ∗ n S i t e s ∗ s i z e o f (C loverBaseType) +63) / 6 4) ; i ++) {
6 p r e f e t c h L 1 C l o v e r F u l l B l o c k I n (i v e c t o r , base , o f f , b lock ,
7 i ∗ (6 4 / s i z e o f (C loverBaseType))) ;
8 }
9 }

10

11 vo id p r e f e t c h L 1 C l o v e r F u l l B l o c k I n (I n s t V e c t o r& i v e c t o r ,
12 s t d : : s t r i n g base , s t d : : s t r i n g o f f , i n t b lock , i n t imm)
13 {
14 p r e f e t c h L 1 (i v e c t o r , new AddressImm
15 (new F u l l C l o v A d d r e s s (base , b lock , 0 , 0 , RE , CloverType) ,
16 imm) , 0) ;
17 }

Listing 3.27: Example of a FullClover L1 prefetch using the Address factory chain. Here, we prefetch one
block of 36 (SIMD vector) elements, aligned to 64 bits. (Version for packed clover �eld only.) [data_types.cc]

88 Chapter 3. So�ware

1 / / The o p e r a t o r () t h a t the u s e r s e e s
2 t emp la t e <typename FT , i n t VECLEN , i n t SOALEN , b o o l COMPRESS12>
3 vo id TMClovDslash <FT , VECLEN , SOALEN , COMPRESS12 > : : d s l a s h (F o u r S p i n o r B l o c k ∗ res ,
4 c o n s t F o u r S p i n o r B l o c k ∗ ps i ,
5 c o n s t SU3Matr ixB lock ∗ u ,
6 c o n s t F u l l C l o v e r B l o c k ∗ i n v c l o v [2] ,
7 i n t i s i g n ,
8 i n t cb)
9 {

10 / / C a l l the s e r v i c e f u n c t i o n s
11 i f (i s i g n == 1) D P s i P l u s (u , i n v c l o v [0] , p s i , r e s , cb) ;
12 i f (i s i g n == −1) DPsiMinus (u , i n v c l o v [1] , p s i , r e s , cb) ;
13 }

Listing 3.28: The dslash selects the right inverse term depending on isign. The same is true for the clover term
itself in dslashAChiMinusBDPsi. [tm_clov_dslash_body.h]

kernels, and the specialisation �les for the Xeon Phi architectures and the scalar version for testing.
We could use some amount of BASH scripting to automate parts of the work. We also had to
update the autotools setup, adding new con�gure �ags to be able to compile with twisted-mass
and twisted-mass-clover, independently of the old QPhiX facilities.

Finally, we adapted the existing testing and timing facilities to verify correctness of our im-
plementation and benchmark its performance. We successfully tested against the QDP++ kernels
with µ = 0, after implementing new packing routines, to reorder the QDP++ to the QPhiX layout.
Once an interface for tmLQCD is ready, the kernels should also be tested with µ 6= 0.

4. Benchmarks

In this chapter we want to present the results of the benchmarks carried out on the KNL test cluster
DEEP of the Supercomputing Center Jülich [8].

We performed numerous benchmarks on single nodes with various run-time and compile-time
options. We will present the results for the best known options for all four kernels using di�erent
�oating point precision �rst. Then, we will evaluate how di�erent compile-time optimisation
options change the performance of the code. Unfortunately, we could not perform any convincing
multi-node benchmarks on the small test cluster, but we will discuss older results for the KNC’s
and Intel Xeon dual-socket nodes, and in particular their weak and strong scaling behaviour.

4.1 Single Node Results

The available KNL’s had 64 cores with a clock frequency of 1.4 GHz. They were run in �at memory
mode where all of the 16 GB HBM is allocatable. In addition, there were 6 ∗ 16 = 96 GB DDR
memory available. The cluster mode was set to quadrant mode. These options could not be changed,
but they can be checked with numactl --hardware. In particular, to prevent the operating
system to allocate all its data in the MCDRAM, the distance to the HBM is set larger than the
one to the DDR-RAM. This is why one has to use numactl -m 1, to allocate all of a program’s
data to the fast memory. Note, that -m 1 allocates into the second NUMA-node. Without explicit
allocation in MCDRAM, we observed a performance loss in our benchmarks of at least a factor of
two.

All code was compiled with the Intel C++ compile icpc both in version 16.3 and 17.1. We could
not determine signi�cant di�erences in performance between this two versions. To build QPhiX
and its testing facilities several library dependencies have to be resolved (cf. Fig. 4.1). They include
in particular the QDP++, QMP and QIO libraries, as we have seen in the last chapter. We have built
these dependencies on top of Intel MPI and used –enable-parallel-arch=parscalar to

90 Chapter 4. Benchmarks

QPhiX
QDP++

libxml2 (used version 2.9.4)
QIO

QMP
c-lime

libintrin
filedb
xpathreader

QMP

Figure 4.1: Full dependencies of QPhiX. Note that QMP is used independently if testing routines are built or not.

enable OMP threading in QDP++.
We have compiled the code with the following �ags:

CXXFLAGS="-std=c++11 -qopenmp -xMIC-AVX512

-restrict -finline-functions -fno-alias -O3"

Note in particular the use of -xMIC-AVX512 which is necessary to specify the ISA for the
compiler, and without which certain architecture speci�c prefetch hints will not be recognised.
If not speci�ed di�erently, we used the –enable-cean –enable-mm-malloc con�gure
options to enable Cilk Array Notation and aligned memory allocations. We also had to set the
SOALEN parameter, and the architecture with –enable-proc=AVX512 at con�gure-time.

We performed single node benchmarks for the four dslash kernels using Wilson, Wilson Clover,
Twisted-Mass and Twisted-Mass Clover Fermions. Each kernels was compiled as a scalar version
(SOA1) and with the values SOALEN = 4, 8, 16. The tests have been carried out with the three
types of precision half, single and double. Note that there is no half precision available for the
scalar version, as there is no double version when compiling with SOALEN = 16.

We used three di�erent lattice volumes, being 323 × 64, 323 × 96 and 483 × 96. However, all
results were very similar, which is why we will only display the results for the �rst lattice. For each
given kernel, SOALEN and precision, the runs consisted of 3 micro-benchmarks for each value
of cb (checkerboard) and isign (hermitian conjugate nor not). These 12 values measured the
execution of 500 applications of the stencil operator each. We took the arithmetic mean of these
values and veri�ed that the standard deviation was considerably small.

We set the following OpenMP environment variables at start-up:

export KMP_AFFINITY=compact,granularity=fine

export KMP_PLACE_THREADS=64c,4t

export OMP_NUM_THREADS=256

The SMT threading scheme, QMP (multi-node), lattice, blocking and padding parameters, as well

4.1 Single Node Results 91

Precision Wilson Twisted-Mass Wilson Clover Twisted-Mass Clover

Single 483 (8) 504 (8) 481 (8) 366 (8)
Double 232 (4) 242 (4) 236 (4) 178 (4)

Table 4.1: Highest Performance in GFlops/s for the di�erent kernels. The number in parenthesis indicates for
which value of SOALEN it has been achieved.

as the use of gauge compression could be set at run time. A typical program call could look like

numactl -m 1 ./wils_soa8 -geom 1 1 1 1 -c 64 -sy 1 -sz 4

-x 32 -y 32 -z 32 -t 64 -by 4 -bz 4 -pxy 1 -pxyz 0

-minct 1 -compress12 -i 500 -prec d -dslash

to call the dslash in double precision for 12 micro-benchmarks and 500 iterations each. We
present our results in Figs. 4.2–4.5.

There are some comments in order. First of all, it is clearly visible that SIMD has a huge impact
on performance. Running the code without using any SIMD vectors, the performance for single
and double precision is nearly always the same. The reason for this might be that the code is
instruction bound when using only scalar instructions.

Switching to vector instructions, the code becomes memory bandwidth bound, but the speed-up
with respect to the scalar version is still a solid 8x in single and 4x in double precision. It is also
interesting to note, that in single and double precision the SOALEN parameter does not seem to
have a large impact, although best performance is always obtained when using SoA’s where the
number of elements in the X-direction �lls exactly half of the register, cf. Tab. 4.1. This seems
counter-intuitive, because one needs to load data in two steps into the registers, instead of one.
However, the same behaviour as been observed on KNC’s, cf. [44], as well.

The length of the SoA’s does have an impact in half precision, because there, this parameter
e�ectively controls the fraction of the register which is actually utilised. When using half precision
arithmetics with the full registers, a signi�cantly higher throughput compared to the single precision
version is clearly visible for all the kernels.

Our benchmark results for the Wilson dslash kernel are very similar to what has been measured
in [55], where KNL’s with 68 rather than 64 cores where used. The throughput for the clover
version of the dslash in the case of Wilson Fermions is on average a little bit higher than the one
without clover term, as one would expect from the higher total arithmetic intensity. In single
precision with gauge compression, the combined arithmetic intensity is IA = 1.06 without and
IA = 1.17 with clover term, cf. Tabs. 1.2 and 1.3. The same holds true for the Twisted-Mass Clover
term routine, which performs about 24% worse than the respective Wilson version. This is rather
close to the 18% loss one expects from the pure di�erence in the arithmetic intensities.

We also observe that the throughput values we estimated in our performance model, which
took hardware considerations into account, come rather close to the values we have measured
in our benchmarks,1 cf. Tab. 2.2. In particular, we see that we achieve about 60% of the rooftop

1Excluding obviously the cases of half precision, because the respective arithmetic operations are not implemented
in hardware for Xeon Phi’s.

92 Chapter 4. Benchmarks

Figure 4.2: Single node performance on KNL for Wilson dslash

Figure 4.3: Single node performance on KNL for Twisted-Mass dslash

4.1 Single Node Results 93

Figure 4.4: Single node performance on KNL for Wilson Clover dslash

Figure 4.5: Single node performance on KNL for Twisted-Mass Clover dslash

94 Chapter 4. Benchmarks

performance for 7 reused spinors, and are signi�cantly above the one without reuse—always
considering the use of gauge compression and streaming stores.

4.2 Testing the Kernel Options

To evaluate the impact of the various compile- and run-time options QPhiX has to o�er, we carried
out benchmarks in single precision and SOALEN = 16 (unless stated otherwise) with a number of
di�erent tuning options. The results on KNL for the Wilson and Twisted-Mass Clover dslash are
displayed in Figs. 4.6 and 4.7. We supplement these results with older benchmarks obtained on
KNC for the Wilson dslash, cf. Fig. 4.8.

In the case of the KNL we made several interesting observations. First of all, the impact of
repacking gauge and clover �elds into full vectors results in a speed-up of about 5% to 7%. However,
the explicit use of streaming stores does not change the performance in any visible way. We also
observed that all software prefetches and in particular L2 prefetches are much better handled by the
hardware itself. We also do not observed any gain from introducing light thread barriers for local
core synchronisation. We do observe a slight improvement in throughput when spinor �elds are
repacked into tiles with SOALEN = 8, though (cf. also the results of the last section). The greatest
impact, however, has the algorithmic improvement obtained through 2-row gauge compression.

The situation for the KNC, on the other hand, was quite di�erent. Here, managing prefetches
for L1 and L2 caches within the software was quite bene�cial, as were explicit barriers for thread
synchronisation. Also in that case, we observed great gains from both the use of 2D tiles as well as
2-row gauge compression.

Although these results are a little bit disappointing from the software development point of
view, they suggested that low level aspects of the software execution are much better handle by
the hardware itself in the case of KNL’s. In particular, the programmer has to spend much less
e�ort to be able to use low level hardware features such as streaming stores, cache prefetches
and the synchronisation of hardware threads. It also shows, however, that slight variations in the
data layout (here in form of re-packing and 2D spinor tiles) can give the last few percentages of
improvement in performance.

4.3 Multi-Node Results

Unfortunately, we did not have access to hardware facilities to test the scaling behaviour of the code
using multiple KNL’s. However, there has been extensive testing for both the Wilson kernels [43],
as well as the pure Twisted-Mass kernel [63] to quantify both the weak and the strong scalability
of the code on KNC’s.

For the former case, strong scaling was observed for two lattices with dimensions 323 × 256
and 483 × 256 up to 16 KNC units. The bigger volume was scaling up further to 32 KNC’s, but also
there a topping out was already visible.

For the case of Twisted-Mass Fermions, the code was weakly scaling up to 64 KNC nodes, when
using a lattice of dimensions 483 × 96. Furthermore, strong scaling for various lattice volumes
could be observed on Dual Socket Xeon Haswell CPU’s using AVX2 intrinsics up to 64 nodes.

In both benchmarks, a proxy provided by Intel was used to improve the MPI communication
between KNC nodes. To that end, one of 61 available cores was exclusively used to manage the
MPI calls. The above results, and in particular those for the Dual Socket Xeon nodes, suggest that

4.3 Multi-Node Results 95

Figure 4.6: Various tuning options for Wilson dslash on KNL

Figure 4.7: Various tuning options for Twisted-Mass Clover dslash on KNL

96 Chapter 4. Benchmarks

Figure 4.8: Various tuning options for Wilson dslash on KNC, data taken from [44]. Here vector includes the use
of packed gauges and streaming stores.

good strong scalability will be achieved on KNL processor clusters, which may be interconnected
using traditional In�niBand networks.

Conclusions and Outlook

In this thesis, I extended the QPhiX library facilities to be able to deal with degenerate Twisted-Mass
Fermions with Clover Term.

In this work, I gave a brief heuristic introduction to the Quantum Field Theory of Strong
Interactions, and in particular its discretised version known as Lattice QCD. I discussed the
fundamental degrees of freedom of the theory and their adaption on the lattice.

Subsequently, I considered the various levels of complexity needed to simulate the discretised
theory on a computer. In particular, I introduced the dslash stencil operator, several di�erent
iterative Krylov subspace linear solvers, and the Hybrid Monte Carlo algorithm. I motivated the
scaling behaviour of the algorithmic complexity of LQCD in terms of the fundamental physical
parameters.

After that, I gave a description of the target hardware of the QPhiX library, the Xeon Phi
(co-)processors. I particularly focused on the changes of the KNL architecture with respect to the
previous KNC architecture. I reported about the structure of individual CPU’s, the interconnecting
mesh and the random access memory. I drew a few general implications for the HPC software
development on this hardware architecture.

In a subsequent chapter, I described the software design of QPhiX and how it implements the
above mentioned guide lines. I spent some time to illustrate the process of extending the library
for the twisted-mass fermion action with the use of numerous code examples. In the �nal chapter,
I reported the results of extensive benchmarking, carried out on a single KNL processors on the
JSC test cluster DEEP.

Several goals for future developments are already contemplated. In particular, the QPhiX dslash
facilities should be extended to integrate the non-degenerate twisted-mass fermion action, in order
to be able to simulate fermion �elds with di�erent mass parameters, e.g in a setup with 2+1+1
�avours. Furthermore, since it is likely that supercomputers at the exa-scale will look similar to
Xeon Phi clusters, it is desirable to be able to run full HMC simulations on KNL’s. To this end, the

98 Chapter 4. Benchmarks

QPhiX library needs to be integrated into the existing software suite tmLQCD, which was natively
designed to simulated twisted-mass fermions. This work has already been initiated. It would also
be conceivable, to go the other way around and extend the software suite Chroma, which also
targets to supply functionality for a wide range of physics applications, for twisted-mass fermions.
In this case, one could bene�t from the integration of QPhiX, which has already been carried out.

Apart from extending QPhiX for di�erent formulations of LQCD, and integrating the library
into established code bases, it would be worthwhile to implement newer algorithmic ideas, such as
domain decomposition preconditioners, de�ation and algebraic multi-grid approaches. In particular,
domain decomposition could allow to block the small domains in which the lattice is decomposed
into the low lying caches, in order to shift the memory bandwidth bottleneck from the main
memory to the much faster caches. There has already been work in this direction for Xeon Phi’s in
[38].

Bibliography

[1] Mimd lattice computation (milc) collaboration,
http://physics.indiana.edu/ sg/milc.html.

[2] http://jemalloc.net/, 2016.

[3] https://github.com/01org/hetero-streams, 2016.

[4] https://github.com/memkind/memkind, 2016.

[5] https://pm.bsc.es/content/hstreams-doc, 2016.

[6] https://software.intel.com/sites/landingpage/intrinsicsguide/, 2016.

[7] https://www.threadingbuildingblocks.org/, 2016.

[8] http://www.deep-er.eu/, 2016.

[9] http://www.electronicdesign.com/dsps/intels-avx-scales-1024-bit-vector-math, 2016.

[10] http://www.itworld.com/article/2985214/hardware/intels-xeon-roadmap-for-2016-
leaks.html, 2016.

[11] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3814.html, 2016.

[12] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf, 2016.

[13] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html, 2016.

[14] B. Alder and T. Wainwright. Phase transition for a hard sphere system. The Journal of chemical
physics, 27(5):1208, 1957.

100 BIBLIOGRAPHY

[15] F. Bodin et al. APE computers—past, present and future. Comput. Phys. Commun., 147(1-
2):402–409, 2002.

[16] P. A. Boyle. The bagel assembler generation library. Computer Physics Communications,
180(12):2739–2748, 2009.

[17] P. A. Boyle. The BlueGene/Q supercomputer. PoS, LATTICE2012:020, 2012.

[18] P. A. Boyle, G. Cossu, A. Yamaguchi, and A. Portelli. Grid: A next generation data parallel
C++ QCD library. PoS, LATTICE2015:023, 2016.

[19] B. Bunk and R. Sommer. An Eight Parameter Representation of SU(3) Matrices and Its
Application for Simulating Lattice QCD. Comput. Phys. Commun., 40:229–232, 1986.

[20] N. Cabibbo. APE: A High Performance Processor for Lattice QCD. In Old and New Problems
in Fundamental Physics: Meeting in Honour of G.C. Wick, pages 137–144, 1984.

[21] D. J. E. Callaway and A. Rahman. Microcanonical ensemble formulation of lattice gauge
theory. Phys. Rev. Lett., 49:613–616, Aug 1982.

[22] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi. Solving Lattice QCD systems of
equations using mixed precision solvers on GPUs. Comput. Phys. Commun., 181:1517–1528,
2010.

[23] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 1–6.
ACM, 1987.

[24] M. Creutz. Global monte carlo algorithms for many-fermion systems. Physical Review D,
38(4):1228, 1988.

[25] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08,
pages 4:1–4:12, Piscataway, NJ, USA, 2008. IEEE Press.

[26] P. de Forcrand, D. Lellouch, and C. Roiesnel. Optimizing a lattice qcd simulation program.
Journal of Computational Physics, 59(2):324 – 330, 1985.

[27] T. DeGrand and C. DeTar. Lattice methods for quantum chromodynamics. World Scienti�c,
2006.

[28] T. A. DeGrand and P. Rossi. Conditioning Techniques for Dynamical Fermions. Comput. Phys.
Commun., 60:211–214, 1990.

[29] R. G. Edwards and B. Joo. The chroma software system for lattice qcd. arXiv preprint
hep-lat/0409003, 2004.

[30] R. Fletcher. Conjugate gradient methods for inde�nite systems. In Numerical analysis, pages
73–89. Springer, 1976.

BIBLIOGRAPHY 101

[31] E. Forest and R. D. Ruth. Fourth-order symplectic integration. Physica D: Nonlinear Phenomena,
43(1):105 – 117, 1990.

[32] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz. A Local formulation of lattice QCD without
unphysical fermion zero modes. Nucl. Phys. Proc. Suppl., 83:941–946, 2000.

[33] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz. Lattice QCD with a chirally twisted mass term.
JHEP, 08:058, 2001.

[34] R. Frezzotti, S. Sint, and P. Weisz. O(a) improved twisted mass lattice QCD. JHEP, 07:048,
2001.

[35] C. Gattringer and C. Lang. Quantum chromodynamics on the lattice: an introductory presenta-
tion, volume 788. Springer Science & Business Media, 2009.

[36] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satter�eld, K. Sugavanam, P. Coteus, P. Hei-
delberger, M. Blumrich, R. Wisniewski, et al. The ibm blue gene/q compute chip. Ieee Micro,
32(2):48–60, 2012.

[37] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. 49,
1952.

[38] S. Heybrock, B. Joó, D. D. Kalamkar, M. Smelyanskiy, K. Vaidyanathan, T. Wettig, and P. Dubey.
Lattice QCD with Domain Decomposition on Intel Xeon Phi Co-Processors. In The Interna-
tional Conference for High Performance Computing, Networking, Storage, and Analysis: SC14:
HPC matters (SC) New Orleans, LA, USA, November 16-21, 2014, 2014.

[39] Y.-C. Jang, H.-J. Kim, and W. Lee. Multi GPU Performance of Conjugate Gradient Solver with
Staggered Fermions in Mixed Precision. PoS, LATTICE2011:309, 2011.

[40] J. Je�ers and J. Reinders. High Performance Parallelism Pearls Two Volumes: Multicore and
Many-core Programming Approaches. Morgan Kaufmann, 2015.

[41] B. Jegerlehner. Improvements of Luscher’s local bosonic fermion algorithm. Nucl. Phys.,
B465:487–506, 1996.

[42] B. Joó. Scidac-2 software infrastructure for lattice qcd. In Journal of Physics: Conference Series,
volume 78, page 012034. IOP Publishing, 2007.

[43] B. Joó, D. D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany, V. W. Lee, P. Dubey,
and W. A. Watson III. Lattice qcd on intel® xeon phitm coprocessors. In ISC, pages 40–54,
2013.

[44] B. Joo, M. Smelyanskiy, D. D. Kalamkar, and K. Vaidyanathan. Wilson Dslash Kernel From
Lattice QCD Optimization. Jul 2015.

[45] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[46] M. Luscher and P. Weisz. On-Shell Improved Lattice Gauge Theories. Commun. Math. Phys.,
97:59, 1985. [Erratum: Commun. Math. Phys.98,433(1985)].

102 BIBLIOGRAPHY

[47] P. B. Mackenze. An improved hybrid monte carlo method. Physics Letters B, 226(3):369 – 371,
1989.

[48] L. Markus and K. R. Meyer. Generic Hamiltonian dynamical systems are neither integrable nor
ergodic, volume 144. American Mathematical Soc., 1974.

[49] R. Martin, G. Peters, and J. Wilkinson. Iterative re�nement of the solution of a positive de�nite
system of equations. Numerische Mathematik, 8(3):203–216, 1966.

[50] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1953.

[51] R. M. Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
2:113–162, 2011.

[52] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-d blocking optimization for stencil
computations on modern cpus and gpus. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–13.
IEEE Computer Society, 2010.

[53] M. Peskin and D. Schroeder. An introduction to quantum �eld theory. 1995.

[54] Pochinksy, A. V. Qa0 code generator.

[55] J. Reinders, J. Je�ers, and A. Sodani. Intel Xeon Phi Processor High Performance Programming
Knights Landing Edition. Boston, MA, USA: Morgan Kaufmann Publishers Inc, 2016.

[56] L. F. Richardson. The approximate arithmetical solution by �nite di�erences of physical
problems involving di�erential equations, with an application to the stresses in a masonry
dam. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, 210:307–357, 1911.

[57] H. J. Rothe. Lattice gauge theories: an introduction, volume 74. World Scienti�c, 2005.

[58] R. D. Ruth. A Canonical Integration Technique. IEEE Transactions on Nuclear Science, 30:2669,
Aug. 1983.

[59] Y. Saad. Iterative methods for sparse linear systems. Siam, 2003.

[60] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on scienti�c and statistical computing, 7(3):856–
869, 1986.

[61] S. Schaefer. Status and challenges of simulations with dynamical fermions. PoS, LAT-
TICE2012:001, 2012.

[62] A. Schäfer and D. Fey. High performance stencil code algorithms for gpgpus. Procedia
Computer Science, 4:2027–2036, 2011.

[63] M. Schröck, S. Simula, and A. Strelchenko. Accelerating Twisted Mass LQCD with QPhiX.
PoS, LATTICE2015:030, 2016.

BIBLIOGRAPHY 103

[64] B. Sheikholeslami and R. Wohlert. Improved Continuum Limit Lattice Action for QCD with
Wilson Fermions. Nucl. Phys., B259:572, 1985.

[65] A. Shindler. Twisted mass lattice QCD. Phys. Rept., 461:37–110, 2008.

[66] G. L. Sleijpen and H. A. van der Vorst. Reliable updated residuals in hybrid bi-cg methods.
Computing, 56(2):141–163, 1996.

[67] G. L. G. Sleijpen and H. A. van der Vorst. Reliable updated residuals in hybrid bi-cg methods.
Computing, 56(2):141–163, 1996.

[68] M. Smelyanskiy, K. Vaidyanathan, J. Choi, B. Joó, J. Chhugani, M. A. Clark, and P. Dubey. High-
performance lattice qcd for multi-core based parallel systems using a cache-friendly hybrid
threaded-mpi approach. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, page 69. ACM, 2011.

[69] P. Sonneveld. Cgs, a fast lanczos-type solver for nonsymmetric linear systems. SIAM journal
on scienti�c and statistical computing, 10(1):36–52, 1989.

[70] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356,
1969.

[71] Strohmaier, Dongarra, Simon, Meuer. https://www.top500.org/, 2016.

[72] R. Strzodka. Pipelined mixed precision algorithms on fpgas for fast and accurate pde solvers
from low precision components. In In IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 259–268, 2006.

[73] K. Symanzik. Continuum Limit and Improved Action in Lattice Theories. 1. Principles and
phi**4 Theory. Nucl. Phys., B226:187–204, 1983.

[74] K. Symanzik. Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear
Sigma Model in Perturbation Theory. Nucl. Phys., B226:205–227, 1983.

[75] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

[76] A. Ukawa. Computational cost of full QCD simulations experienced by CP-PACS and JLQCD
Collaborations. Nucl. Phys. Proc. Suppl., 106:195–196, 2002. [,195(2002)].

[77] H. A. Van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the
solution of nonsymmetric linear systems. SIAM Journal on scienti�c and Statistical Computing,
13(2):631–644, 1992.

[78] D. Vandevoorde and N. M. Josuttis. C++ Templates. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[79] S. Weinberg. The quantum theory of �elds. Cambridge university press, 1996.

[80] K. G. Wilson. Con�nement of quarks. Physical Review D, 10(8):2445, 1974.

	Preface
	Introduction
	1 Algorithms
	1.1 The Dirac Dslash Operator
	1.1.1 The Basic Algorithm
	1.1.2 Performance Model and Boundedness
	1.1.3 Clover Term and Twisted-Mass

	1.2 Iterative Solvers
	1.2.1 Conjugate Gradient Method
	1.2.2 Biconjugate Gradient Stabilized Method
	1.2.3 Modified Richardson Iteration
	1.2.4 Preconditioning

	1.3 Hybrid Monte Carlo
	1.4 Computational Complexity of LQCD

	2 Hardware
	2.1 Architecture
	2.1.1 Tiles and Cores
	2.1.2 Interconnect Mesh and Cluster Modes
	2.1.3 Memory and Memory Modes
	2.1.4 I/O and Omni-Path Fabric

	2.2 General Programming Implications
	2.2.1 Managing MCDRAM
	2.2.2 Vectorisation
	2.2.3 Scaling

	2.3 Performance Model Revised

	3 Software
	3.1 Software Layers for LQCD Simulations
	3.2 QPhiX
	3.2.1 Data Structures, Tiles & Geometry
	3.2.2 Cache Blocking and Load Balancing
	3.2.3 SMT Threading and Lattice Traversal
	3.2.4 BLAS Linear Algebra
	3.2.5 Even-Odd Operators & Iterative Solvers
	3.2.6 Inter-Node Communication
	3.2.7 Barriers

	3.3 QPhiX Code Generator
	3.3.1 Instructions, Addresses & Vector Registers
	3.3.2 Implementing Instructions
	3.3.3 The dslash Body
	3.3.4 Software Prefetches
	3.3.5 Code Generation & Custom Make Files

	3.4 Extending QPhiX for Twisted-Mass
	3.4.1 Code Generation for pure Twisted-Mass Fermions
	3.4.2 Data Types & Multiplication of Twisted-Mass Clover
	3.4.3 Declarations & L1/L2 Prefetches
	3.4.4 Extending the High-Level Facilities

	4 Benchmarks
	4.1 Single Node Results
	4.2 Testing the Kernel Options
	4.3 Multi-Node Results

	Conclusions and Outlook
	Bibliography

